
ACL-IJCNLP 2015

Proceedings of the ACL 2015 Workshop on
Novel Computational Approaches to Keyphrase Extraction

July 30, 2015
Beijing, China

c©2015 The Association for Computational Linguistics
and The Asian Federation of Natural Language Processing

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-941643-62-4

ii

Preface

The ACL 2015 Workshop on Novel Computational Approaches to Keyphrase Extraction was held on
July 30, 2015 in Beijing, China as part of the 53rd annual meeting of the ACL and the 7th International
Joint Conference on Natural Language Processing.

The workshop’s goal was to bring together researchers addressing a wide-range of questions pertaining
to the keyphrase extraction task as well as domain-specific applications involving the use of keyphrases.

The workshop program included two invited talks by researchers who are experts in the fields of data
mining, information retrieval, and natural language processing: Prof. Min-Yen Kan from National
University of Singapore and Dr. Preslav Nakov, senior scientist at Qatar Computing Research Institute.

After a rigorous review process, two long papers and three short papers were selected for inclusion into
the workshop proceedings by the Program Committee. We hope that these papers summarize novel
findings related to keyphrase extraction and invoke further research interest on this exciting topic.

We thank the authors, invited speakers, program committee members, and participants for sharing their
research ideas and valuable time to be part of ACL Keyphrase!

–Organizers: Sujatha Das Gollapalli, Cornelia Caragea, Xiaoli Li, C. Lee Giles

iii

Organizers:
Sujatha Das Gollapalli, Institute for Infocomm Research, A*STAR, Singapore
Cornelia Caragea, University of North Texas, USA
Xiaoli Li, Institute for Infocomm Research, A*STAR, Singapore
C. Lee Giles, The Pennsylvania State University, USA

Program Committee:

Marina Danilevsky, IBM Almaden Research Center
Fei Liu, Carnegie Mellon University
Doina Caragea, Kansas State University
Rada Mihalcea, University of Michigan
Shibamouli Lahiri, University of Michigan
Saurabh Kataria, Palo Alto Research Center
Ani Nenkova, University of Pennsylvania
Kazi Hasan, IBM
Yang Song, Microsoft Research
Olena Medelyan, Entopix
Min-Yen Kan, National University of Singapore
Feifan Liu, Nuance Inc.
Niket Tandon, Max-Planck-Institut für Informatik
Preslav Nakov, Qatar Computing Research Institute
Fang Yuan, Institute for Infocomm Research, A*STAR
Pucktada Treeratpituk, Ministry Of Science and Technology, Thailand
Madian Khabsa, The Pennsylvania State University

Invited Speakers:

Min-Yen Kan, National University of Singapore
Preslav Nakov, Qatar Computing Research Institute

v

Table of Contents

Keywords, Phrases, Clauses and Sentences: Topicality, Indicativeness and Informativeness at Scales
Invited talk by Min-Yen Kan . 1

Technical Term Extraction Using Measures of Neology
Christopher Norman and Akiko Aizawa . 2

Counting What Counts: Decompounding for Keyphrase Extraction
Nicolai Erbs, Pedro Bispo Santos, Torsten Zesch and Iryna Gurevych . 10

The Web as an Implicit Training Set: Application to Noun Compounds Syntax and Semantics
Invited talk by Preslav Nakov . 18

Reducing Over-generation Errors for Automatic Keyphrase Extraction using Integer Linear Program-
ming

Florian Boudin . 19

TwittDict: Extracting Social Oriented Keyphrase Semantics from Twitter
Suppawong Tuarob, Wanghuan Chu, Dong Chen and Conrad Tucker . 25

Identification and Classification of Emotional Key Phrases from Psychological Texts
Apurba Paul and Dipankar Das . 32

vii

Workshop Program

Thursday, July 30, 2015

9.10-9.30 Opening Remarks

9.30-10.30 Keywords, Phrases, Clauses and Sentences: Topicality, Indicativeness and Infor-
mativeness at Scales
Invited Talk by Min-Yen Kan

10.30-11.00 Coffee Break

11.00-11.30 Technical Term Extraction Using Measures of Neology
Christopher Norman and Akiko Aizawa

11.30-12.00 Counting What Counts: Decompounding for Keyphrase Extraction
Nicolai Erbs, Pedro Bispo Santos, Torsten Zesch and Iryna Gurevych

12.00-14.00 Lunch

14.00-15.00 The Web as an Implicit Training Set: Application to Noun Compounds Syntax and
Semantics
Invited Talk by Preslav Nakov

15.00-15.30 Reducing Over-generation Errors for Automatic Keyphrase Extraction using Integer
Linear Programming
Florian Boudin

15.30-16.00 Coffee Break

16.00-16.30 TwittDict: Extracting Social Oriented Keyphrase Semantics from Twitter
Suppawong Tuarob, Wanghuan Chu, Dong Chen and Conrad Tucker

16.30-17.00 Identification and Classification of Emotional Key Phrases from Psychological Texts
Apurba Paul and Dipankar Das

17.00-17.30 Closing Remarks and Discussion

ix

Proceedings of the ACL 2015 Workshop on Novel Computational Approaches to Keyphrase Extraction, page 1,
Beijing, China, July 30, 2015. c©2015 Association for Computational Linguistics

(Invited Talk) Keywords, Phrases, Clauses and Sentences: Topicality,
Indicativeness and Informativeness at Scales

Min-Yen Kan
National University of Singapore
kanmy@comp.nus.edu.sg

About the Speaker:
Min-Yen Kan (BS;MS;PhD Columbia University) is an associate professor at the National University of
Singapore. He is a senior member of the ACM and a member of the IEEE. Currently, he is an associate
editor for the journal “Information Retrieval” and is the Editor for the ACL Anthology, the computational
linguistics community’s largest archive of published research. His research interests include digital libraries
and applied natural language processing. Specific projects include work in the areas of scientific discourse
analysis, full-text literature mining, machine translation and applied text summarization. More information
about him and his group can be found at the WING homepage: http://wing.comp.nus.edu.sg/.

1

Proceedings of the ACL 2015 Workshop on Novel Computational Approaches to Keyphrase Extraction, pages 2–9,
Beijing, China, July 30, 2015. c©2015 Association for Computational Linguistics

Technical Term Extraction Using Measures of Neology

Christopher Norman
Royal Institute of Technology

The University of Tokyo
chnor@kth.se

Akiko Aizawa
National Institute of Informatics

The University of Tokyo
aizawa@nii.ac.jp

Abstract

This study aims to show that frequency of
occurrence over time for technical terms
and keyphrases differs from general lan-
guage terms in the sense that technical
terms and keyphrases show a strong ten-
dency to be recent coinage, and that this
difference can be exploited for the auto-
matic identification and extraction of tech-
nical terms and keyphrases. To this end,
we propose two features extracted from
temporally labelled datasets designed to
capture surface level n-gram neology. Our
analysis shows that these features, cal-
culated over consecutive bigrams, are
highly indicative of technical terms and
keyphrases, which suggests that both tech-
nical terms and keyphrases are strongly bi-
ased to be surface level neologisms. Fi-
nally, we evaluate the proposed features on
a gold-standard dataset for technical term
extraction and show that the proposed fea-
tures are comparable or superior to a num-
ber of features commonly used for techni-
cal term extraction.

1 Introduction

Keyphrases are terms assigned to documents, con-
ventionally by its authors, that are intended chiefly
as an aid in searching large collections of docu-
ments, as well as to give a brief overview of the
document’s contents. Technical terms are words
or phrases that hold a specific meaning in spe-
cific domains or communities. Keyphrases are
closely related to technical terms in the sense that
the keyphrases assigned to a document are gen-
erally selected from the terminology of the doc-
ument’s domain. Keyphrases and technical terms
show considerable conceptual overlap, and by ex-
tension, so do keyphrase and technical term ex-
traction. As a consequence, these two are closely

related research topics. In this study we will see
technical term extraction and keyphrase extraction
as distinct but related. We will take the view that
the technical terms in a scientific article are likely
candidates to be keyphrases for the document and
consequently that technical term extraction meth-
ods might also be useful in keyphrase extraction.

We will show that features that capture the neol-
ogy of term candidates can be used to extract tech-
nical terms, and that the basic assumptions that en-
able this extraction also hold true for keyphrases.

This paper is organized as follows: We first dis-
cuss how technical terms and keyphrases differ
from general language terms in terms of neology.
We then define features that capture this differ-
ence and analyze these features statistically using
the SemEval-2010 dataset (Kim et al., 2010) and a
gold-standard for technical term extraction derived
from the same dataset (Chaimongkol and Aizawa,
2013). Our analysis shows that the proposed fea-
tures reliably separate positive from negative ex-
amples, both of technical terms and of keyphrases.
Furthermore, the histograms for the proposed fea-
tures are very similar when calculated for techni-
cal terms and keyphrases, suggesting that techni-
cal terms and keyphrases have very similar neo-
logical properties. Finally, we demonstrate that
this statistical bias can be used to reliably extract
technical terms in a gold-standard dataset, and that
the proposed features are comparable or superior
to other features used in technical term extraction,
with an F-score of 0.509 as compared to 0.593,
0.367, 0.361, and 0.204 for affix patterns, tf-idf,
word shape, and POS tags respectively.

We argue that, given the high performance of
the proposed features on technical term extrac-
tion, and given that we can show that the statisti-
cal properties that enable us to use them to extract
technical terms also extend to keyphrases, the pro-
posed features should also be useful in keyphrase
extraction.

2

2 Related works

Most technical term extraction systems work fairly
similarly to keyphrase extraction systems, using
an initial n-gram or POS tag-based filtering to
identify term candidates, then proceeding to nar-
row this list down using machine learning algo-
rithms on various kinds of document statistics
such as term frequency or the DICE coefficient
(Justeson and Katz, 1995; Frantzi et al., 2000; Pin-
nis et al., 2012). For an in-depth summary of the
state-of-the-art in technical term extraction, we re-
fer to Vivaldi and Rodrı́guez (2007). For a sum-
mary of the state-of-the-art in keyphrase extrac-
tion, which largely follow the same pattern, we re-
fer to Hasan and Ng (2014). The main difference
in implementation might simply come down to a
choice in top-level machine learning approach: in
technical term extraction it makes sense to view
the problem as a binary classification problem,
whereas in keyphrase extraction it makes more
sense to see the problem as a ranking problem.

Approaches based on frequency statistics ex-
tracted from the documents themselves are, how-
ever, not without their drawbacks. To begin with,
for document statistics to be meaningful we will
need a dataset that is large enough, consisting of
documents that are large enough individually. We
might also encounter problems if the documents
are too large, because then the statistics might be
drowned out by noise in the data (Hasan and Ng,
2014). We should also be careful about the topi-
cal composition of the data set – if the dataset only
contains documents from a single domain, then we
will have to approach the problem very differently
than if the dataset contains documents from mul-
tiple domains. Preferably, we want methods that
do not make these kinds of assumptions about the
data set, methods that can be applied to documents
of any size, and to document collections of any
size or of any topical composition. In the best of
worlds, we want methods that can be applied to
document collections consisting of a single docu-
ment, or even a single sentence.

One way to go beyond simple document statis-
tics is to use external, pregenerated resources. To
give some examples of this, Medelyan and Wit-
ten (2006) use a pregenerated domain thesaurus to
conflate equivalent terms and to select candidates
that are thematically related to each other, Hulth
et al. (2006) use a pregenerated domain ontology
to select candidates whose synonyms, hypernyms,

and hyponyms also appear in the text, and Lopez
and Romary (2010) use a terminology database as
one way to measure the salience of term candi-
dates for keyphrase extraction in scientific articles.
Medelyan et al. (2009) use a somewhat more in-
direct external resource by taking the frequency
by which a term candidate appears in Wikipedia
links, divided by the frequency by which it ap-
pears in Wikipedia documents. The idea behind
using external resources is that human annotators
generally perform better than automatic systems,
and resources produced by human beings are thus
much more reliable than automatic methods, even
if the resources themselves are only obliquely re-
lated to keyphrases.

However, depending on the speed by which
the terminology of the subject field changes, any
previously generated resource might become out-
dated very quickly. In a subject field such as law,
where the terminology only changes impercepti-
bly over time (Lemmens, 2011), this is unlikely to
be an issue, but in a quickly changing subject field
such as information science, where the terminol-
ogy has been reported to change by as much as 4%
per year (Harris, 1979), it is likely that pregener-
ated resources will lag behind recent terminolog-
ical developments. One selling point of the auto-
matic extraction of keyphrases or technical terms
is that automatic methods are able to respond to
changes in the terminology of a subject field with
the same speed that the terminology changes, but
if we rely on pregenerated resources then we for-
sake this advantage, since these are unlikely to in-
clude terminology that only recently appeared in
the subject field.

3 Theoretical basis

In this paper we will examine the use of external
corpora in order to track the frequency of occur-
rence of n-grams over time, and use measures of
neology as a way to extract technical terms. We
are not aware of any previous attempts to use ne-
ology as a feature for technical term extraction,
keyphrase extraction, or other kinds of natural lan-
guage processing tasks. We will use the Google
Ngrams dataset (Lin et al., 2012), where this in-
formation is already extracted. Although we use
this dataset, mainly because of its convenience
in our initial investigation, there is nothing keep-
ing us from using other corpora consisting of raw
documents, such as Pubmed. In particular, this

3

would allow us to obtain more recent data than
the Google Ngrams dataset, which only contains
frequencies of occurrence from before 2008.

Figure 1: Example timelines (frequency of oc-
currence) for three technical terms and one non-
technical term. The frequencies of occurrence for
each timeline has been normalized to sum to one
to fit all graphs in the same diagram.

In order to develop some intuition about how
technical terms are adopted, let us look at the
timelines for some technical terms in the Google
Ngrams dataset (Figure 1). To begin with, all
the technical terms (graph problem, motor control,
and jet engine) are relatively recent coinage, and
none of them were in use in the 19th century. In
all three cases, there is some point in time at which
the term gained momentum and began to surge in
frequency. This characteristic is fairly typical of
technical terms, although we can of course find
general language terms that exhibit the same pat-
tern of adoption. By contrast, the non-technical
term (clear water) has been in use throughout the
19th and 20th century. Unlike technical terms,
general language do not have generally observable
characteristics, and the shape of the timelines vary
greatly from case to case. The defining character-
istic instead seems to be one of contrast: general
language terms seldom have the steep curves that
we can observe of the technical terms here.

We will formalize this difference and examine
it statistically in the later parts of this study.

Of course, our ability to find neologisms by ex-
amining the frequency of occurrence of their sur-
face forms necessitates that technical terms gener-
ally do not share surface forms with general lan-
guage terms. If such is the case, then the general
language senses of the terms are likely to drown
out the technical term senses. For instance, con-
sider a term like worm in computer security. The
vast majority of the occurrences of the unigram

worm in the Google Ngrams dataset are likely to
be of the biological variety, and it is consequently
impossible to tell from the Google Ngrams dataset
alone that the computer security term only ap-
peared in the later half of the 20th century1. For-
tunately, the case where technical terms coincide
with general language terms is rare, at least when
considering terms composed of multiple words.

The overall recency of coinage of technical
terms depends on the subject field – the major-
ity of the terminology in e.g. computer science
consists of terms whose surface forms were in-
troduced no earlier than the middle of the 20th
century, whereas subject fields such as mathemat-
ics and physics include terminology coined in the
19th century or earlier. Consequently, if we plot
the frequency of usage of a neologism over time
we would expect to see a curve similar to those
in Figure 1, but we should expect that the curves
may be shifted to the left or to the right, largely
depending on the subject field.

Why are technical terms so often neologisms?
It turns out that general language, which is what
is ordinarily studied in linguistics, and special lan-
guage, which is what we actually encounter in the
documents commonly used for keyphrase extrac-
tion, differ quite substantially in linguistic aspects
(Sager et al., 1980). One difference is that sur-
face level neologisms are seldom created in gen-
eral language. Rather, the creation of new sur-
face forms generally occur in special language,
from which the term might later be transferred
to general language (Sager et al., 1980, p. 287).
Consequently, terms that have appeared recently,
given some specific point in time, are likely to be
domain-specific at that point. The longer that has
passed since the adoption of the term, the more
likely it is that the term has been adopted into gen-
eral language.

4 Measures of neology

We have noted that the shape of the timelines seem
to indicate whether a given term is recent coinage,
but in order to use these as input to machine learn-
ing algorithms, we need to distill the high dimen-
sional data into low-dimensional features that re-
tain the neological information.

1However, the term computer worm is a surface level ne-
ology. We might thus observe that new senses of the unigram
worm appeared in the later half of the 19th century by exam-
ining bigrams.

4

What we want to extract is of course not neces-
sarily the shape of the timelines, but whether the
occurrences of the n-grams predominantly occur
in the far right side on the time axis. In other
words, we want to determine if the timeline is
mainly concentrated on the right side. This is sim-
ple to do using statistical measures such as the
mean and the standard deviation of the curves.

Let f i
y denote the frequency of an n-gram i in

year y. Then pi(y) = f i
y

Σyf i
y

constitutes a probabil-
ity density function, with the expected value:

µi =
∑
y

pi(y) · y =
∑

y f
i
y · y∑

y f
i
y

How this ”mean” should be interpreted might
not be completely intuitively obvious, but for our
purposes here it is enough to note that µi indi-
cates where the curve is mainly concentrated. If
the curve is concentrated around higher values of
y then we have, by definition, a surface level neol-
ogism.

