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Abstract

In social networks services like Twitter, users are overwhelmed with huge amount of social data,
most of which are short, unstructured and highly noisy. Identifying accurate information from
this huge amount of data is indeed a hard task. Classification of tweets into organized form will
help the user to easily access these required information. Our first contribution relates to filtering
parts of speech and preprocessing this kind of highly noisy and short data. Our second contri-
bution concerns the named entity recognition (NER) in tweets. Thus, the adaptation of existing
language tools for natural languages, noisy and not accurate language tweets, is necessary. Our
third contribution involves segmentation of hashtags and a semantic enrichment using a com-
bination of relations from WordNet, which helps the performance of our classification system,
including disambiguation of named entities, abbreviations and acronyms. Graph theory is used
to cluster the words extracted from WordNet and tweets, based on the idea of connected compo-
nents. We test our automatic classification system with four categories: politics, economy, sports
and the medical field. We evaluate and compare several automatic classification systems using
part or all of the items described in our contributions and found that filtering by part of speech
and named entity recognition dramatically increase the classification precision to 77.3 %. More-
over, a classification system incorporating segmentation of hashtags and semantic enrichment by
two relations from WordNet, synonymy and hyperonymy, increase classification precision up to
83.4 %.

1 Introduction

The automatic classification of text and the approaches for the extraction of hidden subjects have good
performance when there is enough meta-information, the context is extended using knowledge from big
collections, like Wikipedia (Sriram et al., 2010) or it uses meta-information from external sources such
as Wikipedia (Genc et al., 2011) and include the use of lexical ontologies, like DBPedia (Cano et al.,
2013). However, those approaches need online queries, what makes their performance decrease, and the
extraction of knowledge from those external collections demand complex algorithms. Moreover, the use
of those approaches makes the classification algorithms less general.

We present a classification method that uses offline knowledge extracted from WordNet to disam-
biguate and enrich information in tweets and also to group semantically connected words of tweets in
order to decrease the size of our training matrix.

In Section 2 we present a review of some works on the classification of tweets and short texts in
general. In Section 3 we detail the main steps in the pre-processing: tweet normalization, hashtag de-
composition and named entity recognition. Section 4 presents our methodology: how WordNet is used

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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to disambiguate words in tweets, how we build a graph using the words in tweets and semantic relations
extracted from WordNet and how connected components extracted from this graph is used to decrease
the number of dimensions in our training matrix. In Section 5 we present the experiments and results
obtained in the classification of tweets, in terms of precision. And in Section 6 and Section 7 we present
the evaluation and conclusion, respectively.

2 Related Work

Recent works based on machine learning deal with the classification of tweets. Sriram et al. (2010) clas-
sify tweets into pre-defined generic classes, e.g. "news", "events", "advertising", etc., using information
about the authors and some characteristics, such as abbreviations, words used to express opinion, etc.

Sahami and Heilman (2006) use short texts from tweets in search engines queries in order to increase
the information in each tweet. However, those techniques need additional entity disambiguation ap-
proaches. For example, even though "jaguar" and "car" are close semantically, a disambiguation in the
query results is needed to differentiate the results from "jaguar" as a car and as an animal. Therefore, the
intervention of the user is necessary in order to guide the process of tweet expansion.

Genc et al. (2011) propose a method for the classification of tweets using Wikipedia, which calculates
the semantic distance between words in a tweet and words in the description of Wikipedia pages to find
the most similar page and category. Kinsella et al. (2011) analyze meta-data from objects (Amazon
products, YouTube videos, etc.) to which links in tweets are pointing to determine their subjects.

Lee et al. (2011) classify tweets into 18 general categories, such as "sport", "politics", etc. They use
two methods: bag of words and a classification based on a network, identifying the most influential users
for each category. The number of influential users in common between already classified tweets and a
tweet yet to be classified define the category of the new tweet.

Sankaranarayanan et al. (2009) build a news processing system called "TwitterStand" that identifies
tweets corresponding to last news. Their objective is to reduce noise and identify tweets classes and
groups of interest.

Saif et al. (2012) introduce a method based on the disambiguation of named entities. They add seman-
tic information to the named entity identified (for example, adding "Apple" to "IPhone") and then asso-
ciate negative/positive sentiment extracted from tweets. Michelson and Macskassy (2010) use Wikipedia
to disambiguate, classify named entities found in tweets and identify the subjects of interest to the users
and the most frequent categories related to named entities.

