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Abstract

Dysarthria is a neurological speech disorder, which exhibits

multi-fold disturbances in the speech production system of an

individual and can have a detrimental effect on the speech out-

put. In addition to the data sparseness problems, dysarthric

speech is characterised by inconsistencies in the acoustic space

making it extremely challenging to model. This paper investi-

gates a variety of baseline speaker independent (SI) systems and

its suitability for adaptation. The study also explores the use-

fulness of speaker adaptive training (SAT) for implicitly anni-

hilating inter-speaker variations in a dysarthric corpus. The pa-

per implements a hybrid MLLR-MAP based approach to adapt

the SI and SAT systems. ALL the results reported uses UA-

SPEECH dysarthric data. Our best adapted systems gave a sig-

nificant absolute gain of 11.05% (20.42% relative) over the last

published best result in the literature. A statistical analysis per-

formed across various systems and its specific implementation

in modelling different dysarthric severity sub-groups, showed

that, SAT-adapted systems were more applicable to handle dis-

fluencies of more severe speech and SI systems prepared from

typical speech were more apt for modelling speech with low

level of severity.

Index Terms: speech recognition, dysarthric speech, speaker

adaptation, speaker adaptive training

1. Introduction

Dysarthria is the collective name for a group of motor speech

disorders, which result from single or multiple lesions in the

brain. It usually results in the loss of motor speech control due

to muscular atrophy and incoordination [1, 2]. Across various

aetiologies, dysarthric speech is usually characterised by impre-

cise consonant production, reduced stress, slow speech rate, hy-

pernasality, harsh and strained voice, muscular rigidity, spas-

ticity, monopitch and limited range of speech movements [1, 2].

Dysarthria can either be congenital, occurring with conditions

such as in cerebral palsy, or acquired, where it develops due

conditions such as a stroke or Parkinson’s disease.

The effect on speech production of dysarthria is not lim-

ited to the musculoskeletal structures, but it can also affect parts

of subglottal, laryngeal and supraglottal systems [3]. It usually

leads to reduced intelligibility of speech, which can be inversely

related to the severity of the underlying condition. On a broad

operational scale, severity can be indexed as mild, moderate, se-

vere or any approximation within, such as mild-moderate. For

people with severe dysarthria, their speech can be largely unin-

telligible to unfamiliar listeners.

It is estimated that around 1% of UK population is diag-

nosed with a neurological disorder each year, although, not all

the conditions lead to dysarthria. In UK alone; stroke (416

per 100,000), cerebral palsy (200-300 per 100,000) and Parkin-

son’s disease (200 per 100,000) are amongst the most prevelant

causes of motor speech disorders [4, 5].

1.1. Speech interface and dysarthria

Speech has provided an attractive interface for people with

dysarthria by enhancing human-human & human-computer in-

teraction. It can enable people with dysarthria to participate in

social settings where they can interact with non-familiar com-

munication partners. Moreover, speech as an interface can pro-

vide users with a more real-time communication experience to

convey messages, in comparison to traditional hardwired switch

based interfaces. Earlier studies have shown that systems that

deploy automatic speech recognition (ASR) as an interface in

a dysarthric setup can have a lower accuracy than hardwired

switch-based systems, but, the final message transfer is around

2.5 times faster than the later, even with mis-recognitions fol-

lowed by corrections [6, 7].

According to a report by [8], more than 70% of dysarthric

population with Parkinson’s disease or motor neuron disease

and around 20% with cerebral palsy or stroke could benefit from

some implementation of an augmentative or alternative commu-

nication (AAC) device. The benefits of such a setup has proved

effective for dysarthric people using speech as an interface for

natural communication [9] or enabling them to control physical

devices through speech commands [7].

1.2. Automatic speech recognition for dysarthric speech

Dysarthric speech recognition has been investigated for more

than two decades [10, 11]. The efficacy of commercial sys-

tems has been limited for speakers with mild or mild-moderate

dysarthria [12, 13]. In general, decreasing recognition accuracy

is linearly related to increasing severity. As a consequence, it

has been concluded that the systems are not suited to the higher

variability inherent in dysarthric speech.

From a research perspective; acoustic modelling, speaker

adaptation and signal enhancement techniques have been ex-

plored by researchers to deal with variabilities and disfluencies

in dysarthric speech.

