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Abstract

In this paper, we propose a graph-based trans-
lation model which takes advantage of discon-
tinuous phrases. The model segments a graph
which combines bigram and dependency re-
lations into subgraphs and produces transla-
tions by combining translations of these sub-
graphs. Experiments on Chinese–English and
German–English tasks show that our system
is significantly better than the phrase-based
model. By explicitly modeling the graph seg-
mentation, our system gains further improve-
ment.

1 Introduction

One significant weakness of conventional phrase-
based (PB) models (Koehn et al., 2003) is that it only
uses continuous phrases and thus cannot learn gen-
eralizations, such as French ne. . . pas to English not
(Galley and Manning, 2010). Although using tree
structures is believed to be a promising way to solve
this problem by learning either translation patterns
(Chiang, 2005; Galley et al., 2004; Liu et al., 2006)
or treelets (Menezes and Quirk, 2005; Quirk et al.,
2005; Xiong et al., 2007), handling non-syntactic
phrases is still a big challenge.

In this paper, we propose a graph-based transla-
tion model which translates a graph into a string by
segmenting the graph into subgraphs. Each sub-
graph is connected and may cover discontinuous
phrases. Experiments show that our model is sig-
nificantly better than the PB model. Explicitly mod-
eling the graph segmentation further improves our
system.
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Figure 1: An example of constructing a graph for a Chinese

sentence. Each node includes a Chinese word and its English

meaning. Dashed red lines are bigram relations. Dark lines are

dependency relations. Dotted blue lines are shared by bigram

and dependency relations.

2 Graph-Based Translation

Our graph-based translation model extends PB
translation by translating an input graph rather than
a sequence to a target string, as in Equation (1):

p(t | G(s)) =
I∏

i=1

P (ti|G(s̃ai))d(s̃ai , s̃ai−1) (1)

where s̃ denotes a source phrase which may be dis-
continuous and G(s̃) indicates a connected graph
covering s̃. d is a distortion function.1

2.1 Building Graphs

As a more powerful and natural structure for sen-
tence representation, a graph can model various
word-relations together in a unified way. In this
paper, we use graphs to combine two commonly

1In this paper, we use a distortion function, defined in Gal-
ley and Manning (2010), to penalize discontinuous phrases that
have relatively long gaps.
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used relations: bigram relations and dependency re-
lations. In this way, we can make use of both contin-
uous and linguistic-informed discontinuous phrases
as long as they are connected subgraphs. Figure 1
shows an example of a graph.

2.2 Training and Decoding
Different from the PB model, the basic translation
units in our model are subgraphs. During training,
we extract subgraph–phrase pairs instead of phrase
pairs on parallel graph-string sentences associated
with word alignments.

Our graph-based decoder is based on beam search
and generates hypotheses (partial translations) from
left to right. Each hypothesis can be extended
by translating an uncovered source subgraph. The
translation process ends when no untranslated words
remain.

2.3 Graph Segmentation Model
We define a set of sparse features to explicitly model
a graph segmentation. Given previous subgraphs,
for each node in a current subgraph, we extract the
following features:{

n.w
n.c

}
×
{

n′.w
n′.c

}
×


C
P
H

×
{

in
out

}
where n.w and n.c are the word and class of a cur-
rent node n, and n′ is a node connected to n. C,
P , and H denote that n′ is in the current subgraph
or the last previous subgraph or other previous sub-
graphs, respectively. in and out denote that an edge
is an in-coming edge or out-going edge of n.

In this paper we lexicalize only on the top-100 fre-
quent words (Cherry, 2013). In addition, we group
source words into 50 classes by using mkcls.

3 Experiments and Results

Our Chinese–English (ZH–EN) training corpus con-
tains 1.5M+ sentence pairs from LDC. Our German–
English (DE–EN) training corpus (2M+ sentence
pairs) is from WMT 2014. GBMT is our graph-
based translation system and GSM adds the graph
segmentation model into GBMT. DTU extends the
PB model by allowing source discontinuous phrases
(Galley and Manning, 2010). All systems are imple-
mented in Moses (Koehn et al., 2007).

System ZH–EN DE–EN
NIST04 NIST05 WMT12 WMT13

PBMT 32.8 31.4 19.6 21.9
DTU 33.4∗ 31.5 19.8∗ 22.3∗

GBMT 33.7∗+ 31.7 19.8∗ 22.4∗

GSM 33.8∗+ 32.0∗+ 20.3∗+ 22.9∗+

Table 1: BLEU (Papineni et al., 2002) scores for all systems on

two datasets. Each score is the average score over three MIRA

(Cherry and Foster, 2012) runs (Clark et al., 2011). ∗ means a

system is significantly better than PBMT at p ≤ 0.01. + means

a system is significantly better than DTU at p ≤ 0.01.

System # Rules
ZH–EN DE–EN

DTU 224M+ 352M+
GBMT 99M+ 153M+

Table 2: The number of rules in DTU and GBMT.

Table 1 shows our main results. Our system
GBMT is better than PBMT as measured by all
three metrics across all testsets. This improvement is
reasonable as GBMT allows discontinuous phrases
which can reduce data sparsity and handle long-
distance relations (Galley and Manning, 2010).

Since phrases from syntactic structures are fewer
in number but more reliable (Koehn et al., 2003),
our system GBMT achieves slightly better perfor-
mance than DTU but uses significantly fewer rules,
as shown in Table 2. After integrating the graph seg-
mentation model to help subgraph selection, our sys-
tem (GSM) achieves significantly better BLEU than
DTU on both language pairs.

4 Conclusion

In this paper, we present a graph-based translation
model which extends the phrase-based model by al-
lowing discontinuous phrases.
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