Since hashtags are essentials in understanding the subject of a tweet, most systems of analyze of
opinions try to incorporate them in their calculations. Asur and Huberman (2010) show how to improve
standard techniques of supervised classification by integration of polarity from most frequent hashtags.

Brun and Roux (2014a) show how to extract words from hashtags and use them to improve the detec-
tion of polarity in tweets. Their system represents each opinion according to the model proposed by Liu
(2010) and compare a system that uses hashtag decomposition with a system that does not use it.

Almeida et al. (2016) present a supervised learning approach dedicated to the biomedical domain for
supporting the production of literature on HIV using thesaurus MeSH (Medical Subject Headings).

3 Pre-processing

Our system for the classification of tweets is based on Weka1 and uses the Twitter API to extract tweets2.
We use Twitter API3 to build our training and testing corpus. A language detector (Shuyo, 2010) is

used to keep only tweets in English4. All tweets containing less than 80% of words in English, only
URLs and empty tweets were deleted from the corpus.

Despite the existence of many pre-processing tools for short texts and tweets (e.g. TweetNLP5), we

1. http://www.cs.waikato.ac.nz/ml/weka
2. https://bitbucket.org/LyesBillal/twitterclassifier/overview
3. https://dev.twitter.com
4. https://github.com/shuyo/language-detection
5. http://www.cs.cmu.edu/ ark/TweetNLP/
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have chosen Standford NLP6 for its robustness.
In the next sections we explain the main pre-processing steps: tweet normalization, hashtag decompo-

sition and named entity recognition.

3.1 Tweet Normalization

Tweet normalization consists in rewriting text in a standard language. It is based on the most common
lexical mistakes made in social media and is divided in the following sub-tasks (Han et al., 2013):

1. Suppression of extra letters, e.g. "gooood". We use an English dictionary 7 and regular expressions
to detect the closest possible correct word;

2. Minimal orthographic correction for most common mistakes, e.g. substitution of "scoll" for "scroll";

3. Substitution of common words used in social media, e.g. "2day" for "today". We use a dictionary8

dedicated to this kind of problem.

3.2 Hashtag Decomposition

A hashtag always starts by the character "#", making easy its identification. They are usually composed
words created by users and cause a problem for the linguistic analyzes because they are considered
unknown words. In a tweet having only 140 characters ignoring the hashtags may cause an enormous
loss of information (Brun and Roux, 2014b).

Usually, different hashtags are used for the same subject. For example, for Newsmax_Media we found:

#News_Media, #VanRE, #Vancouver. . .

Those three hashtags are related to the words "Newsmax", "Media", "Vancouver", "VanRE".
Our objective is to extract all words in hashtags and increase their frequency. For example:

#Newsmax_Media→ (Newsmax,Media)
#News_Media→ (News,Media)
#Vancouver→ (Vancouver)
#VanRE→ (Van,RE)

We propose a recursive algorithm that processes hashtags from left to right and separates the problem
in three sub-tasks:

1. When each word in a hashtag start by an uppercase letter, we use a function to separate those words.
Example: #ParisClimateConference

2. When the words are separated by special characters or by numbers, we use another function.
Examples: #3Novices, #Newsmax_Media

3. When each word starts by a lowercase letter, we use a third function combined with an English
dictionary9. This function tries to separate a hashtag in the fewest possible number of words, from
left to right. For example, the hashtag #renewableenergy can be separated as:
#renewableenergy→ (renew, able, energy)
#renewableenergy→ (renewable, energy)
and we chose (renewable, energy), following the human tendency of choosing the longest possible
sequence when decodifying a sequence of characters.

6. http://nlp.stanford.edu/software/
7. http://gdt.oqlf.gouv.qc.ca/
8. https://github.com/coastalcph/cs_sst/blob/master/data/res/emnlp_dict.txt
9. https://github.com/dwyl/english-words
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3.3 Named Entity Recognition

Different users write dates, names of places or people in different ways. For example: "2016-03-10"
and "March 10th 2016", "John Kennedy" and "JFK", etc. Named Entity Recognition (NER), a set of
techniques to deal with this problem, is used in different projects, such as the Gene/Protein Named
Entity Recognition and Normalization Software(GNAT) (Wermter et al., 2009).