The system can be (i) speaker dependent (SD) , which is

modelled to recognise only a particular speaker, (ii) speaker in-

dependent (SI), which is a generic model map to recognise a

range of seen and unseen speakers and (iii) speaker adapted

(SA), which attempts to minimise the mismatch between a
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generic baseline SI model and the intended target speaker. Both

generative and discriminative techniques have been exploited

to model the acoustics of dysarthric speech. Discriminative ap-

proaches like support vector machines has shown some level of

success in small vocabulary tasks [14, 15], but by large continu-

ous density HMMs (CDHMM) and its variants remain the most

exploited and successful techniques used till date. To get robust

model estimates for SD/SI systems, large amounts of training

data is usually required. This is not practically viable, since

dysarthric speech is afflicted with sparse and inconsistent data

problems due to physical constraints, fatigue and muscular at-

rophy related to a specific individual. Moreover, any dysarthric

system will only be effective in real time if the data is collected

under conditions where the user will be engaged more often.

To overcome this problem to some extent, researchers are using

SA systems, which might give SD like performance using lesser

amount of data and will be more apt for modelling any unseen

user, if a good baseline SI model is available.

Earlier studies using CDHMMs suggested that speaker

adapted (SA) systems were suited for mild to moderate

dysarthric speakers and speaker dependent (SD) systems better

modelled variablities in the severe group of speakers [13, 16].

However, till date there is no common consensus on an estab-

lished scheme, which indicates the suitability of a technique for

a specific type, aetiology or severity of dysarthria. For example,

a study by [17], reported a contrary conclusion and suggested

that severity is not a good indicator for an optimal selection of

modelling approach. Their SA based system outperformed the

SD system for most of the speakers used in the study. The dis-

agreement over an optimal approach could also be due to (i) less

number of speakers examined in a study, sometimes one, and,

(ii) a small vocabulary size, which can create a bias for a certain

technique due to the small homogeneous dataset.

1.3. Purpose and aim for the paper

There is a growing need to investigate SA based speech sys-

tems, which can be trained with less data and be more accurate

for a reasonably large vocabulary. Preparation of SA system

usually require using a baseline speaker independent (SI) sys-

tem and then adapting it using standard techniques. The adap-

tation methods are usually model based, such as MAP [18] or

applies a family of linear transforms, such as MLLR [19]. For

dysarthric speech, the basline SI systems are usually prepared

from a corpus of typical speech, dysarthric speech or a combi-

nation of both.

Although, little work has been done to investigate for an op-

timal adaptation approach, but some novel attempts have paved

the path for further research and investigation. One of the ear-

lier studies comparing SA and SD systems, was reported by

[17]. The study was conducted for 7 speakers from the UA-

SPEECH database [20] and the results showed that SA system

outperformed the SD system for most of the speakers. A more

comprehensive study was conducted by [21] on the same dataset

that included all the speakers in the UA-SPEECH corpus. They

tested a SD system alongside a MAP based SA system. An ar-

ray of SI baseline models were used for adaptation purposes.

Firstly the study showed an average relative increase of 34.5%

over the earlier reported results by [17]. Secondly, the results

showed that SI system using all the dysarthric speech data forms

the best baseline system for MAP adaptation. To the best of our

knowledge, the results reported by [21] seems to be the best till

date on a relatively large vocabulary size of 255 words for a

particular dysarthria type covering a range of severities.

This paper builds up upon these earlier studies and (i) inves-

tigates the best SI baseline system for adaptation of dysarthric

speech, (ii) explores hybrid adaptation approach using MLLR-

MAP and (iii) investigate the efficacy of speaker adaptive train-

ing (SAT) [22] to implicitly annihilate the inter-speaker vari-

abilities during the training process.

In the paper, section 2 will detail about the data prepara-

tion and methodology used for the experiments, section 3 will

present and analyse the recognition results, section 4 will put

some collective discussion for the results and section 5 will have

the concluding remarks and considerations for the future work.

2. Experimental Setup

2.1. Data preparation

All the experiments presented in this paper used two standard

corpora for typical speech, viz., WSJ0 SI-84 [23] that con-

sists of read speech from 84 North American english speakers

with texts drawn from a machine-readable corpus of Wall Street

Journal news, and, WSJCAM0 [24] , which is a British english

version of WSJ database that consists of data from 92 training

speakers. For WSJCAM0, data was also included for speakers

from the development and two evaluation test sets.