We can take the standard deviation of pi in the
same way:

σ2
i =

∑
y

pi(y) · (y − µi)2 =
∑

y f
i
y · (y − µi)2∑

y f
i
y

The standard deviation σi then yields a mea-
sure of how much the probability density is con-
centrated around µi, in other words, how ”steep”
the probability density is. A low standard devia-
tion consequently indicates that the term has been
adopted or abandoned rapidly. Low standard de-
viation should thus in general imply either surface
level neologisms or fads. If we are only interested
in how quickly a term has been adopted and not
how quickly it might have been abandoned, then
we can take a one-sided ”standard deviation”, by
separating out the y for which y < µi, but this
does not seem to make much difference for the
sake of the separability of technical terms. Those
terms that have been adopted quickly also appear
to be likely to quickly fall into relative disuse.

We should hasten to point out that there does
not seem to exist any theoretical reasons to use the
mean and standard deviation in this way. For in-
stance, using the peak of the curve (i.e. the mode
of the distribution) might have more intuitive ap-
peal, since this should correspond to the point in
time at which the term was in its most widespread
use. However, the Google Ngrams dataset is of-

ten plagued by severe noise, in particular for less
commonly used n-grams such as technical terms,
and the peaks of the timelines are thus likely to
be spurious. The mean and the standard deviation
may be crude measures of shape, but they have the
advantage of being robust against noise, and can
generally be used with good results even for very
noisy timelines.

Other intuitively appealing features, such as the
first order derivatives of the timelines or the skew-
ness of pi have turned out not to be very useful,
presumably because of the noise.

5 Statistical properties of technical terms
and keyphrases

In this section, we examine statistically the fea-
tures we propose, and show that both technical
terms and keyphrases are strongly biased towards
certain values for our features. We also under-
line the relationship between technical terms and
keyphrases by showing that these are very similar
in terms of neology.

To analyze keyphrases we will use the
SemEval-2010 dataset (Kim et al., 2010), one
of the most commonly used gold standards for
keyphrase extraction. To analyze technical terms
we will use a dataset consisting of the abstracts
from the SemEval-2010 dataset manually anno-
tated by two annotators such that all the technical
term spans have been labeled (Chaimongkol and
Aizawa, 2013). Since this dataset was constructed
from the abstracts of the SemEval-2010 dataset we
assume that these datasets are similar enough that
analyzing and comparing the statistical properties
of these two datasets is meaningful.

For the analysis in the following section, we
construct three classes of data:

• We extract the n-grams that are part of
the spans labeled as technical terms in the
Chaimongkol-Aizawa dataset to obtain one
set of positive examples of technical terms.

• We extract the constituent n-grams from the
gold-standard keyphrases from the SemEval-
2010 training dataset (using the combined
set) to obtain one set of positive examples of
keyphrases

• We extract the n-grams that are not part of
the spans labeled as technical terms in the
Chaimongkol-Aizawa dataset to obtain one

5

Figure 2: Class separation between technical terms, keyphrases, and background terms over µi (left) and
σi (right), when considering unigrams (top), and bigrams (bottom). Histogram bin size was set to 2 in
all cases. The resulting histograms have been smoothed using Matlab’s default settings (moving average
with span 5) and normalized to sum to one.

set of negative examples of both technical
terms and keyphrases.

We could of course extract negative examples of
keyphrases from the SemEval-2010 dataset, but it
is not so clear that these would all unquestionably
be negative examples of keyphrases. Given that
inter-annotator agreement is generally very low
for keyphrases, this set might well contain terms
that could reasonably be considered keyphrases
by other annotators. We here assume that the
negative examples of technical terms also consti-
tute negative examples of keyphrases, and that this
set is less likely to contain borderline cases of
keyphrases. Only using three classes of data also
simplifies both the exposition and the processing.

For these three classes of n-grams, we ex-
tract the corresponding timelines from the Google
Ngrams dataset over the period 1800–2008, and
we calculate the means µ and standard deviations
σ from these as defined in the preceding section.
To analyze the features µ and σ we plot the his-
tograms of the values for the technical term n-
grams and the keyphrase n-grams versus the back-
ground n-grams (Figure 2).

In order for the features to be useful for either
technical term extraction or keyphrase extraction

we would like to see as little overlap as possi-
ble between the histograms of the positive and the
negative examples. This seems to hold true for the
bigrams, but not for the unigrams. In the unigram
case we can see only a weak tendential difference
in the histogram densities of the positive and neg-
ative examples.

We should point out that the mode of the his-
togram densities for the negative examples fall
very close to the mean and standard deviation of
a uniform distribution over the period 1800–2008.
These would occur around 1904 and 60.48 respec-
tively.

In all cases, the histograms for the technical
terms and the keyphrases are very similar. This
might not seem very surprising given that all the
data is derived from the SemEval-2010 dataset, but
it bears mentioning that these were annotated by
different people, and more importantly, using very
different annotation criteria.

We omit trigrams and higher order n-grams
from consideration.

It is unlikely that higher order n-grams would
help in keyphrase and technical term extraction,
because the Google Ngrams dataset excludes any
n-gram that has a total frequency of occurrence
less than 50. This means that less frequently used

6

n-grams, such as technical terms, as well as higher
order n-grams are likely to be missing (see Table
1). This problem is not very severe for unigrams
and bigrams, but technical term trigrams suffer
from data sparsity problem severe enough to es-
sentially render them useless. Part of this problem
might be due to the large mismatch between the
dataset used for evaluation, and the Google Ngram
dataset used to identify neology. If we were to use
an external dataset from a more similar domain to
the evaluation set, then we would expect to find
a greater portion of the n-grams in the external
dataset.

Technical terms Background
Unigram 97.5 % 100 %

Bigram 85.0 % 97.0 %
Trigram 25.5 % 71.0 %

Table 1: The ratio of n-gram in each class in
the Chaimongkol-Aizawa dataset that occur in the
Google Ngrams dataset. The percentages have
been generated by chosing a random sample of
200 unigrams of each class, 200 bigrams of each
et c., and checking if the n-gram occur in the
Google Ngrams dataset using the web interface.

6 Evaluation on technical term
extraction

In order to demonstrate that neology, as character-
ized by the features µ and σ, can be used to auto-
matically extract technical terms, we implement a
simple technical term extractor using these as fea-
tures. We generally follow the approach taken by
Chaimongkol and Aizawa (2013) and implement
a conditional random field model to BIO-tag the
dataset. The major difference in implementation
is that we use the neology features extracted from
Google Ngrams in the term extractor, and that we
do not use features based on clustering.

For the sake of our CRF model, bigrams and
unigrams are sufficient, since what we want to do
is to obtain features corresponding to each node
(i.e. to each unigram) and features correspond-
ing to the links between the nodes (i.e. to each
bigram). We might in theory achieve better per-
formance with higher order n-grams, but in real-
ity the results would be severely hampered by the
sparsity problems for higher order n-grams.

Similarly to Chaimongkol and Aizawa, we im-
plement a CRF model using the freely available

state-of-the-art CRF framework CRFSuite2, using
five different feature sets:

1. POS TAGS using the Stanford POS tagger3.

2. WORD SHAPE features extracted similarly to
Chaimongkol and Aizawa. These include bi-
nary features such as whether the current to-
ken is capitalized, uppercased, or alphanu-
meric.

3. AFFIXES of length up to 4 characters ex-
tracted for all tokens. In other words, for the
token carbonization we would extract carb-,
car-, ca-, c-, -tion, -ion, -on, and -n.

4. TF-IDF for each unigram and bigram in the
dataset.

5. NEOLOGY based features, in other words the
mean and standard deviation of the Google
Ngrams timeline as described in section 4.

The mutual information between each neigh-
boring token in the dataset has also been tried, but
this turned out to not have any perceptible effect
on the results.

Because CRFSuite cannot handle continuous
features, such as tf-idf, µ, or σ, we had to resort
to discretizing these by binning. Appropriate bin
sizes were established experimentally.

We apply the system on the labeled dataset
where we attempt to binary classify each token
into positive and negative examples, where posi-
tive examples are those that are part of a technical
term compound, and negative those that are part
of the background. We use the full dataset, and
evaluate using 10-fold cross-validation.

Using all features, the system achieves an F-
score around 0.7 for the technical term tokens, and
an F-score around 0.9 for the non-technical term
tokens.

To compare the different features with each
other, we evaluate their performance individually
(Table 2). The best performing feature turns out to
be the affixes, although our neology features are
quite comparable in performance. Neology per-
forms better than all other features except affixes.

2http://www.chokkan.org/software/
crfsuite/

3http://nlp.stanford.edu/software/
tagger.shtml

7

Technical terms Non-technical terms
P R F1 P R F1

POS tags 0.734 0.118 0.204 0.835 0.991 0.906
Word shape 0.659 0.248 0.361 0.853 0.971 0.909

Affixes 0.673 0.530 0.593 0.900 0.943 0.921
tf-idf 0.600 0.244 0.367 0.852 0.964 0.904

Neology 0.637 0.423 0.509 0.881 0.947 0.913

Table 2: Term extractor performance in terms of correctly labeled tokens. Here, the system is only using
a single feature class in each trial in order to compare the relative performance of each feature class.

Technical terms Non-technical terms
P R F1 P R F1

All features 0.728 0.673 0.700 0.929 0.944 0.936
− POS tags 0.728 0.656 0.690 0.925 0.946 0.935

− Word shape 0.719 0.671 0.694 0.928 0.942 0.935
− Affixes 0.691 0.634 0.661 0.920 0.937 0.929
− tf-idf 0.717 0.643 0.678 0.923 0.944 0.933

− Neology 0.715 0.647 0.679 0.923 0.943 0.933

Table 3: Term extractor performance in terms of correctly labeled tokens. Here, the system is using all
but one feature class in each trial in order to compare the relative performance drop when each feature
class is removed from the classifier.

It might be mentioned that these results are calcu-
lated over all tokens, even those where the neol-
ogy features are missing because the correspond-
ing n-grams do not occur in the Google Ngrams
dataset. It is likely that the performance of the ne-
ology features would be higher if these were ex-
cluded from consideration. This might seem like
cheating, but we should consider what would hap-
pen if we were to use another dataset with greater
coverage, or some future improved version of the
Google Ngrams dataset with greater coverage.

We also perform an ablation experiment to see
how much the performance drops when exclud-
ing individual feature classes (Table 3). Similarly,
the biggest drop occurs when excluding affixes.
In this case, however, the differences between the
different features are quite modest, which seems
to imply that each single feature does not contain
much information that is not also contained in the
other features.

Compared to tf-idf, the neology feature is of-
ten able to correctly identify technical term spans
containing terms which are also frequent in the
remainder of the document collection, such as
technical terms containing words like: network,
computer, function, algorithm, complexity, data,
server, model, or vector. It is much less easy to
summarize where neology works well compared

to the other features besides tf-idf.
Neology features are much less effective when

the technical terms coincide with general language
terms, for instance worm, precision, or MAP. This
is generally only a problem in the unigram case,
and bigrams such as computer worm or average
precision generally do not have this problem.

7 Discussion

In this paper we have shown that technical terms
tend to be recently coined, and that this statistical
tendency is strong enough that it allows us to ex-
tract technical terms with reasonable accuracy. We
have also shown that this statistical feature of tech-
nical terms also seem to hold true for keyphrases,
and we therefore maintain that it is reasonable that
similar features might also be useful in keyphrase
extraction. We should not expect equally high per-
formance in keyphrase extraction, however, since
in keyphrase extraction we are not only interested
in whether the output keyphrases are terms in the
relevant domain, but also that they are significant
in the document under consideration. What we do
suggest is that neology can be useful for keyphrase
extraction when used in concert with other fea-
tures such as tf-idf that indicate significance or
topicality.

The extraction of either technical terms or

8

keyphrases fundamentally depends upon the as-
sumption that these are biased in certain ways.
For instance, a common assumption taken in
keyphrase extraction is that keyphrases are biased
to occur more frequently at certain positions in the
document. Another common assumption is that
technical terms and keyphrases are biased to occur
with different frequencies in certain communities,
or that the contexts in which keyphrases and tech-
nical terms appear differ between different com-
munities. Similarly to the position and community
bias of keyphrases, we suggest that keyphrases
also have a time bias, that the keyphrases of a
document are skewed to be overrepresented in the
contemporary and subsequent literature, but likely
to be absent or severely underrepresented in the
precedent literature.

The very high values of the means, and the
very low values of the standard deviations ob-
served for the technical terms in section 5 sug-
gests that the majority of the technical term bi-
grams studied in this paper come from terms that
only appeared after 1950. This might be explained
by the fact that the datasets we use here are de-
rived from the SemEval-2010 dataset, which is
strongly biased towards computer science litera-
ture. It seems reasonable that the separation be-
tween the classes should generally be stronger in
subject fields where the terminology tends to be
very recent coinage than in fields with more ma-
ture terminology. If this is true, then the ap-
proach we propose here should work well for sub-
ject fields where the terminology is rapidly chang-
ing, and where the need for automatic extraction
methods is arguably the greatest.

Acknowledgements

This work was supported by the Grant-in-Aid for
Scientific Research (B) (15H02754) of the Japan
Society for the Promotion of Science (JSPS).

References
Panot Chaimongkol and Akiko Aizawa. 2013. Uti-

lizing LDA Clustering for Technical Term Extrac-
tion. Proceedings of the Nineteenth Annual Meeting
of the Association for Natural Language Processing,
Nagoya, pages 686–689.

Katerina Frantzi, Sophia Ananiadou, and Hideki
Mima. 2000. Automatic recognition of multi-word
terms: The C-value/NC-value method. Interna-
tional Journal on Digital Libraries, 3:115–130.

Jessica Harris. 1979. Terminology change: Effect on
index vocabularies. Information Processing & Man-
agement, 15(2):77–88.

Kazi S. Hasan and Vincent Ng. 2014. Automatic
Keyphrase Extraction : A Survey of the State of the
Art. Acl, pages 1262–1273.

Anette Hulth, Jussi Karlgren, and Anna Jonsson. 2006.
Automatic keyword extraction using domain knowl-
edge. Computational Linguistics and Intelligent
Text Processing, pages 472–482.

John S. Justeson and Slava M. Katz. 1995. Technical
terminology: some linguistic properties and an al-
gorithm for identification in text. Natural Language
Engineering, 1:9–27.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. Semeval-2010 task 5: Au-
tomatic keyphrase extraction from scientific articles.
Proceedings of the 5th International Workshop on
Semantic Evaluation, pages 21–26.

Koen Lemmens. 2011. The slow dynamics of legal
language: Festina lente? Terminology, 17:74–93.

Yuri Lin, Jean-baptiste Michel, Erez L. Aiden, Jon
Orwant, Will Brockman, and Slav Petrov. 2012.
Syntactic Annotations for the Google Books Ngram
Corpus. Proc. of the Annual Meeting of the Associa-
tion for Computational Linguistics, pages 169–174.

Patrice Lopez and Laurent Romary. 2010. HUMB :
Automatic Key Term Extraction from Scientific Ar-
ticles in GROBID. Proceedings of the 5th Inter-
national Workshop on Semantic Evaluation, pages
248–251.

Olena. Medelyan and Ian H. Witten. 2006. Thesaurus
based automatic keyphrase indexing. Proceedings
of the 6th ACM/IEEE-CS joint conference on Digital
libraries, pages 6–7.

Olena Medelyan, Eibe Frank, and Ian H. Witten.
2009. Human-competitive tagging using automatic
keyphrase extraction. Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing, 3:1318–1327.

Mārcis Pinnis, Nikola Ljubešić, Dan Ştefănescu, In-
guna Skadiņa, Marko Tadić, and Tatiana Gornos-
tay. 2012. Term Extraction, Tagging, and Map-
ping Tools for Under-Resourced Languages. Pro-
ceedings of the 10th Conference on Terminology and
Knowledge Engineering, pages 193–208.

Juan C. Sager, David Dungworth, and Peter F. McDon-
ald. 1980. English special languages: principles
and practice in science and technology. John Ben-
jamins Publishing Company.

Jorge Vivaldi and Horacio Rodrı́guez. 2007. Evalua-
tion of terms and term extraction systems: a practi-
cal approach. Terminology, 13:225–248.

9

Proceedings of the ACL 2015 Workshop on Novel Computational Approaches to Keyphrase Extraction, pages 10–17,
Beijing, China, July 30, 2015. c©2015 Association for Computational Linguistics

Counting What Counts: Decompounding for Keyphrase Extraction

Nicolai Erbs�‡, Pedro Bispo Santos�, Torsten Zesch§, Iryna Gurevych�‡

� UKP Lab, Technische Universität Darmstadt
‡ UKP Lab, German Institute for Educational Research
§ Language Technology Lab, University of Duisburg-Essen

http://www.ukp.tu-darmstadt.de

Abstract

A core assumption of keyphrase extraction
is that a concept is more important if it
is mentioned more often in a document.
Especially in languages like German that
form large noun compounds, frequency
counts might be misleading as concepts
“hidden” in compounds are not counted.
We hypothesize that using decompound-
ing before counting term frequencies may
lead to better keyphrase extraction. We
identified two effects of decompounding:
(i) enhanced frequency counts, and (ii)
more keyphrase candidates. We created
two German evaluation datasets to test our
hypothesis and analyzed the effect of ad-
ditional decompounding for keyphrase ex-
traction.

