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Introduction

The idea of statistical analysis of language is an old idea, but modern NLP started with a focus
on methods based on pure symbolic analysis of language. Statistical methods were introduced to
NLP in its current form in the 1980s/1990s, allowing “soft” reasoning about language, and made
NLP more data-driven. Over the last decade another step has been taken in this direction – it was
proposed to represent and analyze language in vector spaces. Now-a-days, context, symbolic and
high-dimensional representations are often augmented with relatively low-dimensional vector-space
representations. Vector space representations have been successfully used in different areas of NLP
such as syntax and semantics.

This workshop is an opportunity to explore state of the art in the use of vector spaces in order to
computationally analyze natural language. The focus of the workshop is on the use of vector spaces to
learn latent representations.

The goal of the workshop is to bring together researchers from areas such as deep learning and
representation learning, spectral learning, distributional compositional semantics and others, in order to
see their relevance to each other, and learn about the state of the art in these areas.

This is the first time that this workshop is held. There were other similar workshops in the past, such as
the Workshop on Continuous Vector Space Models and their Compositionality.

The program this year includes 27 papers that cover different areas under the realm of vector space
modeling in NLP, all of which are presented in two poster sessions. There are also 3 invited speakers,
Marco Baroni, Chris Manning and Xavier Carreras, with each of their talks covering a different aspect
of vector space modeling in NLP.

We would like to thank the Program Committee members who reviewed the papers this year. We would
also like to thank the workshop participants. Last, a word of thanks also goes to our two sponsors:
Google Deepmind and Textkernel.

Phil Blunsom, Shay Cohen, Paramveer Dhillon and Percy Liang

Co-Organizers
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Abstract

The lexical substitution task requires identify-
ing meaning-preserving substitutes for a tar-
get word instance in a given sentential context.
Since its introduction in SemEval-2007, vari-
ous models addressed this challenge, mostly
in an unsupervised setting. In this work we
propose a simple model for lexical substitu-
tion, which is based on the popular skip-gram
word embedding model. The novelty of our
approach is in leveraging explicitly the context
embeddings generated within the skip-gram
model, which were so far considered only as
an internal component of the learning process.
Our model is efficient, very simple to imple-
ment, and at the same time achieves state-of-
the-art results on lexical substitution tasks in
an unsupervised setting.

1 Introduction

Lexical substitution tasks have become very popu-
lar for evaluating context-sensitive lexical inference
models since the introduction of the original task in
SemEval-2007 (McCarthy and Navigli, 2007) and
additional later variants (Biemann, 2013; Kremer et
al., 2014). In these tasks, systems are required to
predict substitutes for a target word instance, which
preserve its meaning in a given sentential context.
Recent models addressed this challenge mostly in
an unsupervised setting. They typically generated
a word instance representation, which is biased to-
wards its given context, and then identified sub-
stitute words based on their similarity to this bi-
ased representation. Various types of models were

proposed, from sparse syntax-based vector models
(Thater et al., 2011), to probabilistic graphical mod-
els (Moon and Erk, 2013) and LDA topic models
(Ó Séaghdha and Korhonen, 2014).

Word embeddings are low-dimensional vector
representations of word types that recently gained
much traction in various semantic tasks. Probably
the most popular word embedding model today is
skip-gram, introduced in Mikolov et al. (2013) and
available as part of the word2vec toolkit.1 word2vec
learns for every word type two distinct representa-
tions, one as a target and another as a context, both
embedded in the same space. However, the con-
text representations are considered internal to the
model and are discarded after training. The output
word embeddings represent context-insensitive tar-
get word types.

Few recent models extended word embeddings by
learning a distinct representation for each sense of a
target word type, as induced by clustering the word’s
contexts (Huang et al., 2012; Neelakantan et al.,
2014). They then identify the relevant sense(s) for
a given word instance, in order to measure context-
sensitive similarities. Although these models may be
considered for lexical substitution, they have so far
been applied only to ‘softer’ word similarity tasks
which include topical relations.

In this work we propose a simple approach for
directly utilizing the skip-gram model for context-
sensitive lexical substitution. Instead of discarding
the learned context embeddings, we use them in con-
junction with the target word embeddings to model
target word instances. A suitable substitute for a

1https://code.google.com/p/word2vec/
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target word instance is then identified via its com-
bined similarity to the embeddings of both the target
and its given context. 2 Our model is efficient, can
be implemented literally in a few lines of code, and
at the same time achieves state-of-the-art results on
two lexical substitution datasets in an unsupervised
setting.

2 Skip-gram Word Embeddings

In this section we provide technical background
on skip-gram embeddings, which are used in our
model. As mentioned, skip-gram embeds both tar-
get words and contexts in the same low-dimensional
space. In this space, the vector representations of
a target and context are pushed closer together the
more frequently they co-occur in a learning cor-
pus. Thus, the Cosine distance between them can
be viewed as a first-order target-to-context similar-
ity measure, indicative of their syntagmatic compat-
ibility. Indirectly, this also results in assigning sim-
ilar vector representations to target words that share
similar contexts, thereby suggesting the Cosine dis-
tance between word embeddings as a second-order
target-to-target distributional similarity measure.

word2vecf 3 (Levy and Goldberg, 2014a) is
an extension of the skip-gram implementation in
word2vec, which supports arbitrary types of con-
texts rather than only word window contexts. Levy
and Goldberg (2014a) used word2vecf to produce
syntax-based word embeddings, where context ele-
ments are the syntactic contexts of the target words.
Specifically, for a target word t with modifiers
m1,...,mk and head h, they considered the con-
text elements (m1, r1),...,(mk, rk),(h, r−1

h ), where
r is the type of the (‘collapsed’) dependency rela-
tion between the head and the modifier (e.g. dobj,
prep of ) and r−1 denotes an inverse relation. Sim-
ilarly to traditional syntax-based vector space mod-
els (Padó and Lapata, 2007), they show that these
embeddings tend to capture functional word simi-
larity (as in manage ∼ supervise) rather than topi-

2While in this work we focus on skip-gram embeddings, we
note that there are also other potentially relevant word embed-
ding methods that can generate context representations in addi-
tion to the ‘standard’ target word representations. See, for ex-
ample, GloVe (Pennington et al., 2014) and SVD-based meth-
ods (Levy et al., 2015).

3https://bitbucket.org/yoavgo/word2vecf

Figure 1: A 2-dimensional visualization of the gerunds
singing, dancing, driving, and healing with their top syn-
tactic contexts in an embedded space. singing and danc-
ing share many similar contexts (e.g. partmod song and
dobj jive) and therefore end up with very similar vector
representations.

cal similarity or relatedness (as in manage ∼ man-
ager). Figure 1 illustrates a syntax-based embed-
ding space using t-SNE (Van der Maaten and Hin-
ton, 2008), which visualizes the similarities in the
original higher-dimensional space.

3 Lexical Substitution Model

Our model is based on the natural assumption that
a good lexical substitute for a target word instance,
under a given context, needs to be both (1) seman-
tically similar to the target word and (2) compati-
ble with the given context. Hence, we wish to pro-
pose a context-sensitive substitutability measure for
potential substitutes, which reflects a combination
of the above. We estimate the semantic similarity
between a substitute word and the target word us-
ing a second-order target-to-target similarity mea-
sure, and the compatibility of a substitute word with
the given context using a first-order target-to-context
similarity measure. Conveniently, as described in
Section 2, both target-to-target and target-to-context
similarities can be estimated by the vector Cosine
distance between the respective skip-gram embed-
dings, i.e. using both target word embeddings and
the ‘internal’ context embeddings. Specifically, we
choose syntax-based skip-gram embeddings (Levy

2



Figure 2: Identifying substitutes for the target word ac-
quire under the syntactic context dobj company, visual-
ized in a 2-dimensional embedded space. Even though
learn is the closest word to acquire, the word buy is
both reasonably close to acquire as well as to the con-
text dobj company and is therefore considered a better
substitute.

and Goldberg, 2014a) since lexical substitutes need
to exhibit strict functional similarity to the target
word. Figure 2 illustrates our approach.

We next describe the details of our model. Our
model introduces a context-sensitive substitutability
measure (or metric) for estimating the suitability of
a lexical substitute for a target word in a given sen-
tential context. This measure weighs the semantic
similarity score between the substitute and the target
word type, together with one or more context com-
patibility scores, estimating the compatibility of the
substitute with each of the target’s context elements
in the given sentential context.

To keep our method as simple as possible we do
not employ any tunable weighting parameters to op-
timize our proposed measure. Instead, we choose to
focus only on evaluating the four measure variants
described in Table 1. These measures reflect two
basic metric design choices. The first choice is be-
tween using an arithmetic mean (as in Add and Bal-
Add) and a geometrical mean (as in Mult and Bal-
Mult) to combine the score elements together. These
are two common methods, which were recently in-
vestigated in the context of analogy detection tasks
(Levy and Goldberg, 2014b). The multiplicative
combinations, Mult and BalMult, reflect a stricter

Add
cos(s, t) +

∑
c∈C cos(s, c)

|C|+1

BalAdd
|C|·cos(s, t) +

∑
c∈C cos(s, c)

2 · |C|

Mult |C|+1
√
pcos(s, t) ·∏c∈C pcos(s, c)

BalMult 2·|C|
√
pcos(s, t)|C| ·∏c∈C pcos(s, c)

Table 1: The different substitutability measures consid-
ered in our model for a lexical substitute s of the tar-
get word t in sentential context C. C is represented
by the set of the target word’s context elements in the
context sentence, where c denotes an individual context
element. cos is the vector Cosine function applied to
the vector representations of the words or contexts, and
pcos(v, v′) = cos(v,v′)+1

2 is used to avoid negative val-
ues in Mult and BalMult.

logical ‘AND-like’ approach requiring high similar-
ities in all elements of the product to get a high score.
In particular, they reward substitutes that show sub-
stantial similarity to both the target word and each of
the context elements. In contrast, the additive com-
binations, Add and BalAdd, can yield a high score
even if one of the elements in the sum is zero.

The second design choice concerns the relative
contribution of the context compatibility component
with respect to the word similarity component. In
Add and Mult, the relative weight of context com-
patibility with respect to word similarity becomes
greater the more there are context elements for the
target word in the given context sentence. In con-
trast, the balanced combinations, BalAdd and Bal-
Mult, keep an equal balance between these two fac-
tors, under the hypothesis that the overall contribu-
tion of the context compatibility should be fixed re-
gardless to the number of context elements.

As a motivating example, Table 2 shows how our
model uses a single informative context element to
generate context-sensitive lexical substitutions for
polysemous target words.

4 Evaluation

In the original lexical substitution task (McCarthy
and Navigli, 2007) all of the participating sys-
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t = jaguar t = cool t = employ

c = poss−1 engine c = poss−1 paws c = amod−1 outfit c = amod−1 weather c = dobj technique c = dobj specialist

daimler cheetah preppy wintery employs employing
lancia tiger old-skool drizzly employing employs

maserati puma kick-ass spring-like employed recruit
bmw leopard sexy unseasonably adopt employed
rover jaguars chilled-out warm utilise appoint

daihatsu cat snazzy balmy using redeploy
lamborghini hyena funky hot utilize remunerate

volvo wildcat super-cool anticyclonic re-learn recruited
gt6 panda half-decent cooler adopting recruiting

Table 2: The top lexical substitutes for example target words t under different syntactic contexts c, using Mult.

tems predicted substitutes by first using manually-
constructed thesauri to generate substitute candi-
dates and then developing candidate ranking models
to choose the most appropriate ones. Later works
focused mostly on the candidate ranking part, where
candidates are provided as part of the datasets. In
this section we present the evaluation of our model
both on the substitute candidates ranking task, and
on the original substitutes prediction task (no candi-
dates provided), using two different lexical substitu-
tion datasets.

4.1 Lexical substitutions datasets

The dataset introduced in the lexical substitution
task of SemEval-2007 (McCarthy and Navigli,
2007), denoted here LS-SE, is the most widely used
for the evaluation of lexical substitution. It consists
of 10 sentences extracted from a web corpus for each
of 201 target words (nouns, verbs, adjectives and ad-
verbs), or altogether 2,010 word instances in senten-
tial context, split into 300 trial sentences and 1,710
test sentences. The gold standard provided with this
dataset is a weighted lemmatized substitute list for
each word instance, based on manual annotations.

A more recent large-scale ‘all-words’ dataset,
called ‘Concepts in Context’, was introduced in Kre-
mer et al. (2014) and denoted here LS-CIC. This
dataset provides the same kind of data as LS-SE,
but instead of choosing specific target words that
tend to be ambiguous as done in LS-SE, the target
words here are all the content words in text docu-
ments extracted from news and fiction corpora, and
are therefore more naturally distributed. LS-CIC is
also much larger than LS-SE with over 15K target
word instances.

4.2 Compared methods

We used ukWaC (Ferraresi et al., 2008), a two
billion word web corpus, as our learning corpus.
We parsed both ukWaC and the sentences in the
lexical substitution datasets with Stanford’s Neural
Network Dependency Parser (Chen and Manning,
2014).4 Following Levy and Goldberg (2014a), we
learned syntax-based skip-gram word and context
embeddings using word2vecf (with 600 dimensions
and 15 negative sampling), converting all tokens to
lowercase, discarding words and syntactic contexts
that appear less than 100 times in the corpus and
‘collapsing’ dependencies that include prepositions.
This resulted in a vocabulary of about 200K word
embeddings and 1M context embeddings. 5 Fi-
nally, for every instance in the lexical substitution
datasets, we extracted the syntactic contexts of the
target word and used each of our measures, Add,
BalAdd, Mult and BalMult, to compute the substi-
tute scores. In addition to our measures, we evalu-
ated as a baseline a context-insensitive method, de-
noted Base, assigning scores according to the Cosine
similarity between the target and the substitute word
embeddings, ignoring the context. We also compare
our results to the state-of-the-art.

4.3 Candidate ranking task

Most works that used the LS-SE dataset after
SemEval-2007, as well as the one on LS-CIC, fo-
cused on ranking substitute candidates. They ob-
tained the set of substitute candidates for a target
type by pooling the annotated gold-standard substi-

4http://nlp.stanford.edu/software/nndep.
shtml

5Our embeddings are available at: www.cs.biu.ac.il/
nlp/resources/downloads/lexsub_embeddings/
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Method Resources LS-SE LS-CIC
Mult

ukWaC

53.6 48.1
BalMult 51.5 48.3
Add 52.9 48.3
BalAdd 50.3 48.0
Base 44.9 46.2
Random n/a 30.0 33.8
Kremer, Gigaword 52.5 47.8
2014†

Séaghdha, Wikipedia,BNC 49.5 n/a
2014
Moon, ukWaC,BNC,WN 47.1 n/a
2013 Gigaword,WN 46.7 n/a
Szarvas, LLC,WN 55.0* n/a
2013

Table 3: GAP scores for compared methods on the can-
didate ranking task. Resources used by these meth-
ods: ukWaC, Wikipedia, Gigaword (Parker et al., 2011),
WN = WordNet (Fellbaum, 2010), BNC = British Na-
tional Corpus (Aston and Burnard, 1998), and LLC
(Richter et al., 2006).
† A re-implementation of the model in Thater, 2011.
* Obtained by a supervised method.

tutes from all of its instances.6 Furthermore, all of
these works discarded multi-word expression substi-
tutes from the gold standards, and omitted instances
who thus remained with no gold substitutes.7 The
quality of the rankings with respect to the gold stan-
dard was measured using Generalized Average Pre-
cision (GAP) (Kishida, 2005). We follow the same
evaluation settings for this task, using the substitute
scores of our compared methods to rank the candi-
dates.

Our results, compared with the most recent state-
of-the-art, are illustrated in Table 3. First, we
see that all of our methods yield significant perfor-
mance gains over the context-insensitive Base base-
line. Similarly to the behavior reported in (Kremer
et al., 2014), this gain is much more substantial in
LS-SE than in LS-CIC, which seems to be due to
the target words in LS-SE being more ambiguous
by construction. Next, we see that the non-balanced
methods, Mult and Add, perform a little better on
the LS-SE dataset. This suggests that giving more

6A target type is defined as the pair (word lemma, pos),
where pos ∈ {noun, verb, adjective, adverb}.

7In cases where this procedure was not clearly described in
the paper, we verified it with the authors.

weight to context compatibility at the expense of
word similarity is beneficial when ranking substitute
candidates of ambiguous words. This can be justi-
fied considering that all the substitute candidates al-
ready bear some semantic similarity with the target
by way of construction. Finally, the multiplicative
combinations seem to perform slightly better than
the additive ones on LS-SE.

In comparison to previous works our results are
slightly better than state-of-the-art, with the excep-
tion of Szarvas et al. (2013). However, we note that
Szarvas et al. (2013) is a supervised model, evalu-
ated on the LS-SE gold standard with 10-fold cross
validation and therefore is not directly comparable
with unsupervised models, such as our own.

4.4 Substitute prediction task

In the original lexical substitution task of SemEval-
2007, the organizers evaluated participant systems
on their ability to predict the substitutes in the gold
standard of the LS-SE test-set in a few subtasks
(1) best and best-mode - evaluate the quality of the
best predictions (2) oot and oot-mode (out of ten) -
evaluate the coverage of the gold substitute list by
the top ten best predictions.8 We performed this
evaluation on both the LS-SE and LS-CIC datasets,
using our measures to predict the most suitable sub-
stitutes. We note that this task is a lot more challeng-
ing than the candidate ranking task, as it requires to
identify the best substitutes out of the entire word
vocabulary. To the best of our knowledge, Biemann
and Riedl (2013), denoted here BR-2013, is the only
prior work that reported such results on the LS-SE
dataset, learning only from corpus data like we do.
They used a syntax-based distributional thesaurus
to generate a list of substitute candidates and then
ranked the candidates according to their compatibil-
ity with the given context. As their learning corpus,
they merged Gigaword (Parker et al., 2011) and LLC
(Richter et al., 2006), which is similar in size to ours.
Both Biemann and Riedl (2013) and our model do
not attempt to identify and therefore always fail to
predict the multi-word expression substitutes in the
gold standard. There is no previously reported result

8For brevity we do not describe the details of these subtasks.
We report only recall scores as in this task recall=precision for
all methods that predict substitutes to all of the instances in the
dataset as we did.
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Method best best-mode oot oot-mode
LS-SE test-set

Mult 6.64 10.89 23.16 33.58
BalMult 8.09 13.41 27.65 39.19
Add 7.37 12.11 25.52 36.59
BalAdd 8.14 13.41 27.42 39.11
Base 7.81 13.41 23.38 33.98
BR-2013 n/a n/a 27.48 37.19

LS-CIC
Mult 4.08 8.36 15.07 26.02
BalMult 5.51 11.72 19.59 33.32
Add 4.82 9.97 17.11 29.48
BalAdd 5.62 11.89 20.03 33.75
Base 5.17 10.93 18.01 30.29

Table 4: best and oot subtasks scores for all compared
methods on the substitute prediction task.

for this task on LS-CIC.
The results are shown in Table 4. In contrast

to the candidate ranking task, we see that in the
prediction task the balanced methods perform sig-
nificantly better than the non-balanced ones. This
suggests that in the absence of a substitute candi-
date ‘oracle’ it is important for the models to bal-
ance both word similarity and context compatibility.
The balanced methods, BalAdd and BalMult, per-
form similarly, and show significant advantage over
the context-insensitive Base baseline in the oot sub-
tasks. On the best sub-tasks they show very little
improvement. Finally, our results are on par with
the results reported by Biemann and Riedl (2013).

5 Conclusions

In this paper we showed how the skip-gram model
can be utilized directly to perform context-sensitive
lexical substitution. This is achieved by exploit-
ing its internally-learned context embeddings in con-
junction with the ‘standard’ target word embed-
dings, to weigh context compatibility together with
word similarity. Despite its simplicity, our model
achieves state-of-the-art results on lexical substitu-
tion tasks using two different datasets.

Word embeddings in general, and skip-gram em-
beddings in particular, have recently become very
popular in many NLP tasks since they achieve state-
of-the-art performance, and at the same time are
easy to use and efficient both in learning and in-

ference time. Our work shows how these attractive
properties can be easily carried over when address-
ing context-sensitive lexical substitution.

In future work, we hypothesize that our simple
model may be further optimized. One reason to
believe so is that although our balanced weighting
methods showed robust performance across all the
tasks in our evaluations, we did see that other strate-
gies, which put more weight on context compatibil-
ity, achieve the best results in a substitute candidate
ranking setting. This suggests that applications may
benefit from adapting our model to the task at hand.
For example, a possible direction is using a tunable
weighting parameter for interpolating between the
components of our substitutability measure.

Finally, while focusing on skip-gram embeddings
in this work, it would be interesting to explore how
well our approach generalizes to other types of em-
beddings that can represent both target words and
contexts (Pennington et al., 2014; Levy et al., 2015).
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Abstract

Text normalization techniques that use
rule-based normalization or string similar-
ity based on static dictionaries are typ-
ically unable to capture domain-specific
abbreviations (custy, cx → customer) and
shorthands (5ever, 7ever → forever) used
in informal texts. In this work, we ex-
ploit the property that noisy and canoni-
cal forms of a particular word share simi-
lar context in a large noisy text collection
(millions or billions of social media feeds
from Twitter, Facebook, etc.). We learn
distributed representations of words to
capture the notion of contextual similarity
and subsequently learn normalization lex-
icons from these representations in a com-
pletely unsupervised manner. We experi-
ment with linear and non-linear distributed
representations obtained from log-linear
models and neural networks, respectively.
We apply our framework for normalizing
customer care notes and Twitter. We also
extend our approach to learn phrase nor-
malization lexicons (g2g → got to go) by
training distributed representations over
compound words. Our approach outper-
forms Microsoft Word, Aspell and a man-
ually compiled urban dictionary from the
Web and achieves state-of-the-art results
on a publicly available Twitter dataset.

1 Introduction

Text normalization is a prerequisite for a variety of
tasks involving speech and language. Most natu-
ral language processing (NLP) tasks require a tight
and compact vocabulary to reduce the model com-
plexity in terms of feature size. As a consequence,
applications such as syntactic tagging and parsing,
semantic tagging, named entity extraction, infor-
mation extraction, machine translation, language

∗The author is currently with Apple, Inc., and can be
contacted at vrangarajansridh@apple.com.

models for speech recognition, etc., are trained
on clean data that is normalized and restricted to
some user defined vocabulary. Conventionally,
most NLP researchers perform such normalization
through rule-based mapping that can get unwield-
ily and cumbersome for extremely noisy texts as
in SMS, chat or social media.

Unnormalized text, as witnessed in social me-
dia forums such as Facebook, Twitter and message
boards, or short messaging service (SMS), have
a variety of issues with spelling that include re-
peating letters, eliminating vowels, using phonetic
spellings, substituting letters (typically syllables)
with numbers, using shorthands and user created
abbreviations for phrases. The remarkable prop-
erty of such texts is that new variants of canonical
words and phrases evolve constantly (e.g., jghome
→ just got home). Hence, it is important to de-
sign a framework that can learn the mapping be-
tween unnormalized and canonical forms of such
words and phrases in an unsupervised and exten-
sible manner.

Conventional edit distance (Levenshtein, 1966)
based approaches are not accurate for predicting
spelling correction for large number of edits in
abbreviations and shorthands found in informal
texts. In this work, we exploit the property that
noisy and canonical forms of a particular word
share similar context in a large noisy text collec-
tion (millions or billions of social media feeds
from Twitter, Facebook, etc.). We represent the
words in a vector space using distributed repre-
sentations to capture the notion contextual similar-
ity and subsequently learn normalization lexicons
from these representations. The distributed repre-
sentations are induced either through neural net-
works (non-linear embeddings) or log-linear mod-
els (linear embeddings). The proposed approach
uses the property of contextual similarity between
canonical and noisy versions of a particular word
to cluster them in RD, where D is the dimen-
sion of the distributed representation. We also
extend our framework to learn one-to-many map-
pings (e.g., ily → i love you, nbd → no big deal
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by learning distributed representations over words
and phrases.

We demonstrate the fidelity of our approach
on customer care domain and Twitter. We also
compare our approach with Microsoft Word, As-
pell, custom dictionaries compiled from the Web
as well as state-of-the-art techniques for unsuper-
vised normalization.

2 Related Work

Text normalization has been traditionally per-
formed in a task specific manner through string
edit operations. While a large proportion of NLP
researchers still perform this exercise manually by
writing regular expression patterns, several auto-
matic procedures have been proposed. A sim-
ple way to perform this string edit operation is
by using a noisy channel model (Brill and Moore,
2000). However, this requires supervised training
data in the form of the canonical and erroneous
strings. Since words are spoken using phonet-
ics, it is instructive to look at the problem from
the point of pronunciation changes. For exam-
ple, (Toutanova and Moore, 2002) extended the
noisy channel framework to include word pronun-
ciation information. The aspell tool for spelling
correction also works on a phonetic algorithm for
string normalization (Philips, 1990).

(Cook and Stevenson, 2009) introduced an un-
supervised noisy channel model that considered
several word formation processes in a generative
model. Another popular way to normalize or even
punctuate text is by using phrase-based machine
translation. (Aw et al., 2009) used a character
level phrase-based machine translation approach
to translate SMS text into clean English text. How-
ever, such an approach still requires supervised
training data. Furthermore, noisy channel mod-
els typically do not use wider context in resolving
the normalization problem. Clearly, many of the
unnormalized forms appear in the same context as
the canonical form and exploiting such informa-
tion is critical.

Social media text normalization using contex-
tual graph random walks was recently proposed
in (Hassan and Menezes, 2013). They use a lexi-
con based approach where the normalization lex-
icon is obtained in an unsupervised manner by
performing random walks on contextual similar-
ity graphs (bipartite) constructed from n-gram se-
quences. A similar approach using distributional

similarity was also proposed in (Han et al., 2012a)
where a pairwise similarity deems two words with
identical context to be normalization equivalences.
Due to the pairwise computation, it does not result
in a globally optimized equivalence. Our frame-
work is most similar to (Hassan and Menezes,
2013) as we also use the notion of distributional
similarity between strings at a corpus level to iden-
tify normalization equivalences in an unsupervised
manner. In contrast, we use distributed representa-
tion of words to capture contextual similarity and
learn unsupervised lexicons using both lexical and
vector space feature functions. The proposed ap-
proach is relatively simple, scalable and easily re-
producible.