In addition, UA-SPEECH [20] corpus was used, which con-

sists of data from 15 dysarthric speakers with cerebral palsy and

13 control speakers. There are 765 isolated words (455 distinct)

per speaker collected in three separate blocks, where each block

consists of 10 digits, 26 international radio alphabets, 19 com-

puter commands, 100 common words and 100 distinct uncom-

mon words, which were not repeated across blocks. In addition,

the corpus also provides a rough estimate of perceptual speech

intelligibility ratings for each dysarthric speaker by five naive

listeners. The ratings given will be used in all the experiments

for ordering the speakers in various severity groups. All the

Corpus Speakers Training Files

WSJ SI-84 84 14377

WSJCAM0 † 136 18537

UA-CTL 13 41819

UA-DYS 15 44277

Table 1: A summary of each training corpus in the system. UA-

CTL and UA-DYS codes are used for UA-SPEECH control and

dysarthric speakers. (†) Four evaluation speakers with no sec-

ondary microphone data were excluded from WSJCAM0.

block one (B1) and block three (B3) data from UA-SPEECH

was used for training & adaptation purposes and block two (B2)

was solely used for all the reported test results in the paper.

Because dysarthric speakers can take a longer duration to utter

words, the UA-SPEECH training data had to be logically re-

segmented to get rid of extra silences around word boundaries.

Only 200 ms of silence was appended to either side of the word

for training. However, test data block B2 was left untouched to

maintain the natural speaking conditions. Data from all the mi-

crophones was used for each corpus for training and adaptation

purpose and a summary is given in Table 1.

For acoustic modelling, data from all the corpora was pro-

cessed as 12 dimensional MFCC features with c0 and cepstral

mean normalisation. First and second order time derivatives

were also appended giving a 39 dimensional feature vector per

frame. Speech was analysed in 25 ms window with a 10 ms

target shift rate.
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2.2. Acoustic Modelling

The continuous density HMM in all the experiments are word-

internal tied-state triphone models with clustering performed

using phonetic decision trees. It follows a strict left-to-right

topology with 16 Gaussian components used per state. Silence

states were modelled using 32 Gaussian components.

2.3. Methodology

One of the aim of the paper is to test the efficacy of a good base-

line SI system that is more apt for adaptation purposes. This is

an extension of the SI systems that was described in [21]. Ta-

ble 2 summarises the SI systems that were constructed for adap-

tation purposes.

System Code Training Dataset Used

SI-00 WSJ SI-84 + WSJCAM0

SI-01 UA-DYS excluding target test speaker

SI-02 UA-DYS

SI-03 UA-CTL

SAT UA-DYS

Table 2: Summary of baseline systems and the corpus used for

its preparation.

The SI systems intrinsically model the speaker character-

istics and acoustic realisations in speech, which are considered

constant throught the database. During typical speaker adapta-

tion, the optimal model set Φ̃, given a set of S speakers in the

system is generally represented as:

Φ̃ = argmax
φ

L(O;φ) = argmax
φ

S∏

s=1

L(O(s);φ)

where L(O(s);φ) is the likelihood of the observation sequences

from speaker s, given the current set of model estimates φ.

In addition to various SI systems, SAT modelling was also

considered in the current study, which splits information into

various homogeneous blocks, e.g. data pertaining to a particu-

lar speaker for incorporating speaker induced variations. SAT

training uses two sets of parameters, a canonical model φc, usu-

ally hypothesised to represent phonetically relevant speech vari-

abilities, and the set of transforms T (s) to represent the speaker

variabilties. This is given as:

(Φ̃c, T̃ ) = argmax
(φc,T )

S∏

s=1

L(O(s); T (s)(φc))

In the above equation speaker induced variations are mod-

elled by T and the canonical model is updated, given each trans-

form. The entire SAT paradigm works iteratively in an inter-

leaved fashion and can be depicted as shown in figure 1.

SAT based on MLLR transforms should be able generate

robust canonical model estimates, however, it comes with com-

putational and memory overheads [25], making it impractical

for implementation. Such issues are usually avoided by ap-

plying constrained MLLR (CMLLR) [26, 27], which uses the

same transform for both means and variances. The transforms

are computed for each homogeneous block of data. SAT with

CMLLR results in a kind of feature normalisation during model

training and have the same computational load as any other stan-

dard HMM update. Unlike SI models which can be directly

Gender & Speaker Independent
Initial Model Hypothesis

Estimate: τ(s) | Φ
c

Each speaker transform given the 
current set of canonical model

Update: Φ
c 
| τ(s)

Canonical Model given 
speaker transforms 

Canonical Model Set

Figure 1: An overview of the SAT framework

used for recognition, SAT canonical model sets are not suited

for direct decoding. Both systems are usually adapted to some

target test condition.