1 Introduction

Most approaches for automatic extraction of
keyphrases are based on the assumption that the
more frequent a term or phrase is mentioned, the
more important it is. Consequently, most extrac-
tion algorithms apply some kind of normaliza-
tion, e.g. lemmatization or noun chunking (Hulth,
2003; Mihalcea and Tarau, 2004), in order to ar-
rive with accurate counts. However, especially
in Germanic languages the frequent use of noun
compounds has an adverse effect on the relia-
bility of frequency counts. Consider for exam-
ple a German document that talks about Lehrer
(Engl.: teacher) without ever mentioning the
word “Lehrer” at all, because it is always part
of compounds like Deutschlehrer (Engl.: Ger-
man teacher) or Gymnasiallehrer (Engl.: gram-
mar school teacher). Thus, we argue that the prob-
lem can be solved by splitting noun compounds in
meaningful parts, i.e. by performing decompound-
ing. Figure 1 give an example for decompounding

Deutschlehrer

Deutsch Lehrer

Figure 1: Decompounding of German term
Deutschlehrer (Engl.: German teacher).

in German. The compound Deutschlehrer consists
of the parts Deutsch (Engl.: German) and Lehrer
(Engl.: teacher).

In this paper, we propose a comprehensive de-
compounding architecture and analyze the perfor-
mance of four state-of-the-art algorithms. We then
perform experiments on three German datasets,
of which two have been created particularly for
these experiments, in order to analyze the impact
of decompounding on standard keyphrase extrac-
tion approaches. Decompounding has previously
been successfully used in other applications, e.g.
in machine translation (Koehn and Knight, 2003),
information retrieval (Hollink et al., 2004; Alfon-
seca et al., 2008b; Alfonseca et al., 2008a), speech
recognition (Ordelman, 2003), and word predic-
tion (Baroni et al., 2002). Hasan and Ng (2014)
have shown that infrequency errors are a major
cause for lower keyphrase extraction results . To
the best of our knowledge, we are the first to exam-
ine the influence of decompounding on keyphrase
extraction.

2 Decompounding

Decompounding is usually performed in two
steps: (i) a splitting algorithm creates candidates,
and (ii) a ranking function decides which candi-
dates are best suited for splitting the compound.
For example, Aktionsplan has two splitting can-
didates: Aktion(s)+plan (Engl.: action plan) and
Akt+ion(s)+plan (Engl.: nude ion plan).1 After

1The additional ‘s’ is a linking morpheme (Langer, 1998)

10

generating the candidates, the ranking function as-
signs a score to each splitting candidate, including
the original compound. We will now take a closer
look on possible splitting algorithms and ranking
functions.

2.1 Splitting algorithms
Left-to-Right grows a window over the input
from left to right. When a word from a dictionary
is found a split is generated. The algorithm is then
applied recursively to the rest of the input.

JWord Splitter2 performs a dictionary look-up
from left to right, but continues this process if the
remainder of the word is not right), it creates a split
and stops. Banana Splitter3 searches for the word
from the right to the left, and if there is more than
one possibility, the one with the longest split on
the right side is taken as candidate. Data Driven
counts the number of words in a dictionary, which
contain a split at this position as prefix or suffix for
every position in the input. A split is made at the
position with the largest difference between pre-
fix and suffix counts (Larson et al., 2000). ASV
Toolbox4 uses a trained Compact Patricia Tree to
recursively split parts from the beginning and end
of the word (Biemann et al., 2008). Unlike the
other algorithms, it generates only a single split
candidate at each recursive step. For that reason,
it does not need a ranker. It is also the only super-
vised (using lists of existing compounds) approach
tested.

2.2 Ranking functions
As stated earlier, the ranking functions are as im-
portant as the splitting algorithms, since a ranking
function is responsible for assigning scores to each
possible decompounding candidate. For the rank-
ing functions, Alfonseca et al. (2008b) use a geo-
metric mean of unigram frequencies (Equation 1),
and a mutual information function (Equation 2).

rFreq() =

(
N∏
i

f(wi)

) 1
N

(1)

rM.I.() =

{
−f(c) log f(c) if N = 1

1
N−1

∑N−1
i log bigr(wi,wi+1)

f(wi)f(wi+1)

(2)

2github.com/danielnaber/jwordsplitter
3niels.drni.de/s9y/pages/bananasplit.

html
4wortschatz.uni-leipzig.de/˜cbiemann/

software/toolbox/

Splitter Ranker Pcomp Rcomp Psplit

Left-to-right Freq. .64 .58 .71
M.I. .26 .08 .33

JWord Splitter Freq. .67 .63 .79
M.I. .59 .20 .73

Banana Splitter Freq. .70 .40 .83
M.I. .66 .16 .81

Data Driven Freq. .49 .18 .70
M.I. .40 .04 .58

ASV ToolBox .80 .75 .87

Table 1: Evaluation results of state-of-the-art de-
compounding systems.

In these equations, N is the number of fragments
the candidate has, w is the fragment itself, f(w)
is the relative unigram frequency for that fragment
w, bigr(wi, wj) is the relative bigram frequency
for the fragment wi and wj , c is the compound
itself without being split.

2.3 Decompounding experiments

For evaluation, we use the corpus created
by Marek (2006) as a gold standard to evalu-
ate the performance of the decompounding meth-
ods. This corpus contains a list of 158,653 com-
pounds, stating how each compound should be
decompounded. The compounds were obtained
from the issues 01/2000 to 13/2004 of the Ger-
man computer magazine c’t5 in a semi-automatic
approach. Human annotators reviewed the list to
identify and correct possible errors. For calculat-
ing the required frequencies, we use the Web1T
corpus6 (Brants and Franz, 2006).

Koehn and Knight (2003) use a modified ver-
sion of precision and recall for evaluating decom-
pounding performance. Following Santos (2014),
we decided to apply these metrics for measuring
the splitting algorithms, and ranking the functions’
performance. The following counts were used for
evaluating the experiments on the compound level:
correct split (cs), a split fragment which was cor-
rectly identified and wrong split (ws), a split frag-
ment which was wrongly identified. Pcomp and
Rcomp evaluate decompounding on the level of
compounds, and we propose to use Psplit = cs

cs + ws
to evaluate on the level of splits.

As we focus in this work on the influence of
decompounding on improving the accuracy of fre-

5www.heise.de/ct/
6German version (see https://catalog.ldc.

upenn.edu/LDC2009T25).

11

Dataset peDOCS MedForum Pythag.

Number of doc. 2,644 102 60
∅ doc. length 14,016 135 277
Median doc. length 809 104 68

keyphrases 30,051 853 622
∅ key / doc. 11.37 8.41 10 .37
∅ tokens / key 1.15 1.07 1.30
∅ characters / key 13.27 10.28 12 .22

Table 2: Corpus statistics of datasets.

quency counts, Psplit is the best metric in our case.
We can see in Table 1 that the ASV Toolbox split-
ting algorithm is the best performing system in re-
spect to Psplit. Thus, we select it as the decom-
pounding algorithm in our keyphrase extraction
experiments described in the next section.

3 Experiments

3.1 Datasets

For our evaluation, we could not rely on English
datasets, as there is only very little compounding
and thus the expected effect of decompounding is
small. German is a good choice, as it is infamous
for its heavy compounding, e.g. the well-known
Donaudampfschifffahrtskapitän (Engl.: captain of
a steam ship on the river Danube). For German
keyphrase extraction, we can use the peDOCS
datasets described in Erbs et al. (2013) and we
created two additional datasets consisting of sum-
maries of lesson transcripts (Pythagoras) and posts
from a medical forum (MedForum). Table 2 sum-
marizes their characteristics.

peDOCS consists of peer-reviewed articles,
dissertations, and books from the educational do-
main published by researchers. The gold standard
for this dataset was compiled by professional in-
dexers and should thus be of high quality. We
present two novel keyphrase datasets consisting of
German texts. MedForum is composed of posts
from a medical forum.7 To our knowledge, it is
the first dataset with keyphrase annotations from
user-generated data in German. Two German an-
notators with university degrees identified a set
of keyphrases for every document and following
Nguyen and Kan (2007), the union of both sets are
the final gold keyphrases. The Pythagoras dataset
contains summaries of lesson transcripts compiled
in the Pythagoras project.8 Two annotators iden-

7www.medizin-forum.de/
8www.dipf.de/en/research/projects/

pythagoras

tified keyphrases after a training phase with dis-
cussion of three documents. As in the MedForum
dataset, the gold standard consists of the union of
lemmatized keyphrases by both annotators. All
datasets contain a unranked list of keyphrases.

The peDOCS dataset is by far the largest of the
sets, since it has been created over the course of
several years. MedForum and Pythagoras contain
fewer documents but each document is annotated
by a fixed pair of human annotators. The aver-
age number of keyphrases is highest for peDOCS
and lowest for MedForum. The length of the doc-
ument also influences the number of keyphrases
as short documents have fewer keyphrase candi-
dates. Keyphrases in all three datasets are on av-
erage very short. The example in Figure 1 gives
an example of a rather specific keyphrase which,
however, consists of only one token. We believe
that keyphrase extraction approaches benefit from
decompounding more in cases of short documents.
Longer documents provide more statistical data
which reduces the need for additional statistical
data obtained with decompounding.

3.2 Experimental Setup

For preprocessing, we rely on components from
the DKPro Core framework (Eckart de Castilho
and Gurevych, 2014) and on DKPro Lab (de
Castilho and Gurevych, 2011) for building ex-
perimental pipelines. We use the Stanford Seg-
menter9 for tokenization, TreeTagger (Schmid,
1994; Schmid, 1995) for lemmatization and part-
of-speech tagging. Finally, we perform stopword
removal and decompounding as described in Sec-
tion 2. It should be noted that in most preprocess-
ing pipelines, decompounding should be the last
step, as it heavily influences POS-tagging. We ex-
tract all lemmas in the document as keyphrase can-
didates and rank them according to basic ranking
approaches based on frequency counts and the po-
sition in the document. We do not use more so-
phisticated extraction approaches, as we want to
examine the influence of decompounding as di-
rectly as possible. However, it has been shown
that frequency-based heuristics are a very strong
baseline (Zesch and Gurevych, 2009), and even
supervised keyphrase extraction methods such as
KEA (Witten et al., 1999) use term frequency and
position as the most important features and will be

9nlp.stanford.edu/software/segmenter.
shtml

12

heavily influenced by decompounding.
We evaluate the following ranking methods: tf-

idfconstant ranks candidates according to their term
frequency f(t, d) in the document. tf-idf de-
creases the impact of words that occur in most
documents. The term frequency count is normal-
ized with the inverse document frequency in the
test collection (Salton and Buckley, 1988).

tf-idf = f(t, d) log
|D|

|d ∈ D : t ∈ d| (3)

In this formula |D| is the number of documents
and |d ∈ D : t ∈ d| is the number of documents
mentioning term t. As some document collec-
tions may be too small to allow computing reliable
frequency estimates, we also evaluated tf-idfweb.
Again, the document frequency is approximated
by the frequency counts from the Web1T corpus.
We take the position of a candidate as a baseline.
The closer the keyword is to the beginning of the
text, the higher it is ranked. This is not dependent
on frequency counts, but decompounding can also
have an influence if a compound that appears early
in the document is split into parts that are now also
possible keyphrase candidates. We test each of the
ranking methods with (w) and without (w/o) de-
compounding.

3.3 Evaluation metrics
For the keyphrase experiments, we compare re-
sults in terms of precision and recall of the top-
5 keyphrases (P@5), Mean Average Precision
(MAP), and R-precision (R-p).10 MAP is the
average precision of extracted keyphrases from
1 to the number of extracted keyphrases, which
can be much higher than ten. R-precision11 is
the ratio of true positives in the set of extracted
keyphrases when as many keyphrases as there are
gold keyphrases are extracted.12

4 Results and discussion

In order to assess the influence of decompounding
on keyphrase extraction, we evaluate the selected
extraction approaches with (w/) and without (w/o)
decompounding. The final evaluation results will
be influenced by two factors:

10Using the top-5 keyphrases reflects best the average
number of keyphrases in our evaluation datasets and is com-
mon practice in related work (Kim et al., 2013).

11This is commonly in information retrieval and first used
for keyphrase identification in Zesch and Gurevych (2009)

12Refer to Buckley and Voorhees (2000) for an overview
of evaluation measures and their characteristics.

Method ∆ P@5 ∆ R@5 ∆ R-p. ∆ MAP

Position .000 .000 .000 .000
tf-idfconstant .039 .030 .022 .012
tf-idf .031 .024 .025 .015
tf-idfweb .035 .021 .024 .012

Table 3: Difference of results with decompound-
ing on the MedForum dataset.

Enhanced frequency counts: As we have
discussed before, the frequency counts will be
more accurate, which should lead to higher qual-
ity keyphrases being extracted. This affects
frequency-based rankings.

More keyphrase candidates: The number of
keyphrase candidates might increase, as it is pos-
sible that some of the parts created by the decom-
pounding were not mentioned in the document be-
fore. This is the special case of a enhanced fre-
quency count going up from 0 to 1.

We perform experiments to investigate the in-
fluence of both effects, first, the enhanced fre-
quency counts, and second, the newly introduced
keyphrase candidates.

4.1 Enhanced frequency counts
In order to isolate the effect, we limit the list
of keyphrase candidates to those that are already
present in the document without decompounding.
We selected the MedForum dataset for this analy-
sis, because it contains many compounds and has
the shortest documents which we believe is best
suited for an additional decompounding step.

Table 3 shows improvements of evaluation re-
sults for keyphrase extraction approaches on the
MedForum datasets. The improvement is mea-
sured as the difference of evaluation metrics of
using extraction approaches with decompounding
compared to not using any decompounding. This
table does not show absolute numbers, instead it
shows the increase of performance. Absolute val-
ues are not comparable to other experimental set-
tings, because all gold keyphrases that do not ap-
pear in the text as lemmas are disregarded. We
can thus analyze the effect of enhanced frequency
counts in isolation. Results show that for tf-
idfconstant, tf-idf, and tf-idfweb our decompound-
ing extension increases results on the MedForum
dataset considering only candidates that are ex-
tracted without decompounding. Decompounding
does not affect results for the position baseline as
it is not based on frequency counting. For the
frequency-based approaches, the effect is rather

13

Decompounding
Dataset w/o w ∆

peDOCS .614 .632 .018
MedForum .592 .631 .038
Pythagoras .624 .625 .002

Table 4: Maximum recall for keyphrase extraction
with and without decompounding for the datasets.

small in general, however consistent across all
metrics and methods. The decompounding ex-
tension, however, has the effect of adding further
keyphrase candidates.

4.2 More keyphrase candidates
The second effect of decompounding is that new
terms are introduced that cannot be found in the
original document. Table 4 shows the maximum
recall for lemmas with and without decompound-
ing on all German datasets. The maximum recall
is obtained by assuming that given a list of can-
didates the best possible set of keyphrases are ex-
tracted. Keyphrase extraction with decompound-
ing increases the maximum recall on all datasets
by up to 3.8% points. It must be noted that the
increase is due to more keyphrase candidates ex-
tracted, which increases the importance of the fi-
nal ranking. The increase is higher for MedForum
while it is lower for Pythagoras. Pythagoras com-
prises summaries of lesson transcripts for students
in the ninth grade, thus teachers are less likely
to use complex words which need to be decom-
pounded. The smaller increase for peDOCS com-
pared to MedForum is due to longer peDOCS doc-
uments. The longer a document is, the more likely
a part in a compound also appears as an isolated
token which limits the increase of maximum re-
call. peDOCS shows to have a higher maximum
recall compared to collections with shorter docu-
ments because documents with more tokens also
have more candidates. MedForum comprises fo-
rum data, which contains both medical terms and
informal description of such terms. Furthermore,
gold keyphrases were assigned to assist others in
searching. This leads to having documents con-
taining terms like Augenschmerzen (Engl.: eye
pain) for which the gold keyphrase Auge (Engl.:
eye) was assigned.

4.3 Combined results
Previously, we analyzed the effects of decom-
pounding in isolation, now we analyze the
combination of enhanced frequency counts and

more keyphrase candidates on the overall results.
Table 5 shows the complete results for the German
datasets, described keyphrase extraction methods,
and with and without decompounding.

For the peDOCS dataset, we see a negative ef-
fect of decompounding. Only the position base-
line and tf-idfconstant benefit from decompound-
ing in terms of mean average precision (MAP),
while they yield lower results in terms of the
other evaluation metrics. The improvement of
the position baseline in terms of MAP might be
to several correctly extracted keyphrases beyond
the top-5 extracted keyphrases. We have previ-
ously discussed that peDOCS has on average the
longest documents and most likely contains all
gold keyphrases multiple times in the document
text. For this reason, frequency-based approaches
do not benefit from additional frequency informa-
tion obtained from compounds. Many compounds
are composed of common words, which already
appear in the document. On the contrary, more
common keyphrases are weighted higher, which
hurts results in the case of peDOCS with highly-
specialized and longer keyphrases. Depending on
the task, this might be an undesired behavior.13

The only dataset for which the decompound-
ing yields higher results is the MedForum dataset.
Results improve with decompounding for tf-
idfconstant and tf-idf. As can be seen in Table 4,
enhanced frequency counts improve results, and
yield a higher maximum recall. Contrary to the
other tf-idf configurations, results for tf-idfweb de-
crease with decompounding. This leads to the
observation that, besides the effect of enhanced
ranking and more keyphrase candidates, a third
effect influences results of keyphrase extraction
methods: The ranking of additional keyphrase
candidates obtained from decompounding. These
candidates might appear infrequently in isolation
and are ranked high if external document fre-
quencies (df values) are used. Compound parts
which do not appear in isolation14—hence, no
good keyphrases—are ranked high in case of tf-
idfweb because their document frequency from the
web is very low. In case of classic tf-idf they are
ranked low because they are normalized with doc-

13When searching for documents, highly-specialized
keyphrases might be better suited, while common keyphrases
might be better suited for clustering of documents.