Unities of time, distance, currency can be normalized using the Stanford NLP API. A sequence of
words that appear with high frequency is kept because they probably represent a unique entity. For the
names of location and organization we search in Wordnet for the closest synonyms.

After NER, we remove the stop words, i.e. functional words carrying no meaning10 and make the
lemmatization, i.e. transformation of words into their canonical forms (e.g. nouns from plural to singular,
verbs from a conjugated to a infinitive form, etc.), using Standford NLP lemmatizer11.

4 Methodology

Figure 1 shows the main process in our methodology.

Tweets/Bag of words WordNet Disambiguation Graph Building

Connected ComponentsLSAClassification

Figure 1: The main processes for building the matrix of connected components.

In the next sections we present the main steps in our methodology. Section 4.1 shows how we use
WordNet to disambiguate terms. Section 4.2 presents our method for the construction of a graph of
terms in tweets and how we extract connected components from this graph. In Section 4.3, we explain
how we use connected components to lower the ranking in our classification matrix. Finally, Section 4.4
shows the classification algorithms used in this work.

4.1 Disambiguation of Tweets Using WordNet

Since we use Wordnet12 for the tweets expansion, we decided to also use it for the task of disambiguation.
For each word, WordNet suggests many senses, each one containing a synset, i.e. a group of almost

synonyms words. We adopt a structural method based on the semantic distance between concepts to
choose the correct sense, according to the formula (Navigli, 2009):

Ŝ = argmaxS∈Sense(wi)

∑
wj∈T :wi 6=wj

maxS′∈Sense(wj)Score(S, S
′). (1)

Where T is the set of terms in a tweet, wi is the term we want to disambiguate, Sense(wi) is the set
of candidates concepts for the term wi, what in WordNet corresponds to the synsets containing this term,
and Score(S, S′) is the function used to measure the similarity between two concepts S and S′.

There are many methods for measuring the similarity between concepts S and S′. After many com-
parisons, we have chosen an approach based on a path formed by the arcs of the graph (Wu and Palmer,
1994), which supposes that the similarity between two concepts depends on the distance between the
nodes concerned and their common ancestor (Least Common Concept) in comparison to the distance to
a root node in the graph.

To enrich the tweets, we use the technique introduced by (Audeh et al., 2013) from information search
for the expansion of queries. The first option is to search for synonyms in the synset selected in the
previous step. The second one is to use the synsets of the hypernym of the term.

10. http://members.unine.ch/jacques.savoy/clef/englishST.txt
11. http://nlp.stanford.edu/software/
12. http://wordnetcode.princeton.edu/wn3.1.dict.tar.gz
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4.2 Graph Building
Once the synset having the closest sense to the context of the tweet is selected, we group the words w
extracted from the tweets with their synsets in a graph G = (V,E), defined as follows:

V = {∀w ∈ Etweet/ {w} ∪ Synsetw}

E = {Synonym, Hyperonym · · · }
(2)

In this graph, each word from the corpus and each word in the synsets, as selected by the previous step,
is represented by a node V and each relation (synonymy, hyperonymy) between those words, extracted
from WordNet, is represented by an arc E. This creates a weakly connected graph that is used to the
extraction of connected components.

The next step is to search for the connected components in the graph G. Each component is formed
by nodes, corresponding to words, connected by arcs representing the semantic relations. The idea is to
cluster the words w1 and w2 connected by an arc to another word w ∈ {w1} ∪ Synsetw1 , having this
word w a relation w ∈ {w2} ∪ Synsetw2 . Mathematically:

G′
(
V ′, E′

)
a connected component in G(V,E) /V ′ ⊂ V ∧ {w1, w2} ∈ V ′

Then we have:
{{w1} ∪ Synsetw1} ∩ {{w2} ∪ Synsetw2} 6= φ (3)

A word, called the "representative", is selected to represent each component. The matrix of bag of
words becomes a matrix of bags of representatives, or bag of connected components. For example, in
Figure 2 the word "football" is the representative of the component:

football ->[football, football game, soccer/sports, association football, soccer]

football

football game

soccer/sportsassociation football

soccer representative

nodes of the graph

CONNECTED COMPONENT "football"

Figure 2: Example of a connected component represented by the word "football" in the vectorial space

Every time we find a word that belongs to this component in a tweet, we increment the frequency of the
word "football", which is the representative of this component, leading to a matrix of fewer dimensions.