3 Distributed Representation of Words

Conventional NLP applications typically use one-
hot encoding where each word in the vocabulary
is represented by a bit vector. Such a represen-
tation exacerbates the data sparsity problem and
does not exploit any semantic or syntactic rela-
tionship that may be present amongst subset of
words. Distributed representation of words (also
called word embeddings or continuous space rep-
resentation of words) has become a popular way
for capturing distributional similarity (lexical, se-
mantic or even syntactic) between words. The ba-
sic idea is to represent each word wi ∈ V with a
real-valued vector of some fixed dimensionD, i.e.,
wi ∈ RD ∀ i = 1, · · · , V . The idea of repre-
senting words in vector space was originally pro-
posed in (Rumelhart et al., 1986; Elman, 1991).
However, improved training techniques and tools
in the recent past have made it possible to obtain
such representations for large vocabularies.

Distributed representations can be induced for a
given vocabulary V in several ways. While they
are typically induced in the context of a deep neu-
ral network framework for a given task (Bengio
et al., 2003; Collobert and Weston, 2008; Bengio
et al., 2009; Turian et al., 2010; Mikolov et al.,
2010), recent work in (Mikolov et al., 2013) has
also shown that they can also be induced by using
simple log-linear models. Since in many practical
NLP applications, the distributed representations
are learnt along with the task, the word vectors
will have some notion of task dependent distribu-
tional similarity. It is this exact notion of contex-
tual and distributional similarity that we exploit in
this work to learn normalization lexicons in an un-
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Figure 1: Illustration of obtaining distributed representations for text normalization using two different
approaches

supervised manner.
Figure 1 shows two different architectures for

inducing distributed representations. On the left
side, the architecture for the continuous bag-of-
words model (Mikolov et al., 2013) is shown while
the neural network learning architecture for induc-
ing distributed representations in language mod-
els (Collobert and Weston, 2008) is shown on the
right. Both these frameworks essentially perform
a similar function in that the word representations
are created based on contextual similarity. Fig-
ure 1 also shows an example of the contextual sim-
ilarity that can be exploited such that canonical
and noisy versions of a particular word have sim-
ilar vector representation (in terms of some simi-
larity metric). It is shown that the words {forever,
4ever, 5ever, forevr} share similar context. It is
also interesting to note that the word 5ever that is
used to mean longer than 4ever can be identified
to mean forever that edit distance matching is typ-
ically not able to capture.

Language
en

Corpus Vocabulary #Sentences
Customer care 7846840 870491324
Twitter 8371078 178770137

Table 1: Statistics of the data used to learn dis-
tributed representations

4 Data

We use two sources of data in our work. One is
internal anonymized customer care notes and the
other is Twitter. The customer care data refers to
notes made by agents at mobility call centers when

customers make a call. Each call typically results
in one record and the notes typically consist of a
brief summary of the call from the representative
side. The data we use does not contain any meta-
data beyond the text description. We used all the
data between Dec 2012 and Jan 2014. The text
data is extremely noisy as the agents are making
these notes either during their interaction or imme-
diately afterward. Hence, the data contains several
spelling errors and abbreviations that need to be
corrected before performing any large scale data
analytics.

We also acquired a 10% random sample of
Twitter firehose data across all languages. As a
first step, we filtered the tweets by language code.
Since the language code is a property set in the
user profile, the language code does not guarantee
that all tweets are in the same language. We used
a simple frequency threshold for language iden-
tification based on language specific word lists.
Subsequently, we performed some basic clean-up
such as replacing usernames, hashtags, web ad-
dresses and numerals with generic symbols such
as user , hashtags , url and number . Finally,
we removed all punctuations from the strings and
lowercased the text. In this work, we perform our
experiments on English.

5 Training Distributed Representations

We used two approaches (see Figure 1) for learn-
ing both linear and non-linear distributed represen-
tations of words. For the non-linear neural net-
work approach, we used an architecture identical
to that in (Collobert and Weston, 2008), i.e., the
network consisted of a lookup table, hidden layer
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with 100 nodes and a linear layer with one output.
However, we used a right and left context of 5 (or
7) words and corrupted the centre word instead of
the last word to learn the distributed representa-
tions. Given a text window s = {w}wlen1 , wlen1

is the window length, and a set of parameters as-
sociated with the network θ, the network outputs
a score fθ(x). The approach then minimizes the
ranking criterion with respect to θ such that:

θ 7→
∑
s∈X

∑
w∈V

max{0, 1− fθ(s) + fθ(sc)} (1)

where X is the set of all windows of length wlen
in the training data, V is the vocabulary and sc
denotes the corrupted version of s with the mid-
dle word replaced by a random word w in V .
We used a frequency threshold of 10 occurrences
for the centre word, i.e., all words below this
frequency was not considered in training. We
performed stochastic gradient minimization over
1000 epochs on each dataset and used the Torch
toolkit (Collobert et al., 2011) to train the repre-
sentation.

We also used a log-linear model for inducing the
distributed representations using the continuous-
bag-of-words architecture proposed in (Mikolov
et al., 2013). The continuous-bag-of-words
model is similar to the neural network language
model (Bengio et al., 2003) with the non-linear
layer replaced by a sum pooling layer, i.e., the
model uses a bag of surrounding words to pre-
dict the centre word. Since the implementation of
this architecture was readily available through the
word2vec tool2, we used it for inducing the repre-
sentations. We used hierarchical sampling for re-
ducing the vocabulary during training and used a
minimum count of 10 occurrences for each word.

The framework presented in this paper can also
work with word vectors obtained using other tech-
niques such as latent semantic indexing, convolu-
tional neural networks, recurrent neural networks,
etc.

6 Learning Normalization Lexicons

Once we obtain the set of word embeddings
wi 7→ di, ∀i ∈ V ;di ∈ RD, our frame-
work requires a list of canonical words as in-
put. For English, we used a wordlist from Project

1wlen in our work is an odd number, e.g., wlen = 11
implies a left and right context of 5 words

2https://code.google.com/p/word2vec/

Gutenberg (http://www.gutenberg.org/
ebooks/3201) consisting of 113809 words.
Given a canonical word s1, we find the K-nearest
neighbors in the vector space and objectively mea-
sure the similarity between s1 and the neighbors,
i.e., from each pair of strings s1 and s2 with cor-
responding vectors u and v, we obtain lexical and
vector space features described below.

6.1 Similarity Cost
The cosine distance between two D-dimensional
vectors u and v is defined as,

cosine similarity =

D∑
i=1

ui × vi√
D∑
i=1

(ui)2 ×
D∑
i=1

(vi)2

(2)

The lexical similarity cost is computed similar to
that presented in (Hassan and Menezes, 2013).

lexical similarity(s1, s2) =
LCSR(s1, s2)
ED(s1, s2)

(3)

LCSR(s1, s2) =
LCS(s1, s2)

Max Length(s1, s2)
(4)

where LCSR refers to the Longest Common Sub-
sequence Ratio (Melamed, 1995), LCS refers to
Longest Common Subsequence and ED refers to
the edit distance between the two strings. For
English, the edit distance computation was mod-
ified to find the distance between the consonant
skeleton of the two strings s1 and s2, i.e., all the
vowels were removed. Repetition in the strings
was reduced to a single letter and numbers in the
words were substituted by their equivalent letters.
The general algorithm for learning a normalization
lexicon through our approach is presented in Al-
gorithm 1. While it is possible to learn optimal
weights for several feature functions through min-
imum error rate training (Och, 2003), we use uni-
form weights in the absence of a significant held-
out set for optimization.

6.2 Representation of Lexicons using FSTs
We compile the lexicon L obtained using Algo-
rithm 1 into a finite-state transducer with the arc
score equal to the negative logarithm of the sim-
ilarity cost (for finding the path with least cost).
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Figure 2: Illustration of the normalization technique using finite state transducers. The unknown words
in the input are preserved in the output.

Algorithm 1 Unsupervised Lexicon Learning

input {di}|V |i=1: distributed representation of
words for vocabulary |V |
input K: number of nearest neighbors
input COST: lexical similarity metric
input W: list of canonical words
for each w ∈ W do

for each i ∈ |V | do
if wi 7→ di /∈ W then

Compute cosine distance between di
and d(w)
Store top K neighbors in map L(w)

for each w ∈ W do
for each o ∈ L(w) do

Compute COST(w,o)
Push w 7→ {o,COST(w,o)} into D

Invert the map D to obtain lexicon L

The normalization lexicon is converted into a sin-
gle state finite-state transducer (FST) with the in-
put and output labels being the noisy and canoni-
cal word, respectively. In all our experiments, we
used the number of nearest neighbors K = 25.

Given a sentence that needs to be normalized,
we form a linear FSM s from the text string and
compose it with the FST lexicon N. The result-
ing FSM is then composed with a language model
(LM) L, if available, and the best path is found
to obtain snorm. We used a trigram language
model that was trained on a variety of texts (En-
glish Gigaword, Web, Opensubtitles, etc.). We
used Kneser-Ney discounting and the LM was not
optimized in any way.

snorm = bestpath(s ◦N ◦ L) (5)

Figure 2 illustrates this procedure. The unknown
words in the input are preserved in the output (the

language model is trained with an open vocabu-
lary).

6.3 Evaluation

First, we evaluated our approach on customer care
data. A set of 300 sentences from the customer
care data was randomly selected and the refer-
ence sentences were created manually by a pro-
fessional transcriber. A total of 2387 tokens were
normalized by the transcribers. The distributed
representation was trained on the remaining cus-
tomer care data through neural network learning
approach (Collobert and Weston, 2008) over a
window of 11 words with a vector dimension of
100. We compare our approach with Microsoft
Word and Aspell, where the best option was man-
ually chosen (oracle) from the suggestion list. If
no option was appropriate, the word was left in
it’s original form. We measure the fidelity of nor-
malization using precision and recall. The results
are presented in Table 2.

Precision Recall F1
Tokens Model (%) (%) (%)

Microsoft Word (Oracle) 53.2 55.0 54.0
All Aspell (Oracle) 33.0 41.2 36.7

Our approach without LM 59.8 58.2 59.0
Our approach with LM 64.2 70.4 67.1
Microsoft Word (Oracle) 62.3 49.7 55.3

Edit Aspell (Oracle) 41.9 36.4 38.9
distance Our approach without LM 44.4 58.2 50.4
> 2 Our approach with LM 50.61 75.1 60.5

Table 2: Sentence level normalization on customer
care notes

Our approach achieves good performance on
the customer care notes. We achieve precision and
recall of 64.2% and 70.4%. The performance us-
ing our approach outperforms the oracle accuracy
using Microsoft Word and Aspell. It is important
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Category Model Precision (%) Recall (%) F1 (%)
Microsoft Word (Oracle) 72.7 30.8 43.3
Aspell (Oracle) 83.0 35.4 49.6
Web dictionary with LM 79.8 24.2 37.1
Neural Network (wlen:11+D:100) lexicon without LM 53.4 74.7 62.3
Neural Network (wlen:11+D:100) lexicon with LM 54.4 77.1 63.8

Word Neural Network (wlen:11+D:200) lexicon with LM 50.5 75.1 60.4
Neural Network (wlen:15+D:100) lexicon with LM 54.2 73.5 62.4
Neural Network (wlen:15+D:200) lexicon with LM 48.5 75.4 59.0
Log-Linear Model (wlen:11+D:100) lexicon with LM 54.5 77.2 63.9
Log-Linear Model (wlen:11+D:200) lexicon with LM 51.2 75.9 61.1
Log-Linear Model (wlen:15+D:100) lexicon with LM 54.6 76.1 63.5
Log-Linear Model (wlen:15+D:200) lexicon with LM 47.1 75.1 57.9

Table 3: Sentence level word normalization on English Twitter data

to note that while our approach is customized to
the domain, the baseline comparisons are not. The
performance for noisy words that differ in edit dis-
tance by more than 2 from the canonical word is
also shown in Table 2. Our framework achieves
significantly better performance for abbreviations
that typically have edit distance> 2. Since our ap-
proach combines the strength of distributional and
lexical similarity as opposed to most approaches
that rely only on string similarity, we are also able
to correctly normalize domain specific abbrevia-
tions, e.g., custy→ customer, cx→ customer, lqd
→ liquid, bal → balance, exp → expectations,
etc. The use of a language model significantly im-
proves the normalization accuracy.

We also performed sentence (tweet) level nor-
malization on Twitter data. We manually an-
notated (expanded abbreviations, shorthands and
spelling errors) 1000 tweets and performed nor-
malization using our approach. The annotation
was performed serially by two professional tran-
scribers. We compare our approach with Mi-
crosoft Word, Aspell and a dictionary compiled
from several websites. We use a log-linear model
(continuous-bag-of-words) as well as a neural net-
work (see Section 5) to automatically learn nor-
malization lexicons. For each model, we experi-
mented with window length (wlen) of 11 and 15
while the dimension of distributed representation
was either 100 or 200. The results in Table 3 indi-
cate that using Algorithm 1 we achieve impressive
performance with both models in comparison with
the other schemes. The log-linear model works
just as well as the non-linear model and is much
quicker to train. One should note that the results
from Microsoft Word and Aspell overestimate the
fidelity of normalization since the task was per-
formed manually, i.e., we picked the best option

from the suggestion list. In case of no correct sug-
gestion, we left the original form as is. Hence, the
results are skewed towards achieving high preci-
sion. In contrast, our approach is completely un-
supervised in design and evaluation. We also com-
pared our approach with a Twitter and SMS dictio-
nary compiled from several websites. The dictio-
nary contained entries for 3864 words and 3536
phrases. The dictionary was compiled into a FST
and the procedure in Section 6.2 was used for eval-
uation. Since, the dictionary entries do not have an
associated score, the FST lexicon N is unweighted.
Our results clearly indicate that for construction of
the normalization lexicon all we need is a reliable
distributed representation trained on large amount
of noisy text. The non-linearity with the neural
network does not help significantly for this task.

Precision Recall F1
Approach (%) (%) (%)
(Han et al., 2012b) 70.0 17.9 26.3
(Hassan and Menezes, 2013) 85.3 56.4 69.9
Our approach 64.8 76.3 70.1

Table 4: Sentence level normalization on Twitter
test set from (Han et al., 2012b)

We also tested our approach on a publicly avail-
able Twitter test set (Han et al., 2012b) compris-
ing of 548 sentences to compare our framework
with other state-of-the-art approaches. The train-
ing data and approach for each of these schemes is
different and we did not optimize our model in any
way on the test domain or data. The normalization
was performed at the sentence level and we used
the language model described in Section 6.2. The
results in Table 4 demonstrates that our framework
performs favorably in comparison with other tech-
niques.
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Category Model Precision (%) Recall (%) F1 (%)
Microsoft Word (Oracle) 99.2 18.7 31.5
Aspell (Oracle) 75.0 0.4 0.8
Web dictionary with LM 34.0 19.0 24.4
Neural Network (wlen:11+D:100) without LM 91.4 60.7 73.0
Neural Network (wlen:11+D:100) with LM 92.4 71.3 80.5

Phrase Neural Network (wlen:11+D:200) lexicon with LM 92.5 71.8 80.8
Neural Network (wlen:15+D:100) lexicon with LM 92.4 71.4 80.6
Neural Network (wlen:15+D:200) lexicon with LM 92.5 71.8 80.8
Log-Linear Model (wlen:11+D:100) lexicon with LM 92.6 72.0 81.0
Log-Linear Model (wlen:11+D:200) lexicon with LM 92.3 71.1 80.3
Log-Linear Model (wlen:15+D:100) lexicon with LM 92.6 71.5 80.6
Log-Linear Model (wlen:15+D:200) lexicon with LM 92.0 70.9 80.0

Table 5: Sentence level phrase normalization on English Twitter data

7 Learning Phrase Normalizations

A major drawback of inducing normalization lex-
icons using most approaches described in Sec-
tion 2 is that they are restricted to learning one-
to-one word mappings. However, social media
text is strewn with abbreviations that span multi-
ple words, e.g., ily2 refers to i love you too. With
our framework, one can obtain 1-to-many (or vice
versa) mappings if the training data is modified
to contain compound words, i.e., i love you too is
replaced with i love you too and treated as a sin-
gle token. The biggest obstacle is to get a reli-
able list of such phrases since they keep changing
and growing. Unsupervised phrase induction us-
ing likelihood ratio test, point-wise mutual infor-
mation, etc., may be used for such a task but they
typically do not capture phrases formed from high
frequency function words.

We used a dataset of speech-based SMS mes-
sage transcriptions for compiling a list of com-
mon phrases. The SMS messages were collected
through a smartphone application and a majority
of them were collected while the users used the
application in their cars. We had access to a to-
tal of 41.3 million English messages. The speech
transcripts were mostly automatic and only a sub-
set of around 400K utterances were manually tran-
scribed. To avoid the use of erroneous transcripts,
we sorted the messages by frequency and picked
phrases between length 2 and 4 that resulted in
27356 English phrases. The training data was
then phrasified (words were compounded) with
the above phrase lists and the experiments to learn
distributed representations was repeated. We per-
formed this experiment only on Twitter data.

Once the representations were learned, we com-
puted the K-nearest neighbors using the cosine

Tokens Canonical phrase
tyvm, tysm, ty, thxs thank you very much
idk, idfk, irdk, idkk i don’t know
ihy, ihu, i hate you
ily, ilym, ilyy, ilu i love you
lmk, hum let me know
omw, omww, otw on my way
jgh, jghome just got home
g2g, gottago got to go
2b, 2ba to be
2u, 2us to you
4u, 4you for you
cme, callme call me

Table 6: Phrase normalizations learned through
our framework

similarity metric for each phrase. The lexi-
cal similarity cost was computed differently for
the phrases. The first character of each word
in the phrase was picked to form a new string
(e.g., i love you too would be converted into ilyt)
and a similar technique was used on the nearest
neighbors; singleton numbers were expanded into
strings (e.g., ily2 would be converted into ilyt).
The lexical similarity metric in Equation (3) was
then used to compute the distance between the
two strings. The normalization table was subse-
quently inverted and compiled into a FST. Table 6
shows some of the phrase normalizations learnt by
our framework. The phrase normalization results
for English are presented in Table 5. Our frame-
work learns phrase normalizations quite well. We
achieve precision and recall of 92.6% and 72.0%,
respectively. Even the mistakes committed are not
very different from the ground truth, e.g., idk →
i do not know while the reference is i don’t know,
wtf → what the hell instead of what the f*** and
omfg→ oh my god in place of oh my f**** god.
Our framework does not capture expansions of ge-
ographic locations present in the reference data
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such as nz→ new zealand, la→ los angeles and
some highly context dependent expansions such
as dw→ doctor who, dm→ direct message, etc.,
since the compiled phrase list did not contain these
entries.

8 Discussion

The normalization lexicons learned in this work
are completely unsupervised. The quality and cov-
erage of the lexicon is dependent on the size and
distribution of words in the training data. Our
approach assumes that the data contains both the
noisy and canonical form of a word. In practice,
we have observed that for large text collections,
such as millions of tweets, words appear in both
canonical and noisy forms. One can also augment
noisy corpora with clean text to improve the dis-
tributional similarity of the two forms. Choosing
the optimal size of noisy data set and appropriate
augmentation is beyond the scope of this work.

The main parameters in our model are wlen, D
and K. The choice of K is dependent on the size
of the training data, i.e., a larger K can potentially
yield more noisy to canonical mappings. For our
datasets, the choice of K = {25, 50, 100} did not
result in any significant difference in performance.
Hence, we used K = 25 to increase the speed of
Algorithm 1. We also performed several experi-
ments to understand the choice of dimension D.
In general, the choice of D is dependent on the
vocabulary size of the training data. For vocabu-
lary size between 100K-500K, we found that vec-
tor dimension of D = 50 is sufficient and for vo-
cabulary size greater than 1M , D = 100 works
well empirically. For wlen, a context of 5 words
to the left and right, i.e., wlen = 11 works well
and adding more context does not necessarily im-
prove performance. We conjecture that this is due
to the length of an average customer care note (12
words) and tweet (15 words). For datasets with
longer sentences, larger values of wlen may be
beneficial.

The performance reported using Microsoft
Word and Aspell was obtained by manually se-
lecting the best suggestion. We resorted to this
approach since both schemes do not provide an
option to automatically normalize a document. In
choosing the best suggestion option, we focused
on precision, i.e., picked the best suggestion or left
the original form as is. If we had forcefully picked
an option from the suggestion list for all correc-

tions, the recall would have been higher at the cost
of lower precision. The results using the Web dic-
tionary and our unsupervised framework performs
a blind evaluation.

In contrast with conventional string similar-
ity based normalization schemes, our approach is
good at modeling abbreviations. Abbreviations
are generally hard to normalize with Levenshtein
distance based approaches but the combination of
distributional and lexical similarity is very help-
ful in learning the mapping between abbreviated
and canonical forms. In most off-the-shelf sys-
tems, e.g., Microsoft Word, a standard dictionary
is used and any corrections for domain specific
spellings are typically performed manually. Since
our scheme can be trained with raw data, we are
able to address the domain specific idiosyncrasies.

The word and phrase normalizations learned in
this work use a particular type of lexical similarity
metric. While it captures abbreviations well for
English, our framework is open to the use of any
linguistically motivated lexical similarity metric.
Such metrics can be designed by language experts
and linguistic knowledge can potentially be incor-
porated into the unsupervised scheme, thus, lend-
ing a way to embed linguistic rules into a statistical
framework.

9 Conclusion

We presented an unsupervised framework for nor-
malizing domain-specific and informal noisy texts
using distributed representation of words. Our ap-
proach exploits the property that noisy and canoni-
cal forms of a particular word share similar context
in a large noisy text collection (millions or billions
of social media feeds from Twitter, Facebook,
etc.). Subsequently, we use a combination of dis-
tributional and lexical similarity between canoni-
cal and noisy form of words to automatically con-
struct a normalization lexicon. The distributed
representations were learned using both log-linear
and non-linear models and we used a finite-state
transducer framework for representing the lexi-
cons and performing normalization. Our exper-
iments on customer care data and Twitter indi-
cate that our approach can capture spelling errors
of different types and achieves good performance
in comparison with several baselines and state-of-
the-art approaches. Finally, we used our frame-
work to learn phrase normalizations by learning
distributed representations over compound words.
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Abstract

In this paper a different machine learning ap-
proach is presented to deal with the coref-
erence resolution task. This approach con-
sists of a multi-classifier system that classifies
mention-pairs in a reduced dimensional vector
space. The vector representation for mention-
pairs is generated using a rich set of linguistic
features. The SVD technique is used to gener-
ate the reduced dimensional vector space.

The approach is applied to the OntoNotes v4.0
Release Corpus for the column-format files
used in CONLL-2011 coreference resolution
shared task. The results obtained show that the
reduced dimensional representation obtained
by SVD is very adequate to appropriately clas-
sify mention-pair vectors. Moreover, we can
state that the multi-classifier plays an impor-
tant role in improving the results.

1 Introduction

Coreference resolution deals with the problem of
finding all expressions that refer to the same entity
in a text (Mitkov, 2002). It is an important subtask
in Natural Language Processing that require natural
language understanding, and hence, it is considered
to be difficult.

A coreference resolution system has to automati-
cally identify the mentions of entities in text and link
the corefering mentions (the ones that refer to the
same entity) to form coreference chains. Systems
are expected to perform both, mention detection and
coreference resolution.

Preliminary researches proposed heuristic ap-
proaches to the task, but thanks to the annotated

coreference corpora made available in the last years
and the progress achieved in statistical NLP meth-
ods, machine learning approaches to the corefer-
ence resolution task are being proposed. (Ng, 2010)
presents an interesting survey of the progress in
coreference resolution.

In this paper we present a different machine learn-
ing approach to deal with the coreference resolu-
tion task. Given a corpus with annotated men-
tions, the multi-classifier system we present clas-
sifies mention-pairs in a reduced dimensional vec-
tor space. We use the typical mention-pair model,
where each pair of mentions is represented by a rich
set of linguistic features; positive instances corre-
spond to mention-pairs that corefer. Coreference
resolution is tackled as a binary classification prob-
lem (Soon et al., 2001) in this paper; the subse-
quent linking of mentions into coreference chains
is not considered. In fact, the aim of our experi-
ment is to measure to what extent working with fea-
ture vectors in a reduced dimensional vector space
and applying a multi-classifier system helps to de-
termine the coreference of mention-pairs. To the
best of our knowledge, there are no approaches to
the coreference resolution task which make use of
multi-classifier systems to classify mention-pairs in
a reduced dimensional vector space.

This paper gives a brief description of our ap-
proach to deal with the problem of identifying
whether two mentions corefer and shows the results
obtained. Section 2 presents related work. In Sec-
tion 3 our approach is presented. Section 4 presents
the case study, where details about the dataset used
in the experiments and the preprocessing applied are
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given. In Section 5 the experimental setup is briefly
introduced. The experimental results are presented
and discussed in Section 6, and finally, Section 7
contains some conclusions and comments on future
work.

2 Related Work

Much attention has been paid to the problem of
coreference resolution in the past two decades. Con-
ferences specifically focusing coreference resolution
have been organized since 1995. The sixth and sev-
enth Message Understanding Conferences (MUC-
6, 1995; MUC-7, 1998) included a specific task
on coreference resolution. The Automatic Con-
text Extraction (ACE) Program focused on identi-
fying certain types of relations between a prede-
fined set of entities (Doddington et al., 2004) while
the Anaphora Resolution Exercise (ARE) involved
anaphora resolution and NP coreference resolution
(Orăsan et al., 2008).

More recently, SemEval-2010 Task 1 was ded-
icated to coreference resolution in multiple lan-
guages. One year later, in the CoNLL-2011 shared
task (Pradhan et al., 2011), participants had to model
unrestricted coreference in the English-language
OntoNotes corpora and CoNLL-2012 Shared Task
(Pradhan et al., 2012) involved predicting corefer-
ence in three languages: English, Chinese and Ara-
bic.

Recent work on coreference resolution has been
largely dominated by machine learning approaches.
In the SemEval-2010 task on Coreference Resolu-
tion in Multiple Languages (Recasens et al., 2010),
most of the systems were based on these techniques
(Broscheit et al., 2010; Uryupina, 2010; Kobdani et
al., 2010). The same occurs at CoNLL-2011, where
(Chang et al., 2011; Björkelund et al., 2011; dos
Santos et al., 2011) were based on machine learn-
ing techniques. The advantage of these approaches
is that there are many open-source platforms for ma-
chine learning and machine learning based corefer-
ence systems such as BART (Versley et al., 2008),
the Illinois Coreference Package (Bengtson et al.,
2008) or the Stanford CoreNLP (Manning et al.,
2014), among others.