14The verb begießen (Engl.: to water) can be split into the
verb gießen (Engl.: to pour) and the prefix be which does not
appear as an isolated word.

14

Decompounding
Precision@5 Recall@5 R-precision MAP

Dataset Method w/o w/ ∆ w/o w/ ∆ w/o w/ ∆ w/o w/ ∆
pe

D
O

C
S

Upper bound .856 .864 .012 .393 .403 .010 .614 .632 .018 .614 .632 .018
Position .096 .068 -.028 .042 .030 -.012 .092 .080 -.012 .083 .086 .003
tf-idfconstant .170 .160 -.010 .075 .070 -.004 .127 .125 -.002 .123 .123 .001
tf-idf .137 .117 -.020 .060 .051 -.009 .107 .088 -.019 .112 .099 -.014
tf-idfweb .188 .168 -.020 .083 .074 -.009 .139 .126 -.013 .139 .129 -.010

M
ed

Fo
ru

m Upper bound .867 .890 .023 .397 .422 .025 .592 .631 .038 .592 .631 .038
Position .082 .073 -.010 .049 .043 -.006 .101 .090 -.011 .142 .130 -.012
tf-idfconstant .149 .161 .012 .089 .096 .007 .144 .145 .001 .165 .162 -.003
tf-idf .235 .282 .047 .140 .168 .028 .210 .234 .025 .203 .210 .007
tf-idfweb .231 .165 -.067 .138 .098 -.040 .223 .159 -.064 .206 .180 -.027

Py
th

ag
or

as

Upper bound .941 .942 .001 .344 .344 .001 .624 .625 .002 .624 .625 .002
Position .030 .023 -.007 .014 .011 -.003 .044 .022 -.022 .106 .075 -.031
tf-idfconstant .137 .087 -.050 .066 .042 -.024 .143 .103 -.040 .153 .121 -.032
tf-idf .150 .150 .000 .072 .072 .000 .113 .114 .001 .141 .136 -.005
tf-idfweb .187 .100 -.087 .090 .048 -.042 .205 .102 -.103 .191 .136 -.055

Table 5: Results for keyphrase extraction approaches without (w/o) and with (w/) decompounding.

ument frequencies from a corpus where decom-
pounding has been applied. In case of tf-idfweb,
no decompounding has been applied. The effect
of the poor ranking of newly introduced keyphrase
candidates needs to be investigated further by con-
ducting a manual analysis of the decompounding
performance and the creation of non-words.

For the Pythagoras dataset, keyphrase ex-
traction approaches yield similar results as for
peDOCS. Decompounding decreases results, only
results for tf-idf stay stable. As seen earlier (see
Table 4), decompounding does not raise the max-
imum recall much (only by .002). As before in
the case of the MedForum dataset, tf-idfweb is in-
fluenced negatively by the decompounding exten-
sion. Results for tf-idfweb decrease by .103 in
terms of R-precision, which is a reduction of more
than 50%. The ranking of keyphrases is hurt by
many keyphrases, which appear as parts of com-
pounds. They are ranked high because they in-
frequently appear as separate words. Consider-
ing the characteristics of keyphrases in Pythago-
ras, we see that keyphrases are rather long with
12.22 characters per keyphrase. This leads to the
observation that the style of the keyphrases has
an effect on the applicability of decompounding.
Datasets with more specific keyphrases are less
likely to benefit from decompounding.

5 Conclusions and future work

We presented a decompounding extension for
keyphrase extraction. We created two new datasets
to analyze these effects and showed that decom-
pounding has the potential to increase results for

keyphrase extraction on shorter German docu-
ments. We identified two effects of decompound-
ing relevant for keyphrase extraction: (i) enhanced
frequency counts, and (ii) more keyphrase can-
didates. We find that the first effect slightly in-
creases results when updating the term frequen-
cies, while including the second effect in the eval-
uation, reduces results for two of three datasets.
We thus conclude that the effect of decompound-
ing for keyphrases extraction requires further anal-
ysis, but may be a useful feature for supervised
systems (Berend and Farkas, 2010).

In the future, we propose to further analyze
characteristics of good keyphrases and whether
they often are compounds. We see the poten-
tial for better decompounding approaches as any
improvements on this task may have positive ef-
fects on keyphrase extraction. We would also like
to investigate other effects that make tasks like
keyphrase extraction especially hard. Named en-
tity disambiguation might improve results further
as some concepts are mentioned frequently in a
text but always with another surface form. We
make our experimental framework available to the
community to foster future research.

Acknowledgments

This work has been supported by the Volk-
swagen Foundation as part of the Lichtenberg-
Professorship Program under grant No. I/82806,
by the Klaus Tschira Foundation under project No.
00.133.2008, and by the German Institute for Ed-
ucational Research (DIPF) We thank the anony-
mous reviewers for their helpful comments.

15

References
Enrique Alfonseca, Slaven Bilac, and Stefan Phar-

ies. 2008a. Decompounding Query Keywords from
Compounding Languages. In Proceedings of the
46th Annual Meeting of the Association for Compu-
tational Linguistics on Human Language Technolo-
gies: Short Papers, HLT-Short ’08, pages 253–256,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Enrique Alfonseca, Slaven Bilac, and Stefan Pharies.
2008b. German Decompounding in a Difficult Cor-
pus. In Computational Linguistics and Intelligent
Text Processing, volume 4919 of Lecture Notes in
Computer Science, pages 128–139. Springer Berlin
Heidelberg.

Marco Baroni, Johannes Matiasek, and H Trost. 2002.
Predicting the Components of German Nominal
Compounds. ECAI, pages 1–12.

Gábor Berend and Richárd Farkas. 2010. SZTER-
GAK: Feature Engineering for Keyphrase Extrac-
tion. In Proceedings of the 5th International Work-
shop on Semantic Evaluation, SemEval ’10, pages
186–189, Stroudsburg, PA, USA.

Chris Biemann, Uwe Quasthoff, Gerhard Heyer, and
Florian Holz. 2008. ASV Toolbox: a Modular Col-
lection of Language Exploration Tools. In Proceed-
ings of the Sixth International Conference on Lan-
guage Resources and Evaluation (LREC’08), pages
1760–1767, Paris. European Language Resources
Association (ELRA).

Thorsten Brants and Alex Franz. 2006. Web 1T 5-
Gram Version 1. In Linguistic Data Consortium,
Philadelphia.

Chris Buckley and Ellen M. Voorhees. 2000. Evaluat-
ing Evaluation Measure Stability. In Proceedings of
the 23rd Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval - SIGIR ’00, pages 33–40, New York, New
York, USA.

Richard Eckart de Castilho and Iryna Gurevych. 2011.
A Lightweight Framework for Reproducible Param-
eter Sweeping in Information Retrieval. In Pro-
ceedings of the 2011 Workshop on Data Infrastruc-
tures for Supporting Information Retrieval Evalu-
ation, DESIRE ’11, pages 7–10, New York, NY,
USA. ACM.

Richard Eckart de Castilho and Iryna Gurevych. 2014.
A Broad-coverage Collection of Portable NLP Com-
ponents for Building Shareable Analysis Pipelines.
In Proceedings of the Workshop on Open Infrastruc-
tures and Analysis Frameworks for HLT at COLING
2014, pages 1–11.

Nicolai Erbs, Iryna Gurevych, and Marc Rittberger.
2013. Bringing Order to Digital Libraries: From
Keyphrase Extraction to Index Term Assignment.
D-Lib Magazine, 19(9/10):1–16.

Kazi Saidul Hasan and Vincent Ng. 2014. Automatic
keyphrase extraction: A survey of the state of the
art. Proceedings of the Association for Computa-
tional Linguistics (ACL), Baltimore, Maryland: As-
sociation for Computational Linguistics.

Vera Hollink, Jaap Kamps, Christof Monz, and
Maarten de Rijke. 2004. Monolingual Document
Retrieval for European Languages. Information Re-
trieval, 7(1/2):33–52.

Anette Hulth. 2003. Improved Automatic Keyword
Extraction given more Linguistic Knowledge. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pages 216–
223.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2013. Automatic Keyphrase
Extraction from Scientific Articles. Language Re-
sources and Evaluation, 47:723–742.

Philipp Koehn and Kevin Knight. 2003. Empirical
Methods for Compound Splitting. In Proceedings
of the Tenth Conference on European Chapter of
the Association for Computational Linguistics - Vol-
ume 1, EACL ’03, pages 187–193, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Stefan Langer. 1998. Zur Morphologie und Seman-
tik von Nominalkomposita. In Tagungsband der
4. Konferenz zur Verarbeitung natürlicher Sprache
(KONVENS), pages 83–97.

Martha Larson, Daniel Willett, Joachim Koehler, and
Gerhard Rigoll. 2000. Compound Splitting and
Lexical Unit Recombination for Improved Perfor-
mance of a Speech Recognition System for German
Parliamentary Speeches. In Proceedings of the 6th
International Conference on Spoken Language Pro-
cessing (ICSLP), pages 945–948.

Torsten Marek. 2006. Analysis of German Com-
pounds using Weighted Finite State Transducers.
Bachelor thesis, University of Tübingen.

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing Order into Texts. In Proceedings of Em-
pirical Methods for Natural Language Processing,
pages 404–411.

Thuy Dung Nguyen and Min-Yen Kan. 2007.
Keyphrase Extraction in Scientific Publications. In
Proceedings of International Conference on Asian
Digital Libraries, volume 4822 of Lecture Notes in
Computer Science, pages 317–326.

R. J. F. Ordelman. 2003. Dutch Speech Recognition
in Multimedia Information Retrieval. Ph.D. thesis,
University of Twente, Enschede, Enschede, October.

Gerard Salton and Christopher Buckley. 1988. Term-
Weighting Approaches in Automatic Text Retrieval.
Information Processing & Management, 24(5):513–
523.

16

Pedro Bispo Santos. 2014. Using compound lists
for german decompounding in a back-off scenario.
In Workshop on Computational, Cognitive, and
Linguistic Approaches to the Analysis of Complex
Words and Collocations (CCLCC 2014), pages 51–
55.

Helmut Schmid. 1994. Probabilistic Part-of-Speech
Tagging Using Decision Trees. In International
Conference on New Methods in Language Process-
ing, pages 44–49, Manchester, UK.

Helmut Schmid. 1995. Improvements in Part-of-
Speech Tagging with an Application to German.
In Proceedings of the ACL SIGDAT-Workshop, vol-
ume 21, pages 1–9.

Ian H Witten, Gordon W Paynter, and Eibe Frank.
1999. KEA: Practical Automatic Keyphrase Extrac-
tion. In Proceedings of the 4th ACM Conference on
Digital Libraries, pages 254–255.

Torsten Zesch and Iryna Gurevych. 2009. Approx-
imate Matching for Evaluating Keyphrase Extrac-
tion. In Proceedings of the 7th International Confer-
ence on Recent Advances in Natural Language Pro-
cessing, pages 484–489.

17

Proceedings of the ACL 2015 Workshop on Novel Computational Approaches to Keyphrase Extraction, page 18,
Beijing, China, July 30, 2015. c©2015 Association for Computational Linguistics

(Invited Talk) The Web as an Implicit Training Set: Application to Noun
Compounds Syntax and Semantics

Preslav Nakov
Qatar Computing Research Institute

pnakov@qf.org.qa

Abstract

The 60-year-old dream of computational linguistics is to make computers capable of communicating with
humans in natural language. This has proven hard, and thus research has focused on sub-problems. Even
so, the field was stuck with manual rules until the early 90s, when computers became powerful enough
to enable the rise of statistical approaches. Eventually, this shifted the main research attention to machine
learning from text corpora, thus triggering a revolution in the field.

Today, the Web is the biggest available corpus, providing access to quadrillions of words; and, in corpus-
based natural language processing, size does matter. Unfortunately, while there has been substantial re-
search on the Web as a corpus, it has typically been restricted to using page hit counts as an estimate for
n-gram word frequencies; this has led some researchers to conclude that the Web should be only used as a
baseline.

In this talk, I will reveal some of the hidden potential of the Web that lies beyond the n-gram, with focus
on the syntax and semantics of English noun compounds. First, I will present a highly accurate lightly
supervised approach based on surface markers and linguistically-motivated paraphrases that yields state-of-
the-art results for noun compound bracketing: e.g., “[[liver cell] antibody]” is left-bracketed, while “[liver
[cell line]]” is right-bracketed. Second, I will present a simple unsupervised method for mining implicit
predicates that can characterize the semantic relations holding between the nouns in noun compounds, e.g.,
“malaria mosquito” is a “mosquito that carries/spreads/causes/transmits/brings/infects with/... malaria”.
Finally, I will show how these ideas can be used to improve statistical machine translation.

About the Speaker:
Preslav Nakov is a Senior Scientist at the Qatar Computing Research Institute (QCRI). He received his Ph.D.
in Computer Science from the University of California at Berkeley in 2007 (supported by a Fulbright grant
and a UC Berkeley fellowship). Before joining QCRI, Preslav was a Research Fellow at the National Uni-
versity of Singapore. He has also spent a few months at the Bulgarian Academy of Sciences and the Sofia
University, where he was an honorary lecturer. Preslav’s research interests include lexical semantics (in par-
ticular, multi-word expressions, noun compounds syntax and semantics, and semantic relation extraction),
machine translation, Web as a corpus, and biomedical text processing.

Preslav was involved in many activities related to lexical semantics. He is a member of the SIGLEX
board, he is co-chairing SemEval’2014, SemEval’2015, and SemEval’2016, and he has co-organized several
SemEval tasks, e.g., on the semantics of noun compounds, on semantic relation extraction, on sentiment
analysis on Twitter, and on community question answering. He has co-chaired MWE in 2009 and 2010, as
well as other semantics workshops such as RELMS, and he was an area chair of *SEM’2013. He was also a
guest co-editor for the 2013 special issue of the journal of Natural Language Engineering on the syntax and
semantics of noun compounds, and he is currently a guest co-editor of a special issue of LRE on SemEval-
2014 and Beyond. In 2013, he has published a Morgan & Claypool book on semantic relation extraction; he
has given a tutorial on the same topic at RANLP’2013, and he is giving a similar one at EMNLP’2015.

18

Proceedings of the ACL 2015 Workshop on Novel Computational Approaches to Keyphrase Extraction, pages 19–24,
Beijing, China, July 30, 2015. c©2015 Association for Computational Linguistics

Reducing Over-generation Errors for Automatic Keyphrase Extraction
using Integer Linear Programming

Florian Boudin
LINA - UMR CNRS 6241, Université de Nantes, France

florian.boudin@univ-nantes.fr

Abstract

We introduce a global inference model
for keyphrase extraction that reduces over-
generation errors by weighting sets of
keyphrase candidates according to their
component words. Our model can be ap-
plied on top of any supervised or unsuper-
vised word weighting function. Experi-
mental results show a substantial improve-
ment over commonly used word-based
ranking approaches.

1 Introduction

Keyphrases are words or phrases that capture the
main topics discussed in a document. Auto-
matically extracted keyphrases have been found
to be useful for many natural language pro-
cessing and information retrieval tasks, such as
summarization (Litvak and Last, 2008), opin-
ion mining (Berend, 2011) or text categoriza-
tion (Hulth and Megyesi, 2006). Despite consid-
erable research effort, the automatic extraction of
keyphrases that match those of human experts re-
mains challenging (Kim et al., 2010).

Recent work has shown that most errors made
by state-of-the-art keyphrase extraction systems
are due to over-generation (Hasan and Ng, 2014).
Over-generation errors occur when a system cor-
rectly outputs a keyphrase because it contains an
important word, but at the same time erroneously
predicts other keyphrase candidates as keyphrases
because they contain the same word. One reason
these errors are frequent is that many unsupervised
systems rank candidates according to the weights
of their component words, e.g. (Wan and Xiao,
2008a; Liu et al., 2009), and many supervised sys-
tems use unigrams as features, e.g. (Turney, 2000;
Nguyen and Luong, 2010).

While weighting words instead of phrases may
seem rather blunt, it offers several advantages. In

practice, words are usually much easier to extract,
match and weight, especially for short documents
where many phrases may not be statistically fre-
quent (Liu et al., 2011).

Selecting keyphrase candidates according to
their component words may also turn out to be
useful for reducing over-generation errors if one
can ensure that the importance of each word
is counted only once in the set of extracted
keyphrases. To do so, keyphrases should be ex-
tracted as a set rather than independently. Finding
the optimal set of keyphrases is a combinatorial
optimisation problem, and can be formulated as an
integer linear program (ILP) which can be solved
exactly using off-the-shelf solvers.

In this work, we propose an ILP formulation for
keyphrase extraction that can be applied on top
of any word weighting scheme. Through experi-
ments carried out on the SemEval dataset (Kim et
al., 2010), we show that our model increases the
performance of both supervised and unsupervised
word weighting keyphrase extraction methods.