4.3 Rank Lowering Using Latent Semantic Analysis
Latent Semantic Analysis (LSA) (Bestgen, 2004) is a technique for analyzing the relation between terms
and between terms and documents. Each term is represented as a column in a matrix and each document
as a row. To represent a corpus of tweets, for example, row1 represents tweet1, row2 represents tweet2,
etc. Each column represents the frequency or the tf-idf of a term in a tweet. Since tweets are short, most
of the columns for a specific tweet are zeros since most of the words present in the entire corpus are not
present in each specific tweet. And even in a big corpus, most of the words are rare, appearing only once
and their rarity makes them sensible to aleatory variations (Bestgen, 2004).

In this work, we deal with the sparsity of such a matrix by representing the frequency of terms in
connected components instead of the frequency or the tf-idf of single terms since we are more interested
in the relation of tweets with concepts, represented by the connected components, than the relation of
tweets with isolated terms.
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Vectors of
tweets

Dimension of
components

Component1 · · · Componenti · · · Componentn

Tweet1 f1,1 · · · f1,i · · · f1,n

...
...

...
...

...
...

Tweetj fj,1 · · · fj,i · · · fj,n

...
...

...
...

...
...

Tweetm fm,1 · · · fm,i · · · fm,n

Table 1: A matrix representing the frequency of each connected component in each tweet.

Table 1 shows the representation of a matrix of m tweets with the frequencies fj,i of words found in
the connected components Componenti.

4.4 The Classifier

Liblinear (Fan et al., 2008) is a fast and simple linear classifier and has become one of the most promising
machine learning technique for big data.

We use the library LIBLINEAR13, which is based on the L2-regularized logistic regression (LR), L2-
loss and L1-loss SVM linear vectors (Boser et al., 1992). It inherits many characteristics from the SVM
library LIBSVM (Chang and Lin, 2011), like a rich documentation and free license (BSD license14).

LIBLINEAR is very efficient for training large scale problems: it takes some seconds for a text clas-
sification problem. For the same task, a SVM classifier like LIBSVM takes many hours. Furthermore,
LIBLINEAR competes with the fastest linear classifiers like Pegasos (Shalev-Shwartz et al., 2007).

5 Experiments and Analysis of Results

We use the Twitter API to build our corpus, passing as queries words related to the chosen domains
(sport, politics, economics and medicine). Table 2 presents the number of tweets, terms and lemmas in
the corpus for each domain.

Economy Medicine Sport Politics
Simple Terms 13870 14784 16112 15346
Lemmas 7938 12138 12773 11976
Tweets 2504 2415 2493 2497

Table 2: Number of terms, lemmas and tweets for each category

To test our method we evaluate different criteria in the classification of tweets:

1. Corpus filtered by part-of-speech (POS) vs not filtered by POS. In the corpus filtered by POS, in
addition to deleting a regular list of stop words (article, prepositions, etc.), we also delete adverbs
and we keep only nouns, verbs and adjectives;

2. Applying vs not applying hashtags segmentation;

3. Using Wordnet relations (synonymy, hyperonymy and synonymy + hyperonymy) for clustering
similar words in a graph for the construction of connected components;

4. Applying NER (and using WordNet to disambiguate them) vs not Applying NER.

13. http://www.csie.ntu.edu.tw/ cjlin/liblinear
14. The new BSD license (Berkeley Software Distribution License) approved by the Open Source initiative.
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Table 3 presents a comparison of the classification results and the gain we obtain when NER is applied.

Filter type Hashtag
segmenta-
tion

WordNet relation Precision
w/o -NER
(%)

Precision
with
+NER (%)

Gain(p.p.)

All words No Synonymy 38.3 36.2 -2.1
Only N, V and ADJ No Synonymy 68.2 69.7 +1.5

All words Yes Synonymy 42.1 41.7 -0.4
Only N, V and ADJ Yes Synonymy 73.4 74.8 +1.4

All words No Hyperonymy 41.7 40.6 -1.1
Only N, V and ADJ No Hyperonymy 70.9 71.3 +0.4

All words Yes Hyperonymy 43.2 42.4 -0.8
Only N, V and ADJ Yes Hyperonymy 76.4 77.3 +0.9

All words No Syn&Hyper 46.8 45.3 -1.5
Only N, V and ADJ No Syn&Hyper 72.3 73.2 +0.9

All words Yes Syn&Hyper 51.3 50.6 -0.7
Only N, V and ADJ Yes Syn&Hyper 81.2 83.4 +1.2

Table 3: Comparison of the precision for different classifications and the gain when named entity recog-
nition is applied.
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Figure 3: Best results obtained in the clas-
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Figure 4: Precisions obtained when applying named
entity recognition (NER).