In this paper, we present the results of the SI and SAT mod-

els using MLLR, MAP and MLLR-MAP based adaptation tech-

niques. SAT canonical models are intentionally trained using

only UA-DYS speakers to implicitly reduce the inter-speaker

variabilities associated with dysarthric speech in general across

varying degree of severities. The MLLR implemented uses a

two-pass static adaptation procedure. The first pass performs a

global transformation and the second pass uses the global trans-

forms to produce more accurate transforms using a regression

class tree with 32 terminal leaf nodes.

3. Results

All the test results presented in the paper are obtained on test set

B2 of the UA-SPEECH corpus. Since the database comprises

of single word utterances, the decoding grammar was strictly re-

stricted to recognise only one of the possible test words, mostly

preceded and succeeded by silences. There are 255 distinct

competing words in the test block with a total of 22281 files

from all speakers and microphones.

Figure 2: Average word accuracy for the baseline SI systems

along with the SD result.
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3.1. Baseline Systems

The first set of experiments involved obtaining recognition

scores of all the baseline SI systems. These were then compared

with the SD performance. Figure 2 shows the average baseline

accuracy of all the SI systems. SI-00 has the lowest baseline re-

sult, which can be explained by the fact it was training only on

typical speech. The high accuracy was obtained using the SI-02

system, which was trained on the largest amount of dysarthric

speech data.

3.2. Baseline Adapted Systems

All of the baseline systems were adapted for each test speaker.

Standard techniques were used and the results are shown in Fig-

ure 3. MAP clearly outperforms the MLLR based adaptation for

all the systems except SI-00. This may be an example of non-

informative priors. The SI-00 models are trained from WSJ0 +
WSJCAM0 datasets, which contains only typical speech, and

therefore presents no useful information about the model pa-

rameter distributions of the adaptation and test datasets.

Figure 3: Adaptation scores for the baseline SI systems.

Following on from this observation we implemented a com-

bined approach that involves generating MLLR transforms for

the target speaker followed by MAP adaptation. By doing this,

MLLR adapted parameters can act as informative priors for the

MAP process. For all the SI systems, the MLLR-MAP com-

bination outperformed all other adaptation approaches. For this

reason the remainder of the paper will primarily focus on results

obtained using a MLLR-MAP approach.

Intuitively, it may be thought that SI-01 or SI-02 should

form an optimal set of baseline models for adaptation, since

they exhibit less difference between the training, adapted and

test conditions. Overall, the best MLLR-MAP scores for

dysarthria and typical speech based SI systems was found to

be for SI-02 and SI-03.

3.3. SAT-adapted vs Other Systems

One of the aims of the paper is to study the effect of SAT

based modelling to reduce inter-speaker variations during train-

ing time. This section reports SAT-adapted results and com-

pares it to the state-of-the-art SD system and other SI-adapted

systems reported earlier. Figure 4 gives a comparison of the

MLLR-MAP based SI and SAT systems. Clearly, SAT-adapted

model sets outperform all the other tested systems

It should be noted that SD system performs poorer than

all the other adapted systems. Indeed, it can be seen in Ta-

ble 3 that SD system does not perform better than any of the

Figure 4: Comparison of SD and MLLR-MAP based SI & SAT

systems.

SA systems (except one speaker) under various intelligibility

sub-groups. This gives us an average understanding that adap-

tation can be an effective approach to model dysarthric speech

of varying severities. A similar finding about the efficacy of SA

systems was also reported in a study by [17]. Our findings are

contrary to some of the earlier published results [16, 13], which

were more inclined to favour SD systems with increasing sever-

ity. In another study by [21], SI systems prepared from only

dysarthric datasets produced better adapted models for most of

the speakers.

In contrast our findings suggest that SI systems like SI-

03, prepared from typical speech can also adapt as well as a

dysarthric speech-based SI system. In order to justify our pre-

sumption, the effectiveness of all the MLLR-MAP based SAT

and SI systems along with SD system was statistically analysed

using Cochran’s Q test. All the systems were tested for dif-

ferences across all the test speakers. The null hypothesis was

rejected at α = 0.01, degrees of freedom = 5, which meant that

all the systems were not equally effective for modelling dysar-

tric speech in general. Later a pairwise Cochran’s Q test was

conducted between the system with the best absolute average

score (SAT) and all others. The test showed that SAT was sig-

nificantly different to all other systems at p < 0.01, except for

the SI-03 system.