Nevertheless, rule-based systems have also been
applied successfully (Lappin et al., 1994; Mitkov,

1998; Lee et al., 2013). The authors of this last sys-
tem propose a coreference resolution system that is
an incremental extension of the multi-pass sieve sys-
tem proposed by (Raghunathan et al., 2010). This
system is shifting from the supervised learning set-
ting to an unsupervised setting, and obtained the best
result in the CoNLL-2011 Shared Task.

Some very interesting uses of vector space mod-
els for the coreference resolution task can be found
in the literature. (Nilsson et al., 2009) investigate the
effect of using vector space models as an approxi-
mation of the kind of lexico-semantic and common-
sense knowledge needed for coreference resolution
for Swedish texts. They also work with reduced di-
mensional vector spaces and obtain encouraging re-
sults. In an attempt to increase the performance of
a coreference resolution engine, (Bryl et al., 2010)
make use of structured semantic knowledge avail-
able in the web. One of the strategies they adopt is
to apply the SVD to Wikipedia articles and classify
mentions in a reduced dimensional vector space.

3 Proposed Approach

The approach we present consists of a multi-
classifier system which classifies mention-pairs in
a reduced dimensional vector space. This multi-
classifier is composed of severalk-NN classifiers. A
set of linguistic features is used to generate the vec-
tor representations for the mention-pairs. The train-
ing dataset is used to create a reduced dimensional
vector space using the SVD technique. Mention-
pairs in the training, development and test sets are
represented using the same linguistic features and
projected onto the reduced dimensional space.

The classification process is performed in the
reduced dimensional space. To create the multi-
classifier, we apply random subsampling and obtain
training datasetsTD1, . . . , TDi for the reduced di-
mensional space. Given a testing caseq, thek-NN
classifier makes a label predictionci based on each
one of the training datasetsTDi, and predictions
c1, . . . ci are combined to obtain the final prediction
cj using a Bayesian voting scheme. It is a binary
classification system where the final predictioncj

may be positive (mentions tested corefer) or nega-
tive (mentions do not corefer). Figure 1 shows an
illustration of the fundamental steps of the experi-
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Figure 1: Fundamental steps of the proposed approach.R m is the original vector space,R p is the reduced dimen-
sional space where vectors are projected. The multi-classifier is composed of severalk-NN classifiers.cj is the final
classification label for testing caseq.

ment.
In the rest of this section, details about the SVD

dimensionality reduction technique, thek-NN clas-
sification algorithm, the combination of classifiers
and the evaluation measures used are briefly re-
viewed.

3.1 The SVD Dimensionality Reduction

The classical Vector Space Model (VSM) has been
successfully employed to represent documents in
text categorization and Information Retrieval tasks.
Latent Semantic Indexing (LSI)1 (Deerwester et
al., 1990) is a variant of the VSM in which docu-
ments are represented in a lower dimensional vec-
tor space created from a training dataset. To create
such a lower dimensional vector space, LSI gener-
ates a term-document matrixM and computes its
SVD matrix decomposition,M = UΣV T . As a re-
sult, r singular values are obtained, and terms and
documents are mapped to ther-dimensional vector
space. By reducing ther to p, a reduced dimen-
sional space is created, thep-dimensional space onto
which vectors are projected. This reduced dimen-
sional space is used for classification purposes, and
the cosine similarity is usually used to measure the
similarity between vectors (Berry et al., 1995).

1http://lsi.research.telcordia.com,http://www.cs.utk.edu/∼lsi

It has been proved that computing the similarity
of vectors in the reduced dimensional space gives
better results than working in the original space. In
fact, LSI is said to be able to capture the latent rela-
tionships among words in documents thanks to the
word co-occurrence analysis performed by the SVD
technique, and therefore, cluster semantically terms
and documents. This powerful technique is being
used to better capture the semantics of texts in appli-
cations such as Information Retrieval (Berry et al.,
2005). LSI is referred to as Latent Semantic Anal-
ysis (LSA) when it is used as a model of the acqui-
sition, induction and representation of language and
the focus is on the analysis of texts (Dumais, 2004).

For the sake of the coreference resolution task,
each document corresponds to a mention-pair, and
words in each document are the linguistic feature
values for the associated mention-pair. Section 4.2
gives details about the linguistic features used to
represent each mention-pair. MatrixM is con-
structed for the selected feature values (terms) and
all mention-pairs considered (documents). The SVD
decomposition is computed and thep-dimensional
reduced space is created. We useU as the reduced
dimensional representation, and compute the coor-
dinates to project mention-pair vectors onto the re-
duced space and compare them.
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3.2 Thek-NN classification algorithm

k-NN is a distance based classification approach.
According to this approach, given an arbitrary test-
ing case, thek-NN classifier ranks its nearest neigh-
bors among the training cases, and uses the class of
thek top-ranking neighbors to do the prediction for
the testing case being analyzed (Dasarathy, 1991).

In our experiments, parameterk is set to3. Given
a testing mention-pair vector, the3-NN classifier
is used to find the three nearest neighbor mention-
pair vectors in the reduced dimensional vector space.
The cosine is used to measure vector similarity and
find the nearests.

We also consider thek-NN classifier provided
with the Weka package (Hall et al., 2009; Aha et
al., 1991). We use it to obtain a honest comparison
for the results.

3.3 Multi-classifier systems

The combination of multiple classifiers has been in-
tensively studied with the aim of improving the ac-
curacy of individual components (Ho et al., 1994).
A widely used technique to implement this approach
is bagging (Breiman, 1996), where a set of train-
ing datasetsTDi is generated by selectingn train-
ing cases drawn randomly with replacement from
the original training datasetTD of n cases. When
a set ofn1 < n training cases is chosen from the
original training collection, the bagging is said to be
applied by random subsampling. In fact, this is the
approach used in our work and then1 parameter is
set to be 60% of the total number of training cases
n. The proportion of positive and negative cases in
the training datasetTD is preserved in the different
TDi datasets generated.

According to the random subsampling, given a
testing caseq, the classifier makes a label predic-
tion ci based on each one of the training datasets
TDi. Label predictionsci may be either positive
or negative. One way to combine the predictions
is by Bayesian voting (Dietterich, 1998), where a
confidence value cvicj

is calculated for each training
datasetTDi and label to be predicted. These con-
fidence values are calculated based on the training
collection. Confidence values are summed by label;
the labelcj that gets the highest value is finally pro-
posed as a prediction for the testing caseq.

3.4 Evaluation measures

The approach presented in this paper is a binary
classification system where the final predictioncj

may be positive (mentions tested corefer) or nega-
tive (mentions do not corefer). There are many met-
rics that can be used to measure the performance of
a classifier. In binary classification problems pre-
cision and recall are very widely used. Precision
(Prec) is the number of correct positive results di-
vided by the number of all positive results, and re-
call (Rec) is the number of correct positive results
divided by the number of positive results that should
have been returned.

In general, there is a trade-off between precision
and recall. Thus, a classifier is usually evaluated by
means of a measure which combines them. TheF1-
score can be interpreted as a weighted average of
precision and recall; it reaches its best value at 1 and
worst score at 0.

F1 =
2 · Prec· Rec
Prec+ Rec

Accuracy is also used as a statistical measure of
performance in binary classification tasks. Accuracy
is the proportion of true results (both true positives
and true negatives) among the total number of cases
tested.

4 Case study

This section briefly reviews the dataset used in the
experiments and the preprocessing applied.

4.1 Dataset

The OntoNotes v4.0 Release Corpus is used in the
experiments2. It provides a large-scale multi-genre
corpus with multiple layers of annotation (syntac-
tic, semantic and discourse information) which also
include coreference tags. A nice description of the
coreference annotation in OntoNotes can be found in
(Pradhan et al., 2007a) and (Pradhan et al., 2007b).

Although OntoNotes is a multi-lingual resource
for English, Chinese and Arabic, for the scope of
this paper, we just look at the English portion. We

2Downloaded from Linguistic Data Con-
sortium (LDC) Catalog No.: LDC2011T03,
https://catalog.ldc.upenn.edu/LDC2011T03. For more infor-
mation, see OntoNotesRelease4.0.pdf and coreference/english-
coref.pdf files in LDC directory
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use English texts for five different genres or types
of sources: broadcast conversations (BC), broad-
cast news (BN), magazine articles (MZ), newswires
(NW) and web data (WB).

The English language portion of the OntoNotes
v4.0 Release Corpus was used in the CONLL-2011
coreference resolution Shared task3. The task was
to automatically identify mentions of entities and
events in text and to link the corefering mentions to-
gether to form mention chains (Pradhan et al., 2011;
Pradhan et al., 2012). Since OntoNotes coreference
data spans multiple genre, the task organizers cre-
ated a test set spanning all the genres. The training,
development and test files were downloaded from
the CONLL-2011 website, and the *conll files were
generated from each corresponding *skel files us-
ing the scripts made available by the organizers.

The * conll files contain information in a tabu-
lar structure where the last column contains corefer-
ence chain information. Two types of *conll files
may be generated, depending on how the annota-
tion was generated; *goldconll files were hand-
annotated and adjudicated quality, whereas anno-
tations in *autoconll files were produced using a
combination of automatic tools. *goldconll files are
used in the experiments presented in this paper.

4.2 Preprocessing

In order to obtain the vector representation for each
pair of mentions, we used the features defined by
(Sapena et al., 2011). The 127 binary features they
define are related to distance, position, lexical in-
formation, morphological information, syntactic de-
pendencies and semantic features. The authors de-
veloped a coreference resolution system called Re-
laxCor4 and participated in the CoNLL-2011 shared
task obtaining very good results. It is an open source
software available for anyone who wishes to use it.

RelaxCor is a constraint-based hypergraph parti-
tioning approach to coreference resolution, solved
by relaxation labeling. It generates feature vectors
for all mention-pairs in the *conll files as part of the
system and uses them to solve the task. We decided
to use the perl scripts distributed by the authors and
generate the positive and negative feature vectors for

3http://conll.cemantix.org/2011/introduction.html
4http://nlp.lsi.upc.edu/relaxcor/

all * conll files. These feature vectors consist of bi-
nary values for the 127 binary features and a label:
a positive label (+) indicates that the feature vector
corresponds to a corefering mention-pair, whereas a
negative label (-) indicates that the two mentions do
not corefer.

Note that each mention in a file is combined
with all the rest of mentions in the same file to
form mention-pairs and consequently, a very large
amount of negative examples is generated, specially
for large files. We decided to reduce the amount of
negative examples, in a similar manner as (Sapena
et al., 2011) and therefore, negative examples with
more than five feature values different from any pos-
itive example in each file were eliminated. In or-
der to obtain the training, development and test cor-
pora for the 5 genres, we brought together the exam-
ples generated from files of the same split and genre.
We removed contradictions (negative examples with
identical feature values as a positive example) and
examples that appeared more than once in the same
corpus. We noticed that the size of the corpora was
too large for some of the genres; the broadcast con-
versations (BC) genre training corpus for instance
had more than 4 million examples. We decided to
reduce all corpora to a reasonable size to compute
the SVD.

BC BN MZ NW WB
Train (+) 20206 44515 25103 31034 24501
Train (-) 26623 55921 23568 50687 26948
Dev (+) 4056 5920 3873 4776 3531
Dev (-) 5831 8609 4864 7615 5732
Test (+) 29363 10771 3918 15857 17146
Test (-) 16591 12480 3209 15759 5505

Table 1: Size of corpora used in the experiments.

Table 1. gives detailed information about the
number of positive and negative mention-pairs in
the training, development and test corpora used in
the experiments. A matrix is constructed for each
of the training corpus. Feature values that appear
at least once in the corpus are selected as terms.
Even though theoretically we could have a maxi-
mum number of 254 different terms in each train-
ing corpus (127× 2, because the 127 features are
binary), the real value is between 227 and 230. The
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sizes of the matrices created are given by the number
of terms and documents (sum of (+) and (-) exam-
ples in the training corpus) and can be seen in Table
2.

BC BN MZ NW WB
Terms 227 230 227 229 230
Docs 46829 100436 48671 81721 51449

Table 2: Size of term-document matricesM .

5 Experimental Setup

To optimize the behaviour of the multi-classifier sys-
tem, the number ofTDi training datasets is adjusted
in a parameter tuning phase. This optimization pro-
cess is performed in an independent way for each
of the genres because the five genres correspond to
texts coming from different sources and may have
very different characteristics (Uryupina et al., 2012).
Therefore, we treat them as five different classifica-
tion problems.

The five development corpora are used to adjust
parameteri (the amount ofTDi training datasets).
We experimented with the following values fori: 5,
10, 20, 30, 40, 50, 60, 70, 80. Table 3 shows the
optimal values obtained for each genre. This means
that testing cases for the BC genre, for instance, are
classified by a multi-classifier formed by 60k-NN
classifiers, after having generated 60TDi training
datasets from the originalTD.

BC BN MZ NW WB
Optimali 60 30 50 20 40
Singular Values 83 86 85 86 87

Table 3: Optimal values for the number ofTDi datasets.
Number of singular values computed by SVD

Two different dimensional representations are ex-
perimented for mention-pair vectors. On the one
hand, we consider mention-pair vectors represented
in the original 127 dimensions. On the other hand,
the SVD-computed dimensional vector representa-
tion is being experimented. Table 3 shows the num-
ber of singular values (dimensions) computed by
SVD for each of the genres.

6 Experimental Results

Three experiments were carried out in the test phase
using the optimal values for parameteri and the
two different representations for mention-pair vec-
tors. Table 4 shows the results obtained for each
of the experiments: accuracy values in a first row
(Acc.) andF1-scores in a second (F1).

In a first experiment (Exp.1), the Weka 3-NN
classifier is applied to classify testing cases repre-
sented in the original 127 dimensional space. The
same 3-NN classifier is applied in a second experi-
ment (Exp.2), but training and testing cases are rep-
resented using the dimensions computed by SVD
(see Singular Values in Table 3). In a last ex-
periment (Exp.3), our approach is applied and a
multi-classifier system classifies testing vectors in
the same SVD-dimensional vector space as in the
previous experiment. The multi-classifier is gener-
ated according to the optimal values for parameteri
in each genre.

Exp. BC BN MZ NW WB Mean
1 Acc. 0.719 0.704 0.706 0.707 0.669 0.701

F1 0.762 0.686 0.731 0.679 0.744 0.720
2 Acc. 0.672 0.725 0.662 0.7250.783 0.713

F1 0.742 0.71 0.717 0.7150.85 0.747
3 Acc. 0.669 0.755 0.661 0.742 0.776 0.721

F1 0.739 0.728 0.707 0.716 0.841 0.746

Table 4: Accuracy andF1-score for the test corpora.
Exp.1: 3-NN and 127 dimensions. Exp.2:3-NN and
SVD dimensions. Exp.3: multi-classifier and SVD di-
mensions. Last column: mean values

The results shown in bold in the first part of Ta-
ble 4 are the best for each genre. Note that the two
performance measures computed (accuracy andF1-
score) are very correlated in the five cases. Taking
into account that the proportion of positive and neg-
ative examples varies from genre to genre, this cor-
relation gives consistency to the interpretation of the
results obtained.

The best results for BC and MZ genres are ob-
tained in the first experiment, applying the3-NN
classifier to the 127 dimensional vectors (Exp.1,F1-
scores: 0.762 and 0.731, respectively). For the rest
of the genres, the best results are obtained for the
SVD-dimensional vectors. AnF1-score of 0.85 is
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obtained for the WB genre in the second experi-
ment (Exp.2). The approach proposed in this paper
(Exp.3) achieves the best results for two out of the
five genre, with anF1-score of 0.728 for BN and
0.716 for NW.

The last column in Table 4 shows the mean ac-
curacy andF1-scores obtained in each experiment,
taking into account the five genres as a whole (the
best are shown in bold). The best meanF1-score is
obtained in Experiment 2, where vectors are classi-
fied in the SVD-dimensional vector space. In fact,
this result is very closely followed by the one ob-
tained in Experiment 3 with our approach, (mean
F1-scores: 0.747 and 0.746, respectively). The best
mean accuracy is obtained when our approach is ap-
plied (mean accuracy: 0.721). This good results
seem to suggest that the dimensions computed by
the SVD technique are very appropriate to represent
mention-pairs and classify them. Moreover, the use
of the multi-classifier system gets to achieve even
better results, outperforming the ones obtained by
the other classification systems.

7 Conclusions and Future Work

In this paper a different machine learning approach
to deal with the coreference resolution task is
presented: a multi-classifier system that classifies
mention-pairs in a reduced dimensional vector space
created by applying the SVD technique. The results
obtained for the OntoNotes corpus are very good,
outperforming the ones obtained by other classifica-
tion systems for some genres. Moreover, when mean
results per experiment are considered, the SVD gen-
erated dimensional representation always achieves
the best results, which seems to suggest that it is a
very robust and suitable representation for corefer-
ence mention-pairs.

As future work, we plan to experiment with some
other kind of multi-classifer systems and basic clas-
sifiers such as SVM. It is important to note that the
approach may be applied to corpora in other lan-
guages as well.
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simo Poesio, and Yannick Versley. 2010.SemEval-
2010 Task 1: Coreference Resolution in Multiple Lan-
guage. Proceedings of the SemEval-2010, pp. 1–8.

C. N. dos Santos and D. L. Carvalho. 2011.Rule and
tree ensembles for unrestricted coreference resolution.
Proceedings of the CONLL’11 Shared Task, pp. 51–
55.
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Abstract
Word sense induction (WSI) is the problem of
automatically building an inventory of senses
for a set of target words using only a text
corpus. We introduce a new method for em-
bedding word instances and their context, for
use in WSI. The method, Instance-context em-
bedding (ICE), leverages neural word embed-
dings, and the correlation statistics they cap-
ture, to compute high quality embeddings of
word contexts. In WSI, these context embed-
dings are clustered to find the word senses
present in the text. ICE is based on a novel
method for combining word embeddings us-
ing continuous Skip-gram, based on both se-
mantic and a temporal aspects of context
words. ICE is evaluated both in a new sys-
tem, and in an extension to a previous system
for WSI. In both cases, we surpass previous
state-of-the-art, on the WSI task of SemEval-
2013, which highlights the generality of ICE.
Our proposed system achieves a 33% relative
improvement.

1 Introduction

Ambiguity is pervasive in natural language and this
is particularly true of word meaning: a word string
may refer to several different concepts or senses.
Word sense induction (WSI) is the problem of us-
ing a text corpus to automatically determine 1) the
inventory of senses, and 2) which sense a particu-
lar occurrence of a word belongs to. This stands
in contrast to the related task of word sense disam-
biguation (WSD), which is concerned with linking
an occurrence of a word to an external sense inven-
tory, e.g. WordNet. The result of a WSI system

is a set of local sense labels, consistent within the
system but not linked to a universal set of labels.
A wide range of applications have been proposed
where WSI could be useful, ranging from basic lin-
guistic and lexicographical research (Nasiruddin et
al., 2014), machine reading (Etzioni et al., 2006)
and information retrieval (Véronis, 2004). WSI is of
particular interest in situations where standard lexi-
cal resources are unreliable or inapplicable, such as
when tracking changes of word meaning over time
(Mitra et al., 2014).

According to the distributional hypothesis (Har-
ris, 1954), word meaning is reflected in the set of
contexts in which a word occurs. This intuition
makes it natural to operationalize the meaning of a
word – and of its contexts – using a vector-space rep-
resentation, where geometric proximity corresponds
to similarity of meaning. A common approach used
in several successful WSI systems is to apply this ge-
ometric intuition and represent each context of a pol-
ysemous word as a vector, look for coherent clusters
in the set of context vectors, and let these define the
senses of the word. This approach was pioneered by
Schütze (1998) using second order co-occurrences
to construct the context representation. It is clear
that in order to be useful in a WSI system, a ge-
ometric representation of context meaning must be
designed in a way that makes clusters distinct.

Recently, neural embeddings, such as the popu-
lar Skip-gram model (Mikolov et al., 2013a), have
proven efficient and accurate in the task of embed-
ding words in vector spaces. As of yet, however,
neural embeddings have not been considered for rep-
resenting contexts in WSI. The systems that seem
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most relevant in this context are those that train
multi-prototype embeddings: more than one embed-
ding per word (Huang et al., 2012). In particular,
Neelakantan et al. (2014) described a modified Skip-
gram algorithm that clusters instances on the fly, ef-
fectively training several vectors per word. How-
ever, whether this or any other similar approach is
useful if considered as a WSI system is still an open
question, since they have never been evaluated in
that setting.

We make the following contributions: (1) We de-
fine the Instance-context embedding (ICE), a novel
way for representing word instances and their con-
text. ICE combines vectors representing context
words using a novel weighting schema consisting of
a semantic component, and a temporal component,
see Section 3. (2) We propose two methods for using
our embeddings in word sense induction, see Sec-
tion 4. The first adopts a batch clustering scheme,
where senses are induced after the word embeddings
are computed. The number of senses is automat-
ically chosen, based on data. The second extends
an existing method for simultaneous embedding and
clustering of words (Neelakantan et al., 2014). We
show that our extension substantially improves the
model. (3) We evaluate both proposed methods in
the WSI task. We show that the two components of
our proposed weighting schema both contribute to
an increased overall performance. Further, we com-
pare our method to state-of-the-art methods on Task
13 of SemEval-2013, achieving a 33% relative im-
provement see, Section 6.

2 Context clustering

Context clustering is an approach to WSI in which
each instance of a word is represented by its con-
text, embedded in a geometric space. These con-
text embeddings are then clustered to form cen-
troids representing the different senses of the tar-
get word. The context clustering approach was pi-
oneered by Schütze (1998) who used second order
co-occurrences to construct the context embedding.
In this setting, the output of a WSI system is a set
Sw = {sw,1, . . . , sw,k} of k locally defined senses
of a word w, with corresponding sense embeddings
sw,j . We refer to Sw as the induced sense inven-
tory of w. The WSI problem is often paired with the

related task of word sense disambiguation (WSD),
concerned with linking a previously unseen occur-
rence of a word to an existing sense inventory. Given
an instance wi, of a possibly polysemous word, let
its context be represented by an embedding, ci. The
sense of wi is determined by finding the nearest
neighbor to ci, in the sense inventory Swi ,

sense(wi) = arg min
j : sj∈Swi

d(ci, sj) , (1)

where d(·, ·) is some distance function. In this
work, d is the cosine distance d(x,y) = 1 −
xTy/(‖x‖‖y‖). We proceed to review distributed
word embeddings, used in this work to create con-
text embeddings.

2.1 Distributed word embeddings

A word embedding is a continuous vector repre-
sentation that captures semantic and syntactic infor-
mation about a word. Such representations are of-
ten based on the distributional hypothesis of Harris
(1954), stating that the meaning of a word is largely
determined by the contexts in which it appears. For
word embeddings, this is realized by assigning sim-
ilar embeddings to words that appear in similar con-
texts. These representations can be used to unveil
multiple dimensions of similarity between words,
such as number, topic and gender (Mikolov et al.,
2013b). Word embeddings computed using neural
networks were introduced by Bengio et al. (2003)
and are often called neural word embeddings.

Continuous Skip-gram is an algorithm for com-
puting word embeddings that was introduced by
Mikolov et al. (2013a). This model has received a lot
of attention recently, being one of the models used
in the software package word2vec (Mikolov, 2013).
The model is trained to predict the context surround-
ing a given target word. Each word w is represented
by two vectors, one for when the word is the target,
denoted uw, and one for when it is in the context of
another word, denoted vw.

We follow the interpretation of the negative sam-
pling method for Skip-gram in Levy and Goldberg
(2014). Let D denote the observed data, as a set of
pairs of target and context words. Then, the prob-
ability of observing the pair (wc, wi) of a context
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word c and target word i in the data is,

p((wc, wi) ∈ D) =
1

1 + e−vT
c ui

, (2)

where ui is the vector representation of the target
word wi and vc is the vector representation of the
context word wc. The vectors ui and vc are re-
ferred to as word embeddings and context-word em-
beddings respectively. Training of the Skip-gram
model with negative sampling corresponds to find-
ing embeddings that maximize p((wc, wi) ∈ D)
for observed context pairs and p((wc, wi) 6∈ D)
for random (negative) context pairs. This is usually
achieved using stochastic gradient descent.

2.2 Clustering word instances

Clustering of vector-valued observations is a well-
studied subject. Perhaps the most widely used algo-
rithm for this purpose, k-means clustering, embod-
ies many of the intuitions and difficulties of the prob-
lem. In our setting, the vectors to cluster represent
instances of a single word and k corresponds to the
number of senses of the word. Clearly, k is highly
dependent on the word, and is not easily set by hand.
Although many algorithms have been proposed to
solve the problem for a given k, choosing k itself
remains a problem in its own right. The frequently
used Gap statistic (Tibshirani et al., 2000) gives a
method for solving this problem. Unfortunately, it
can be prohibitively slow for use in repeated clus-
tering of large numbers of points, as the method re-
lies on Monte Carlo simulations. Pham et al. (2005)
proposed an alternative method in which a function
defined by the cluster distortion for different values
of k, is used to evaluate cluster quality.

In the setting described above, the embeddings
are assumed to be computed before clustering
into senses. In contrast, Multi-sense Skip-gram
(MSSG) (Neelakantan et al., 2014) attempts to learn
several embeddings of a word, one for each of its
different senses, by extending the Skip-gram method
of Mikolov et al. (2013a). This involves a simulta-
neous embedding and clustering of word instances.
A drawback is that their method limits the training
of multi-sense embeddings to the M most common
words, forcing a complete re-training of the model
should a new word of interest appear.

3 Instance-context embeddings

We propose a new method for creating context
embeddings for WSI. The embeddings are based
on word embeddings and context-word embeddings
computed using the Skip-gram model as described
in Section 2.1. Our method differs from previous
approaches in that it assigns different weights to the
context words based on their influence on the mean-
ing of the target word.

More precisely, the context embedding (c) for
word instance i is computed as the weighed average
of the context-word embeddings representing sur-
rounding words

ci =
1
Z

∑
−T≤c≤T

c 6=0

ψi,cvc . (3)

Here, ψi,c is the weight for context word c, vc is the
context-word embedding for the same word and T is
the number of words, to the left and right, which are
considered part of the context of target word i. Z is
a normalizing factor to put ci on the unit sphere.

Perhaps the simplest weighting schema is the
uniform, or non-informative schema, ψuniform

i,c =
1

2T ∀i, c. Context embeddings using uniform weights
were used in the Multi-Sense Skip-Gram (MSSG)
model by Neelakantan et al. (2014) for computing
sense embeddings. However, in the context of WSI
it is not hard to imagine a situation where an in-
formed weighted sum would perform better. For
example, in the phrase ”the rock band” the word
”band” is clearly more indicative for the sense of
”rock” than the word ”the”, and should therefore
have a larger impact on the instance representa-
tion. To address this caveat we propose context
embeddings based on a novel weighting schema,
Instance-context embeddings (ICE), that leverages
co-occurrence statistics naturally captured by the
Skip-gram model.