The rest of this paper is organized as follows.
In Section 2, we describe our ILP model for
keyphrase extraction. Our experiments are pre-
sented in Section 3. In Section 4, we briefly review
the previous work, and we conclude in Section 5.

2 Method

Our global inference model for keyphrase extrac-
tion consists of three steps. First, keyphrase can-
didates are extracted from the document using
heuristic rules. Second, words are weighted using
either supervised or unsupervised methods. Third,
finding the optimal subset of keyphrase candidates
is cast as an ILP and solved using an off-the-shelf
solver.

2.1 Keyphrase candidate selection

Candidate selection is the task of identifying the
words or phrases that have properties similar to

19

those of manually assigned keyphrases. First,
we apply the following pre-processing steps to
the document: sentence segmentation1, word to-
kenization2 and Part-Of-Speech (POS) tagging3.

Following previous work (Wan and Xiao,
2008a; Bougouin et al., 2013), we use the se-
quences of nouns and adjectives as keyphrase can-
didates. Candidates that have less than three char-
acters, that contain only adjectives, or that contain
stop-words4 are filtered out. These heuristic rules
are designed to avoid spurious instances and keep
the number of candidates to a minimum (Hasan
and Ng, 2014). All words are stemmed using
Porter’s stemmer (Porter, 1980).

2.2 Word weighting functions
The performance of our model depends on how
word weights are estimated. Here, we ex-
periment with three methods for assigning im-
portance weights to words. The first two
are unsupervised weighting functions, namely
TF×IDF (Spärck Jones, 1972) and TextRank (Mi-
halcea and Tarau, 2004), which have been exten-
sively used in prior work (Hasan and Ng, 2010).
We also apply a supervised model for predicting
word importance based on (Hong and Nenkova,
2014).

2.2.1 TF×IDF
The weight of each word t is estimated using its
frequency tf(t, d) in the document d and how
many other documents include t (inverse docu-
ment frequency), and is defined as:

TF× IDF(t, d) = tf(t, d)× log(D/Dt)

where D is the total number of documents and Dt

is the number of documents containing t.

2.2.2 TextRank
A co-occurrence graph is first built from the doc-
ument in which nodes are words and edges repre-
sent the number of times two words co-occur in
the same sentence. TextRank (Mihalcea and Ta-
rau, 2004), a graph-based ranking algorithm, is
then used to compute the importance weight of
each word. Let d be a damping factor5, the Tex-
tRank score S(Vi) of a node Vi is initialized to a

1We use Punkt Sentence Tokenizer from NLTK.
2We use Penn Treebank Tokenizer from NLTK.
3We use the Stanford Part-Of-Speech Tagger (Toutanova

et al., 2003).
4We use the english stop-list from NLTK.
5We set d to 0.85 as in (Mihalcea and Tarau, 2004).

default value and computed iteratively until con-
vergence using the following equation:

S(Vi) = (1− d) +

(
d×

∑
Vj∈N (Vi)

wji × S(Vj)∑
Vk∈N (Vj)

wjk

)

where N (Vi) is the set of nodes connected to Vi

and wji is the weight of the edge between nodes
Vj and Vi.

TextRank implements the concept of “voting”,
i.e. a word is important if it is highly connected
to other words and if it is connected to important
words.

2.2.3 Logistic regression
We train a logistic regression model6 for assign-
ing importance weights to words in the document
based on (Hong and Nenkova, 2014). Reference
keyphrases in the training data are used to gener-
ate positive and negative examples. For a word in
the document (restricted to adjectives and nouns),
we assign label 1 if the word appears in the corre-
sponding reference keyphrases, otherwise we as-
sign 0. We use the relative position of the first oc-
currence, the presence in the first sentence and the
TF×IDF weight as features. These features have
been extensively used in supervised keyphrase ex-
traction approaches, and have been shown to per-
form consistently well (Hasan and Ng, 2014).

2.3 ILP model definition

Our model is an adaptation of the concept-
based ILP model for summarization introduced
by (Gillick and Favre, 2009), in which sentence se-
lection is cast as an instance of the budgeted max-
imum coverage problem7. The key assumption of
our model is that the value of a set of keyphrase
candidates is defined as the sum of the weights of
the unique words it contains. That way, a set of
candidates only benefits from including each word
once. Words are thus assumed to be independent,
that is, the value of including a word is not affected
by the presence of any other word in the set of
keyphrases.

Formally, let wi be the weight of word i, xi

and cj two binary variables indicating the pres-

6We use the Logistic Regression classifier from scikit-
learn with default parameters.

7Given a collection S of sets with associated costs and a
budget L, find a subset S′ ⊆ S such that the total cost of
sets in S′ does not exceed L, and the total weight of elements
covered by S′ is maximized (Khuller et al., 1999).

20

ence of word i and candidate j in the set of ex-
tracted keyphrases, Occij an indicator of the oc-
currence of word i in candidate j and N the max-
imum number of extracted keyphrases, our model
is described as:

max
∑

i

wixi (1)

s.t.
∑

j

cj ≤ N (2)

cjOccij ≤ xi, ∀i, j (3)∑
j

cjOccij ≥ xi, ∀i (4)

xi ∈ {0, 1} ∀i
cj ∈ {0, 1} ∀j

The constraints formalized in equations 3 and 4
ensure the consistency of the solution: selecting a
candidate leads to the selection of all the words it
contains, and selecting a word is only possible if it
is present in at least one selected candidate.

By summing over word weights, this model
overly favors long candidates. Indeed, given two
keyphrase candidates, one being included in the
other (e.g. uddi registries and multiple uddi reg-
istries), this model always selects the longest one
as its contribution to the objective function is
larger. To correct this bias, a regularization term
is added to the objective function:

max
∑

i

wixi − λ
∑

j

(lj − 1)cj
1 + substrj

(5)

where lj is the size, in words, of candidate j,
and substrj the number of times cj occurs as a
subtring in the other candidates. This regulariza-
tion penalizes the candidates that are composed of
more than two words, and is dampened for can-
didates that occur frequently as substrings in other
candidates. Here, we assume that for multiple can-
didates of the same size, the one that is less fre-
quent in the document should be stressed first.

The resulting ILP is then solved exactly using
an off-the-shelf solver8. The solving process takes
less than a second per document on average. The
N candidate keyphrases returned by the solver are
selected as keyphrases.

8We use GLPK, http://www.gnu.org/
software/glpk/

3 Experiments

3.1 Experimental settings

We carry out our experiments on the SemEval
dataset (Kim et al., 2010), which is composed of
scientific articles collected from the ACM Digital
Library. The dataset is divided into training (144
documents) and test (100 documents) sets. We use
the set of combined author- and reader-assigned
keyphrases as reference keyphrases.

We follow the common practice (Kim et al.,
2010) and evaluate the performance of our method
in terms of precision (P), recall (R) and f-measure
(F) at the top N keyphrases9. Extracted and refer-
ence keyphrases are stemmed to reduce the num-
ber of mismatches.

For each word weighting function, namely
TF×IDF, TextRank and Logistic regression, we
compare the performance of our ILP model (here-
after ilp) with that of two word-based weighting
baselines. The first baseline (hereafter sum) sim-
ply ranks keyphrase candidates according to the
sum of the weights of their component words as
in (Wan and Xiao, 2008b; Wan and Xiao, 2008a).
The second baseline (hereafter norm) consists in
scoring keyphrase candidates by computing the
sum of the weights of their component words nor-
malized by their length as in (Boudin, 2013).

As a post-processing step, we remove redundant
keyphrases from the ranked lists generated by both
baselines. A keyphrase is considered redundant if
it is included in another keyphrase that is ranked
higher in the list.

IDF weights are computed on the training set.
The regularization parameter λ is set, for all the
experiments, to the value that achieves the best
performance on the training set, that is 0.3 for
TF×IDF, 0.4 for TextRank and 1.2 for Logistic re-
gression.

3.2 Results

The performance of our model on top of differ-
ent word weighting functions is shown in Table 1.
Overall, our model consistently improves the per-
formance over the baselines. We observe that the
results for sum are very low. Summing the word
weights favors long candidates and is prone to
over-generation errors, as illustrated by the exam-
ple in Table 2.

9Scores are computed using the evaluation script provided
by the SemEval organizers.

21

Top-5 candidates Top-10 candidates

Weighting + Ranking P R F P R F

TF×IDF + sum 5.6 1.9 2.8 5.3 3.5 4.2
+ norm 19.2 6.7 9.9 15.1 10.6 12.3
+ ilp 25.4 9.1 13.3† 17.5 12.4 14.4†

TextRank + sum 4.5 1.6 2.3 4.0 2.8 3.3
+ norm 18.8 6.6 9.6 14.5 10.1 11.8
+ ilp 22.6 8.0 11.7† 17.4 12.2 14.2†

Logistic regression + sum 4.2 1.5 2.2 4.7 3.4 3.9
+ norm 23.8 8.3 12.2 18.9 13.3 15.5
+ ilp 29.4 10.4 15.3† 19.8 14.1 16.3

Table 1: Comparison of TF×IDF, TextRank and Logistic regression for different ranking strategies when
extracting a maximum of 5 and 10 keyphrases. Results are expressed as a percentage of precision (P),
recall (R) and f-measure (F). † indicates significance at the 0.05 level using Student’s t-test.

Normalizing the candidate scores by their
lengths (norm) produces shorter candidates but
does not limit the number of over-generation er-
rors. As we can see from the example in Table 2,
9 out of 10 extracted keyphrases are containing the
word nugget. Our ILP model removes these redun-
dant keyphrases by controlling the impact of each
word on the set of extracted keyphrases. The re-
sulting set of keyphrases is more diverse and thus
increases the coverage of the topics addressed in
the document.

Note that the reported results are not on par
with keyphrase extraction systems that use ad-
hoc pre-processing, involve structural features and
leverage external resources. Rather our goal in
this work is to demonstrate a simple and intuitive
model for reducing over-generation errors.

4 Related Work

In recent years, keyphrase extraction has attracted
considerable attention and many different ap-
proaches were proposed. Generally speaking,
keyphrase extraction methods can be divided into
two main categories: supervised and unsupervised
approaches.

Supervised approaches treat keyphrase ex-
traction as a binary classification task, where
each phrase is labeled as keyphrase or non-
keyphrase (Witten et al., 1999; Turney, 2000;
Kim and Kan, 2009; Lopez and Romary, 2010).
Unsupervised approaches usually rank phrases
by importance and select the top-ranked ones as
keyphrases. Methods for ranking phrases in-

TF×IDF + sum (P = 0.1)
advertis bid; certain advertis budget; key-
word bid; convex hull landscap; budget op-
tim bid; uniform bid strategi; advertis slot;
advertis campaign; ward advertis; searchbas
advertis

TF×IDF + norm (P = 0.2)
advertis; advertis bid; keyword; keyword
bid; landscap; advertis slot; advertis cam-
paign; ward advertis; searchbas advertis; ad-
vertis random

TF×IDF + ilp (P = 0.4)
click; advertis; uniform bid; landscap; auc-
tion; convex hull; keyword; budget optim;
single-bid strategi; queri

Table 2: Example of the top-10 extracted
keyphrases for the document J-3 of the SemEval
dataset. Keyphrases are stemmed and whose that
match reference keyphrases are marked bold.

clude graph-based ranking (Mihalcea and Tarau,
2004; Wan and Xiao, 2008a; Wan and Xiao,
2008b; Bougouin et al., 2013; Boudin, 2013),
topic-based clustering (Liu et al., 2009; Liu et
al., 2010; Bougouin et al., 2013), statistical mod-
els (Paukkeri and Honkela, 2010; El-Beltagy and
Rafea, 2010) and language modeling (Tomokiyo
and Hurst, 2003).

The work of (Ding et al., 2011) is perhaps the
closest to our present work. They proposed an
ILP formulation of the keyphrase extraction prob-

22

lem that combines TF×IDF and position features
in an objective function subject to constraints of
coherence and coverage. In their model, coher-
ence is measured by Mutual Information and cov-
erage is estimated using Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003). Their work dif-
fers from ours in that (1) it is phrased-based and
thus does not penalize redundant keyphrases, and
(2) it requires estimating a large number of hyper-
parameters which makes it difficult to generalize.

5 Conclusion and Future Work

In this paper, we proposed an ILP formulation for
keyphrase extraction that reduces over-generation
errors by weighting keyphrase candidates as a
set rather than independently. In our model,
keyphrases are selected according to their compo-
nent words, and the weight of each unique word
is counted only once. Experiments show a sub-
stantial improvement over commonly used word-
based ranking approaches using either supervised
and unsupervised weighting schemes.

In future work, we intend to extend our model to
include word relatedness through the use of asso-
ciation measures. By doing so, we expect to better
differentiate semantically related keyphrase can-
didates according to the association strength be-
tween their component words.

Acknowledgments

This work was partially supported by the GOLEM
project (grant of CNRS PEPS FaSciDo 2015,
http://boudinfl.github.io/GOLEM/).
We thank the anonymous reviewers, Adrien
Bougouin and Evgeny Gurevsky for their insight-
ful comments.

References

Gábor Berend. 2011. Opinion expression mining by
exploiting keyphrase extraction. In Proceedings of
5th International Joint Conference on Natural Lan-
guage Processing, pages 1162–1170, Chiang Mai,
Thailand, November. Asian Federation of Natural
Language Processing.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022, March.

Florian Boudin. 2013. A comparison of centrality
measures for graph-based keyphrase extraction. In

Proceedings of the Sixth International Joint Confer-
ence on Natural Language Processing, pages 834–
838, Nagoya, Japan, October. Asian Federation of
Natural Language Processing.

Adrien Bougouin, Florian Boudin, and Béatrice Daille.
2013. Topicrank: Graph-based topic ranking for
keyphrase extraction. In Proceedings of the Sixth In-
ternational Joint Conference on Natural Language
Processing, pages 543–551, Nagoya, Japan, Octo-
ber. Asian Federation of Natural Language Process-
ing.

Zhuoye Ding, Qi Zhang, and Xuanjing Huang. 2011.
Keyphrase extraction from online news using binary
integer programming. In Proceedings of 5th In-
ternational Joint Conference on Natural Language
Processing, pages 165–173, Chiang Mai, Thailand,
November. Asian Federation of Natural Language
Processing.

Samhaa R. El-Beltagy and Ahmed Rafea. 2010. Kp-
miner: Participation in semeval-2. In Proceedings of
the 5th International Workshop on Semantic Evalu-
ation, pages 190–193, Uppsala, Sweden, July. Asso-
ciation for Computational Linguistics.

Dan Gillick and Benoit Favre. 2009. A scalable global
model for summarization. In Proceedings of the
Workshop on Integer Linear Programming for Nat-
ural Language Processing, pages 10–18, Boulder,
Colorado, June. Association for Computational Lin-
guistics.

Kazi Saidul Hasan and Vincent Ng. 2010. Conun-
drums in unsupervised keyphrase extraction: Mak-
ing sense of the state-of-the-art. In Coling 2010:
Posters, pages 365–373, Beijing, China, August.
Coling 2010 Organizing Committee.

Kazi Saidul Hasan and Vincent Ng. 2014. Automatic
keyphrase extraction: A survey of the state of the
art. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1262–1273, Baltimore,
Maryland, June. Association for Computational Lin-
guistics.

Kai Hong and Ani Nenkova. 2014. Improving
the estimation of word importance for news multi-
document summarization. In Proceedings of the
14th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 712–
721, Gothenburg, Sweden, April. Association for
Computational Linguistics.

Anette Hulth and Beáta B. Megyesi. 2006. A study on
automatically extracted keywords in text categoriza-
tion. In Proceedings of the 21st International Con-
ference on Computational Linguistics and 44th An-
nual Meeting of the Association for Computational
Linguistics, pages 537–544, Sydney, Australia, July.
Association for Computational Linguistics.

23

Samir Khuller, Anna Moss, and Joseph (Seffi) Naor.
1999. The budgeted maximum coverage problem.
Information Processing Letters, 70(1):39 – 45.

Su Nam Kim and Min-Yen Kan. 2009. Re-examining
automatic keyphrase extraction approaches in scien-
tific articles. In Proceedings of the Workshop on
Multiword Expressions: Identification, Interpreta-
tion, Disambiguation and Applications, pages 9–16,
Singapore, August. Association for Computational
Linguistics.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. Semeval-2010 task 5 : Au-
tomatic keyphrase extraction from scientific articles.
In Proceedings of the 5th International Workshop on
Semantic Evaluation, pages 21–26, Uppsala, Swe-
den, July. Association for Computational Linguis-
tics.

Marina Litvak and Mark Last. 2008. Graph-based
keyword extraction for single-document summariza-
tion. In Coling 2008: Proceedings of the work-
shop Multi-source Multilingual Information Extrac-
tion and Summarization, pages 17–24, Manchester,
UK, August. Coling 2008 Organizing Committee.

Zhiyuan Liu, Peng Li, Yabin Zheng, and Maosong
Sun. 2009. Clustering to find exemplar terms for
keyphrase extraction. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 257–266, Singapore, Au-
gust. Association for Computational Linguistics.

Zhiyuan Liu, Wenyi Huang, Yabin Zheng, and
Maosong Sun. 2010. Automatic keyphrase extrac-
tion via topic decomposition. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing, pages 366–376, Cambridge,
MA, October. Association for Computational Lin-
guistics.