3.4. Severity Based System Results

So far we have reported all our findings averaged across all the

test speakers regardless of the severity. However, to have a more

customised approach for preparing systems for specific speak-

ers it is important to individually study the effect of SD and SA

based systems under various severity groups. The MLLR-MAP

results reported earlier were investigated further for each of the

different severity groups. Figure 5 gives an overall picture of

how the baseline SI systems performed for various intelligibility

sub-groups and Figure 6 shows the effect of adaptating the re-

spective baseline systems along with SAT estimates. The speak-

ers at the lowest intelligibility group showed inclination towards

SAT based system or systems prepared with some dysarthric

data, while, speakers in the highest intelligibility group benefit-

ted from the presence of only typical speech data. Table 3 gives

a detailed test report for all the UA-DYS speakers.

In order to understand differences between the systems, a

Cochran’s Q test was again applied to study the system differ-

ences under various speaker severity groups. The summary of

the results of this test are shown in Table 4. It shows that SAT
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Figure 5: Word accuracy for the baseline SI systems under

various intelligibility groups (Very Low, Low, Mild, High).

Figure 6: MLLR-MAP scores for the SAT & SI systems under

various intelligibility groups (Very Low, Low, Mild, High).

Intelligibility Speaker SD
MLLR-MAP

SI-00 SI-01 SI-02 SI-03 SAT

Very Low

M04 (2%) 6.54 8.98 9.5 8.54 8.11 9.68

F03 (6%) 32 27.61 37.49 36.01 36.81 38.36

M12 (7%) 32.24 17.76 35.08 32.31 30.71 32.9

M01 (17%) 16.76 27.03 28.32 28.22 27.46 29.22

Sub Acc. 23.52 20.61 28.82 27.36 26.95 28.71

Low

M07 (28%) 62.33 69.7 69.26 68.89 61.91 66.06

F02 (29%) 61.08 37.62 50.12 54.02 50.93 56.93

M16 (43%) 64.29 68.08 62.76 66.47 65.23 66.55

Sub Acc. 62.48 57.89 60.56 62.92 59.03 62.98

Mild

M05 (58%) 70.48 64.27 69.93 70.6 67.47 71.83

M11 (62%) 58.18 56.57 63.8 66.06 68.1 65.62

F04 (62%) 62.66 76.06 70.57 68.48 74.52 70.57

Sub Acc. 64.44 66.12 68.34 68.51 70.13 69.54

High

M09 (86%) 80.96 83.11 84.43 85.62 87.82 86

M14 (90%) 77.76 80.4 80.09 79.2 85.71 80.84

M10 (93%) 84.28 91.77 86.28 87.21 91.33 88.08

M08 (95%) 85.86 87.96 87.21 86.47 87.4 87.34

F05 (95%) 86.46 92.14 92.01 92.33 90.58 92.08

Sub Acc. 83.07 87.08 86.01 86.17 88.57 86.87

Overall Acc. 61.44 61.63 64.12 64.36 64.67 65.15

Table 3: Average word accuracy rates for SD and all SI baseline systems adapted using MLLR-MAP. The table also shows sub accuracy

scores under various intelligibility groups. The best scores are highlighted in grey for each row.

system is statistically equivalent to some other systems in the

very-low, low and mild sub-group of speakers.

Intelligibility Best performing sys-

tems (p < 0.05)

Very Low SAT, SI-01

Low SAT, SD, SI-02

Mild SAT, SI-03

High SI-03

Table 4: Cochran’s Q analysis for all the systems under various

intelligibility sub-groups.

For the high intelligibility sub-group, system trained from

typical speech data with similar recording and vocabulary setup

as the test dysarthric conditions was significantly different to all

the other competing systems.

4. Discussions

The results reported in Section 3 show that it is difficult to train

a system to model the variabilities in dysarthric speech and

to generalise to speakers of different severities. For example,

when studying the performance of various baseline systems in

section 3.1, it was interesting to note that SI-03 had similar per-

formance to SI-01 system, despite being trained from typical

speech data. We think that SI-03 models will be making use of

information from homogeneous vocabulary and recording con-

ditions as the test dysarthric conditions.