3.1 Semantic context weights
The first component of ICE is based on the assump-
tion that context words that strongly correlate with
the target word is more important for the meaning
of the target word. In the example phrase from Sec-
tion 3, the word ”band” is clearly a strong indicator
for the presence of the word ”rock”, while the word
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”the” occurs everywhere in English text and will
therefore not have a strong correlation with ”rock”.

To leverage this idea, we use the Skip-gram output
probability, see (2), to weight context words by

ψsemantic
i,c =

1
1 + e−vT

c ui
, (4)

where vc is the context-word embedding for the
word c, and ui is the word embedding of target word
i. Using ψsemantic in (3) has the effect of assigning
bigger importance to context words that have a se-
mantic relation to the target word. Context words
that are not useful in characterizing the sense of the
target are weighted less. This is in stark contrast to
the uniform weighting schema.

Levy and Goldberg (2014) discovered an interest-
ing connection between the Skip-gram model and
Pointwise Mutual Information (PMI) (Church and
Hanks, 1990). Consider the optimizers of the Skip-
gram objective, word and context-word embeddings,
ui, vc, trained using k negative samples. Levy and
Goldberg showed that for sufficiently large dimen-
sionality, these vectors satisfy the following rela-
tion, ui

Tvc = PMI(wi, wc) − log k . Let σ(·)
be the logistic function. For vectors satisfying
the conditions stated above, we have ψsemantic

i,c =
σ(PMI(wi, wc)−log k) , establishing a connection
between the semantic weights applied to Skip-gram
embeddings, and PMI, a function frequently used for
measuring word similarity (Pantel and Lin, 2002).

3.2 Temporal context weights
Window functions are used to extract local informa-
tion from a sequence. In the context of NLP this
translates to extracting a phrase of a given length
from a larger text. The most common window func-
tion used in WSI is the rectangular window func-
tion, where T words are extracted from each side
of the target word. However, this approach is not
optimal. In part, because it ignores the distance be-
tween the target word and the context word, but also
because the sharp border makes the approach more
noisy with respect to the chosen T .

To address these issues we instead apply a tri-
angular window function to the context. This is
inspired by the Skip-gram model, where this is
achieved by uniformly sampling the context width
∈ {1 . . . T}. In our model we weight the context

words according to target word distance as

ψtemporal
i,c =

1
T

max(0, T − |i− c|) . (5)

3.3 Instance-context embeddings (ICE)

Finally, by combining the results of Section 3.1
and 3.2 we arrive at the definition of our proposed
weighting schema

ψice
i,c = ψsemantic

i,c ψtemporal
i,c . (6)

4 Word sense induction using ICE

We devise two methods for performing word sense
induction using ICE. The first is based on the
k-means clustering algorithm. Here, word and
context-word embeddings are computed using Skip-
gram. Then, context embeddings are computed
for all instances of a word, according to (3), and
clustered using k-means, with Pham’s heuristic for
choosing k (Pham et al., 2005), to form centroids
representing word senses. As clustering is per-
formed in batch, after embedding, we refer to this
method as ICE-kmeans.

The second method is an extension of the MSSG
model (Neelakantan et al., 2014), in which we dur-
ing training of the model embed word instances
using ICE. This improves the disambiguation per-
formed at every iteration of MSSG. As this method
performs the clustering in an online fashion, we re-
fer to this method as ICE-online. For this, we have
modified the code provided by Jeevan Shankar1.

5 Evaluation

We evaluate our methods for word sense induction
on shared task 13 of SemEval-2013, Word Sense
Induction for Graded and Non-Graded Senses (Ju-
rgens and Klapaftis, 2013). Henceforth, we let
“SemEval-2013” refer to this specific task. We also
investigate the influence of our weighting schema on
both methods. Further, we study qualitative proper-
ties of the word instance embeddings produced by
our method.

1https://bitbucket.org/jeevan shankar/multi-sense-
skipgram/
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5.1 SemEval-2013, Task 13

The SemEval-2013 (test) data contains 4664 in-
stances, each inflections of one of 50 lemmas (Ju-
rgens and Klapaftis, 2013). The competition in-
cluded both single-sense instances and instances
with a graded mixture of senses. Because the man-
ual annotations were deemed too poor, only 10% of
instances were labeled with multiple senses (Jurgens
and Klapaftis, 2013), which led the organizers to
publish results both for all instances, and for single-
sense instances only. For this reason, we consider
only single-sense instances. Each instance is rep-
resented by a phrase, annotated with part-of-speech
(POS) tags, comprising the word for which to deter-
mine the sense, and its context.

The rules of SemEval-2013 allowed the use of a
specific corpus, ukWaC, for training of the submit-
ted models. We have cleaned this corpus, remov-
ing formatting and making it lowercase. We extract
common n-grams from the corpus and include them
as entities in our vocabulary, e.g. Kuala Lumpur→
Kuala Lumpur. Frequency thresholds were set to 10
times for n = 1, 20 times for n = 2, and 50 times for
n ∈ {3, 4}. Longer phrases are not considered. Fol-
lowing SemEval-2013, we evaluate systems for un-
supervised WSI using two different scores, Fuzzy B-
Cubed (FBC) and Fuzzy Normalized Mutual Infor-
mation (FNMI) (Jurgens and Klapaftis, 2013). FBC
compares two fuzzy covers, clusterings of the data
with partial memberships, on a per-item basis. The
score is sensitive to cluster size skew. FNMI is a
generalization of normalized mutual information for
fuzzy covers. It measures the dependence between
two clusterings independently of cluster sizes. As as
a final, combined score, we compute the harmonic
mean (HM) of FBC and FNMI. To allow direct com-
parison with published results, we use the fuzzy
measures even though we only consider single-sense
instances.

We compare our results to two baselines from
SemEval-2013. “One sense” predicts that all in-
stances have the same sense. “One per instance”
predicts that every instance has its own sense.

5.2 Experimental setup

For ICE-kmeans, we train a 300 dimensional Skip-
gram model on the ukWaC corpus using standard

parameter settings. I.e. context width set to 20 (10
before and 10 after), and 10 negative samples. We
let the model iterate over the training data 9 times
to improve the embeddings. For sense induction, we
sample 1800 instances of very target word at ran-
dom, from the ukWaC corpus. Using more instances
did not improve the results in our experiments, how-
ever, for larger datasets this might not be valid. To
remain general, we opted not to use the POS tags
available in ukWaC, even though using them might
have improved the result. Also, due to the noisy na-
ture of the corpus, we exclude contexts where more
than 30% of the words contain non-alphabetic char-
acters. We cluster the selected instances using k-
means clustering with the heuristic of Pham et al.
(2005) for choosing k. For both ICE-kmeans and
ICE-online, when computing the ICE vectors, the
context width for was set to 20 when using the full
schema, see (6), and 10 otherwise, as the full schema
is less sensitive to irrelevant context words. For the
MSSG part of ICE-online, we use the parameters re-
ported in Neelakantan et al. (2014).

5.3 Current state-of-the-art

We compare the perfomance of our system to that of
state-of-the-art systems for WSI.

First, we compare to the systems with the current
best results on SemEval 2013 task 13 for single-
sense word instances, AI-KU and unimelb. AI-
KU (Baskaya et al., 2013) uses an approach based on
substitute word vectors, inferred using a statistical
language model. AI-KU achieved the highest FNMI
score of the systems submitted to SemEval-2013.
unimelb (Lau et al., 2013), who achieved the high-
est FBC score at SemEval-2013, is a system based
on the topic model Latent Dirichlet Allocation and
its non-parametric equivalent, Hierarchical Dirich-
let Processes. Word instances are clustered based on
the topic distributions inferred by the model.

The related problem of training neural embed-
dings of polysemous words was addressed by Huang
et al. (2012) and subsequently by Neelakantan et
al. (2014) with the model Multi-sense Skip-gram
(MSSG), see Section 2.2. As a second experiment
we extend MSSG for WSI. MSSG has not previ-
ously been used for WSI, however it produces one
word embedding for each word sense, and performs
a simple disambiguation procedure during training.
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MSSG is thus a natural candidate for comparison.
We use the standard variant of MSSG, as it achieved
the best overall results in the original paper Nee-
lakantan et al. (2014). MSSG disambiguates in-
stances by assigning them to the sense with em-
bedding closest to the average context-word vector
of the instance, i.e. using uniform weighting. We
use the parameters reported in Neelakantan et al.
(2014), with the number of senses per word set to
3. MSSG takes a parameter M specifying the num-
ber of words for which multiple sense vectors are
computed. Like in Neelakantan et al. (2014), we set
this parameter to M = 30000. We note that only 43
out of 50 lemmas in SemEval-2013 were in the M
most common words assigned multiple vectors by
the MSSG methods. For the remaining 7 words, a
single sense was predicted. Making sure all relevant
words are included is not trivial in practice, without
knowledge of the test set, as the training time of the
model depends greatly upon M .

6 Results

We report the results of all experiments below.

6.1 Qualitative evaluation of instance vectors

Consider the word “paper”. WordNet (Miller, 1995)
lists seven senses of “paper” as a noun: 1) a medium
for written communication, 2) an essay (especially
one written as an assignment), 3) a scholarly ar-
ticle describing the results of observations or stat-
ing hypotheses, 4) a daily or weekly publication on
folded sheets; contains news and articles and adver-
tisements, 5) a business firm that publishes newspa-
pers, 6) a material made of cellulose pulp derived
mainly from wood or rags or certain grasses, 7) the
physical object that is the product of a newspaper
publisher. Assigning an instance to one of these
senses can be challenging even for a human reader.

The word “paper” is one of the 50 lemmas in
the SemEval-2013 evaluation data with correspond-
ing instances that cover six of the senses listed in
WordNet. In Figure 1, we show context embed-
dings for these instances, plotted using the dimen-
sionality reduction tool t-SNE (Van der Maaten and
Hinton, 2008). Figure 1a represents context embed-
dings computed using a uniform average, and Fig-
ure 1b plots the instance context embeddings com-

puted with using ICE, as described in Section 3.
The colors and markers correspond to gold-standard
WordNet annotations provided by SemEval. The
size of a marker in Figure 1b is proportional to the
average ICE weight of words in the context of an
instance and is indicative of the confidence in the in-
stance vector. A low average ICE weight indicates
that the context is not predictive of the target word.

For the senses, “material”, “scholarly article”,
“newspaper” and “essay”, the instances in Figure 1b
are noticeably more clustered than in Figure 1a. This
shows that the senses of these words are better repre-
sented using ICE weighting for context embeddings
than a uniform schema.

6.2 Semeval WSI results
The results of the WSI evaluation on shared task 13
of SemEval-2013 are presented in Table 1. Here,
our system ICE-kmeans, and our MSSG extension
ICE-online, use the ICE weighting schema, see (6).
MSSG is the system presented in Neelakantan et al.
(2014) without modifications. AI-KU and unimelb
represent the best systems submitted to SemEval-
2013, and AI-KU the current state-of-the-art in WSI.

First, we note that ICE-kmeans achieves the over-
all best results with respect to both scores, corre-
sponding to a relative improvement of 31.1% in
FNMI and 15.9% in FBC. Further we note that the
previous best FBC and FNMI belong to different
methods. This is important since, as with precision
and recall, achieving a high score in one of these
measures can be achieved using a trivial baseline,
see the first two methods in Table 1. Hence, a bet-
ter benchmark, analogue to the F1-score, is the har-
monic mean (HM) of the two complementary scores.
Considering this our results are even more impres-
sive with a 33% relative improvement.

6.3 Semantic and temporal component of ICE
We evaluate the impact of using context embeddings
based on the different weighting schemas defined
in Section 3, over embeddings based on uniform
weights. The results are presented, as harmonic
mean and relative improvement over previous state-
of-the-art AI-KU, in Table 2.

First, we note that both variants of our full sys-
tem (ICE) offers a substantial relative improvement
over AI-KU. We note that the results are always
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(a) Uniform context embeddings (b) Instance-context embeddings (ICE)

Medium

Essay

Scholarly article

Newspaper

Newspaper firm

Material

Figure 1: Context embeddings for instances of the noun “paper” in the SemEval-2013 test data, plotted
using t-SNE. The legend refers to WordNet gold standard embeddings.

Method FBC(%) FNMI(%) HM

One sense 57.0 0 0
One per instance 0 4.8 0

Unimelb 44.1 3.9 7.2
AI-KU 35.1 4.5 8.0
MSSG 45.9 3.7 6.8

ICE-online 48.7 5.5 9.9
ICE-kmeans 51.1 5.9 10.6

Table 1: Results for single-sense instances on the
WSI task of SemEval-2013. HM is the harmonic
mean of FBC and FNMI.

better when using semantic weights, Eq (5), over
uniform, and always best when using the full ICE
schema, Eq (6). These results clearly indicate that
both the semantic and temporal weight components
contribute to a better system. We note that the k-
means systemis consistently better than the online
version. This conforms to expectations as the on-
line system has access to less information at every
cluster assignment. The two top left results (in gray)
correspond to the original MSSG system.

7 Conclusion

We have presented Instance-context embedding
(ICE), a method for embedding word instances and
their context for use in word sense induction (WSI).
At the heart of the system are instance representa-

tions based on neural embeddings of context words,
combined using a novel weighting schema.

We have shown that ICE is sucessful in represen-
tating instances of polysemous words, not just in our
own WSI system, but in an extension of an existing
model as well. In an evaluation on the WSI task
of SemEval-2013, our system beat previous state-
of-the-art methods, achieving a 33% relative im-
provement. Further, we have established the bene-
fits of using ICE over a uniform weighting schema,
by showing empirically that each of its components
contribute to a more accurate system.
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Abstract

Traditional supervised learning approaches to
common NLP tasks depend heavily on man-
ual annotation, which is labor intensive and
time consuming, and often suffer from data s-
parseness. In this paper we show how to mit-
igate the problems in short text classification
(STC) through word embeddings – distribu-
tional representations of words learned from
large unlabeled data. The word embeddings
are trained from the entire English Wikipedia
text. We assume that a short text documen-
t is a specific sample of one distribution in
a Bayesian framework. A Gaussian process
approach is used to model the distribution of
words. The task of classification becomes a
simple problem of selecting the most probable
Gaussian distribution. This approach is com-
pared with those based on the classical maxi-
mum entropy (MaxEnt) model and the Laten-
t Dirichlet Allocation (LDA) approach. Our
approach achieved better performance and al-
so showed advantages in dealing with unseen
words.

1 Introduction

With the boom of e-commerce and social media,
short texts, such as instant messages, microblogs and
product reviews, become more available in diverse
forms than before. These short forms of documents
have become convenient presentations of informa-
tion. It is becoming more and more important to
understand those short text documents and to effi-
ciently detect what users are interested in. Unlike
long documents such as news articles and blogs, it is

hard to measure similarities among these short texts
since they do not share much in common (Phan et
al., 2008). This poses a great challenge to short text
classification (STC).

The task of short text classification can be de-
scribed as follows: given a short text S, the aim is to
identify its target theme T. Several supervised learn-
ing approaches have been proposed for short text
classification. They have been shown to be effective
and yielded good performance. These approaches
are effective because they leverage a large body of
linguistic knowledge and related corpora. However,
the supervised learning approaches depend heavily
on manual annotation, which is labor intensive and
time consuming, and often suffer from data sparse-
ness.

To tackle the above problems, we exploit word
embeddings. A word embedding W:words→Rn is
a distributed representation for a word which is usu-
ally learned from a large corpus. Many researches
have found that the learned word vectors capture lin-
guistic regularities and collapse similar words into
groups (Mikolov et al., 2013b).

In this paper, we apply an information theoretic
approach which assumes that the short text is gener-
ated from a predefined parametric model, and esti-
mate its optimal parameters from training data. We
use Gaussian models to describe the distribution of
words embeddings since it can describe any continu-
ous distribution in common practice. Then, we clas-
sify new short texts using the Bayesian rule to get the
posterior probability (Baker and McCallum, 1998).

The paper is organized as follows. Some related
work is presented in Section 2. The word embedding
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based approach to short text classification is present-
ed in Section 3. The dataset and evaluation metrics
are described in Section 4. Experimental results on
short text classification are given in Section 5. Some
conclusions are drawn in Section 6.

2 Related Work

Learning to identify the theme of a short text doc-
ument has been extensively studied during the past
decade. Because the text length is short, data sparse-
ness is an outstanding issue. Several approaches
have been explored to overcome the data sparseness
in order to get better performance.

Some try to calculate the similarity between short
texts. E.g., (Zelikovitz and Hirsh, 2000) utilizes a
corpus of unlabeled longer documents to compute
the similarity between the test sample and the train-
ing one. To avoid collecting the specific longer
documents, Web search engines (e.g. Google) are
used to measure the similarity score (Bollegala et
al., 2007; Yih and Meek, 2007) . But the efficien-
cy of those approaches is a severe problem because
they repeatedly queried search engines.

Some try to select more useful contextual infor-
mation to expand and enrich the original text, e.g.
using large unlabeled corpora, such as Wikipedi-
a (Banerjee et al., 2007) and WordNet (Hu et al.,
2009). A disadvantage of these approaches is that
their adaptability would be an issue for certain lan-
guages because some of those external resources
may be unavailable. Another approach is to integrate
the context data with a set of hidden topics discov-
ered from related corpora. E.g., (Phan et al., 2008;
Chen et al., 2011) manually built a large and rich u-
niversal dataset, and derived a set of hidden topics
through topic models such as Latent Dirichlet Allo-
cation (LDA) (Blei et al., 2003) from these corpora.
This approach has achieved satisfactory results, but
it requires manual collection of the corpora. These
researches have shown good improvement, but they
rely too much on external resources which are diffi-
cult to get in some cases.

With the recent revival of interest in deep neu-
ral networks, many researchers have concentrated
on learning a real-valued vector representation in a
continuous space, where similar words are likely to
have similar vectors. This is called word embedding

(Turian et al., 2010). In fact, the learned word vec-
tors capture linguistic regularities in a very simple
way. In the embedding space, the vector offsets can
measure specific relationship, such as the offset be-
tween vec (“King”) and vec (“Man”) is very close
to that between vec (“Woman”) and vec (“Queen”)
(Mikolov et al., 2013b).

3 Methodology

This section describes the proposed Gaussian clas-
sification approaches that use the learned word em-
beddings to model a classifier for the task of short
text classification.

3.1 Word Representation

To get word representation, each input word token
is transformed into a vector by looking up word em-
beddings learned from language model (Zeng et al.,
2014). Distributed representations of words in word
embedding space are shown to explicitly encode
many syntactic and semantic regularities. Word em-
beddings have been used to help to achieve bet-
ter performance in several NLP tasks (Collobert et
al., 2011). There are some free tools for training
word embeddings (Turian et al., 2010). We direct-
ly utilize Word2Vec tool provided by Mikolov et al.
(Mikolov et al., 2013a) to train word embeddings on
the Wikipedia corpus.

3.2 Our Approach

As mentioned in Section 3.1, all of the words are
represented as word vectors. Word embeddings can
be taken as an observation from an unsupervised
generative model. We assume that a short text dj

is generated by theme tk (parameterized by λk) ac-
cording to the domain prior p(tk|λk). Similar to lan-
guage modeling, we assume that a word embedding
wi

j for the i-th word in short text dj depends only
on the preceding words. Under this assumption, the
probability of a document given theme tk is,

p(dj |tk;λk) =
|dj |∏
i=1

p(wi
j |tk;λk;wm

j ,m < i) (1)

Next we assume that each word in a document is
independent of its context, which is the same as that
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for uni-gram language model. Then we rewrite e-
quation 1 as

p(dj |tk;λk) =
|dj |∏
i=1

p(wi
j |tk;λk) (2)

Gaussian model is used to describe the distribu-
tion. We use the training data to estimate the param-
eters λk = {µk,Σk}, where µk and Σk denote the
mean vector and covariance matrix. We also assume
that the covariance matrix of Gaussian is diagonal.
λk can be estimated through Maximum Likelihood
(ML) estimation as λ̂k:

µ̂k =
1
|wk|

|wk|∑
i=1

wi
k (3)

Σ̂k =
1
|wk|

|wk|∑
i=1

(wi
k − µ̂k)(wi

k − µ̂k)T (4)

where |wk| is the total number of words in theme tk
on the training set, wi

k is the i-th word.
Given estimates of the model parameters, new test

data can be classified using the Bayesian theorem.
A new short test text can be assigned the most likely
theme as follows,

p(tk|dj ; λ̂k) =
p(tk|λ̂k)

∏|dj |
i=1 p(w

i
j |tk; λ̂k)

p(dj |λ̂k)
(5)

A uniform prior is used to choose the most proba-
ble theme which minimizes cross entropy on the test
document. In equation 5, we drop the denominator
(which is the same constant across all domains), and
take the log of the entire expression. This results in

|dj |∑
i=1

log(p(wi
j |tk; λ̂k)) (6)

4 Dataset and Evaluation Metrics

To evaluate the performance of the above approach,
we use the Web snippet dataset used in (Phan et al.,
2008; Chen et al., 2011; Sun, 2012). The dataset
contains 10,060 training and 2,280 test snippets of
8 domains, as shown in Table 1. The snippets of
search results are (Phan et al., 2008), who collect-
ed various phrases belonging to different domains

Domain Training data Test data
business 1,200 300
computer 1,200 300

cul.-arts-ent. 1,880 330
engineering 220 150

health 880 300
politics-soc. 1,200 300

sports 1,120 300
edu.-sci. 2,360 300

Total 10,060 2,280

Table 1: Statistics of the Web Snippets data

Original After stemming
Training Vocabulary 26,265 21,596

Test Vocabulary 10,037 8,200
Unseen Words 4,378 3,677
Difference (%) 43.62 44.84

Table 2: The number of unseen words

to query the web search engine (Google) and select-
ed the top 20 or 30 snippets from the search results.
Different phrases for the training and test data were
used to make sure that test data were difficult to clas-
sify (Phan et al., 2008). The dataset has an average
of 18 words in each snippet. Column 2 of Table 2
shows that the test data include about 4,378 words
(about 43.62%) which do not appear in the training
data. Column 3 shows the sizes of unseen words af-
ter Porter stemming (Sparck Jones, 1997). This table
shows that there are more than 40% unseen words in
the test data.

We downloaded the English Wikipedia dump of
October 8, 2014, 1 which was used for training
word embeddings. After removing all the non-
roman characters and MediaWiki markups, we had
14,941,377 articles. The hyper-parameters used in
Word2Vec are the same as that in (Mikolov et al.,
2013a). To compare our results with the previous
studies, we adopt accuracy as the performance met-
ric, which is the proportion of the true results in the
test output.

1Available at http://download.wikipedia.com/enwiki/.
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Method Feature Classifier Acc (%)

1
words

(TF*IDF)
MaxEnt 65.75

2
words

(TF*IDF)
+topics

MaxEnt 82.18

Proposed

words
(word

embeddings,
400

dimensions)

Our
Method

85.48

Table 3: Short Text Classification Performance

5 Experiments

We conducted three sets of experiments. In the first
set of experiments, we compare the performance of
our approach with the previous studies. The second
is to test the capability of our approach in dealing
with the unseen words using different size of train-
ing data. The third is to investigate the effect of the
word representation dimension on STC.

5.1 Comparison with Previous Work

For comparison, we select two approaches from
(Phan et al., 2008) and the results are given in Ta-
ble 3. The first method took the short text document
as a bag of words (Salton, 1989) and used classical
TF/IDF to represent the contribution of each term to
its theme. In the second method, topic models are
estimated from related corpus using LDA, then top-
ics of the short text are inferred from those models.
Thus, the features in method 2 contain topic distribu-
tions and bag-of-word vectors. The two approaches
employ MaxEnt classifiers.

Table 3 illustrates the results for the three ap-
proaches. The best result is obtained from our pro-
posed method with an absolute gain of 3.3 percent.
It is clear that using word embeddings which were
trained from universal dataset mitigated the problem
of unseen words. Unlike the simple representations
based on word frequencies (with some simplifica-
tions) (Clinchant and Perronnin, 2013) used in the
previous studies, an important advantage is that our
approach makes better use of the semantics from all
the words in the short text document.

57.11

62.28 63.2 63.6 63.95 65.04 65.39 66.1 65.7 65.75
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Figure 1: Evaluation with Different Sizes of Train-
ing Data.

5.2 Dealing with Unseen Words

To validate the importance and influence of the size
of training data in our approach, we increase the size
of training data from 1,000 to 10,000 and measure
the performance on the same test set. Since less
training data will lead to more unseen words in the
test phase, this experiment shows the capability in
coping with unseen words, as shown the lines of O-
riginal and After Stemming in Figure 1. We directly
cited the results of (Phan et al., 2008) because we
could not crawl the related corpora which contained
3.5GB Wikipedia documents to re-implement their
work.

The results of this experiment are shown in Fig-
ure 1. It can be seen that our approach based on the
Gaussian process with word embeddings achieved
good performance using relatively small data and re-
duced the cost of collecting and annotating training
data.

5.3 The Effect of Word Representation
Dimensions on STC

In our method, there is a free parameter in building
word embeddings, i.e., the dimension of word rep-
resentations. We empirically show the effect on the
test data.

Figure 2 presents the short text classification
performance obtained with different dimensions of
word embeddings. In this section, we used all the
training data as our experimental data. The best per-
formance is about 85.83% when the size of word
embedding space is 550 dimensions. The system
achieves 7.23% absolute improvement when the di-
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Figure 2: The effect of word embedding dimensions
on STC performance.

mension of word embeddings increases from 50 to
550.

6 Conclusion

In this paper, we proposed to use Gaussian pro-
cess with continuous word embeddings for short tex-
t classification. The experimental results show that
our approach is effective and that the word embed-
dings capture syntactic and semantic relationships
between words can make good contributions to han-
dle unseen data. For future work, we would like to
investigate how continuous word embeddings will
work on other genres of short texts like microblogs
or on conventional (long) texts, in topic and senti-
ment classification.
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Abstract

Up to now, relation extraction systems have
made extensive use of features generated by
linguistic analysis modules. Errors in these
features lead to errors of relation detection and
classification. In this work, we depart from
these traditional approaches with complicated
feature engineering by introducing a convolu-
tional neural network for relation extraction
that automatically learns features from sen-
tences and minimizes the dependence on ex-
ternal toolkits and resources. Our model takes
advantages of multiple window sizes for fil-
ters and pre-trained word embeddings as an
initializer on a non-static architecture to im-
prove the performance. We emphasize the re-
lation extraction problem with an unbalanced
corpus. The experimental results show that
our system significantly outperforms not only
the best baseline systems for relation extrac-
tion but also the state-of-the-art systems for
relation classification.