Zhiyuan Liu, Xinxiong Chen, Yabin Zheng, and
Maosong Sun. 2011. Automatic keyphrase extrac-
tion by bridging vocabulary gap. In Proceedings of
the Fifteenth Conference on Computational Natural
Language Learning, pages 135–144, Portland, Ore-
gon, USA, June. Association for Computational Lin-
guistics.

Patrice Lopez and Laurent Romary. 2010. Humb: Au-
tomatic key term extraction from scientific articles
in grobid. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 248–251,
Uppsala, Sweden, July. Association for Computa-
tional Linguistics.

Rada Mihalcea and Paul Tarau. 2004. Textrank:
Bringing order into texts. In Dekang Lin and Dekai
Wu, editors, Proceedings of EMNLP 2004, pages
404–411, Barcelona, Spain, July. Association for
Computational Linguistics.

Thuy Dung Nguyen and Minh-Thang Luong. 2010.
Wingnus: Keyphrase extraction utilizing document

logical structure. In Proceedings of the 5th Inter-
national Workshop on Semantic Evaluation, pages
166–169, Uppsala, Sweden, July. Association for
Computational Linguistics.

Mari-Sanna Paukkeri and Timo Honkela. 2010. Likey:
Unsupervised language-independent keyphrase ex-
traction. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 162–165,
Uppsala, Sweden, July. Association for Computa-
tional Linguistics.

Martin F Porter. 1980. An algorithm for suffix strip-
ping. Program, 14(3):130–137.

Karen Spärck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of Documentation, 28:11–21.

Takashi Tomokiyo and Matthew Hurst. 2003. A lan-
guage model approach to keyphrase extraction. In
Proceedings of the ACL 2003 Workshop on Multi-
word Expressions: Analysis, Acquisition and Treat-
ment - Volume 18, MWE ’03, pages 33–40, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-Rich
Part-of-Speech Tagging with a Cyclic Dependency
Network. In Proceedings of the 2003 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technology - Volume 1 (NAACL), pages 173–180,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Peter D Turney. 2000. Learning algorithms
for keyphrase extraction. Information Retrieval,
2(4):303–336.

Xiaojun Wan and Jianguo Xiao. 2008a. Col-
labrank: Towards a collaborative approach to single-
document keyphrase extraction. In Proceedings
of the 22nd International Conference on Compu-
tational Linguistics (Coling 2008), pages 969–976,
Manchester, UK, August. Coling 2008 Organizing
Committee.

Xiaojun Wan and Jianguo Xiao. 2008b. Single
document keyphrase extraction using neighborhood
knowledge. In Proceedings of the 23rd National
Conference on Artificial Intelligence - Volume 2,
AAAI’08, pages 855–860. AAAI Press.

Ian H. Witten, Gordon W. Paynter, Eibe Frank, Carl
Gutwin, and Craig G. Nevill-Manning. 1999. Kea:
Practical automatic keyphrase extraction. In Pro-
ceedings of the Fourth ACM Conference on Digital
Libraries, DL ’99, pages 254–255, New York, NY,
USA. ACM.

24

Proceedings of the ACL 2015 Workshop on Novel Computational Approaches to Keyphrase Extraction, pages 25–31,
Beijing, China, July 30, 2015. c©2015 Association for Computational Linguistics

TwittDict: Extracting Social Oriented Keyphrase Semantics from Twitter

Suppawong Tuarob†, Wanghuan Chu‡, Dong Chen§, and Conrad S Tucker♯

†Faculty of Information and Communication Technology, Mahidol University, Thailand
‡ Department of Statistics, §Information Sciences and Technology,

♯Industrial and Manufacturing Engineering, Pennsylvania State University, USA
suppawong.tuarob@gmail.com, {wxc228,duc196,ctucker4}@psu.edu

Abstract

Social media not only carries information
that is up-to-date, but also bears the wis-
dom of the crowd. In social media, new
words are developed everyday, including
slangs, combinations of existing terms, en-
tity names, etc. These terms are initially
used in small communities, which can
later grow popular and become new stan-
dards. The ability to early recognize the
existence and understand the meanings of
these terms can prove to be crucial, espe-
cially to emergence detection applications.
We present an ongoing research work that
investigates the use of topical analysis to
extract semantic of terms in social me-
dia. In particular, the proposed method
extracts semantically related words asso-
ciated with a target word from a corpus of
tweets. We provide preliminary, anecdotal
results comprising the semantic extraction
of five different keywords.

1 Introduction

Multiple applications built upon social media data
have emerged and recently gained attention from
a wide range of research fields. For example,
public surveillance systems have shown success
in employing Twitter data to detect the emergence
of diseases (Tuarob et al., 2013b; Tuarob et al.,
2014), emergency needs during natural disasters
(Caragea et al., 2011), and even changes in
product trends (Tuarob and Tucker, 2015c; Tuarob
and Tucker, 2015a). Regardless of such appealing
applications, tremendous challenges exist in
employing traditional natural language processing
techniques to handle social media data. Most of
the issues with social media involve language
creativity and noise, such as non-standard terms
or symbolic expressions, caused by the users.

Languages in social media evolve rapidly as the
users have the freedom to express their opinions
in colloquial, everyday languages. Some social
media services such as Twitter limit the length of
each message, that even challenge the users to
express their complete thoughts in a compressed
manner, resulting in creativity that would be
considered noise by most traditional NLP tech-
niques. This language evolution can be classified
into two categories: grammatical alteration and
word distortion. Grammatical alteration involves
incomplete sentences (e.g. ‘Dance Practice
All Day Hit Up The iPhone4 (:’),
omitting words or part of words (e.g. ‘[Does]
Anyone have suggestions for [an]
iPhone 4 mic?’), and developing new terms
(e.g. ‘I totally fricken agree!’).
Word distortion involves modifying existing
terms to deviate from the original meanings or
to encode a phrase into a single word, such as
looooooove (much love) and lol (laugh out
loud). Besides the language evolution, noise is
also considered a norm in social media. The
sources of such noise include the use of symbolic
representations (e.g. ‘:)’) and typographical
errors (both by intention and unintention). Both
language evolution and noises produce non-
standard terms, words not defined in a standard
dictionary. Moreover, non-standard terms may
refer to proper nouns, or entity names, e.g. Xbox,
Microsoft, and Peking. These non-standard terms
pose challenges to existing semantic interpreta-
tion techniques, especially those dependent on
dictionary look-up of terms.

Text normalization techniques such as those uti-
lizing noisy channel models (Cook and Steven-
son, 2009; Xue et al., 2011) rely on the assump-
tion that a non-standard term has its equivalent
standard form (e.g. love ⇒ looooove). With
such an assumption, the algorithms aim to reverse
the transformation process and seek the original

25

form of a non-standard term. These algorithms,
however, would fail if a term is newly developed
and does not have a counterpart standard form
(for example, ‘swine flu’, ‘linsanity’,
‘Tweeps’, etc.).

In particular, we present TwittDict, a model for
semantic exploration of unknown terms in social
media. Specifically, the method first identifies dif-
ferent topics discussed in the social media corpus.
It assumes that a given term is associated with one
or more topics, which then allows the mapping be-
tween such a term with relevant topically repre-
sented terms. Though multiple works have shown
success on semantic annotation of unknown terms,
these works target the domain of traditional docu-
ments where noise and language evolution are not
taken into account. A preliminary case study that
uses Twitter data to extract semantically relevant
terms from a set of chosen five target terms is pre-
sented.

2 Background and Related Work

Use of social media, such as collaboratively edited
knowledge databases (Wikipedia1), blogs and mi-
croblogs (Biyani et al., 2014), content commu-
nities (YouTube2), and social networking sites
(Facebook3) (Kaplan and Haenlein, 2009), has
grown at a prodigious rate. According to Nielsen’s
report4, the total amount of time spent by the U.S.
population on social media in 2012 was 520.1 bil-
lion minutes, a 21% increase from the previous
year. This results in the creation and diffusion of
a huge amount of information on social media ev-
eryday, including news, knowledge, opinions, and
emotions. Different groups use social media for
different reasons. For instance, companies can use
social media to gather customer feedback and con-
duct market research and reputation management.
Governmental organizations can spread news and
gather public opinions. Meanwhile, the wealth of
information on social media contributes to the col-
lective wisdom and can be used to predict real-
world outcomes such as stock prices (Bollen et al.,
2011), flu trends (Lampos et al., 2010), and prod-
uct sales (Tuarob and Tucker, 2013). To realize
the potential of social media, the first step is to
select relevant information, which requires an un-

1http://www.wikipedia.org/
2https://www.youtube.com/
3https://www.facebook.com/
4http://www.nielsensocial.com/

derstanding of language evolution on social me-
dia. One aspect of such evolution is the creation
and use of new terms aiming at describing timely
events or new social phenomenon. Many of these
terms are too new to be indexed by standard dic-
tionaries or Wikipedia, and the results returned by
popular search engines like Google5 can be ob-
scure and unstructured. Therefore, we seek to use
social community knowledge to extract term se-
mantics which provide better understanding on the
language evolution.

2.0.1 Semantic Discovery of Terms
Weischedel et al. (1993) had success in employing
probabilistic models to discover unknown terms
and annotate them with parts of speech. Daniel
et al. (1999) proposed a named entity recognition
(NER) algorithm which categorizes a proper noun
into one of the 3 predefined categories: Location,
Person, and Organization. Besides Daniel et al’s
work, other NER algorithms such as (Chieu and
Ng, 2002) achieved similar goals. These solutions
rely on the assumption that a proper noun must fall
into one of the predefined categories, while it is
ubiquitous to see new categories of terms emerge
from social media. Moreover, these algorithms re-
quire the data to adhere to standard English gram-
mar. This requirement is hardly satisfied in so-
cial media. Fellbaum described Wordnet6 a lexi-
cal database for English vocabulary that provides
a set of synonyms (synset) for a given word. How-
ever, such database is constructed manually and
only contains standard dictionary words, while our
solution is fully automatic and can be applied to
standard and non-standard terms that appear in so-
cial media.

2.0.2 Quantifying Unknown Terms in Social
Media Data

Dealing with non-standard terms can be cumber-
some. Dictionary-based approaches tend to fail
when facing such unknown terms since they ba-
sically do not exist and cannot be looked up. Cook
and Stevenson (2009) identified 10 different ways
in which a term can be distorted in mobile text
messaging. They proposed a noisy channel un-
supervised model to translate a non-standard term
into its standard version. Xue et al. (2011) pro-
posed a similar channel-based model to translate
a non-standard term into its standard form in the

5https://www.google.com/
6http://wordnet.princeton.edu/

26

Twitter domain. These algorithms assume that
an unknown term can be mapped one-to-one to
its standard form. Unfortunately, the presence of
newly generated terms naturally found in social
media violate such an assumption, simply because
these terms are newly developed and hence do not
have their standard forms. These newly developed
terms include social slangs, trending words, and
names of entities.

Lund and Burgess (1996) attempted to explore
the semantic of terms by generating the term
occurrence network. A term is annotated with
its highly related terms based on the distances
in the network. Though their algorithm treats
a document as a bag of words (hence does not
rely on sentence structures), the algorithm pro-
duces meaningful results when the data is high-
dimensional and dense. Such properties result in a
strong and meaningful co-occurrence relationship.
However, each message in social media is usually
represented with a short text, resulting in high-
dimensional but sparse data. Consequently, such
data sparsity would impede the co-occurrence re-
lationship.

3 Methodology

Topic models (Blei and Lafferty, 2009) are pow-
erful tools to study latent patterns in text. The se-
mantic of an unknown word is highly related to
the topics associated with the text that contains it.
Moreover, identified topics can be considered as
representatives of the semantic. While one docu-
ment might only have a limited number of topics
associated with it, the collection of a large amount
of documents containing the unknown term can
provide more thorough and comprehensive un-
derstanding. Therefore, topic models can be ap-
plied to extract the semantics of unknown terms
with large enough collection of documents. So-
cial media such as Twitter usually adopts the use
of newly developed terms at a very fast rate. So-
cial media users tweet about topics related to the
unknown terms based on their subjective under-
standing. Different tweets may present different
meanings towards a single term. While a single
tweet lacks the information to provide the full se-
mantics of the term, a collection of all the tweets
containing the term would give a much larger and
clearer picture of the semantics. Therefore, topic
models can be applied on social media to extract
word semantics in terms of collective wisdom and

social knowledge.
In this study, we choose the Latent Dirichlet Al-

location (LDA) (Blei et al., 2003) to model topi-
cal variation due to its flexibility and richness in
the results. We use Twitter data as a case study,
hence the name TwittDict is devised. Note that
our algorithm can also be applied to other social
media such as Facebook and Google+, as long as
the medium of communication is in textual forms
and community structures exist. In this section, we
first briefly review our problem and introduce the
LDA model, and then discuss how we filter the re-
lated tweets and how we apply the LDA to extract
word semantics.

3.1 Problem Definition

Given a query word, TwittDict outputs a list of
related words associated with it. The output words
are ranked according to their relevance to the
input term. Specifically, let Dt = {d1, d2, ..., dn}
be the set of tweets, where each tweet di ∈ Dt

is a bag of words, W the vocabulary extracted
from Dt, and wt the query word. The proposed
algorithm aims to output a ranked list of K
words which are semantically relevant to wt.
For example, given a word ‘Linsanity’, the
proposed algorithm would return a ranked list of
semantically relevant words {basketball,
player, insanity, scholarship}
(with K = 4) as the output.

3.2 Latent Dirichlet Allocation

In text mining, the Latent Dirichlet Allocation
(LDA) is a generative model that allows a docu-
ment to be represented by a mixture of topics. The
basic intuition of LDA for topic modeling is that
an author has a set of topics in mind when writing
a document. A topic is defined as a distribution of
terms. The author then chooses a set of terms from
the topics to compose the document. With such as-
sumption, the whole document can be represented
using a mixture of different topics. LDA serves
as a means to trace back the topics in the author’s
mind before the document is written. Mathemati-
cally, the LDA model is described as follows:

P (wi|d) =
|Z|∑
j=1

P (wi|zi = j) ·P (zi = j|d). (1)

P (wi|d) is the probability of term wi being in doc-
ument d. zi is the latent (hidden) topic. |Z| is the

27

number of all topics, which needs to be predeter-
mined. P (wi|zi = j) is the probability of term wi

being in topic j. P (zi = j|d) is the probability of
picking a term from topic j in the document d.

Essentially, the aim of LDA model is to find
P (z|d), the topic distribution of document d, with
each topic described by the distribution over all
terms P (w|z).

After the topics are modeled, we can assign a
distribution of topics to a given document using a
technique called inference. A document then can
be represented by a vector of numbers, each of
which represents the probability of the document
belonging to a topic:

Infer(d, Z) = ⟨z1, z2, ..., zQ⟩; |Z| = Q,

where Z is a set of topics, d is a document, and
zi is a probability of the document d falling into
topic i. We use the Latent Dirichlet Allocation al-
gorithm to generate topics in our model since it al-
lows a topic to be represented by a distribution of
terms, enabling the method to propagate the rele-
vance from the target term to the underlying terms
that compose the relevant topics.

3.3 Data Preprocessing

Twitter data is collected using the Twitter API. The
textual information in each tweet is first lower-
cased, then usernames, stopwords, punctuations,
numbers, and URLs are removed. While using the
wealth of information on Twitter to understand an
unknown term, the first step is to filter in tweets
that are related to such a term. The most intuitive
collection consists of all the tweets that contain the
target word and treats each single tweet as a docu-
ment, which we call the basis setting. However,
there are some special characteristics of Twitter
messages that we want to consider for modifica-
tions and improvements. First, there is limited in-
formation within each tweet because of the 140-
character restriction, and the average length of
tweets is even smaller. This is quite different from
the traditional uses of the LDA where input doc-
uments are rich (e.g., research articles, newspa-
per, etc), and hence generated topics are quite intu-
itive and meaningful. Second, other information in
tweets such as retweet (RT), reply (@username)
and hashtag (#) exist, which can be used more ap-
propriately instead of just being deleted or treated
as a plain word. To overcome the drawbacks and
make better use of Twitter features, we consider

improving the basis setting by expanding the col-
lection of tweets using reply and hashtag. Reply
refers to those tweets that start with @username
and comment on other tweets. For the tweet that
contains the unknown term, its reply tweets make
comments on the same or other related topics. Al-
though these tweets might not contain the target
word, it is reasonable to assume that they should
be in similar semantic as the original tweet thus
providing additional information. Therefore, we
will expand the collection of tweets by combining
all the reply tweets to the original one which con-
tains the target term. Hashtag can also be used to
find related tweets. People use the hashtag sym-
bol # before a relevant keyword or phrase without
space in the tweets to facilitate automatic catego-
rization and search. These hashtags can be viewed
as topical markers, serving as indications to the
context or the core idea of the tweet. Tweets with
the same hashtag share similar topics. Therefore,
we use hashtags in the basis tweet to find all the
other tweets that have at least one of these hash-
tags, which also enriches the information in the
collection.

3.4 Retrieving Related Words

Mathematically, given a target document corpus
Dt = ⟨d1, d2, ..., dn⟩ (as described in Section
3.3), vocabulary W = ⟨w1, w2, ..., wm⟩, and tar-
get word wt, our algorithm outputs a ranked list
W ∗

K = ⟨w1, w2, ..., wK⟩, where wi ∈ W , of K
words relevant to wt.