The findings also show that SD system were not the most

effective to model dysarthric speech. This can be partially at-

tributed to the relatively small amount of data per speaker in

UA-SPEECH, especially when compared to previous studies in

the literature [16, 13]. The test block B2 also comes with many

unseen acoustic realisations in the form of 100 unique ”uncom-

mon words” and an SD system is usually only tuned to max-

imise the model fit for the seen data blocks during training. In

contrast, a SA system might overcome this problem to some
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extent by using acoustic information present from other users

in the baseline SI systems. This might be a contributing factor

for all the adapted systems to be significantly better than SD

system.

Another point of interest, reported in section 3.3, indicated

that to model dysarthric speech in general, SAT and SI-03 sys-

tems were not significantly different. Hence the selection of

a good baseline system to adapt from cannot depend on any

particular dataset. It needs a more thorough investigation to

understand the acoustics of dysarthric speech at an intra and in-

ter speaker level. For instance, these results suggest that the

variabilities in dysarthric speech can be better accommodated

from modelling both typical and dysarthric domains. One such

attempt was reported by [28], where background interpolation

MAP was implemented to obtain an intermediate prior acous-

tic model to narrow the gap between two disparate SI systems

(typical & dysarthric), albeit, the reported results were no better

than those reported by [21]. Our best overall results, as reported

in sections 3.3 & 3.4, are based on MLLR-MAP adapted SAT

systems. It gives an absolute gain of 22.91% (54.36% relative)

over results of [28] and an absolute gain of 11.05% (20.42%

relative) over results of [21].

The choice of a particular system for a given target speaker

is not completely clear, even when analysis is carried out at

specific intelligibility levels. Table 4 indicates several possi-

ble choices in the lower intelligibility group of speakers. Since

dysarthric speech will be more variable in the lower intelligibil-

ity group, the presence of SI-01 and SI-02 does not come in as

a surprise as they will be inherently capable of modelling some

of the common disfluencies. Although, the presence of SD sys-

tem in the low intelligibility sub-group might suggest some cor-

pus bias towards a particular speaker. It would appear that the

choice of a baseline model for a particular target speaker may

be determined by the amount of training data available.

Despite the fact that several alternatives appear to be equiv-

alent for different groups of speakers, it is noticeable that SAT-

based systems are among the best performing for the very low

to mild groups of speakers. This may be due to the implicit ca-

pability of SAT to remove the speaker induced variations during

training time. This speaker normalising might be having a nul-

lifying effect on some complex variabilities present across all

the speakers.

Among systems trained with typical speech, SI-03 is sig-

nificantly a better base model for adaptation than SI-00. This is

despite being trained with a smaller dataset. This may suggest

that large quantities of typical speech data might not be neces-

sary for the base models adapted to recognise dysarthric speech.

Lastly, as shown in Table 4, it is not surprising to observe

that SI-03 was the best performing system for speakers with a

high intelligibility. Perceptually, high intelligibility dysarthric

speech is more akin to typical speech. Table 3 clearly shows the

inclination of typical speech baseline systems (SI-00, SI-03) to

model high intelligibility sub-group of speakers. In addition to

acoustic similarities, as mentioned earlier, SI-03 system also has

an additional benefit of homogeneous vocabulary and recording

conditions.

5. Conclusions and future work

The current paper investigated the effectiveness of SAT-

adapted, SD and SI-adapted systems to model dysarthric

speech. We found that the hybrid MLLR-MAP based technique

outperformed other adaptation procedures. All the MLLR-

MAP based SAT and SI systems produced an absolute gain over

similar results reported in earlier studies [21, 28] for this corpus.

SAT-adapted systems had the highest overall average word ac-

curacy for all dysarthric speakers. Although, systems trained

from typical speech data with homogeneous recording condi-

tions and vocabularies as the test dysarthric conditions were not

significantly different to SAT-adapted systems.

It is difficult to assert at this time about the best strategy

of SI or SAT based systems for robust adaptation and recog-

nition of a target dysarthric speaker. SAT-adapted systems can

implicitly model inter-speaker variabilities and proved to be sig-

nificantly better at recognising speech from speakers with lower

intelligibility. in contrast, typical speech systems were more in-

clined to model high intelligibility sub-group of speakers. The

results also showed that that adaptation might be a better than

corresponding SD systems to model dysarthric speech.

Despite the results reported here, there is still no consen-

sus on the best approach to model dysarthric speech with vary-

ing severity, aetiology or type. Future work should investigate

the SAT-based modelling approach, especially approaches for

customising baseline systems prior to adaptation to a specific

speaker.
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