1 Introduction
Learning to extract semantic relations between en-
tity pairs from text plays a vital role in information
extraction, knowledge base population and question
answering, to name a few. The relation extraction
(RE) task can be divided into two steps: detecting
if a relation utterance corresponding to some entity
mention pair of interest in the same sentence rep-
resents some relation and classifying the detected
relation mentions into some predefined classes. If
we only need to categorize the given relation men-
tions that are known to express some expected rela-
tion (perfect detection), we are left with the relation

classification (RC) task. One variation of relation
classification is that one might have non-relation ex-
amples in the dataset but the number of those is com-
parable to the number of the other examples. The
non-relation examples, therefore, can be treated as a
usual relation class. Relation extraction, on the other
hand, often comes with a tremendously unbalanced
dataset where the number of the non-relation exam-
ples far exceeds the others, making relation extrac-
tion more challenging but more practical than rela-
tion classification. Our present work focuses on the
relation extraction task with an unbalanced corpus.

In the last decade, the relation extraction litera-
ture has been dominated by two methods, distin-
guished by the nature of the relation representa-
tion: the feature-based method (Kambhatla, 2004;
Boschee et al., 2005; Zhou et al., 2005; Grishman
et al., 2005; Jiang and Zhai, 2007; Chan and Roth,
2010; Sun et al., 2011; Nguyen and Grishman, 2014)
and the kernel-based method (Zelenko et al., 2003;
Culotta and Sorensen, 2004; Bunescu and Mooney,
2005a; Bunescu and Mooney, 2005b; Zhang et al.,
2006; Zhou et al., 2007; Qian et al., 2008; Nguyen
et al., 2009; Sun and Han, 2014). The common char-
acteristic of these methods is the leverage of a large
body of linguistic analysis and knowledge resources
to transform relation mentions into some rich rep-
resentation to be used by some statistical classifier
such as Support Vector Machines (SVM) or Max-
imum Entropy (MaxEnt). The linguistic analysis
pipeline which is hand-designed itself includes to-
kenization, part of speech tagging, chunking, name
tagging as well as parsing, often performed by ex-
isting natural language processing (NLP) modules.
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While these methods allow the RE systems to inherit
the knowledge discovered by the NLP community
for the pre-processing tasks, they might be subject
to the error propagation introduced by the imper-
fect quality of the supervised NLP toolkits. For in-
stance, all the tasks mentioned in the pipeline above
are known to suffer from a performance loss when
they are applied to out-of-domain data (Blitzer et
al., 2006; Daumé III, 2007; McClosky et al., 2010),
causing the collapse of the RE systems based on
them. In this paper, we target an independent RE
system that both avoids complicated feature engi-
neering and minimizes the reliance on the super-
vised NLP modules for features, potentially allevi-
ating the error propagation and advancing our per-
formance in this area.

To be concrete, our relation extraction system
is provided only with raw sentences marked with
the positions of the two entities of interest1. The
only elements we can derive from this structure
are the words, the n-grams and their positions in
the sentences, suggesting a paradigm in which re-
lation mentions are represented by features that de-
pend on these elements. Eventually, word embed-
dings that are capable of capturing latent seman-
tic and syntactic properties of words (Bengio et al.,
2001; Mnih and Hinton, 2007; Collobert and We-
ston, 2008; Mnih and Hinton, 2009; Turian et al.,
2010; Mikolov et al., 2013) and convolutional neural
networks (CNNs) that are able to recognize specific
classes of n-gram and induce more abstract repre-
sentations (Kalchbrenner et al., 2014) are a natural
combination one should apply to obtain more effec-
tive representations for RE in this setting.

Convolutional neural networks (dating back to the
1980s) are a type of feed-forward artificial neural
networks whose layers are formed by a convolution
operation followed by a pooling operation (LeCun et
al., 1988; Kalchbrenner et al., 2014). Recently, with
the emerging interests of the community in deep
learning, CNNs have been revived and effectively
applied in various NLP tasks, including semantic
parsing (Yih et al., 2014), search query retrieval
(Shen et al., 2014), sentence modeling and clas-

1For evaluation purpose, we assume the positions of the two
entities of interest in the sentence like most previous studies in
this area (listed above). These are the only external features we
need to achieve an end-to-end relation extractor.

sification (Kalchbrenner et al., 2014; Kim, 2014),
name tagging and semantic role labeling (Collobert
et al., 2011). For relation classification and extrac-
tion, there are two very recent works on CNNs for
relation classification (Liu et al., 2013)2 and (Zeng
et al., 2014); however, to the best of our knowledge,
there has been no work on employing CNNs for re-
lation extraction so far. This paper is the first attempt
to fill in that gap and serves as a baseline for future
research in this area.

Our convolutional neural network is built upon
that of Kalchbrenner et al. (2014) and Kim (2014)
which are originally proposed for sentence classifi-
cation and modeling. We adapt the network for re-
lation extraction by introducing the position embed-
dings to encode the relative distances of the words
in the sentence to the two entities of interest. Com-
pared to the models in Liu et al. (2013) and Zeng
et al. (2014) for relation classification that apply a
single window size, our model for relation extrac-
tion incorporates various window sizes for convolu-
tional filters, allowing the network to capture wider
ranges of n-grams to be helpful for relation extrac-
tion. In addition, rather than initializing the word
embeddings randomly as do Liu et al. (2013) and
fixing the randomly generated position embeddings
during training as do Zeng et al. (2014), we use pre-
trained word embeddings for initialization and op-
timize both word embeddings and position embed-
dings as model parameters. More importantly, rather
than using exterior features (either from human an-
notation or other pre-processing modules) to enrich
the representation as do Liu et al. (2013) and Zeng et
al. (2014), our model (adapted for RC where entity
heads are given) avoids usage of manual linguistic
resources and supervised NLP toolkits constructed
externally, utilizing word embeddings that can be
trained automatically in an unsupervised framework
as the only external resource for the whole system.

We explore different model architectures system-
atically and demonstrate that the best model perfor-
mance is achieved when multiple window sizes are
implemented and the word embeddings, once initial-
ized by some “universal” embeddings, are allowed
to vary during the optimization process to reach an

2The title of the paper (Liu et al., 2013) on relation extrac-
tion is misleading since the authors actually do relation classifi-
cation, according to the experimental description.
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effective state for relation extraction. We evaluate
our models on both relation classification and re-
lation extraction tasks. For relation classification,
experiments show that our model (without any ex-
ternal features and resources) outperforms the state-
of-the-art models whether the external features are
included in these models or not. For relation extrac-
tion, our model is significantly better than the base-
line models that use the words and the embeddings
themselves as the features. In the following, we dis-
cuss related work in Section 2 and present our model
in Section 3. We detail an extensive evaluation in
Section 4 and finally conclude in Section 5.

2 Related Work

As our present work focuses on the supervised
framework for relation extraction, we concentrate on
the supervised systems in this section. Besides the
supervised systems (either feature-based or kernel-
based) mentioned above, some recent systems have
employed the distant supervision (DS) approach for
relation extraction. This approach is essentially sim-
ilar to the traditional systems in representing relation
mentions but attempts to generate training data au-
tomatically by leveraging large knowledge bases of
facts and corpus (Mintz et al., 2009; Riedel et al.,
2010; Hoffmann et al., 2011; Surdeanu et al., 2012).

Regarding neural networks, their first application
to NLP is language modeling which has been use-
ful to learn distributed representations (embeddings)
for words (Bengio et al., 2001; Mnih and Hinton,
2007; Collobert and Weston, 2008; Mnih and Hin-
ton, 2009; Turian et al., 2010; Mikolov et al., 2013).
These word embeddings have opened a new direc-
tion for many other NLP tasks grounded on neu-
ral networks. Some of them are mentioned above.
Other than that, a class of recursive neural networks
(RNNs) and neural tensor networks are proposed for
paraphrase detection (Socher et al., 2011), parsing
(Socher et al., 2013a), sentiment analysis (Socher et
al., 2013b), knowledge base completion (Socher et
al., 2013c), question answering (Mohit et al., 2014)
etc. Among these RNN systems, the study that is
most related to our relation extraction problem is
Socher et al. (2012) that learns compositional vector
representations for phrases and sentences through
syntactic parse trees and applies these represen-
tations for relation classification. However, this

method inherently requires syntactic parse trees in
contrast to our target of avoiding use of any external
features and resources for RC.

3 Convolutional Neural Network for
Relation Extraction

Our convolutional neural network for relation ex-
traction consists of four main layers: (i) the look-up
tables to encode words in sentences by real-valued
vectors, (ii) the convolutional layer to recognize n-
grams, (iii) the pooling layer to determine the most
relevant features and (iv) a logistic regression layer
(a fully connected neural network with a softmax at
the end) to perform classification (Collobert et al.,
2011; Kim, 2014; Kalchbrenner et al., 2014). Fig-
ure 1 gives an overview of the network.

3.1 Word Representation
The input to the CNN for relation extraction consists
of sentences marked with the two entity mentions of
interest. As CNNs can only work with fixed length
inputs, we compute the maximal separation between
entity mentions linked by a relation and choose an
input width greater than this distance. We insure
that every input (relation mention) has this length
by trimming longer sentences and padding shorter
sentences with a special token.

Let n be the length of the relation mentions and
x = [x1, x2, . . . , xn] be some relation mention
where xi is the i-th word in the mention. Also, let
xi1 and xi2 be the two heads of the two entity men-
tions of interest . Before entering the network, each
word xi is first transformed into a vector ei by look-
ing up the word embedding table W that can be ini-
tialized either by a random process or by some pre-
trained word embeddings. Besides, in order to em-
bed the positions of the two entity heads as well as
the other words in the relation mention into the rep-
resentation, for each word xi, its relative distances to
the two entity heads i−i1 and i−i2 are also mapped
into real-value vectors di1 and di2 respectively using
a position embedding table D (initialized randomly)
(Collobert et al., 2011; Liu et al., 2013; Zeng et al.,
2014). Note that the relative distances only range
from −n + 1 to n − 1 so the position embedding
matrix D has size (2n− 1)×md (md is a hyperpa-
rameter indicating the dimensionality of the position
embedding vectors). Finally, the word embeddings
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In the morning, the <e1>President</e1> traveled to <e2>Detroit</e2> 
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Figure 1: Convolutional Neural Network for Relation Extraction.

ei and the position embeddings d1 and d2 are con-
catenated into a single vector xi = [ei, di1 , di2 ]

> to
represent the word xi. As a result, the original sen-
tence x can now be viewed as a matrix x of size
(me + 2md)× n where me is the dimensionality of
the word embedding vectors.

x = [x1,x2, . . . ,xn]

3.2 Convolution
In the next step, the matrix x representing the in-
put relation mention is fed into the convolutional
layer to extract higher level features. Given a
widow size w, a filter is seen as a weight matrix
f = [f1, f2, . . . , fw] (fi is a column vector of size
me + 2md). The core of this layer is obtained from
the application of the convolutional operator on the
two matrices x and f to produce a score sequence
s = [s1, s2, . . . , sn−w+1]:

si = g(
w−1∑
j=0

f>j+1x
>
j+i + b)

where b is a bias term and g is some non-linear
function. This process can then be replicated for var-
ious filters with different window sizes to increase
the n-gram coverage of the model.

For relation extraction, we call the n-grams ac-
companied with relative positions of its words the
augmented n-grams. It is instructive to think about
the filter f as representing some hidden class of the
augmented n-grams and the scores si as measuring

the possibility the augmented n-gram at position i
belongs to the corresponding hidden class (although
these scores are not probabilities at all). The trained
weights of the filter f would then amount to a feature
detector that learns to recognize the hidden class of
the augmented n-grams (Kalchbrenner et al., 2014).

3.3 Pooling
The rationale of the pooling layer is to further ab-
stract the features generated from the convolutional
layer by aggregating the scores for each filter to in-
troduce the invariance to the absolute positions but
preserve the relative positions of the n-grams be-
tween themselves and the entity heads at the same
time. The popular aggregating function is max as
it bears responsibility for identifying the most im-
portant or relevant features from the score sequence.
Concretely, for each filter f , its score sequence s is
passed through the max function to produce a single
number: pf = max{s} = max{s1, s2, . . . sn−w+1}
which can be interpreted as estimating the possibil-
ity some augmented n-gram of the hidden class of f
appears in the context.

3.4 Regularization and Classification
In the final step, the pooling scores for every filter
are concatenated into a single feature vector z =
[p1, p2, . . . , pm] to represent the relation mention.
Here, m is the number of filters in the model and
pi is the pooling score of the i-th filter. Before ac-
tually applying this feature vector, following (Kim,
2014; Hinton et al., 2012), we execute a dropout for
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regularization by randomly setting to zero a propor-
tion ρ of the elements of the feature vector3 z to pro-
duce the vector zd. The dropout vector zd is then
fed into a fully connected layer of standard neural
networks followed by a softmax layer in the end to
perform classification. The fully connected layer in-
duces a weight matrix C as model parameters. At
test time, the unseen relation mentions are scored
using the feature vectors that are not dropped out.
We also rescale the weights whose l2-norms exceed
a hyperparameter as Kim (2014).

Overall, the parameters for the presented CNN
are: the word embedding matrix W, the posi-
tion embedding matrix D, the m filter matrices,
the weight matrix C for the fully connected layer.
The gradients are computed using back-propagation
while training is done via stochastic gradient descent
with shuffled mini-batches and the AdaDelta update
rule (Zeiler, 2012; Kim, 2014).

4 Experiments

4.1 Hyperparameters and Resources
For all the experiments below, we use: tanh for
the non-linear function, 150 filters for each window
size in the model and position embedding vectors
with dimensionality of md = 504. Regarding the
other parameters, we use the same values as do Kim
(2014), i.e, the dropout rate ρ = 0.5, the mini-batch
size of 50, the hyperparameter for the l2 of 3.

Finally, we utilize the pre-trained word embed-
dings word2vec from Mikolov et al. (2013) which
have dimensionality of me = 300 and are trained on
100 billion words of Google News using the contin-
uous bag-of-words architecture. These embeddings
are publicly available here5. Vectors for the words
not included in the pre-trained embeddings are ini-
tialized randomly. Besides the word embeddings
word2vec, the model does not use any other NLP
toolkits or resources.

4.2 Datasets
We evaluate our models on two datasets: the
SemEval-2010 Task 8 dataset (Hendrickx et al.,
2010) for relation classification and the ACE 2005

3Following the Bernoulli distribution
4These values produce the best performance during our ex-

perimental process.
5https://code.google.com/p/word2vec/

dataset for relation extraction.

ACE 2005 (87,512) SemEval 2010 (10,717)
Relation % Relation %
ORG-AFF 2.8 Cause-Effect 12.4
PER-SOC 1.2 Component-Whole 11.7
ART 1.0 Entity-Destination 10.6
PART-WHOLE 1.4 Entity-Origin 9.1
GEN-AFF 1.1 Product-Producer 8.8
PHYS 2.1 Member-Collection 8.6
Other 90.4 Message-Topic 8.4

Content-Container 6.8
Instrument-Agency 6.2
Other 17.4

Table 1: ACE 2005 and SemEval 2010 Relation Class
Distributions

The SemEval dataset can be downloaded here6

and contains 10,717 annotated examples, including
8,000 examples for training and 2,717 examples for
testing. Each example is a sentence annotated for
a pair of entities of interest and the corresponding
relation class for this entity pair. There are 9
ordered relationships (with two directions) and
an undirected Other class, resulting in 19 classes.
A pair is counted as correct if the order of the
entities in the relationship is correct. For the ACE
2005 dataset, documents are annotated for 6 major
relation classes and 7 entity types. In order to
generate the non-relation examples or the examples
for the Other class, we collect every pair of entity
mentions within a single sentence and not included
in the annotated relation set. To reduce the noise,
we truncate the generated dataset by removing all
the examples whose distances between the two
entity heads are greater than 15. This results in a
considerably unbalanced dataset of 8,365 positive
examples of the 6 annotated relation classes and
79,147 negative examples of the class Other. The
distributions of the relation classes on the two
datasets are shown in Table 1. As we can see,
the ACE dataset is much more biased toward the
Other class than the SemEval dataset and thus more
appropriate for relation extraction experiments.

4.3 Evaluation of Model Architectures
We investigate the effectiveness of different win-
dow sizes of filters by running the proposed CNN

6http://docs.google.com/View?id=dfvxd49s 36c28v9pmw
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nonstatic.rand static.word2vec nonstatic.word2vec
# window sizes P R F P R F P R F
1 2 69.56 41.64 52.04 74.66 41.03 52.90 72.74 49.49 58.87
2 3 68.47 42.73 52.57 74.19 42.16 53.73 72.50 50.75 59.66
3 4 68.17 43.39 52.94 73.60 41.90 53.35 72.56 49.81 58.97
4 5 66.83 43.46 52.55 73.52 42.60 53.89 71.70 51.08 59.57
5 4-5 66.18 46.12 54.25 72.69 45.23 55.71 71.88 52.36 60.50
6 3-4-5 67.54 45.73 54.43 71.99 46.85 56.73 71.21 53.24 60.86
7 2-3-4-5 66.42 47.20 55.12 72.60 46.77 56.85 71.25 53.91 61.32

Table 2: System Performance on various window size combinations and architectures

model on window sizes of 2, 3, 4 and 5. To un-
derstand the behavior of the model on multiple win-
dow sizes, we further test it on the following win-
dow size combinations: (4,5), (3,4,5) and (2,3,4,5).
In each of these window size configurations, we
evaluate the system on three different scenarios:
(i) the word embeddings and the position embed-
dings are randomly initialized and optimized dur-
ing the training process (denoted by nonstatic.rand),
(ii) the word embeddings are initialized by the pre-
trained word embeddings; the position embeddings
are initialized randomly and the two embeddings
are kept unchanged during the training (denoted by
static.word2vec), (iii) the two embeddings are ini-
tialized as in case (ii) but they are optimized as
model parameters when the model is trained (de-
noted by nonstatic.word2vec). These experiments
are carried out for relation extraction on the ACE
2005 dataset via 5-fold cross validation. Table 2
presents the system performance on Precision (P),
Recall (R) and F1 score (F).

The key observations from the table are7:
(i) From rows 1, 2, 3, 4, we see that evaluating

window sizes individually is quite intricate. It is un-
clear which window size is the best size for CNNs
on relation extraction. For instance, on the non-
static.rand mode, the window size 4 seems to out-
perform the others while on the other modes, the
window sizes 3 and 5 turn out to be better. Besides,
the performance gaps between the window sizes are
small, making it hard to draw a conclusive judge-
ment. In any case, the window size 2 seems to be
the worst, suggesting that the 2-grams might be less
informative than the others on representing relation
mentions for CNNs on this dataset.

7The statements at points (ii) and (iii) are significant at con-
fidence levels ≥ 95%.

(ii) While the results on evaluating single window
sizes are hard to analyze, the results for multiple
window sizes are quite clear and conclusive. Mov-
ing from single window sizes of 2, 3, 4 or 5 (rows 1,
2, 3 and 4 respectively) to the configuration with two
window sizes 4 and 5 (row 5) gives us consistent im-
provements on all the model architectures. The per-
formance is then consistently enhanced when more
window sizes are included, resulting in the best per-
formance when all the window sizes 2, 3, 4 and 5 are
employed. This demonstrates the advantages of the
models with multiple window sizes over the single
window size models in Liu et al. (2013) and Zeng et
al. (2014).

(iii) Regarding different model architectures, the
picture is even clearer. No matter which window
size configuration is applied, we constantly see the
nonstatic.word2vec architecture performs most ef-
fectively, followed by the static.word2vect setting
which is in turn followed by the nonstatic.rand
model. This suggests the undeniable benefits of
initializing the word embeddings by some “univer-
sal” pre-trained values and updating the embeddings
to reflex RE specific embeddings when training the
models (Collobert et al., 2011; Kim, 2014). For
the next experiments, we always use all the window
sizes 2, 3, 4 and 5 with the nonstatic.word2vec ar-
chitecture.

4.4 Relation Extraction Experiment
We compare our system with the traditional feature-
based relation extraction systems when these system
are only allowed to use the same information and re-
sources as our systems, i.e, the words in the relation
mentions, the positions of the two entity heads and
the word embeddings. Given the sentences and the
positions of the two entity heads, the features that
the state-of-the-art feature-based systems extract in-
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clude: the heads of the two entity mentions; the
words in the context before mention 1; after men-
tion 2 and between two mentions; the bigrams, the
word sequences between two entities, the order of
two mentions, the number of words between two
mentions (Zhou et al., 2005; Jiang and Zhai, 2007;
Sun et al., 2011). The feature-based system using
this feature set is called Words. Armed with the
word embeddings, one can further introduce these
embeddings into the head words or the words in the
context as additional features (Nguyen and Grish-
man, 2014). We call the system Words augmented
with the embeddings for the two heads Words-HM-
Wed and Words augmented with the embeddings for
words in the contexts Words-WC-Wed. We apply
the MaxEnt framework with L2 regularization in the
Mallet toolkit8 to train these feature-based models
(as (Jiang and Zhai, 2007; Sun et al., 2011; Nguyen
and Grishman, 2014)). Table 3 shows the perfor-
mance of the three baseline systems and our pro-
posed CNN via 5-fold cross validation on the ACE
2005 dataset.

System P R F
Words 54.95 43.73 48.69
Words-WC-Wed 50.10 44.47 47.11
Words-HM-Wed 57.01 55.74 56.36
Our CNN 71.25 53.91 61.32

Table 3: Performance of Relation Extraction Systems

The first observation is that adding the word em-
beddings to the words in the context hurt the per-
formance of the feature-based systems while aug-
menting the heads of the entities with word embed-
dings significantly improves the feature-based sys-
tems. This is consistent with the results reported
by Nguyen and Grishman (2014) and demonstrates
that the ability to wisely pick the words for embed-
dings and avoid embeddings on specific locations
is crucial to the feature-based systems. More im-
portantly, our proposed CNN significantly outper-
forms all the baseline models at the confidence lev-
els ≥ 95%, an improvement of 4.96% over the best
feature-based system Words-HM-Wed (Nguyen and
Grishman, 2014). This result indicates that CNNs
are a better way to employ word embeddings for re-
lation extraction.

8http://mallet.cs.umass.edu/

Remember that although the traditional systems
can achieve a performance greater than 72% on the
ACE dataset (Qian et al., 2008; Sun et al., 2011),
they come at the expense of elaborate feature en-
gineering as well as much more expensive feature
extraction. In particular, the feature extractors of
these feature-based systems require: (i) the perfect
entity and mention type information hand-labeled
laboriously by human annotators; (ii) the extensive
usage of the existing supervised NLP toolkits and
resources (constituent and dependency parsers, dic-
tionaries, gazetteers etc) which might be unavail-
able for various domains in reality. The absence
of the perfect (hand-annotated) entity and mention
type information (i.e point (i) above) greatly impairs
these feature-based systems’ performance. For in-
stance, both Plank and Moschitti (2013) and Nguyen
and Grishman (2014) report a performance less than
60% on the ACE 2005 dataset when the perfect
entity type and mention type features are not em-
ployed although the other features with extensive
feature engineering (i.e point (ii) above) are still
included. As a result, in a more realistic setting
where hand-annotated features are prohibitive, the
proposed CNN requires much less feature engineer-
ing and resources but still performs better than the
traditional feature-based systems.

4.5 Relation Classification Experiment
In order to further verify the effectiveness of the sys-
tem, we test the system on the relation classifica-
tion task with the SemEval 2010 dataset and com-
pare the results with the state-of-the-art systems in
this area. Table 4 describes the performance of var-
ious traditional systems that are based on classifiers
such as MaxEnt and SVM with series of supervised
and manual features9(Hendrickx et al., 2010) as well
as the more recent systems based on convolutional
neural networks (Zeng et al., 2014) (O-CNN), re-
cursive neural networks (RNN), matrix-vector re-
cursive neural networks (MVRNN) (Socher et al.,
2012) or log-quadratic factor-based compositional
embedding model (FCM) (Yu et al., 2014)10.

As we can see, among the systems not using any

9i.e the features extracted from supervised pre-processing
NLP modules and manual resources

10These are the macro-averaged F1-scores, computed by the
officially provided scorer.
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Classifier Feature Sets F
SVM POS, WordNet, morphological

features, thesauri, Google n-
grams

77.6

MaxEnt POS, WordNet, morphological
features, noun compound sys-
tem, thesauri, Google n-grams

77.6

SVM POS, WordNet, prefixes and
other morphological fea-
tures, dependency parse,
Levin classes, PropBank,
FrameNet, NomLex-Plus,
Google n-grams, paraphrases,
TextRunner

82.2

RNN - 74.8
RNN POS, name tagging, WordNet 77.6
MVRNN - 79.1
MVRNN POS, name tagging, WordNet 82.4
O-CNN - 78.9
O-CNN WordNet 82.7
FCM - 80.6
FCM dependency parse, name tag-

ging
83.0

Our CNN - 82.8
Table 4: Performance of Relation Classification Systems

supervised and manual features (i.e, POS, WordNet,
name tagging, dependency parse, patterns etc), our
system significantly outperforms the state-of-the-art
system FCM (80.6%) (Yu et al., 2014) with an im-
provement of 2.2%. More interestingly, even with-
out supervised and manual features, our system can
still work comparably to the other systems utilizing
these features as the vital components. For instance,
the supervised features (dependency parse and name
tagging) are crucial to FCM (Yu et al., 2014) to sig-
nificantly improve its performance. We attribute our
performance advantage over the closely-related sys-
tem O-CNN (Zeng et al., 2014) to the multiple win-
dow sizes, the optimization of the position embed-
dings during training and possibly the superiority of
the embeddings word2vec we use.

4.6 Impact of Unbalanced Dataset
Shifting from relation classification to relation ex-
traction with an unbalanced corpus, we witness a
large performance gap as described above. In this
section, we study the impact of the unbalanced cor-
pus on the performance of relation extractors for
both convolutional neural networks and traditional
feature-based approaches (Words and Words-HM-
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Figure 2: F measures vs positive/negative ratios
Wed). In particular, we vary the ratio of positive (true
relations) and negative (the class Other) examples in
the ACE 2005 dataset and see how the system per-
formance responds to this variation. Figure 2 shows
the curves. This is a 5-fold cross validation experi-
ment and all the comparisons are significant at con-
fidence levels ≥ 95%.