Our algorithm comprises two main steps:

1. P (w|wt,W,Dt), the likelihood probability
of the word w being relevant to the target
word wt, is computed for each w ∈ W .

2. Return top K words ranked by the likelihood
probability.

In general, P (w|wt,W,Dt) is computed by
weighted averaging of the posterior probability of
P (w|Z) across the documents in D, where Z is
the set of topics:

P (w|wt,W,Dt) =
∑
z∈Z

P (z|Dt) · P (w|z), (2)

where P (w|z) is the posterior probability of the
word w being in topic z, computed in Equation
1. P (z|Dt) serves as the weight of the topic z,

28

computed by averaging out the topic probability
P (z|d) across all documents in Dt:

P (z|Dt) =
1

|Dt|
∑
d∈Dt

P (z|d), (3)

where P (z|d) is computed based on Equation 1.
Hence:

P (w|wt,W,Dt) =
1

|Dt|
∑
z∈Z

∑
d∈Dt

P (z|d)·P (w|z)

(4)

4 Evaluation

TwittDict is evaluated against the baseline which
utilizes a variant of word co-occurrence to re-
trieve relevant keywords. Church et al. had
success on using the mutual information to ex-
tract semantic related terms (1990). Further-
more, Tuarob and Tucker had used the word co-
occurrence network to explicate implicit seman-
tics in product related tweets (2015b). Here, the
word co-occurrence network is constructed from
the tweet corpus. The co-occurrence network is
an undirected graph where each node is a dis-
tinct word, and each edge weight represents the
frequency of co-occurrence. The edge weights
can be used directly to compute P (x, y), where
x and y are co-occurred words. Given a target
word wt, a corpus of tweets T , and vocabulary
W = ⟨w1, w2, ..., wm⟩, the baseline algorithm
outputs a ranked list WB

K = ⟨w1, w2, ..., wK⟩,
where wi ∈ W , of K words relevant to wt. The
algorithm assigns a co-occurrence based score to
each word, and rank them by such a score. In
this work, we experiment with three variations of
co-occurrence based scores: Mutual Information
(MI), Co-Frequency (CoF), and Co-Frequency In-
verse Document Frequency (CoF-IDF):

ScoreMI(wt, w) = log2

P (wt, w)

P (wt) · P (w)
(5)

ScoreCoF (wt, w) = P (wt, w) (6)
ScoreCoF−IDF (wt, w) = P (wt, w) · IDF (w, T) (7)

5 Preliminary Case Study

We experiment our methodology with Twitter data
and a set of manually selected words. Twitter data
is used due to its ubiquitousness and public avail-
ability. Note that, our methodology can expand to
other types of social media such as Facebook and
Google+ if the data is available.

5.1 Twitter Data

Twitter is a microblog service that allows its users
to send and read text messages of up to 140 charac-
ters, known as tweets. The Twitter dataset used in
this research study comprises roughly 700 million
tweets in the United States during the period of 19
months, from March 2011 to September 2012.

5.2 Anecdotal Results

A set of five target words (Obama, Pandora,
Xbox, Glee, and Zombie) are used to test our
proposed algorithm against one of the baseline
with Co-frequency scores. TwittDict employs the
LDA implementation in Mallet7, with 100 topics
and runs for 1,000 iterations using Gibb’s Sam-
pling. Due to the limitation on the computational
time, TwittDict currently only models topics from
a tweet corpus collected in March 2011. For the
baseline, we first index the whole tweet corpus us-
ing Apache Lucene8, then use the same library to
compute word frequency. Table 1 lists the results.

From the preliminary results, TwittDict is able
to extract highly meaningful words related to the
target words, while the baseline contain a mix-
ture of both related and generally spurious words.
Note that, TwittDict only uses one month’s worth
(5.26%) of the available Twitter data, as opposed
to the baseline which uses the whole collection of
tweets. It is our belief that, with more Twitter data,
TwittDict could even provide a wider variety and
higher in semantics of lexicons.

6 Conclusions and Future Works

By leveraging natural language processing tech-
niques and specific features in social media, we
have described our ongoing development of Twitt-
Dict, a system to identify the social-oriented se-
mantic meaning of unknown words. Such a
system could prove to be useful as a building
block for emergence detection systems where
early recognition of new terms/concepts is cru-
cial. We illustrated through anecdotal results us-
ing Twitter data to identify semantic meanings of
five terms, that our method is not only achiev-
ing promising results, but also urging us to ex-
plore further into improving our methods along
with conducting rigorous user and automatic eval-
uations such as (Tuarob et al., 2013a; Tuarob et al.,

7http://mallet.cs.umass.edu/
8http://lucene.apache.org/

29

Table 1: Preliminary results of 5 test words using both the baseline (CoF scores) and TwittDict.

Co-Freq Twi�Dict Co-Freq Twi�Dict Co-Freq Twi�Dict Co-Freq Twi�Dict Co-Freq Twi�Dict

1 president president flow sta!on live live watching watching apocalypse apocalypse

2 vote libya sta!on radio play play love tonight feel lol

3 michelle people listening listening playing kinect watch episode lol www

4 romney war radio lol got lol tonight watch day movie

5 barack bush love music lol playing episode love dead today

6 lol barack point playing !me game season song mode feel

7 don don tonight song need games project !me sleep movies

8 america news commercials love game !me lol good walking love

9 love pres playing !me add black !me show !me !me

10 speech !me lol songs don back omg lol today back

11 fuck gop song good kinect don cast songs movie zombies

12 got white !me shit buy buy wait don night band

13 dnc america listen listen games good song night zombies dead

14 vo!ng oil songs day fuck day good cast don day

15 people world shit today shit ops don amazing love mode

16 good tcot night play wanna gamertag amazing omg good horror

17 campaign japan music work day follow night week shit good

18 years administra!on jamming flow love win version version rob house

19 win house got tonight controller controller excited awesome walkingdead plays

20 osama gas sleep night haha love week music need atomic

Word

/Rank

Obama Pandora Xbox Glee Zombie

2015). There is plenty of room to improve Twitt-
Dict. In the current case study, we only used Twit-
ter data during Mar 2011. This specific period of
time may bring about bias towards the result. To
avoid such bias, we need to test data in different
times and geographical regions. This will shed
light on how meanings of a term evolve tempo-
rally and spatially. When we were conducting the
small case study, we noticed that the results were
highly dependent on the time period, as Twitter
users usually tweet about the current social phe-
nomena. This change reflects the evolvement of
social events and community knowledge. We are
considering giving users the freedom to specify
the time period during which a term is defined.
Furthermore, we would explore methods for user
evaluations. We would recruit human participants
to give feedback about their experience. Real user
experience is of great value for us to see whether
and how community knowledge from social media
truly helps them to better understand the unknown,
emerging concepts. Finally, we would like to com-
pare our method against well-established baseline
such as (Turney et al., 2010) and (Mikolov et al.,
2013).

30

References
Daniel M. Bikel, Richard Schwartz, and Ralph M.

Weischedel. 1999. An algorithm that learns what’s
in a name. Mach. Learn., 34(1-3):211–231, Febru-
ary.

Prakhar Biyani, Cornelia Caragea, Prasenjit Mitra, and
John Yen. 2014. Identifying emotional and infor-
mational support in online health communities.

David M Blei and J Lafferty. 2009. Topic models. Text
mining: classification, clustering, and applications,
10:71.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022, March.

Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011.
Twitter mood predicts the stock market. Journal of
Computational Science, 2(1):1–8.

C. Caragea, N. McNeese, A. Jaiswal, G. Traylor, H.W.
Kim, P. Mitra, D. Wu, A.H. Tapia, L. Giles, B.J.
Jansen, et al. 2011. Classifying text messages for
the haiti earthquake. In ISCRAM ’11.

Hai Leong Chieu and Hwee Tou Ng. 2002. Named en-
tity recognition: a maximum entropy approach us-
ing global information. COLING ’02, pages 1–7,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy. Comput. Linguist., 16(1):22–29, March.

Paul Cook and Suzanne Stevenson. 2009. An unsuper-
vised model for text message normalization. CALC
’09, pages 71–78, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Andreas M. Kaplan and Michael Haenlein. 2009. The
fairyland of second life: Virtual social worlds and
how to use them. Business Horizons, 52(6):563 –
572.

Vasileios Lampos, Tijl De Bie, and Nello Cristianini.
2010. Flu detector-tracking epidemics on twitter.
In Machine Learning and Knowledge Discovery in
Databases, pages 599–602. Springer.

Kevin Lund and Curt Burgess. 1996. Produc-
ing high-dimensional semantic spaces from lexi-
cal co-occurrence. Behavior Research Methods,
28(2):203–208.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Suppawong Tuarob and Conrad S Tucker. 2013. Fad
or here to stay: Predicting product market adoption
and longevity using large scale, social media data.
In ASME IDETC/CIE ’13.

Suppawong Tuarob and Conrad S Tucker. 2015a. Au-
tomated discovery of lead users and latent prod-
uct features by mining large scale social media net-
works. Journal of Mechanical Design.

Suppawong Tuarob and Conrad S Tucker. 2015b. A
product feature inference model for mining implicit
customer preferences within large scale social media
networks. In ASME IDETC/CIE ’15.

Suppawong Tuarob and Conrad S Tucker. 2015c.
Quantifying product favorability and extracting no-
table product features using large scale social media
data. Journal of Computing and Information Sci-
ence in Engineering.

Suppawong Tuarob, Line C Pouchard, and C Lee Giles.
2013a. Automatic tag recommendation for meta-
data annotation using probabilistic topic modeling.
JCDL ’13, pages 239–248.

Suppawong Tuarob, Conrad S Tucker, Marcel Salathe,
and Nilam Ram. 2013b. Discovering health-related
knowledge in social media using ensembles of het-
erogeneous features. In CIKM ’13, pages 1685–
1690. ACM.

Suppawong Tuarob, Conrad S Tucker, Marcel Salathe,
and Nilam Ram. 2014. An ensemble heterogeneous
classification methodology for discovering health-
related knowledge in social media messages. Jour-
nal of biomedical informatics, 49:255–268.

Suppawong Tuarob, Line C Pouchard, Prasenjit Mi-
tra, and C Lee Giles. 2015. A generalized topic
modeling approach for automatic document anno-
tation. International Journal on Digital Libraries,
16(2):111–128.

Peter D Turney, Patrick Pantel, et al. 2010. From
frequency to meaning: Vector space models of se-
mantics. Journal of artificial intelligence research,
37(1):141–188.

Ralph Weischedel, Richard Schwartz, Jeff Palmucci,
Marie Meteer, and Lance Ramshaw. 1993. Coping
with ambiguity and unknown words through proba-
bilistic models. Comput. Linguist., 19(2):361–382,
June.

Zhenzhen Xue, Dawei Yin, and Brian D Davison.
2011. Normalizing microtext. In Proceedings of
the AAAI Workshop on Analyzing Microtext, pages
74–79.

31

Proceedings of the ACL 2015 Workshop on Novel Computational Approaches to Keyphrase Extraction, pages 32–38,
Beijing, China, July 30, 2015. c©2015 Association for Computational Linguistics

Identification and Classification of Emotional Key Phrases from Psycho-
logical Texts

Apurba Paul Dipankar Das
JIS College of Engineering Jadavpur University

Kalyani,Nadia 188, Raja S.C. Mullick Road, Kolkata
West Bengal, India West Bengal, India

apurba.saitech@gmail.com ddas@cse.jdvu.ac.in

Abstract

Emotions, a complex state of feeling results in
physical and psychological changes that influ-
ence human behavior. Thus, in order to extract
the emotional key phrases from psychological
texts, here, we have presented a phrase level
emotion identification and classification sys-
tem. The system takes pre-defined emotional
statements of seven basic emotion classes
(anger, disgust, fear, guilt, joy, sadness and
shame) as input and extracts seven types of
emotional trigrams. The trigrams were
represented as Context Vectors. Between a
pair of Context Vectors, an Affinity Score was
calculated based on the law of gravitation with
respect to different distance metrics (e.g.,
Chebyshev, Euclidean and Hamming). The
words, Part-Of-Speech (POS) tags, TF-IDF
scores, variance along with Affinity Score and
ranked score of the vectors were employed as
important features in a supervised classifica-
tion framework after a rigorous analysis. The
comparative results carried out for four differ-
ent classifiers e.g., NaiveBayes, J48, Decision
Tree and BayesNet show satisfactory perfor-
mances.

1 Introduction

Human emotions are the most complex and unique
features to be described. If we ask someone regard-
ing emotion, he or she will reply simply that it is a
'feeling'. Then, the obvious question that comes
into our mind is about the definition of feeling. It is
observed that such terms are difficult to define and
even more difficult to understand complete-
ly. Ekman (1980) proposed six basic emotions
(anger, disgust, fear, guilt, joy and sadness) that
have a shared meaning on the level of facial
expressions across cultures (Scherer, 1997; Scher-

er and Wallbott, 1994). Psychological texts contain
huge number of emotional words because psychol-
ogy and emotions are inter-wined, though they are
different (Brahmachari et.al, 2013). A phrase that
contains more than one word can be a better way
of representing emotions than a single word. Thus,
the emotional phrase identification and their classi-
fication from text have great importance in Natural
Language Processing (NLP).

In the present work, we have extracted
seven different types of emotional statements (an-
ger, disgust, fear, guilt, joy, sadness and shame)
from the Psychological corpus. Each of the emo-
tional statements was tokenized; the tokens were
grouped in trigrams and considered as Context
Vectors. These Context Vectors are POS tagged
and corresponding TF and TF-IDF scores were
measured for considering them as important fea-
tures or not. In addition, the Affinity Scores were
calculated for each pair of Context Vectors based
on different distance metrics (Chebyshev, Eucli-
dean and Hamming). Such features lead to apply
different classification methods like NaiveBayes,
J48, Decision Tree and BayesNet and after that the
results are compared.

The route map for this paper is the Related
Work (Section 2), Data Preprocessing Framework
(Section 3) followed by Feature Analysis and Clas-
sification framework (Section 4) and result analy-
sis (Section 5) along with the improvement due to
ranking. Finally, we have concluded the discussion
(Section 6).

2 Related Work

Strapparava and Valitutti (2004) developed the
WORDNET-AFFECT, a lexical resource that as-
signs one or more affective labels such as emotion,
mood, trait, cognitive state, physical state, beha-
vior, attitude and sensation etc to a number of

32

WORDNET synsets. A detailed annotation scheme
that identifies key components and properties of
opinions and emotions in language has been de-
scribed in (Wiebe et al., 2005). The authors in
(Kobayashi et al., 2004) also developed an opinion
lexicon out of their annotated corpora. Takamura
et al. (2005) extracted semantic orientation of
words according to the spin model, where the se-
mantic orientation of words propagates in two
possible directions like electrons. Esuli and Sebas-
tiani’s (2006) approach to develop the SentiWord-
Net is an adaptation to synset classification based
on the training of ternary classifiers for deciding
positive and negative (P-N) polarity. Each of the
ternary classifiers is generated using the Semi-
supervised rules.

On the other hand, Mohammad, et al., (2010)
has performed an extensive analysis of the annota-
tions to better understand the distribution of emo-
tions evoked by terms of different parts of speech.
The authors in (Das and Bandyopadhyay, 2009,
2010) created the emotion lexicon and systems for
Bengali language. The development of SenticNet
(Cambria et al., 2010) was inspired later by (Poria
et al., 2013). The authors developed an enriched
SenticNet with affective information by assigning
emotion labels. Similarly, ConceptNet1 is a multi-
lingual knowledge base, representing words and
phrases that people use and the common-sense re-
lationships between them.

Balahur et al., (2012) had shown that the task of
emotion detection from texts such as the one in the
ISEAR corpus (where little or no lexical clues of
affect are present) can be best tackled using ap-
proaches based on commonsense knowledge. In
this sense, EmotiNet, apart from being a precise
resource for classifying emotions in such exam-
ples, has the advantage of being extendable with
external sources, thus increasing the recall of the
methods employing it. Patra et al., (2013) adopted
the Potts model for the probability modeling of the
lexical network that was constructed by connecting
each pair of words in which one of the two words
appears in the gloss of the other.

In contrast to the previous approaches, the
present task comprises of classifying the emotional
phrases by forming Context Vectors and the expe-
rimentation with simple features like POS, TF-IDF
and Affinity Score followed by the computation of

1 http://conceptnet5.media.mit.edu/

similarities based on different distance metrics help
in making decisions to correctly classify the emo-
tional phrases.

3 Data Preprocessing Framework

3.1 Corpus Preparation

The emotional statements were collected from the
ISEAR7 (International Survey on Emotion Antece-
dents and Reactions) database. Each of the emotion
classes contains the emotional statements given by
the respondents as answers based on some prede-
fined questions. Student respondents, both psy-
chologists and non-psychologists were asked to
report situations in which they had experienced all
of the 7 major emotions (anger, disgust, fear, guilt,
joy, sadness, shame). The final data set contains
reports of 3000 respondents from 37 countries. The
statements were split in sentences and tokenized
into words and the statistics were presented in Ta-
ble 1. It is found that only 1096 statements belong
to anger, disgust sadness and shame classes whe-
reas the fear, guilt and joy classes contain 1095,
1093 and 1094 different statements, respectively.
Since each statement may contain multiple sen-
tences, so after sentence tokenization, it is ob-
served that the anger and fear classes contain the
maximum number of sentences. Similarly, it is ob-
served that the anger class contains the maximum
number of tokenized words.