When NER is not applied and we keep only nouns, verbs and adjectives, combined with synonymy,
we have a gain of 29.9 p.p. in precision (from 38.3% to 68.2%), which grows to 81.2% when combined
with synonymy and hyperonymy. This can be explained by the fact that the words removed, like adverbs,
do not contribute for the identification of a tweet subject.

The hashtags segmentation improves the result in 3.8 p.p., when using all the words and 5.2 p.p. when
the POS filtering is applied. This is explained by the fact that usually hashtags carries the most significant
words for the identification of the subject of a tweet.
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The use of hyperonyms gives a better result than the use of synonyms. For example, the precision is
73.4% when we use hashtag segmentation, POS filter and synonyms and it increases to 76.4% when we
use hyperonyms instead of synonyms. This can be explained by the fact that hyperonyms by themselves
are a better indication of a word group since they represent relations of the type "part-of". Moreover,
adding synonyms and hyperonyms together gives the best precision, 81.2%, when using hashtag seg-
mentation and POS filter.

The application of NER increases the precision in the corpus having only nouns, verbs and adjectives,
and decreases when the corpus have all words (except stop words).

The histogram in Figure 3 compares the precision in the classification of each category using NER,
hashtag segmentation and POS filter.

The histogram in Figure 4 is a graphic representation of the results shown by the column "Precision
with NER" in Table 3. We note a progressive increment in precision when segmentation of hashtags and
then POS filtering are applied.

6 Evaluation

The hashtags carry important information about the tweets subjects. Moreover, words extracted from
them enrich the connected components that contain those words. For example, a tweet that contains the
hashtag #ParisClimateConference does not share any word with the following connected component:
climate→ environmental condition, clime, climate. However, after the hashtag segmentation, the word
climate appears in the vector representing the tweet that contains this hashtag:

#ParisClimateConference→ (paris, climate, conference)

The tweets containing the word climate in their texts or in their hashtags will share the same connected
component.

Keeping only verbs, adjectives and adverbs (POS filter) helps improving the classification precision
since the sense of the text is usually given by words in those grammatical categories.

Despite the existence of polysemic words, the disambiguation using WordNet, as explained in section
4.1, helps us find the correct sense of a word.

Not all named entities can be detected by WordNet. However, the most common names of people,
places and organizations used in tweets can be successfully identified. The application of NER helps
increase the precision. For example, in tweets we find "United States of America", "United States"
and "USA". Identifying that the three expressions are a unique entity helps understand the connection
between the tweets that contain them.

We show how NER can affect the identification of the subject of a text. Without NER, we could have
the following connected components:

United→ unite, unify
States→ government, authorities, regime

However, NER gives:

United States→ United States, United States of America, America,
the States, US, U.S., USA, U.S.A

Moreover, the detection of the sense of some acronyms using WordNet, for example:

FBI→ Federal Bureau of Investigation, FBI; or
UN→ United Nations, UN

helps to connect the sense of a tweet containing «UN» with tweets containing «United Nations». Finally,
we have a reduction in the number of dimensions in our training matrix.

7 Conclusion

Before discussing results, it is important to stress some limits of this research. First, we use a local
WordNet, instead of an online one, due to performance. Second, not all terms or named entities found in
our corpus are present in WordNet.
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The idea of connected components, based on graph theory, reduces the training matrix based on bag of
words, increasing the performance of our classification. Our POS filter improves the precision. And the
hashtag segmentation helps us extract more information from tweets and also helps increase the precision
of the classification.

NER improves the precision when we keep only nouns, verbs and adjectives. When all words are
used, the precision decreases.

In this work we do not consider multiword expressions (MWEs). Finally, the hashtag segmentation
does not take into account hashtags written in more than one language, even if one of the languages is
English, like, for example, the hashtag #Japanにほん, which is composed by a word in English and
another in Japanese.
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