From the figure, we see that all the models im-
prove constantly with the increase of the ratio of the
positive and negative examples. The performance
peaks with an improvement of about 20% for all
models when the number of examples of the class
Other is small relative to the others. In other words,
the systems attain their best performance when rela-
tion extraction is reduced to the relation classifica-
tion problem, suggesting that relation extraction is
much more challenging than relation classification.
Finally, for all the ratio values, we consistently see
that the convolutional neural network is superior to
the others, once again confirming its advantages.

5 Conclusion
We present a CNN for relation extraction that em-
phasizes an unbalanced corpus and minimizes us-
age of external supervised NLP toolkits for features.
The network uses multiple window sizes for filters,
position embeddings for encoding relative distances
and pre-trained word embeddings for initialization
in a non-static architecture. The experimental results
demonstrate the effectiveness of the proposed CNN
on both RC and RE. Our future work includes: (i)
to enrich the representation of CNNs with more fea-
tures for RE, (ii) to study the applications of CNNs
on other related tasks, and (iii) to examine other neu-
ral network models for RE.
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Abstract 

We present an ad hoc concept modeling approach using 
distributional semantic models to identify fine-grained 
entities and their relations in an online search setting. Con-
cepts are generated from user-defined seed terms, distribu-
tional evidence, and a relational model over concept 
distributions. A dimensional indexing model is used for 
efficient aggregation of distributional, syntactic, and rela-
tional evidence. The proposed semi-supervised model al-
lows concepts to be defined and related at varying levels of 
granularity and scope. Qualitative evaluations on medical 
records, intelligence documents, and open domain web 
data demonstrate the efficacy of our approach. 

1 Introduction 

Knowledge discovery could be facilitated with the 
ability to define concepts ad hoc, and from these con-
cepts identify semantically related named entities and 
entity relations. In an online search setting, identifica-
tion of specific named entities may not be available, 
or may not have the granularity to support specific 
information needs. Attempting to provide models for 
all possible entity and relation types is computational-
ly intractable, so there is a need for a more flexible, 
fine-grained, user-driven approach.  

These needs are in contrast to named entities 
identified by models defined in advance from labeled 
training data, knowledge bases, or embedded in a set 
of rules. Entities identified from these models may be 
too general, e.g., person versus terrorist, or disease 
versus diabetes; or domain specific, e.g., protein type 
in a dietary versus a molecular biology sense. This 
can be an impediment to search and discovery since 

many discoveries are serendipitous in nature and are 
found by identifying linkages between more special-
ized concepts within and across domains. Using a 
flexible dimensional index for efficient aggregation 
of distributional statistics and a distributional rela-
tional model over concept distributions, we propose a 
new, more flexible approach for creating fine-
grained, user-driven concept models for identification 
of semantically related entity relations. 
 First, we present an information-seeking sce-
nario to motivate our approach. This is followed by a 
presentation of our proposed distributional semantic 
concept model and qualitative results.  
 

1.1 Ad hoc information seeking scenario 

Interactive knowledge discovery can be modeled us-
ing a dual representation of concepts and relations 
(Bollegala, et al., 2010). Concepts can be defined by the 
relations they participate in, and by their lexical and 
semantic similarity. Relations can be defined by their 
participating concepts, and by semantically similar 
relations. In the following scenario, we are interested 
in identifying relations between Alzheimer’s disease 
(AD) and other diseases. We’ve heard of studies link-
ing Type 2 Diabetes Mellitus (T2DM) with AD, so we 
start with the query “Diabetes related to Alzheimers.”  
The system extracts candidate entity instances and 
relations from the query (Table 1). 
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Query: Diabetes related to Alzheimers 
Concepts:  
     Diabetes - id: /en/diabetes_mellitus, type: 
/medicine/disease  
     Alzheimers - id: /en/alzheimers_disease, type: 
/medicine/disease 
Relations - (concept1, relation 1, 2,…, concept2):  
     diabetes; related to; alzheimers -> disease; related to; 
disease 

 
Table 1. Parsed query with semantically related enti-
ties. 

 
A structured representation of the query is generated 
that integrates syntactic and lexical evidence with 
distributional semantic concept models of each can-
didate entity. Sentences semantically relevant to the 
query are retrieved and rank ordered. A sample 
search result for “Diabetes related to Alzheimer’s” 
with extracted concepts and relations are shown in 
Table 2(a).  Table 2(b) shows a entity-relation-entity 
graph of the query and a retrieved sentence. 
 

a) Retrieved 
Sentence with 
concepts & 
relational 
dependencies 

Diabetes is a risk factor for vascular 
dementia. 
Dependency relations: (concept1; relation 
1, 2,...;concept2) 
diabetes; ; risk_factor 
risk_factor; for; vascular_dementia 

diabetes; risk_factor_for; vascu-
lar_dementia 

b) Concept-
relation 
graph: Query 
+ Sentence 

 
c) Semantic 
similarity 
graph: query: 
(vascular de-
mentia; risk 
factor; *). 

 
  
Table 2. (a) Concept-relation search result for query: Dia-
betes related to Alzheimer’s. (b) Graph of query and sen-
tence result. (c) Concept-relation graph search results for 
query: (vascular dementia; risk factor; *). 

The search result and query provide a rela-
tional lattice linking diabetes, vascular dementia, and 
Alzheimer’s with risk factors. From analyzing the 
results of the query, the user may be interested in 
identifying other concepts related to risk factors and 
vascular dementia. For example, the user may expand 
the scope of the search space by querying for any 
concept related as a risk factor to vascular dementia.  

A dimensional index is used for efficiently 
aggregating distributional statistics and relating evi-
dence of concepts and relations within the search in-
dex with information from the query. Table 2(c) 
shows the results using a force-directed graph. The 
user can now identify new concepts participating in 
some form of risk factor relation. From these results, 
other relations for one or more concepts or any com-
bination of concept relation could be explored. Table 
4 lists the ranked retrieval process. 

 
1. The user presents a natural language query. 
2. The NLP engine parses the query, extracts candidate 

entities, dependency relations, syntax, and textual con-
text. 

3. A structured query is generated from the evidence 
extracted by the NLP engine. 

4. A distributional semantic model is generated for each 
entity within the query from the dimensional index. 

5. Word and phrase search within the context of individ-
ual sentences and documents. 

6. Query model (4) applied to the top ranking sentences 
from (step 5).  

7. User can provide relevance feedback to the system. 

Iterate over search results. 

 
Table 4. Ranked retrieval process (top) and architec-
ture (bottom). 

2 Dimensional Indexing 

A dimensional indexing model (Kimball, 1996; Gray, 
et al. 1997) is used for efficient search and aggrega-
tion of distributional statistics. The model represents 
a Vector Space Model (VSM) of distributional statis-
tics for defining concepts, and a data warehousing 
style (dimensional data model) inverted index of 
words, phrases, named entities, relations, and sen-
tences. The grain of the index is the individual word 
with attributes for position, part-of-speech, and 
phrase. Semantic concepts are defined over word dis-
tributions from the index. An entity-relation-entity 
index is also created during indexing to link candidate 
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entity instances (noun phrases) with their shortest 
path dependency relation within sentences. The same 
NLP is used for query processing, and sentence pars-
ing during indexing.  
 Importantly, the dimensional index facilitates 
efficient OLAP style SQL queries for aggregating 
distributional statistics, and for executing relational 
queries over concepts. The index also supports aggre-
gation over word, phrase, entity, relation, sentence, or 
document. A variation on this indexing approach has 
been scaled to several hundred Gigabytes for chemi-
cal patent retrieval (Urbain, et al. 2009). Indexes can 
be created from local collections and integrated with 
indexes created from online web search results. 

3 Distributional Semantic Model 

Distributional semantics quantifies and categorizes 
semantic similarities between linguistic terms based 
on their distributional properties in large samples of 
text. The central assumption is that the context sur-
rounding a given word provides important infor-
mation about its meaning (Church et al., 1989, 1991; 
Firth, 1968; Harris, 1954; Turney and Pantel, 2010). 
VSMs provide a mechanism for representing term, 
concept, relation, or sentence meaning by using dis-
tributional statistics. The semantic properties of 
words are captured in a multi-dimensional space by 
vectors that are constructed from large bodies of text 
by observing the distributional patterns of co-
occurrence with their neighboring words. These vec-
tors can then be used as measures of text similarity 
between words, phrases, abstract concepts, entities, 
relations, or snips of arbitrary text.  

We base our distributional measures of se-
mantic similarity using pointwise mutual information  
(PMI). PMI measures the pointwise mutual infor-
mation between two objects as the log ratio of the 
joint probability of two objects co-occurring relative 
to the probability of those objects occurring inde-
pendently. PMI using information retrieval (PMI-IR) 
was suggested by Turney (2001) as an unsupervised 
measure for the evaluation of the semantic similarity 
of words (Eq. 1). Turney defined words as words co-
occurring if they co-occurred within a 10-word win-
dow. 

𝑃𝑀𝐼 𝑤1,𝑤2 = 𝑙𝑜𝑔2
!(!1,!2)
! !1 !(!2)

     (1) 

Multiple evaluations have demonstrated the 
effectiveness of PMI on semantic similarity bench-
marks (Mihalecea, 2006; Eneko, 2012). We are also 
attracted to its simplicity and efficiency for generat-

ing distributional concept models online within our 
dimensional data model.  Tables 6 and 7 show the 
PMI of words for the concepts Diabetes and CHF 
(Congestive Heart Failure). The distribution of se-
mantically similar words (shown in lexically 
stemmed form) for each disease can be used to infer 
the underlying concepts Diabetes and CHF respec-
tively. 
 

Concept Stem term PMI 
diabet mellitu 4.12 
diabet depend 3.52 
diabet type 2.67 
diabet retinopathi 2.14 
diabet insulin 2.13 
diabet nephropathi 2.02 
diabet noninsulin 1.84 
diabet hyperlipidemia 1.76 
diabet esrd 1.54 
diabet adult 1.52 
diabet glaucoma 1.42 
diabet hypercholesterolemia 1.10 

 
Table 6. PMI of words for Diabetes. 

 

Concept Stem term PMI 
chf exacerb 2.34 
chf ef 1.5 
chf drainag 1.4 
chf leukocytosi 0.71 
chf lvh 0.47 
chf treat 0.34 
chf secondari 0.33 
chf etiolog 0.31 
chf cad 0.29 
chf diuresi 0.27 
chf evid 0.25 
chf pleural 0.21 
 
Table 7. PMI of words for CHF. 

 
Mihalecea, et al. (2006) extended semantic 

similarity measurements to two arbitrary text seg-
ments. Given a measurement for the semantic similar-
ity of two unordered (bag of words) text segments 
and a measurement for term specificity, the semantic 
similarity of two text segments C1 and C2 can be de-
fined using a model that combines the semantic simi-
larities of each text segment in turn with respect to 
the other text segment. We extended the original bag-
of-words text-to-text measurement to include phrases 
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(candidate entities and their relation dependencies). 
Using PMI as the underlying measure of semantic 
similarity, we developed the following 2nd order 

PMI-based model for measuring the semantic similar-
ity between concepts C1, C2. (Eq.  2). 

 
 

 

𝑆𝑒𝑚𝑆𝑖𝑚 𝐶1,𝐶2 =
1
2

𝑃𝑀𝐼 𝐶1,𝑤 ∗ 𝑖𝑑𝑓 𝑤 + 𝑃𝑀𝐼 𝐶2,𝑤 ∗ 𝑖𝑑𝑓 𝑤!∈(!1  ∩!2  )

𝑖𝑑𝑓 𝑤!∈(!1  ∩!2  )
                    (2) 

 

 
Concept1 Concept2 Co-term 𝑷𝑴𝑰 𝑪1,𝒘 ∗ 𝒊𝒅𝒇 𝒘  𝑷𝑴𝑰 𝑪2,𝒘 ∗ 𝒊𝒅𝒇 𝒘  Average  
afghanistan pakistan india 6.00 6.66 6.33 
afghanistan pakistan iran 6.10 6.04 6.07 
afghanistan pakistan china 6.15 5.94 6.05 
afghanistan pakistan franc 6.03 5.94 5.99 
afghanistan pakistan russia 5.63 6.04 5.83 
afghanistan pakistan tajikistan 5.48 6.10 5.79 
afghanistan pakistan arabia 4.93 5.88 5.41 
afghanistan pakistan soviet 5.42 5.09 5.25 
afghanistan pakistan britain 5.63 4.48 5.06 

 
Table 7. Semantic similarity (SemSim) between concepts Afghanistan and Pakistan 
 
 

𝑅𝑒𝑙𝐷𝑒𝑝𝑆𝑖𝑚 𝑅1,𝑅2 =∝ 𝑁𝐼𝑅𝐷𝐹 𝑤!∈ !1  ∩!2   + (1−∝) 𝑆𝑒𝑚𝑆𝑖𝑚 𝑒r1i, 𝑒r2i!
!!!       (3) 

 

𝐿𝑒𝑥𝑆𝑖𝑚 𝑆1, 𝑆2 =∝ 1 1!∈ !1  ∩!2   +∝ 2𝐵𝑀25 𝑆1, 𝑆2 +∝ 3𝐵𝑀25 𝐷1,𝐷2                     (4) 

Where ∝ 1 >  ∝ 2 >  ∝ 3. 
 

𝐴𝑔𝑔𝑆𝑖𝑚 𝐶𝑅1,𝐶𝑅2 =∝ 1𝑆𝑒𝑚𝑆𝑖𝑚(𝐶1,𝐶2)+∝ 2𝑅𝑒𝑙𝐷𝑒𝑝𝑆𝑖𝑚 𝑅1,𝑅2 +∝ 3𝐿𝑒𝑥𝑆𝑖𝑚 𝑆1, 𝑆2 +∝ 4𝑃𝑅𝑆𝑖𝑚 𝑆1, 𝑆2  (5) 

Where ∝ 1 >  ∝ 2 >  ∝ 3   >  ∝ 4. 
 

Concept instances used in Eq. 2 may be any text 
segment. PMI is calculated over the inner product 
(relational join) of all mutually co-occurring words 
between C1 and C2 is weighted by their respective 
semantic similarity (SemSim) and their normalized 
inverse document frequency (NIDF). This meas-
urement is completely unsupervised and can be 
used to compare any ordered or non-ordered text 
segment across any domain. To demonstrate the 
open domain capability of the semantic similarity 
measurement, we list the top co-occurring 
PMI*IDF measurements for Afghanistan and Paki-
stan in a post 9/11 intelligence document collec-
tion Table 7.  

For reference we provide information retrieval 
measurements for relational dependency similarity 

(Eq.3), lexical similarity (Eq. 4) using Robertson’s 
BM25 (2000), and an aggregate similarity meas-
urement integrating semantic, relational dependen-
cy, and lexical similarity (Eq. 5). 

3.1 Learning Semantic Concepts 

Figure 1 illustrates the following process for defin-
ing semantic concepts.  

 
1) Users provide seed terms to bootstrap learning 

of a semantic concept. In this case, the user de-
fines the semantic concept CAD, and seed 
terms CAD and coronary artery disease. Note: 
Seed terms may be any combination of individ-
ual words or phrases. 
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Figure 1. Learning semantic concepts 
 
2) Concept terms can come from different con-

ceptual areas to meet specific information re-
trieval needs. For example, terms from finance 
and terrorism, or terms identifying medical co-
morbidities such as coronary artery disease 
and diabetes.  Additional terms can also be 
added for increased specificity. 
 

A vector-space model of a concept’s distribution is 
generated from 2nd order probabilistic likelihood of 
co-occurring terms (PMI) (Figure 2): 
 

 
 
Figure 2. Distributional concept model for CAD  

 
Qualitative review of concept terms demon-
strates the accuracy of this approach.  To 
properly evaluate the sematic model, we 
should be able to take the model and predict 
relevant named entities.  
 

3) From the concept model CAD, we can predict 
the likelihood of semantic relatedness of can-
didate entities (Figure 3).  Note: Candidate en-
tities are noun phrases identified during 
indexing or query processing. 

 

 
 
Figure 3. Named entitities predicted for concept 
CAD 

 
4) From the semantic concept model, CAD, we 

can predict the likelihood of generating sen-
tences by using this model for sentence infor-
mation retrieval (Figure 4). 
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Table 4. Sentence retrieved from the semantic concept model, CAD

3.2 Distributional relational model 

A distributional relational model can be defined 
over semantic concept distributions. For example, 
we may be interested in searching the intersection 
of concepts Terrorist and Yemen. So we could de-
fine a relational natural join operation (⋈) over 
Terrorist and Yemen concept distributions to iden-
tify semantically related terms at the intersection of 
Terrorist and Yemen. From this result set we could 
predict the most semantically related entities, rela-
tions, or sentences  

We may also be interested in major cities 
in Afghanistan and Pakistan, i.e., what are the most 
prominent semantically similar attributes of major 
cities in Afghanistan Pakistan? In this case, we 
could formulate a query using relational addition 
(‘+’) or UNION. Alternatively, we could use rela-
tional subtraction (‘-‘).  For example, what is spe-
cific to COPD (Chronic Obstructive Pulmonary 
Disorder) that is not shared by CAD (Coronary 
Artery Disease)? 

Defining relational operators for addition 
and subtraction over distributions requires some 
thought. Given matching terms in separate distri-
butions, how are distributions coalesced? Our ap-
proach for defining distributional operators are 
summarized below:  

 
• Natural join (⋈) – set intersection. Only main-

tain matching terms in each distribution. 

• Boolean addition: set UNION. Set semantic 
similarity coefficient (SSC) to the arithmetic 
mean of matching terms. 

• Boolean subtraction: set SUBTRACTION.  
Remove terms from second operand distribu-
tion from first distribution. 

• Distributional addition: set UNION. Set se-
mantic similarity coefficient (SSC) to sum of 
matching terms, maximum 1. 

• Distributional subtraction: set 
SUBTRACTION.  Subtract SSC of matching 
terms in second operand distribution from first 
operand distribution, minimum 0. 

 
Relational query operations are defined as a first-
order relational algebra and can be of arbitrary 
complexity. Query expressions are recursively 
parsed into a postfix expression: 

 
Expression (Given):  

((Karachi+Islamabad+Lahore)-
Pakistan)+Afghanistan 

Parse (Output):  
[ADD, Afghanistan, SUBTRACT, Pakistan, 
ADD, Lahore, ADD, Islamabad, Karachi] 

 
The postfix expression is tranlated to a series of 
SQL statements, which are executed against con-
cept distribution tables. The result set of the query 
defines a new concept that can in turn be used as 
any other distributional concept to predict entities, 
relations, or sentences. 
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4 Conclusion 

We have presented an ad hoc concept modeling ap-
proach using distributional semantic models to identify 
and relate fine-grained entities in an online search set-
ting. We have also presented, a novel distributional rela-
tional model for relating semantically similar concepts. 
The distributional concept and relational models provide 
a framework for future research. For example, quantita-
tively determining the most effective concept distribu-
tion models and distributional relational operators. What 
are the best architectures for scaling ad hoc distribution-
al semantics? 
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Abstract

Graph-based dependency parsing algorithms
commonly employ features up to third order
in an attempt to capture richer syntactic re-
lations. However, each level and each fea-
ture combination must be defined manually.
Besides that, input features are usually rep-
resented as huge, sparse binary vectors, of-
fering limited generalization. In this work,
we present a deep architecture for dependency
parsing based on a convolutional neural net-
work. It can examine the whole sentence
structure before scoring each head/modifier
candidate pair, and uses dense embeddings as
input. Our model is still under ongoing work,
achieving 91.6% unlabeled attachment score
in the Penn Treebank.

1 Introduction

Graph-based dependency parsing works by assign-
ing scores to each possible dependency arc between
two words (plus the root), and then creating a de-
pendency tree by selecting the arcs which yield the
highest score sum (McDonald et al., 2005). The
Chu-Liu-Edmonds algorithm is commonly used to
extract the maximum spanning tree (MST) of the re-
sulting graph in polynomial time, and inherently al-
lows for non-projective trees.

Most such parsing algorithms obtain the score
for an arc from word i to j as the dot product of
a weight vector and a vector of binary features,
s(i, j) = w · f(i, j). Their training procedure is
thus essentially optimizing the weight vector.

The features, however, often follow redundant
patterns: the same classifier may use as separate fea-

tures: (i) head word and its POS tag, (ii) head word,
and (iii) head word POS tag. This is justified first
by data sparseness, since a given word may not have
been seen many times in the training set (or not with
a given POS tag), and the last two features serve as
a fallback. Second, most approaches are based on
linear classifiers, which cannot learn complex inter-
actions between features.

Given that the scoring function deals with an arc
at a time, graph-based parsers are usually restricted
to features of local pairs. This is problematic when
determining the head of a given word depends on its
modifiers. For example, consider the two sentences
in Figure 1, where the preposition with may be at-
tached to a verb or a noun, depending on its com-
plement. Including neighboring words as features in
the arc scoring function may alleviate the problem,
but doesn’t account for long range dependencies. A
more efficient solution is second or high order fea-
tures, which include child or sibling arcs in the scor-
ing function (McDonald and Pereira, 2006). Some
authors explored higher order features, including,
for example, grandparents and grand-siblings (Koo
and Collins, 2010) or non-adjacent siblings (Car-
reras, 2007).

However, each new level (i.e., each higher order)
must be defined through manually designed features.
Furthermore, finding the exact non-projective MST
in such cases is computationally intractable, making
it necessary to resort to approximate solutions1.

Another disadvantage of such systems is that fea-

1The projective MST, however, can be obtained in O(nm+1)
time for a model of m-th order. A common practice is to find
the projective MST and then swap some edges.
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He ate spaghetti with a fork

He ate spaghetti with meatballs

Figure 1: Example of dependency trees with different
head words for with, depending on its complement.

tures are usually binary. Thus, each word in the
system vocabulary is represented as a separate, in-
dependent feature. By contrast, a growing trend
in the NLP community is to use word embeddings,
which are low dimensional, dense vectors represent-
ing words (Turian et al., 2010; Collobert, 2011;
Mikolov et al., 2013). Word embeddings have the
advantage to deliver similar representations to words
that tend to occur in the same contexts (and usu-
ally have a related meaning), and lower out-of-
vocabulary impact.

In this work, we address the limitations described
above with a graph-based parser architecture in-
spired in the SENNA system (Collobert, 2011). It
takes word embeddings and POS tags as input, and
uses a convolutional neural network that allows it
to examine the whole sentence before giving a score
for each head-dependent pair. The complexity of the
scoring procedure is O(n3).

The remaining of this paper is organized as fol-
lows. Section 2 presents relevant related work with
dependency parsing, word embeddings and neural
architectures. Section 3 describes our model. Sec-
tion 4 shows our experimental setup and results
found for English, German and Dutch, and Section 5
presents our conclusions.

2 Related Work

Graph based parsers were combined with transition
based ones in studies aimed at exploiting global fea-
tures, which fit better with the latter (Martins et al.,
2008; Nivre and McDonald, 2008). Beam search has
also been used instead of exact inference in order to
allow more complex features and keep the problem
computationally tractable (Zhang and Clark, 2008).
In contrast, our method works by examining the
whole sentence in a straightforward manner before

assigning a score to an arc.
There has also been studies on generating word

embeddings based on syntactic relations of each
word instead of its neighbors in a fixed size win-
dow (Padó and Lapata, 2007). Recently, Bansal et
al. (2014) and Levy and Goldberg (2014) used sim-
ilar variants of the skip-gram model (Mikolov et al.,
2013) to this end: both studies parsed huge corpora
with a dependency parser and then used dependency
relations as context for the skip-gram algorithm.

The skip-gram model induces word representa-
tions such as to maximize the capabilities of pre-
dicting neighboring words w′ given a word w. By
considering neighbors the words with a dependency
edge between them, instead of merely occurring
near each other, the embeddings are able to capture
more syntactic knowledge.

Some other studies employed neural architectures
and word embeddings to address parsing. Socher
et al. (2013), for example, recurrently combined
word vectors into phrase vectors in constituency-
based parse trees. Chen and Manning (2014) used
an MLP network with one hidden layer to perform
transition-based dependency parsing. Their network
decides, for each state configuration, which action to
take next.

More related to this work, Collobert (2011) used
a convolutional network to address constituent pars-
ing. Words are tagged in multiple levels, according
to the constituents they are part of. A key compo-
nent of the network is the convolution layer, which
is capable of turning the representation of a sentence
of variable size into a fixed size vector.

A very similar architecture had been previously
used by Collobert et al. (2011) to perform semantic
role labeling. For this task, the network had to clas-
sify each token with respect to each predicate in the
sentence. We draw on this idea, making our depen-
dency parser, implemented as a convolutional neural
network, score each word with respect with a candi-
date head.

3 Deep Architecture

A way to avoid the need of defining each higher level
of features manually is a deep architecture that ex-
amines the whole sentence before making each local
decision.
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Our parser first identifies unlabeled dependency
arcs between words and then labels them. In the first
stage, it computes a score s(h,m, x) for assigning a
given head h to a modifier wordm within a sentence
x. After having computed scores for all (h,m) com-
binations, we perform the Chu-Liu-Edmond’s algo-
rithm to find the maximum spanning tree.

Then, in the second stage, for each pair (h,m)
previously detected, we must label the arc connect-
ing the words. We assign a score s(l, h,m, x) for
each possible label l, and the label l′ with the high-
est score is selected by the parser.

3.1 Word Representations
Each word t is represented as a concatenation of four
embedding vectors: one representing the word it-
self, one for its POS tag, one for the relative dis-
tance between t and h and one for the relative dis-
tance between t and m. As such, the final repre-
sentation varies according to each pair (h,m) being
processed.

The four vectors mentioned above have indepen-
dent dimensions dword, dPOS , dhdist and dmdist.
The vectors are drawn from matricesMword,MPOS ,
Mhdist and Mmdist. As usual in research with vec-
tor space models, we take advantage of previously
trained embeddings to initialize Mword. The other
three matrices are initialized randomly; all four are
adjusted during training.

The relative distance between two words t1 and t2
is determined as the difference in their positions in
the sentence, clipped to a maximum absolute value:

dist(t1, t2) = min(α,max(−α, i− j)) (1)

Where i and j are the numerical positions of t1
and t2 in x, and α is a threshold value. A positive
distance means that t1 comes first in the sentence,
and a negative distance means otherwise. The ma-
trices Mhdist and Mmdist need 2α+ 3 entries: each
positive and negative distance, plus a vector for dis-
tances greater than the threshold (also positive and
negative) and zero. Zero distance means that t1 and
t2 are the same.