Emotions Total No.
of
Statements

Total No.
of
Sentences

Total No. of
Tokenized
Words

Anger 1096 1760 24301
Disgust 1096 1607 20871
Fear 1095 1760 22912
Guilt 1093 1718 22430
Joy 1094 1554 18851
Sadness 1096 1606 19480
Shame 1096 1609 20948
Total 7,666 11,614 1,49,793

Table 1: Corpus Statistics

The tokenized words were grouped to form
trigrams in order to grasp the roles of the previous
and next tokens with respect to the target token.
Thus, each of the trigrams was considered as a
Context Window (CW) to acquire the emotional
phrases. The updated version of the standard word
lists of the WordNet Affect (Strapparava, and Vali-

33

tutti, 2004) was collected and it is observed that the
total of 2,958 affect words is present.

It is considered that, in each of the Context
Windows, the first word appears as a non-affect
word, second word as an affect word, and third
word as a non-affect word (<NAW1>, <AW>,
<NAW2>). It is observed from the statistics of CW
as shown in Table 2 that the anger class contains
the maximum number of trigrams (20,785) and joy
class has the minimum number of trigrams
(15,743) whereas only the fear class contains the
maximum number of trigrams (1,573) that follow
the CW pattern. A few example patterns of the
CWs which follows the pattern (<NAW1>, <AW>,
<NAW2>) are “advices, about, problems” (Anger),
“already, frightened, us” (Fear), “always, joyous,
one” (Joy), “acted, cruelly, to” (Disgust), “adoles-
cent, guilt, growing” (guilt), “always, sad, for”
(sad) , “and, sorry, just” (Shame) etc.

It was observed that the stop words are
mostly present in <NAW1, AW, NAW2> pattern
where similar and dissimilar NAWs are appeared
before and after their corresponding CWs. In case
of fear, a total of 979 stop words were found in
NAW1 position and 935 stop words in NAW2 posi-
tion. It is observed that in case of fear, the occur-
rence of similar NAW before and after of CWs is
only 22 in contrast to the dissimilar occurrences of
1551. Table 3 explains the statistics of similar and
dissimilar NAWs along with their appearances as
stop words.

3.2 Context Vector Formation

In order to identify whether the Context Windows
(CWs) play any significant role in classifying emo-
tions or not, we have mapped the Context Win-
dows in a Vector space by representing them as
vectors. We have tried to find out the semantic re-
lation or similarity between a pair of vectors using
Affinity Score which in turn takes care of different
distances into consideration. Since a CW follows
the pattern (NAW1, AW, NAW2), the formation of
vector with respect to each of the Context Win-
dows of each emotion class was done based on the
following formula,

1 2
CW()

#NAW #NAW#A
= , ,

W
Vectoriza

T T T
tion

Where,

T= Total count of CW in an emotion class

#NAW1 = Total occurrence of a non-
affect word in NAW1 position

#NAW2 = Total occurrence of a non-
affect word in NAW2 position

#AW = Total occurrence of an affect word in
AW position.

It was found that in case of anger emotion,
a CW identified as (always, angry, about) corres-
ponds to a Vector, <0.29, 10.69, 1.47>

Emotions Total No of
Trigrams

Total no of Tri-
grams that follows
<NAW1,AW,NAW2>
pattern (CW)

Anger 20785 1356
Disgust 17661 1283
Fear 19392 1573
Guilt 18997 1298
Joy 15743 1179
Sadness 16270 1210
Shame 17731 1058
Table 2: Trigrams and Affect Words Statistics

Emotions Total no.
of NAW 1

appeared
as stop
words in
CW

Total no.
of NAW2

appeared
as stop
words in
CW

Presence
of
similar
NAW
before
and after
of CW

Presence
of
dissimilar
NAW
before
and after
of CW

Anger 825 871 26 1330
Disgust 696 763 11 1272
Fear 979 935 22 1551
Guilt 695 874 18 1280
Joy 734 674 11 1168
Sadness 733 753 22 1188
Shame 604 647 16 1042
NAW1= Non Affect Word1; AW=Affect Word; NAW2=Non
Affect Word2

Table 3: Statistics for similar and dissimilar NAW
patterns and stop words

3.3 Affinity Score Calculation

We assume that each of the Context Vectors in an
emotion class is represented in the vector space at
a specific distance from the others. Thus, there
must be some affinity or similarity exists between
each of the Context Vectors. An Affinity Score
was calculated for each pair of Context Vectors
(pu,qv) where u = {1,2,3,.........n} and v =
{1,2,3,.......n} for n number of vectors with respect
to each of the emotion classes. The final Score is

34

calculated using the following gravitational formu-
la as described in (Poria et al., 2013):

 p q
,

, q

*
p q

p

Score
2dist

The Score of any two context vectors p and q of an
emotion class is the dot product of the vectors di-
vided by the square of distance (dist) between p
and q. This score was inspired by Newton’s law of
gravitation. This score values reflect the affinity
between two context vectors p and q. Higher score
implies higher affinity between p and q.

However, apart from the score values, we
also calculated the median, standard deviation and
inter quartile range (iqr) and only those context
windows were considered if their iqr values are
greater than some cutoff value selected during ex-
periments.

3.4 Affinity Scores using Distance Metrics

In the vector space, it is needed to calculate how
close the context vectors are in the space in order
to conduct better classification into their respective
emotion classes. The Score values were calculated
for all the emotion classes with respect to different
metrics of distance (dist) viz. Chebyshev, Eucli-
dean and Hamming. The distance was calculated
for each context vector with respect to all the vec-
tors of the same emotion class. The distance for-
mula is given below:
a. Chebyshev distance (Cd) = max |xi - yi |

where xi and yi represents two vectors.
b. Euclidean distance (Ed) = ||x - y||2 for vectors x
and y.
c. Hamming distance (Hd) = (c01 + c10) / n where cij

is the number of occurrence in the boolean vectors
x and y and x[k] = i and y[k] = j for k < n. Ham-
ming distance denotes the proportion of disagree-
ing components in x and y.

4 Feature Selection and Analysis

It is observed that the feature selection always
plays an important role in building a good pattern
classifier. Thus, we have employed different clas-
sifiers viz. BayesNet, J48, NaiveBayesSimple and
DecisionTree associated in the WEKA tool. Based
on the previous analysis, the following features

were selected for developing the classification
framework.

1. Affinity Scores based on Cd, Ed and Hd

2. Context Window(CW)
3. POS Tagged Context Window (PTCW)
4. POS Tagged Window (PTW)
5. TF and TF-IDF of CW
6. Variance and Standard Deviation of CW
7. Ranking Score of CW

4.1 POS Tagged Context Windows and Win-
dows (PTCW and PTW)

The sentences were POS tagged using the Stanford
POS Tagger and the POS tagged Context Windows
were extracted and termed as PTCW. Similarly,
the POS tag sequence from each of the PTCWs
were extracted and named each as POS Tagged
Window (PTW). It is observed that “fear” emotion
class has the maximum number of CWs and unique
PTCWs whereas the “anger” class contains the
maximum number of unique PTWs. The Figure 1
as shown below represents the counts of CW,
unique PTCWs and PTWs. It was noticed that the
total number of CWs is 8967, total number of
unique PTCW is 7609 and of unique PTW is 3117.
Obviously, the number of PTCW was less than
CW and number of PTW was less than PTCW,
because of the uniqueness of PTCW and PTW. In
Figure 2, the total counts of CW, PTCW and PTW
have been shown. Some sample patterns of PTWs
that occur with the maximum frequencies in three
emotion classes are “VBD/RB_JJ_IN” (anger),
“NN/VBD_VBN_NN” (disgust) and
“VBD_VBN/JJ_IN/NN” (fear).

Figure 1: Count of CW, PTCW and PTW for seven
emotion classes

35

Figure 2:Total Count of CW, PTCW and PTW

4.2 TF and TF-IDF Measure

The Term Frequencies (TFs) and the Inverse Doc-
ument Frequencies (IDFs) of the CWs for each of
the emotion classes were calculated. In order to
identify different ranges of the TF and TF-IDF
scores, the minimum and maximum values of the
TF and the variance of TF were calculated for each
of the emotion classes. It was observed that guilt
has the maximum scores for Max_TF and variance
whereas the emotions like anger and disgust have
the lowest scores for Max_TF as shown in Figure
3. Similarly, the minimum, maximum and variance
of the TF-IDF values were calculated for each
emotion class, separately. Again, it is found that
the guilt emotion has the highest Max_TF-IDF and
disgust emotion has the lowest Max_TF-IDF as
shown in Figure 4.

Not only for the Context Windows (CWs),
the TF and TF-IDF scores of the POS Tagged
Context Windows (PTCWs) and POS Tagged
Windows (PTWs) were also calculated with
respect to each emotion. It was observed that,
similar results were found. Variance, or second
moment about the mean, is a measure of the
variability (spread or dispersion) of data. A large
variance indicates that the data is spread out; a
small variance indicates it is clustered closely
around the mean.The variance for TF_IDF of guilt
is 0.0000456874. A few slight differences were
found in the results of PTWs while calculating
Max_TF , Min_TF and variance as shown in
Figure 3. It was observed that fear emotion has the
highest Max_TF and anger has the lowest Max_TF
whereas the variance of TF for guilt is
0.0002435522. Similarly, Figure 4 shows that fear
has the highest Max_TF_IDF and anger contains

the lowest Max_TF-IDF values and the variance of
TF-IDF of fear is 0.000922226.

Figure 3:Variance,Max_TF,Min_TF of CW, PTCW
and PTW

Figure 4: Variance,Max_TF-IDF, Min_TF-IDF of CW,
PTCW and PTW

4.3 Ranking Score of CW

It was found that some of the Context Windows
appear more than one time in the same emotion
class. Thus, they were removed and a ranking
score was calculated for each of the context win-
dows. Each of the words in a context window was
searched in the SentiWordnet lexicon and if found,
we considered either positive or negative or both
scores. The summation of the absolute scores of all
the words in a Context Window is returned. The
returned scores were sorted so that, in turn, each of
the context windows obtains a rank in its corres-
ponding emotion class.

All the ranks were calculated for each
emotion class, successively. This rank is useful in
finding the important emotional phrases from the
list of CWs. Some examples from the list of top 12
important context windows according to their rank
are “much anger when” (anger), “whom love after”
(happy), “felt sad about” (sadness) etc.

36

5 Result Analysis

The accuracies of the classifiers were obtained by
employing user defined test data and data for 10
fold cross validation. It is observed that when Euc-
lidean distance was considered, the BayesNet
Classifier gives 100% accuracy on the Test data
and gives 97.91% of accuracy on 10-fold cross
validation data. On the other hand, J48 classifier
achieves 77% accuracy on Test data and 83.54%
on 10-fold cross validation data whereas the Nai-
veBayesSimple classifier obtains 92.30% accuracy
on Test data and 27.07% accuracy on 10-fold cross
validation data. In the Naïve BayesSimple with 10-
fold cross validation, the average Recall, Precision
and F-measure values are 0.271, 0.272 and 0.264,
respectively. But, the DecisionTree classifier ob-
tains 98.30% and 98.10% accuracies on the Test
data as well as 10-fold cross validation data. The
comparative results are shown in Figure 5. Overall,
it is observed from Figure 5 that the BayesNet
classifier achieves the best results on the score data
which was prepared based on the Euclidean
distance. In contrast, the BayesNet achieved
99.30% accuracy on the Test data and 96.92% ac-
curacy on 10-fold cross validation data when the
Hamming distance was considered. Similarly, J48
and Naïve BayesSimple classifiers produce
93.05% and 85.41% accuracies on the Test data
and 87.95% and 39.50% accuracies on 10-fold
cross validation data, respectively.

From Figure 6, it is observed that the
DecisionTree classifier produces the best accuracy
on the score data that was found using Hamming
distance. When the score values are found by using
Chebyshev distance, the BayesNet classifier
obtains 100% accuracy on Test data and 97.57%
accuracy on 10-fold cross validation data.
Similarly, J48 achieves 84.82% accuracy on the
Test data and 82.75% accuracy on 10-fold cross
validation data whereas NaiveBayes and
DecisionTable achieve 80% , 29.85% and 98.62%
,96.93% accuracies on the Test data and 10-fold
cross validatation data, respectively.

It has to be mentioned based on Figure 7
that the DecisionTree classifier performs better in
comparison with all other classifiers and achieves
the best result among the rest of the classifiers on
affinity score data prepared based on the Cheby-
shev distance only.

Figure 5: Classification Results on Test data and 10-
fold cross validation using Euclidean distance (Ed)

Figure 6: Classification Results on Test data and 10-
fold cross validation using Hamming distance (Hd)

Figure 7: Classification Results on Test data and 10-
fold cross validation using Chebyshev distance (Cd)

6 Conclusions and Future Works
In this paper, vector formation was done for each
of the Context Windows; TF and TF-IDF measures
were calculated. The calculated affinity score, de-
pending on the distance values was inspired from
Newton's law of gravitation. To classify these
CWs, BayesNet, J48, NaivebayesSimple and Deci-
sionTable classifiers.

In future, we would like to incorporate
more number of lexicons to identify and classify
emotional expressions. Moreover, we are planning
to include associative learning process to identify
some important rules for classification.

37

References

Balahur A , Hermida J. 2012.Extending the EmotiNet
Knowledge Base to Improve the Automatic Detection
of Implicitly Expressed Emotions from Text. In Irec-
conference 2012,pp-1207-1214

Das, D. and Bandyopadhyay, S. 2009. Word to Sentence
Level Emotion Tagging for Bengali Blogs. In ACL-
IJCNLP 2009 (Short Paper), pp.149-152

Das, D. and Bandyopadhyay, S. 2010. Developing Ben-
gali WordNet Affect for Analyzing Emotion.
ICCPOL-2010, pp. 35-40

Ekman, P.1993. Facial expression and emotion. Ameri-
can Psychologist, vol. 48(4) 384–392.

Erik Cambria, Robert Speer, Catherine Havasi, Amir
Hussain.2010. SenticNet: A Publicly Available Se-
mantic Resource for Opinion Mining

Kobayashi, N., K. Inui, Y. Matsumoto, K. Tateishi, and
T. Fukushima. 2004. Collecting evaluative expres-
sions for opinion extraction. IJCNLP.

Mohammad S and Turney P,2010. Emotions Evoked by
Common Words and Phrases: Using Mechanical
Turk to Create an Emotion Lexicon. In Proceedings
of the NAACL-HLT 2010 Workshop on Computa-
tional Approaches to Analysis and Generation of
Emotion in Text, June 2010, LA, California

Patra B, Takamura H, Das D, Okumura M, and Ban-
dyopadhyay S 2013.Construction of Emotional Lex-
icon Using Potts Model. In IJCNLP 2013 pp-674-679

Poria S, Gelbukh A, Hussain A, Howard N, Das D,
Bandyopadhyay S. 2013. Enhanced SenticNet with
Affective Labels for Concept-Based Opinion Mining,
IEEE Intelligent Systems, vol. 28, no. 2, pp. 31-38,

Scherer, K. R., & Wallbott, H.G. (1994). Evidence for
universality and cultural variation of differential
emotion response patterning. Journal of Personality
and Social Psychology, 66, 310-328.

Scherer, K. R. (1997). Profiles of emotion-antecedent
appraisal: testing theoretical predictions across cul-
tures. Cognition and Emotion, 11, 113-150.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani.2008. SENTIWORDNET 3.0: An Enhanced Lex-
ical Resource for Sentiment Analysis and Opinion
Mining

Strapparava, C. and Valitutti, A. 2004. Wordnet-affect:
an affective extension of wordnet. In 4th LREC, pp.
1083-1086

Takamura Hiroya, Takashi Inui, and Manabu Okumura.
2005. Extracting semantic orientations of words us-

ing spin model. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Lin-
guistics(ACL’05), pages 133–140.

Wiebe, J., Wilson, T. and Cardie, C. 2005. Annotating
expressions of opinions and emotions in language.
LRE, vol. 39(2-3), pp. 165-210.

http://wordnet.princeton.edu

http://www.cs.waikato.ac.nz/ml/weka/

http://emotion-
research.net/toolbox/toolboxdatabase.2006-10-
13.2581092615

http://www.affective-sciences.org/researchmaterial

38

Author Index

Aizawa, Akiko, 2

Boudin, Florian, 19

Chen, Dong, 25
Chu, Wanghuan, 25

Das, Dipankar, 32

Erbs, Nicolai, 10

Gurevych, Iryna, 10

Kan, Min-Yen, 1

Nakov, Preslav, 18
Norman, Christopher, 2

Paul, Apurba, 32

Santos, Pedro Bispo, 10

Tuarob, Suppawong, 25
Tucker, Conrad, 25

Zesch, Torsten, 10

39

	Program
	Keywords, phrases, clauses and sentences: topicality, indicativeness and informativeness at scales
	Technical Term Extraction Using Measures of Neology
	Counting What Counts: Decompounding for Keyphrase Extraction
	The Web as an Implicit Training Set: Application to Noun Compounds Syntax and Semantics
	Reducing Over-generation Errors for Automatic Keyphrase Extraction using Integer Linear Programming
	TwittDict: Extracting Social Oriented Keyphrase Semantics from Twitter
	Identification and Classification of Emotional Key Phrases from Psychological Texts