3.2 Edge Detection
For the edge detection stage, the neural network per-
forms as follows. All possible (h,m) pairs are con-

sidered, and all words in the sentence are examined
for each decision. A convolution layer turns a vari-
able sized input (i.e., the sentence) into a fixed size
intermediate vector.

For each (h,m) candidate pair, the convolution
layer applies a default weight matrix multiplication
over the vectors representing all words and stores the
results:

[C]i = W1 · wr(i, h,m), 1 ≤ i ≤ |x| (2)

Where W1 is a weight matrix, wr(i, h,m) is the
representation (concatenation of the four vectors)
for the i-th word in the sentence, considering a pair
(h,m), C is a matrix containing the convolution re-
sults over the whole sentence and [C]i denotes its
i-th row.

After all words in the sentence have been exam-
ined, each convolution neuron outputs the maximum
value it found2 and a bias is added to the resulting
vector. The whole operation is described in Equa-
tions 3 and 4.

[cmax]j = max
1≤i≤|x|

[C]ij , 1 ≤ j ≤ |cmax| (3)

cout = cmax + b1 (4)

Where cmax is the fixed size vector obtained after
the convolution and cout has the values forwarded
to the next layer. Their dimension is equal to the
number of convolution neurons. [cmax]j indicates
the j-th element in the vector, and [C]ij indicates
the element at cell (i, j) of the matrix. b1 is a bias
vector.

The second hidden layer performs another matrix
multiplication and adds another bias vector. We ap-
ply a non-linear function over the resulting values:
for speed, we use a hard version of the hyperbolic
tangent, which just clips values greater than 1 or

2In fact, the actual implementation is slightly different in or-
der to avoid repeated calculations: we store a lookup table with
pre-computed values in the convolution layer considering only
distance vectors, and when scoring a sentence, we create an-
other lookup table with the results without considering distance
vectors. Then, for each (h, m), we just have to sum the appro-
priate entries.

58



smaller than -1. Equation 5 describes the hidden
layer operation.

h = f(W2 · cout + b2) (5)

h represents the resulting vector in the layer, f(·)
is our non-linear function, W2 is a weight matrix
and b2 is a bias vector. The output layer in our net-
work has a single neuron which outputs the score
s(h,m, x), obtained by a dot product between h and
a weight vector w:

s(h,m, x) = w · h (6)

The representation of the root dependency has
been discussed and shown to be a non-trivial deci-
sion (Ballesteros and Nivre, 2013). We found that a
simple and elegant way to treat a dependency to the
dummy root node is to model it as s(t, t, x); that is,
the score of a spurious dependency from a word to
itself. When s(t, t, x) is higher than s(u, t, x) for all
other words u in the sentence, word t can be viewed
as not having any other word as a likely head.

During training, we perform stochastic gradient
descent, sampling one sentence at a time. After the
network has produced all head scores for a modifier,
we apply a softmax to the output to obtain a proba-
bility distribution:

p(h|m,x) =
es(h,m,x)∑
j∈x e

s(j,m,x)
(7)

The error gradient in the output layer is calculated
in a way to increase the score for the correct pair
(h∗,m) at the expense of all others:

δh,m =

{
1− p(h|m,x), if h = h∗

−p(h|m,x), otherwise
(8)

The error is backpropagated until all feature ma-
trices. The details of calculating the gradients at
each layer can be found in Collobert et al. (2011).

3.3 Determining Labels
In order to label each dependency arc, we use a sim-
ilar architecture. Instead of calculating the distance
from each word t to every possible pair (h,m), we
only need to consider the pairs that have an actual
dependency, which lowers complexity to O(n2).

Also, the output layer has one neuron for each
possible label, requiring a weight matrix instead of a
weight vector. Thus, instead of Equation 6, we have
Equation 9 for determining the network output.

y = W3 · h+ b3 (9)

W3 and b3 are, respectively, a weight matrix and a
bias vector. We pick the label with the highest score
in the output vector y as the parser answer. During
training, we apply a softmax on it in order to deter-
mine probabilities for each label. Error gradients are
found with the same rationale than edge detection,
the only difference being that we maximize the log
probability of the correct label instead of the correct
head.

4 Experiments

We performed experiments with English, German
and Dutch data. For English, we used the de-
fault Penn Treebank data set, converted to con-
stituency trees to CoNLL dependencies (Johansson
and Nugues, 2007) using the LTH conversion tool3

We trained on sections 2-21, validated on 22, and
tested on section 23. We trained and validated mod-
els using gold POS tags; for testing, we used a neu-
ral network based tagger trained on the default WSJ
POS tagging data set (sections 0-18).

For German and Dutch, we used the CoNLL
2006 datasets. We chose these two languages be-
cause they have the highest rate of non-projective
edges among all languages in CoNLL 2006, and one
of our method’s strengths is precisely finding non-
projective edges as easily as it would find projec-
tive ones. As common practice, we used gold POS
tags in training, validating and testing on these lan-
guages.

We report results obtained with the English word
embedding matrix Mword initialized with data from
SKIPDEP and Levy and Goldberg (2014)4 (L&G for
short). For German and Dutch, we used word em-
beddings provided by the Polyglot project5 (Al-Rfou
et al., 2013), generated by a neural language model.

3http://nlp.cs.lth.se/software/treebank_
converter/

4It is important to note that neither of them included the WSJ
corpus in the data used to generate the embeddings.

5Available at http://bit.ly/embeddings
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Parameter Value
Mword embeddings size (en)6 100
Mword embeddings size (de/nl) 64
MPOS embeddings size 10
Mmdist embeddings size 5
Mhdist embeddings size 5
Distance threshold α 7 10
Iterations 15
Learning rate at epoch i 0.01

i
Convolution layer size (U) 100
Convolution layer size (L) 200
Second hidden layer size (U) 500
Second hidden layer size (L) 200

Table 1: Parameter values used in experiments. (U) indi-
cates the unlabeled stage, and (L) the labeled one. When
neither is present, the same configuration was used in
both.

The other matrices were initialized randomly.
Since they have a relatively low number of entries,
we can expect good embeddings to be obtained dur-
ing supervised training. Table 1 summarizes the ad-
justable parameters in our model and their values.

Results are shown in Table 2. SKIPDEP embed-
dings yielded slightly better accuracy than L&G,
but still considerably low when compared to state-
of-the-art parsers, which achieve 93.3%, 87.4% and
92.7% UAS on the WSJ, Dutch and German data,
respectively (Zhang et al., 2014). On the other hand,
the first-order parsers from Zhang et al. (2014) have
91.94%, 84.79% and 90.54% UAS.

Thus, despite our theoretical motivation, our
parser’s performance is on par with that of first-order
models. This suggests that the simpler, local features
commonly used by such models are just as effective
as examining the whole sentence before issuing each
local decision.

Training time is another drawback, with each
epoch in edge detection for the WSJ taking around 4
hours (running on an Intel Xeon E7 2.4 GHz). How-

6L&G embeddings originally had 300 dimensions. We ap-
plied Principal Component Analysis in order to reduce them to
100.

7The maximum distance is counted separately to the right
and to the left. In other words, there are 10 different vectors
encoding distance before a head/modifier, and 10 encoding dis-
tance after. Additionally, there is a vector for distance 0 and
two for 11 or more, totaling 23 vectors.

Dev Test
Vectors UAS LAS UAS LAS
SKIPDEP 91.9% 89.0% 91.6% 88.9%
L&G 91.6% 88.6% 91.4% 88.7%
Dutch — — 83.4% 78.4%
German — — 90.1% 87.7%

Table 2: Accuracy values

ever, as this was preliminary work on evaluating the
architecture, we didn’t focus on speeding up execu-
tion (e.g., using pruning). On the other hand, mem-
ory consumption is low: training uses around 1.5 GB
of RAM and running a model needs around 320 MB.

5 Conclusions

We have presented a graph-based dependency parser
built upon a deep architecture as an alternative to
explicitly engineered high order features. However,
contrary to some advancements recently obtained by
such models, ours fell short of state-of-the-art accu-
racy.

We believe that a more elaborate version of our
architecture could achieve competitive performance,
while still avoiding the problems related to the input
representation pointed out in the introduction. Our
code and trained models are available at https:
//github.com/erickrf/nlpnet.

References
[Al-Rfou et al.2013] Rami Al-Rfou, Bryan Perozzi, and

Steven Skiena. 2013. Polyglot: Distributed Word
Representations for Multilingual NLP. In Proceedings
of the Seventeenth Conference on Computational Nat-
ural Language Learning, pages 183–192, Sofia, Bul-
garia, August. Association for Computational Linguis-
tics.

[Ballesteros and Nivre2013] Miguel Ballesteros and
Joakim Nivre. 2013. Going to the Roots of De-
pendency Parsing. Computational Linguistics,
39(1):5–13.

[Bansal et al.2014] Mohit Bansal, Kevin Gimpel, and
Karen Livescu. 2014. Tailoring Continuous Word
Representations for Dependency Parsing. In Proceed-
ings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Short Papers), pages 809–
815.

[Carreras2007] Xavier Carreras. 2007. Experiments with
a Higher-Order Projective Dependency Parser. In

60



Proceedings of the CoNLL Shared Task Session of
EMNLP-CoNLL 2007, pages 957–961.

[Chen and Manning2014] Danqi Chen and Christo-
pher D. Manning. 2014. A Fast and Accurate
Dependency Parser using Neural Networks. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 740–750.

[Collobert et al.2011] Ronan Collobert, Jason Weston,
Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural Language Processing
(Almost) from Scratch. Journal of Machine Learning
Research, 12:2493–2537.

[Collobert2011] Ronan Collobert. 2011. Deep Learning
for Efficient Discriminative Parsing. In Proceedings
of the 14th International Con- ference on Artificial In-
telligence and Statistics (AISTATS).

[Johansson and Nugues2007] Richard Johansson and
Pierre Nugues. 2007. Extended constituent-to-
dependency conversion for english. In NODALIDA
2007 Proceedings.

[Koo and Collins2010] Terry Koo and Michael Collins.
2010. Efficient Third-Order Dependency Parsers. In
Proceedings of the 48th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 1–11.

[Levy and Goldberg2014] Omer Levy and Yoav Gold-
berg. 2014. Dependency-Based Word Embeddings.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Short Pa-
pers), pages 302–308.

[Martins et al.2008] André F. T. Martins, Dipanjan Das,
Noah A. Smith, and Eric P. Xing. 2008. Stacking De-
pendency Parsers. In Proceedings of the 2008 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 157–166.

[McDonald and Pereira2006] Ryan McDonald and Fer-
nando Pereira. 2006. Online Learning of Approxi-
mate Dependency Parsing Algorithms. In Proceedings
of the 11th Conference of the European Chapter of the
Association for Computational Linguistics, pages 81–
88.

[McDonald et al.2005] Ryan McDonald, Fernando
Pereira, Kiril Ribarov, and Jan Hajič. 2005. Non-
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Abstract

Short text clustering has become an increas-
ing important task with the popularity of so-
cial media, and it is a challenging problem
due to its sparseness of text representation. In
this paper, we propose a Short Text Clustering
via Convolutional neural networks (abbr. to
STCC), which is more beneficial for cluster-
ing by considering one constraint on learned
features through a self-taught learning frame-
work without using any external tags/labels.
First, we embed the original keyword features
into compact binary codes with a locality-
preserving constraint. Then, word embed-
dings are explored and fed into convolution-
al neural networks to learn deep feature rep-
resentations, with the output units fitting the
pre-trained binary code in the training pro-
cess. After obtaining the learned representa-
tions, we use K-means to cluster them. Our
extensive experimental study on two public
short text datasets shows that the deep fea-
ture representation learned by our approach
can achieve a significantly better performance
than some other existing features, such as
term frequency-inverse document frequency,
Laplacian eigenvectors and average embed-
ding, for clustering.

1 Introduction

Different from the normal text clustering, short tex-
t clustering has the problem of sparsity (Aggarw-
al and Zhai, 2012). Most words only occur once
in each short text, as a result, the term frequency-
inverse document frequency (TF-IDF) measure can-
not work well in the short text setting. In order
to address this problem, some researchers work on
expanding and enriching the context of data from
Wikipedia (Banerjee et al., 2007) or an ontolo-
gy (Fodeh et al., 2011). However, these method-
s involve solid natural language processing (NLP)

knowledge and still use high-dimensional represen-
tation which may result in a waste of both mem-
ory and computation time. Another way to over-
come these issues is to explore some sophisticated
models to cluster short texts. For example, Yin and
Wang (2014) proposed a Dirichlet multinomial mix-
ture model-based approach for short text clustering
and Cai et al. (2005) clustered texts using Locali-
ty Preserving Indexing (LPI) algorithm. Yet how to
design an effective model is an open question, and
most of these methods directly trained based on bag-
of-words (BoW) are shallow structures which can-
not preserve the accurate semantic similarities.

With the recent revival of interest in Deep Neu-
ral Network (DNN), many researchers have con-
centrated on using Deep Learning to learn features.
Hinton and Salakhutdinov (2006) use deep auto en-
coder (DAE) to learn text representation from raw
text representation. Recently, with the help of word
embedding, neural networks demonstrate their great
performance in terms of constructing text represen-
tation, such as Recursive Neural Network (RecN-
N) (Socher et al., 2011; Socher et al., 2013) and
Recurrent Neural Network (RNN) (Mikolov et al.,
2011). However, RecNN exhibits high time com-
plexity to construct the textual tree, and RNN, using
the layer computed at the last word to represent the
text, is a biased model (Lai et al., 2015). More re-
cently, Convolution Neural Network (CNN), apply-
ing convolutional filters to capture local features, has
achieved a better performance in many NLP appli-
cations, such as sentence modeling (Blunsom et al.,
2014), relation classification (Zeng et al., 2014), and
other traditional NLP tasks (Collobert et al., 2011).
Most of the previous works focus CNN on solving
supervised NLP tasks, while in this paper we aim
to explore the power of CNN on one unsupervised
NLP task, short text clustering.

To address the above challenges, we systematical-
ly introduce a short text clustering method via con-
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Figure 1: Architecture of the proposed short text cluster-
ing via convolutional neural networks

volutional neural networks. An overall architecture
of the proposed method is illustrated in Figure 1.
Given a short text collection X, the goal of this
work is to cluster these texts into clusters C based
on the deep feature representation h learned from
CNN models. In order to train the CNN models, we,
inspired by (Zhang et al., 2010), utilize a self-taught
learning framework in our work. In particular, we
first embed the original features into compact binary
code B with a locality-preserving constraint. Then
word vectors S projected from word embeddings are
fed into a CNN model to learn the feature represen-
tation h and the output units are used to fit the pre-
trained binary code B. After obtaining the learned
features, traditional K-means algorithm is employed
to cluster texts into clusters C. The main contribu-
tions of this paper are summarized as follows:

1). To the best of our knowledge, this is the first
attempt to explore the feasibility and effectiveness of
combining CNN and traditional semantic constraint,
with the help of word embedding to solve one unsu-
pervised learning task, short text clustering.

2). We learn deep feature representations with
locality-preserving constraint through a self-taught
learning framework, and our approach do not use
any external tags/labels or complicated NLP pre-
processing.

3). We conduct experiments on two short tex-
t datasets. The experimental results demonstrate
that the proposed method achieves excellent perfor-
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Figure 2: Dynamic convolutional neural network used for
extracting deep feature representation

mance in terms of both accuracy and normalized
mutual information.

The remainder of this paper is organized as fol-
lows: In Section 2, we first describe the proposed
approach STCC and implementation details. Exper-
imental results and analyses are presented in Sec-
tion 3. In Section 4, we briefly survey several relat-
ed works. Finally, conclusions are given in the last
Section.

2 Methodology

2.1 Convolutional Neural Networks

In this section, we will briefly review one popular
deep convolutional neural network, Dynamic Con-
volutional Neural Network (DCNN) (Blunsom et
al., 2014), which is the foundation of our proposed
method.

Taking a neural network with two convolutional
layers in Figure 2 as an example, the network trans-
forms raw input text to a powerful representation.
Particularly, let X = {xi : xi ∈ Rd×1}i=1,2,...,n de-
note the set of input n texts, where d is the dimen-
sionality of the original keyword features. Each raw
text vector xi is projected into a matrix representa-
tion S ∈ Rdw×s by looking up a word embedding
E, where dw is the dimension of word embedding
features and s is the length of one text. We also let
W̃ = {Wi}i=1,2 and WO denote the weights of the
neural networks. The network defines a transforma-
tion f(·) : Rd×1 → Rr×1 (d ≫ r) which trans-
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forms an raw input text x to a r-dimensional deep
representation h. There are three basic operations
described as follows:
– Wide one-dimensional convolution This opera-
tion is applied to an individual row of the sentence
matrix S ∈ Rdw×s, and yields a set of sequences
Ci ∈ Rs+m−1 where m is the width of convolution-
al filter.
– Folding In this operation, every two rows in a fea-
ture map component-wise are simply summed. For
a map of dw rows, folding returns a map of dw/2
rows, thus halving the size of the representation.
– Dymantic k-max pooling Given a fixed pooling
parameter ktop for the topmost convolutional layer,
the parameter k of k-max pooling in the l-th convo-
lutional layer can be computed as follows:

kl = max(ktop,

⌈
L− l

L
s

⌉
), (1)

where L is the total number of convolutional layers
in the network.

2.2 Locality-preserving Constraint
Here, we first pre-train binary code B based on
the keyword features with a locality-preserving con-
straint, and choose Laplacian affinity loss, also used
in some previous works (Weiss et al., 2009; Zhang
et al., 2010). The optimization can be written as:

min
B

n∑
i,j=1

Sij ∥bi − bj∥2
F

s.t. B ∈ {−1, 1}n×q, BT1 = 0, BTB = I,
(2)

where Sij is the pairwise similarity between texts
xi and xj , and ∥·∥F is the Frobenius norm. The
problem is relaxed by discarding B ∈ {−1, 1}n×q,
and the q-dimensional real-valued vectors B̃ can be
learned from Laplacian Eigenmap. Then, we get the
binary code B via the media vector median(B̃). In
particular, we construct the n × n local similarity
matrix S by using heat kernel as follows:

Sij=

{
exp(−∥xi−xj∥2

2σ2 ), if xi∈Nk(xj) or vice versa
0, otherwise

(3)
where, σ is a tuning parameter (default is 1) and
Nk(x) represents the set of k-nearest-neighbors of
x.

The last layer of CNN is an output layer as fol-
lows:

O = WOh, (4)

where, h is the deep feature representation, O ∈ Rq

is the output vector and WO ∈ Rq×r is weight ma-
trix. In order to fit the pre-trained binary code B, we
apply q logistic operations to the output vector O as
follows:

pi =
exp(Oi)

1 + exp(Oi)
. (5)

2.3 Learning

All of the parameters to be trained are defined as θ.

θ = {E,W̃,WO}. (6)

Given the training text collection X, and the pre-
trained binary code B, the log likelihood of the pa-
rameters can be written down as follows:

J(θ) =
n∑

i=1

log p(bi|xi, θ). (7)

Following the previous work (Blunsom et al.,
2014), we train the network with mini-batches by
back-propagation and perform the gradient-based
optimization using the Adagrad update rule (Duchi
et al., 2011). For regularization, we employ dropout
with 50% rate to the penultimate layer (Blunsom et
al., 2014; Kim, 2014).

2.4 K-means for Clustering

With the given short texts, we first utilize the trained
deep neural network to obtain the semantic repre-
sentations h, and then employ traditional K-means
algorithm to perform clustering.

3 Experiments

3.1 Datasets

We test our algorithm on two public text datasets,
and the summary statistics of the datasets are de-
scribed in Table 1.

SearchSnippets1. This dataset was selected from
the results of web search transaction using prede-
fined phrases of 8 different domains (Phan et al.,
2008).

1http://jwebpro.sourceforge.net/data-web-snippets.tar.gz.
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StackOverflow2. We use the challenge data
published in Kaggle.com3. This dataset consists
3,370,528 samples through July 31st, 2012 to Au-
gust 14, 2012. In our experiments, we randomly se-
lect 20, 000 question titles from 20 different tags.

For these datasets, we do not remove any stop
words or symbols in the text.

Dataset C Number L(mean/max) |V |
Snippets 8 12340 17.88/38 30642

Stack 20 20000 8.31/34 22956

Table 1: Statistics for the text datasets. C: the number of
classes; Num: the dataset size; L(mean/max): the mean
and max length of texts and |V |: the vocabulary size.

3.2 Pre-trained Word Vectors
We use the publicly available word2vec tool to train
word embeddings, and the most parameters are set
as same as Mikolov et al. (2013) to train word vec-
tors on Google News setting4, excepts of vector di-
mensionality using 48 and minimize count using
5. For SearchSnippets, we train word vectors on
Wikipedia dumps5. For StackOverflow, we train
word vectors on the whole corpus of the Stack-
Overflow dataset described above which includes
the question titles and post contents. The coverage
of these learned vectors on two datasets are listed
in Table 2, and the words not present in the set of
pre-trained words are initialized randomly.

Dataset |V | |T |
SearchSnippets 23826 (77%) 211575 (95%)
StackOverflow 19639 (85%) 162998 (97%)

Table 2: Coverage of word embeddings on two datasets.
|V | is the vocabulary size and |T | is the number of tokens.

3.3 Comparisons
We compare the proposed method with some most
popular clustering algorithms:

2https://github.com/jacoxu/StackOverflow.
3https://www.kaggle.com/c/predict-closed-questions-on-

stack-overflow/download/train.zip.
4https://groups.google.com/forum/#!topic/word2vec-

toolkit/lxbl MB29Ic.
5http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-

pages-articles.xml.bz2.

• K-means K-means (Wagstaff et al., 2001) on
original keyword features which are respective-
ly weighted with term frequency (TF) and ter-
m frequency-inverse document frequency (TF-
IDF).

• Spectral Clustering This baseline (Belkin and
Niyogi, 2001) uses Laplacian Eigenmaps (LE)
and subsequently employ K-means algorithm.
The dimension of subspace is default set to the
number of clusters (Ng et al., 2002; Cai et al.,
2005), we also iterate the dimensions ranging
from 10:10:200 to get the best performance,
that is 20 on SearchSnippets and 70 on Stack-
Overflow in our expriments.

• Average Embedding K-means on the weight-
ed average of the word embeddings which are
respectively weighted with TF and TF-IDF.
Huang et al. (2012) also used this strategy
as the global context in their task and Lai et
al. (2015) used this in text classification.

3.4 Evaluation Metrics
The clustering performance is evaluated by compar-
ing the clustering results of texts with the tags/labels
provided by the text corpus. Two metrics, the accu-
racy (ACC) and the normalized mutual information
metric (NMI), are used to measure the clustering
performance (Cai et al., 2005; Huang et al., 2014).
Given a text xi, let ci and yi be the obtained cluster
label and the label provided by the corpus, respec-
tively. Accuracy is defined as:

ACC =
∑n

i=1 δ(yi, map(ci))
n

, (8)

where, n is the total number of texts, δ(x, y) is the
indicator function that equals one if x = y and e-
quals zero otherwise, and map(ci) is the permuta-
tion mapping function that maps each cluster label ci

to the equivalent label from the text data by Hungar-
ian algorithm (Papadimitriou and Steiglitz, 1998).

Normalized mutual information (Chen et al.,
2011) between tag/label set Y and cluster set C is a
popular metric used for evaluating clustering tasks.
It is defined as follows:

NMI(Y, C) =
MI(Y, C)√
H(Y)H(C)

, (9)

65



where, MI(Y, C) is the mutual information be-
tween Y and C, H(·) is entropy and the denomina-
tor

√
H(Y)H(C) is used for normalizing the mutu-

al information to be in the range of [0, 1].

3.5 Hyperparameter Settings

In our experiments, the most of parameters are set
uniformly for these datasets. Following previous s-
tudy (Cai et al., 2005), the parameter k in Eq. 3 is
fixed to 15 when constructing the graph Laplacian-
s in our approach, as well as in spectral clustering.
For CNN model, we manually choose a same archi-
tecture for the two datasets. More specifically, in
our experiments, the networks has two convolutional
layers similar as the example in Figure 2. The width-
s of the convolutional filters are both 3. The value of
k for the top k-max pooling is 5. The number of
feature maps at the first convolutional layer is 12,
and 8 feature maps at the second convolutional lay-
er. Both those two convolutional layers are followed
by a folding layer. We further set the dimension of
word embeddings dw as 48. Finally, the dimension
of the deep feature representation r is fixed to 480.
Moreover, we set the learning rate λ as 0.01 and the
mini-batch training size as 200. The output size q in
Eq. 4 and Eq. 2 is set same as the best dimensions of
subspace in the baseline method, spectral clustering,
as described in Section 3.3.

For initial centroids have significant impact on
clustering results when utilizing the K-means algo-
rithms, we repeat K-means for multiple times with
random initial centroids (specifically, 100 times for
statistical significance). The final results reported
are the average of 5 trials with all clustering methods
on two text datasets.

3.6 Quantitative Results

Here, we firstly evaluate the influence of the iteration
number in our method. Figure 3 shows the change
of ACC and NMI as the iteration number increases
on two text datasets. It can be found that the perfor-
mance rises steadily in the first ten iterations, which
demonstrates that our method is effective. In the pe-
riod of 10∼20 iterations, ACC and NMI become rel-
atively stable on both two texts. In the following ex-
periments, we report the results after 10 iterations.

We report ACC and NMI performance of all the
clustering methods in Table 3. The experimen-
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Figure 3: Influence of the iteration number on two text
datasets.

tal results show that Spectral Clustering and Aver-
age Embedding significantly better than K-means
on two datasets. It is because K-means directly
construct the similarity structure from the original
keyword feature space while Average Embedding
and Spectral Clustering extract the semantic fea-
tures using shallow structure models. Compared
with the best baselines, the proposed STCC extract-
ing deep learned representation from convolution-
al neural network achieves large improvement on
these datasets by 2.33%/4.86% and 14.23%/10.01%
(ACC/NMI) on SearchSnippets and StackOverflow,
respectively. Note that TF-IDF weighting gives a
more remarkable improvement for K-means, while
TF weighting works better than TF-IDF weighting
for Average Embedding. Maybe the reason is that
pre-trained word embeddings encode some useful
information from external corpus and are able to get
even better results without TF-IDF weighting.

In Figure 4 and Figure 5, we further report 2-
dimensional embeddings using stochastic neighbor
embedding (Van der Maaten and Hinton, 2008)6

of the feature representations used in the clustering
methods. We can see that the 2-dimensional embed-
ding results of deep features representation learned
from our STCC show more clear-cut margins among
different semantic topics (that is, tags/labels) on two
short text datasets.

4 Related Work

In this section, we review the related work from the
following two perspectives: short text clustering and
deep neural networks.

4.1 Short Text Clustering
There have been several studies that attempted to
overcome the sparseness of short representation.

6http://lvdmaaten.github.io/tsne/.
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SearchSnippets StackOverflow
Method ACC (%) NMI (%) ACC (%) NMI (%)
K-means (TF) 24.75±2.22 9.03±2.30 13.51±2.18 7.81±2.56
K-means (TF-IDF) 33.77±3.92 21.40±4.35 20.31±3.95 15.64±4.68
Spectral Clustering 63.90±5.36 48.44±2.39 27.55±0.93 21.03±0.37
Spectral Clustering (best) 74.76±5.08 58.30±1.97 37.17±1.62 26.27±0.86
Average Embedding (TF-IDF) 62.05±5.27 46.64±1.87 37.02±1.29 35.58±0.84
Average Embedding (TF) 64.63±4.84 50.59±1.71 37.22±1.57 38.43±1.13
STCC 77.09±3.99 63.16±1.56 51.13±2.80 49.03±1.46

Table 3: Comparison of ACC and NMI of clustering methods on two short text datasets. For Spectral Clustering, the
dimension of subspace are set to the number of clusters, and Spectral Clustering (best) get the best performance by
iterating the dimensions ranging from 10:10:200. More details about the baseline setting are described in Section 3.3

One way is to expand and enrich the context of da-
ta. For example, Banerjee et al. (2007) proposed
a method of improving the accuracy of short tex-
t clustering by enriching their representation with
additional features from Wikipedia, and Fodeh et
al. (2011) incorporate semantic knowledge from an
ontology into text clustering. Another way is to
explore some sophisticated models to cluster short
text. For example, Yin and Wang (2014) proposed
a Dirichlet multinomial mixture model-based ap-
proach for short text clustering and Cai et al. (2005)
applied the LPI algorithm for text clustering. More-
over, some studies both focus the above two stream-
s. For example, Tang et al. (2012) proposed a novel
framework which performs multi-language knowl-
edge integration and feature reduction simultaneous-
ly through matrix factorization techniques. How-
ever, the former works need solid NLP knowledge
while the later works are shallow structures which
can not fully capture accurate semantic similarities.

4.2 Deep Neural Networks

With the recent revival of interest in DNN, many re-
searchers have concentrated on using Deep Learning
to learn features. Hinton and Salakhutdinov (2006)
use DAE to learn text representation. During the
fine-tuning procedure, they use backpropagation to
find codes that are good at reconstructing the word-
count vector.

Recently, researchers propose to use external cor-
pus to learn a distributed representation for each
word, called word embedding (Turian et al., 2010),
to improve DNN performance on NLP tasks. The

skip-gram and continuous bag-of-words models
of (Mikolov et al., 2013) propose a simple single-
layer architecture based on the inner product be-
tween two word vectors, and Jeffrey Pennington et
al. (2014) introduce a new model for word repre-
sentation, called GloVe, which captures the global
corpus statistics.

Based on word embedding, neural networks can
capture true meaningful syntactic and semantic reg-
ularities, such as RecNN (Socher et al., 2011;
Socher et al., 2013) and RNN (Mikolov et al., 2011).
However, RecNN exhibits high time complexity to
construct the textual tree, and RNN, using the lay-
er computed at the last word to represent the text,
is a biased model. Recently, CNN, applying con-
volving filters to local features, has been success-
fully exploited for many supervised NLP learning
tasks as described in Section 1. This paper, to our
best knowledge, is the first time to explore the power
of CNN and word embedding to solve one unsuper-
vised learning task, short text clustering.

5 Conclusions

In this paper, we proposed a short text clustering
based on deep feature representation learned from
CNN without using any external tags/labels and
complicated NLP pre-processing. As experimen-
tal study shows that STCC can achieve significantly
better performance than the baseline methods.
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Schrödl, et al. 2001. Constrained k-means cluster-
ing with background knowledge. In ICML, volume 1,
pages 577–584.

Yair Weiss, Antonio Torralba, and Rob Fergus. 2009.
Spectral hashing. In NIPS, pages 1753–1760.

Jianhua Yin and Jianyong Wang. 2014. A dirichlet multi-
nomial mixture model-based approach for short text
clustering. In SIGKDD, pages 233–242. ACM.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and
Jun Zhao. 2014. Relation classification via convolu-
tional deep neural network. In COLING, pages 2335–
2344.

Dell Zhang, Jun Wang, Deng Cai, and Jinsong Lu. 2010.
Self-taught hashing for fast similarity search. In SI-
GIR, pages 18–25. ACM.

69



Proceedings of NAACL-HLT 2015, pages 70–78,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

A Word-Embedding-based Sense Index for Regular Polysemy
Representation

Marco Del Tredici
Universitat Pompeu Fabra

Roc Boronat, 138
Barcelona, Spain

marco.deltredici@upf.edu
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Abstract

We present a method for the detection and
representation of polysemous nouns, a phe-
nomenon that has received little attention in
NLP. The method is based on the exploita-
tion of the semantic information preserved in
Word Embeddings. We first prove that poly-
semous nouns instantiating a particular sense
alternation form a separate class when cluster-
ing nouns in a lexicon. Such a class, however,
does not include those polysemes in which a
sense is strongly predominant. We address
this problem and present a sense index that,
for a given pair of lexical classes, defines the
degree of membership of a noun to each class:
polysemy is hence implicitly represented as an
intermediate value on the continuum between
two classes. We finally show that by exploit-
ing the information provided by the sense in-
dex it is possible to accurately detect polyse-
mous nouns in the dataset.

1 Introduction

A major issue in lexical semantics is regular
polysemy (also known as systematic or logical
polysemy), the phenomenon whereby words be-
longing to a semantic class can predictably act
as members of another class (Pustejovsky, 1991;
Martı́nez Alonso et al., 2013). For example, the
word chicken can be considered a member of the
class ANIMAL but also of FOOD, thus defining its
senses in terms of lexical semantic classes. For some
polysemous nouns one sense can be much more fre-
quent than the other, thus causing asymmetry in
sense predominance; this is the case of turkey, in

which the food sense is clearly more frequent than
the animal one (Copestake and Briscoe, 1995).

Given its pervasiveness in natural language, reg-
ular polysemy has been extensively investigated in
lexical semantics (Apresjan, 1974; Nunberg, 1992).
However, only few works attempted to computa-
tionally model this phenomenon (Copestake, 2013;
Boleda et al., 2012b). The vast majority of applica-
tions treat regular polysemy like other phenomena
of lexical ambiguity, such as homography, not con-
sidering the relevant theoretical differences between
those phenomena, for example that regular poly-
semy is predictable, while homography is not (Utt
and Padó, 2011). Information on regular polysemy
would be valuable for a task like Word Sense Dis-
ambiguation, since it would reduce the number of
possible options when choosing the right sense of a
word. More generally, every lexical resource would
benefit from the capability to cope with the shifts
of meaning produced by regular polysemy, and this,
in turn, would lead to improvements in several NLP
applications as such machine translation, textual en-
tailment or text analytics.

In this paper we present a method for polysemy
detection and representation based on Word Embed-
dings (WE) (Mikolov et al., 2013a). WE are low
dimensional, dense and real-valued vectors which
preserve word syntactic and semantic information
in a Vector Space Model (VSM). WE have recently
been proved to be efficient in several NLP tasks,
such as detection of relational similarity (Mikolov
et al., 2013d), word similarity tasks (Mikolov et
al., 2013a) and automatic building of bilingual lex-
ica (Mikolov et al., 2013b), in which this word repre-
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sentations outperformed others with state-of-the-art
methods (Baroni et al., 2014).

However, at the best of our knowledge, this is the
first work in which WE are used to represent and ac-
count for regular polysemy. Our work departs from
the assumption that lexical classes related by regu-
lar polysemy are limited and known and that since
the class-related senses of a polysemous nouns can
be considered as modulations of meaning of a sin-
gle lemma (Copestake and Briscoe, 1995), they are
to be represented by a single vector. As a first step,
we will prove through a clustering task that nouns
instantiating a particular sense alternation (e.g. an-
imal/food) group together and separately from non-
polysemous nouns, forming a distinct cluster. Such
a cluster, however, does not include polysemous
nouns with a strong sense asymmetry. Therefore,
obtained clustering information is exploited in or-
der to assign each noun a sense index, which can be
thought as the value associated to a noun on a contin-
uum, whose ends are lexical classes, and where pol-
ysemy is implicitly represented as an intermediate
value between two classes. Such an index allows to
represent sense modulation of disemous nouns (i.e.
polysemes with two senses) and to account for the
predominance of one the senses, if any, and there-
fore to accurately detect polysemes.

The main contribution of the work is a novel
method for the identification and representation of
polysemous nouns, which accounts for the semantic
of such nouns and explicitly represents it.

2 Motivation and Related Works

In the field of NLP the information regarding lexical
semantic classes has been proved to be crucial for
several applications, such as information extraction,
machine translation and question answering, and an
increasing amount of research has been carried out
in order to create models for the automatic classi-
fication of nouns (Romeo et al., 2014a; Bel et al.,
2013; Schwartz et al., 2014).

Despite the effects of regular polysemy on lexi-
cal classification, few work attempted to computa-
tionally model the phenomenon. The approaches
in the literature for the representation of polyse-
mous words are basically three. Polysemes can be
simultaneously represented as members of several

classes (e.g. the polysemous word xy belongs to
both the classes X and Y); as members of new, in-
dependent class which includes only words with the
same hybrid distributional behaviour (xy belongs to
the new class XY); on a continuum, thus assign-
ing each word a polysemy index between 0 and 1.

Boleda et al. (2012a) present an in-depth study on
adjective categorization with a special focus on pol-
ysemy, in which they conclude that multiple attribu-
tion is the best way to model polysemy. Boleda et
al. (2012b) present a model to determine whether
a noun matches a given sense alternation, while
Romeo et al. (2013) introduce a supervised model
for polysemy detection and conclude that since pol-
ysemes demonstrate lexico-syntactic traits of multi-
ple classes, they can be considered as members of
such classes. Romeo et al. (2014b) improve the pre-
vious approach reaching an accuracy of 60.71% in a
polysemous noun classification task.

As pointed out by Boleda et al. (2012a) both the
first two approaches are not completely satisfac-
tory: the multi-labelling approach fails to represent
the differences between polysemous and monose-
mous nouns in a class, while the second one does
not account for the significant similarities between a
polyseme and monosemous nouns belonging to the
same classes of its senses. Furthermore, none of the
two approaches can provide an adequate represen-
tation of the asymmetry of senses in a polysemous
word.

The third approach has been explored by Utt and
Padó (2011): they introduce a polysemy index based
on the systematicity of sense variation of polyse-
mous nouns to distinguish between polysemy and
homonymy. Building on the same methodology,
Frontini et al. (2014) define a threshold based on
known basic type alternations, and use such a thresh-
old to calculate the polysemy of new words. Finally,
Martı́nez (2013) proposes an index that ranges from
literal to metonymic, and that is used to account for
the underspecified sense of polysemes.

Despite the fact that we also propose an index
for polysemy representation, there are significant
differences with the indexes proposed by the cited
works. Martı́nez (2013) focuses on a particular as-
pect of polysemy, i.e. underspecification; Utt and
Padó (2011) only take into account the distinction
between homonimous and polysemous nouns; fi-
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nally, Frontini et al. (2014) investigate the system-
atic aspect of the phenomenon, focusing on the de-
tection of new basic sense alternations not consid-
ered in literature. Differently, in our work we aim to
provide a single representation for each polysemous
noun that explicitly accounts for its degree of mem-
bership to the basic lexical classes its senses belong
to, thus highlighting the differences in distributional
behaviour of different polysemes and addressing the
problem of sense asymmetry.

3 Polysemy Detection

We present in this section a method for the iden-
tification of polysemous nouns. Firstly, a clus-
tering algorithm was employed in order to verify
that the semantic information preserved in WE was
enough to separate nouns belonging to different lex-
ical classes. Given a gold standard composed of L
lexical classes and a set of nouns N={n1,n2,...ni}
distributed across these classes, WE representing the
nouns in N were clustered in a number L of clus-
ters. As a result of this first task, the clusters were
expected to largely correspond to the classes in the
gold standard.

Once the reliability of the semantic information
in WE was proved, a second clustering task was
performed to assess the following hypothesis: since
polysemous nouns show distributional patterns that
are different from non-polysemous nouns, WE rep-
resenting polysemes are different from the others,
and this difference can be captured by means of a
clustering algorithm. This hypothesis was verified
by clustering the WE of nouns in N in L+1 clus-
ters: as a result, L clusters of monosemous nouns
and one cluster composed of polysemes instantiat-
ing a specific alternation were expected. Note that
the fact that just one class of polysemous nouns was
expected only depended on the fact that all the cases
of polysemy in the dataset instantiated a single sense
alternation (animal/food).

3.1 Word Embeddings

WE of size 200 were trained using the word2vec
toolkit1 with the CBOW architecture, which has
been proved computationally efficient for large
datasets (Mikolov et al., 2013b; Baroni et al., 2014).

1https://code.google.com/p/word2vec/

Given the results of some preliminary studies, three
relevant choices were made in the training phase.
Firstly, WE were trained on a parsed version of the
British National Corpus (BNC). The choice is in line
with previous research (Levy and Goldberg, 2014)
that proved how the embeddings created on input
annotated with dependency relations better represent
similarity (i.e. the paradigmatic relation existing be-
tween words, e.g. coffee and tea) compared with
embedding created on linear contexts, which tend to
encode more contextual information, or relatedness
(e.g. coffee and cup).

Second, the size of the window was 1 word ei-
ther side of the target word: once again, the reason
is that smaller context windows have been proved to
improve the ability of the model to represent simi-
larity (Kiela and Clark, 2014).

Finally, consistently with the theoretic approach
adopted, a single WE was created for each noun;
thus, only one vector representation was available
for the two senses of a disemous noun.

3.2 Clustering

WE have proved to be a representation that preserves
semantic information in a vectorial space. There-
fore, since nouns belonging to the same lexical class
are close in the semantic space, a clustering algo-
rithm should be capable of discovering the portion
of the space where all the members of a class are
located and include them in a cluster, thus separat-
ing them from nouns of other classes. We used the
k-means algorithm, a flat, partitional algorithm that
minimizes the distance from objects and their cen-
troid and performs hard clustering.

3.3 Evaluation

For evaluation, we used the dataset proposed by
Schwartz et al. (2014), which was built on the CSLB
norms dataset created by Devereux et al. (2014), a
very rich dataset made up of 638 concepts manu-
ally labelled by thirty annotators. Schwarz et al.
(2014) applied a filtering mechanism to the original
CSLB and obtained a final dataset made up of 346
nouns belonging to four semantic categories: ani-
macy (ANI, 146 nouns), edibility (i.e. food items,
EDI, 115 nouns), tools (TOO, 35 nouns) and things
that can be worn (WOR, 50 nouns). The dataset in-
cluded 33 disemous nouns which were represented
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k=4 k=4+1
cluster precision recall f-score precision recall f-score

0/WOR 0.98 0.92 0.95 1 0.92 0.96
1/EDI 0.83 0.78 0.81 0.87 0.94 0.90
2/ANI 0.85 0.85 0.85 0.89 0.95 0.92
3/TOO 0.77 0.97 0.86 0.81 0.97 0.88
4/ANI EDI / / / 0.83 0.44 0.65

Table 1: Results of the clustering tasks with k=4 and k=4+1.

as two lexical items (e.g. for the noun chicken,
chicken ANI and chicken EDI 2). The results of the
first clustering task (k=4) were evaluated against this
dataset.

For the second clustering (k=4+1), the dataset was
slightly modified, and disemous nouns were repre-
sented with a new label indicating their polysemy
(chicken ANI EDI).

In table 1 the results of the two clustering tasks
are shown. For each cluster and its corresponding
class in the dataset (first column) precision, recall
and f -score for k=4 and k=4+1 were computed. The
results confirmed that (i) the semantic information
kept in WE was enough to include nouns of the same
lexical class in the same cluster: this is proved by the
high f-scores for k=4; (ii) WE preserved enough in-
formation to distinguish polysemous nouns instan-
tiating a specific sense alternation from the other
nouns in the dataset. As expected, when clustering
with k=4+1, four out of five clusters were mainly
composed of monosemous nouns, thus correspond-
ing to the four classes ANI, EDI, WOR and TOO
of the dataset, whereas the fifth included polysemes
labelled as ANI EDI. The f-score for this cluster
was significantly lower than the others, but note that
Martı́nez et al. (2013) report about the difficulties of
the task also for human annotators.

The most relevant data are the precision and re-
call of the cluster 4/ANI EDI. We will discuss about
the recall in the following section. The high result
in precision confirmed that the great majority of the
nouns in the cluster were polysemous, and hence
that it was possible to find a portion of the seman-

2The notation ’ CAT’ is used to identify the class in the
dataset which a lexical item belongs to, while ’ n/CAT’ iden-
tifies the cluster - and the corresponding class - to which a noun
is assigned by our method.

tic space populated only by polysemes.
Finally, the data regarding the f-scores with

k=4+1 show that considering polysemous nouns as
members of a new class led to an improvement of
the results for all the other clusters. This confirms
that by accounting for regular polysemy it is possi-
ble to improve the performance of a system in a task
of lexical classification.

3.4 Discussion

From the error analysis, two general errors causes
and a specific one for k=4 and k=4+1 were identi-
fied. Firstly, the association effect: even if the set-
ting chosen for the creation of the WE was intended
to maximize similarity and to minimize relatedness,
a noun like peeler TOO, which co-occurs almost ex-
clusively with nouns referring to fruits and vegeta-
bles (akin nouns belonging to EDI), was included in
1/EDI instead of 3/TOO. The same effect has also
been found in other works (Hill et al., 2014).

Secondly, the low frequency effect: the major-
ity of the misclassified monosemous nouns had less
than 50 occurrences in the BNC corpus (e.g. chip-
munk ANI, 20 occurrences). Few occurrences of a
word seemed to produce less informative WE and
this, in turn, less accurate cluster assignment. Note
that WE for low frequency words are usually dis-
carded (Mikolov et al., 2013c).

For the first task (k=4) the polysemy effect: 36
out of 51 errors were due to regular polysemy, an
expected result, given that only one embedding for
each noun had been used. Thus, for example, since
chicken ANI and chicken EDI were represented by
the same vector, they were both assigned to 1/EDI.

Finally, the low recall of the cluster for polyse-
mous nouns in k=4+1 was due to the already men-
tioned sense asymmetry: when one sense is more
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taxonomic production taxonomic production
labelling frequency labelling frequency
crustacean 6 edible eaten 20
shellfish 7 seafood 6
tot animal 13 tot food 26
% ANI 33 % EDI 67

Table 2: Taxonomic labelling and production frequency
for the noun prawn

frequent or predominant that the other, the WE is
expected to be more similar to those of non ambigu-
ous nouns in a basic class, as it mostly behaves, in
distributional terms, like them.

Sense predominance was also observed in the hu-
man annotated CSLB dataset. For every concept in
the CSLB, information about the taxonomic group
the concept belongs to is also provided as well as
the relative production frequency, i.e. the number
of times the taxonomic group has been associated
to the target concept. As an example, for the noun
prawn the information reported in table 2 is pro-
vided. Our assumption was that the difference in
taxonomic labelling adequately reflects the differ-
ence in sense predominance: hence prawn, on aver-
age, is associated to the class EDI on 67% of times,
and to ANI in the remaining 33%.

In table 3, we averaged relevant values of produc-
tion frequency for polysemous nouns in 4/ANI EDI,
2/ANI and 1/EDI. On average, polysemous nouns
that in task k=4+1 were included in cluster 1/EDI
were judged to belong to the taxonomic category of
food in 64% of cases, and only 36% to the class
of animals; polysemous nouns assigned to cluster
2/ANI, were labelled by humans as animals in 67%
of cases (33% food). Finally, polysemous nouns
clustered in 4/ANI EDI had almost equal average of
human labelling for the two senses: 48% food, 52%
animal.

Human judgements support our explanation of the
low recall of cluster 4/ANI EDI: on average, the
same polysemous nouns that were incorrectly in-
cluded in 1/EDI and 2/ANI because of their strong
sense asymmetry, are mostly considered as food or
animal respectively by humans.

On the basis of these data, it is possible to con-
clude that, as expected, cluster 4/ANI EDI included

cluster % EDI-related % ANI-related
human judgements human judgements

1/EDI 64 36
2/ANI 33 67
4/ANI EDI 48 52

Table 3: Averaged taxonomic labelling for nouns in
1/EDI, 2/ANI and 4/ANI EDI

only polysemous nouns, but only those whose
senses are balanced, i.e. not strongly asymmet-
ric. On the contrary, unbalanced polysemous nouns
tended to be included in the classes the predominant
sense belongs to.

4 Modeling Sense Asymmetry

The clustering introduced above allowed to identify
most polysemous nouns for a specific class alterna-
tion but failed to handle polysemes with a strong
sense asymmetry. In order to overcome this prob-
lem, in this section we propose a sense index which,
given a specific class alternation, makes it possible
to identify and represent disemous nouns and their
particular sense asymmetries. Such an index allows
to detect and accurately represent polysemes, since
it locates nouns on a continuum whose ends are the
two involved lexical classes: monosemous nouns lay
close to one of the ends, while polysemous nouns lay
in the middle of the continuum, in a different posi-
tion depending on the degree of asymmetry of their
senses.

The sense index was calculated considering the
k=4 scenario, that is without taking into account
the polysemous class ANI EDI. For each cluster, the
centroids C were computed. A centroid is an aver-
age vector and hence, in our method, it represents
the centre of a class; therefore, the closer a noun is
to the centroid of a class, higher its degree of mem-
bership to such a class is.

Our goal was to identify which nouns were poly-
semous for a specific class alternation; for this rea-
son the method considered one pair of clusters X,
Y at a time. Given X={x1, x2,...xn} and Y={y1,
y2,...yn}, and the centroids of the two addressed
clusters Cx and Cy, the cosine similarity between
each centroid and every noun in the two classes was
computed to assess class membership. In what fol-
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lows, we will refer to this initial value as absolute
cosine class membership (θAbs).

The highest (θMaxAbs) and the lowest (θMinAbs)
values of θAbs were then used in order to define a
relative cosine class membership (θRel). The reason
for switching from absolute to relative class mem-
bership is the following. WE represent the whole
vocabulary of the corpus in a single vector seman-
tic space: since θAbs is computed in this space, it
accounts for the distance between the nouns of the
dataset and all the other words of the vocabulary.
This fact had a major drawback: while accounting
for the cosine distance with very distant words in the
semantic space, it minimized the distances between
class-related nouns. By adopting θRel we overcame
this problem, since this measure is aimed to only ac-
count for the semantic space in which nouns of two
classes and their centroids are included, thus making
evident the differences of targeted nouns.

Relative cosine class membership between a cen-
troid and a noun n in the dataset can be computed as
in (1):

θRel =
θAbs− θMinAbs

RanMaxMin
(1)

where θAbs is the absolute cosine similarity be-
tween the target name and the centroid, θMinAbs
and θMaxAbs are the values of cosine similarity be-
tween the centroid and the farthest and closest point
respectively, and RanMaxMin is the range between
these two values.

Let’s consider the noun fox and the centroidsCani

and Cedi. The θAbs between fox and Cani was
0.73, between fox and Cedi 0.48, while the values
of θRel were 0.80 with Cani and 0.30 with Cedi.
Clearly, relative cosine similarity made more evident
the proximity in the semantic space of fox to Cani,
and stressed the distance between fox and Cedi.

Finally, the values of θRel between a noun and
the two centroids were used to obtain the sense in-
dex, whereby the degree of membership of a noun to
two classes is defined. Given the two values of rel-
ative cosine class membership between a noun and
the two centroids θRel1 and θRel2 sense index for
the first sense was computed as in (2):

SenseIndex1 =
θRel12

θRel12 + θRel22
(2)

Since the indexes for the first and the second sense
are complementary, the second index was obtained
by computing 1-SenseIndex1. For fox the final sense
index was 0.88 for ANI and a corresponding 0.12
EDI, a result that indicates a clear membership of the
target noun to lexical class of the animals, and there-
fore that fox can be considered a monosemous noun.
The differences between monosemous and polyse-
mous are evident for nouns in table 4.

target noun dataset label ANI-index EDI-index
butter EDI 0.08 0.92
bacon EDI 0.07 0.93
cheese EDI 0.08 0.92
eagle ANI 0.87 0.13
panther ANI 0.95 0.05
pelican ANI 0.98 0.02
calf ANI EDI 0.51 0.49
shrimp ANI EDI 0.40 0.60
chicken ANI EDI 0.31 0.69

Table 4: Examples of sense indexes

The indexes in the table allow to distinguish three
groups of nouns, a finding which is in line both with
those of the clustering method and with the initial
hypothesis that polysemous nouns gather together in
a specific area of the vectors semantic space. In the
first part of the table monosemous nouns labelled
as EDI in the dataset are listed: their sense index
clearly reflects this class attribution, as all the in-
dexes for EDI are above 0.90. The same holds true
for the nouns in the second part of the table, i.e.
those nouns with high ANI index. The third part
of the table is the most interesting one. Firstly, the
polysemy of the nouns in this section can be easily
detected by looking at their balanced indexes. Sec-
ond, the method provided specific information that
stresses the differences regarding the distributional
behaviour of polysemes: for example, while with
the clustering method the only available information
was that calf and shrimp were in the same cluster
(ANI EDI), with the present method we know that
while the two senses of calf are almost perfectly
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balanced (0.51 ANI/0.49 EDI), shrimp is more sim-
ilar to the monosemous nouns in EDI (0.60) than
to those in ANI (0.40). Finally, the present method
overcame the limitation of the previous one related
to sense asymmetry. For example, chicken was in
the cluster 1/EDI in k=4+1 given its strongly pre-
dominant food sense, while its sense index is 0.69
EDI/0.31 ANI: by comparing this index with that of
the monosemous nouns of the first part of the table 4,
it becomes clear that chicken is not so strictly tied to
the food sense, i.e. it is not a monosemous noun, but
also that, differently from other polysemous nouns
in the third part of the table, its EDI-related sense is
strongly predominant.

4.1 Evaluation

In order to asses the quality with which our method
distinguished between polysemous and monose-
mous nouns we turned the evaluation of the sense
index in a classification task. For this purpose, given
a pair of lexical classes, we identified two thresh-
olds ’α’ and ’γ’ on the continuum between such
classes, thus obtaining three separate ranges. For
such ranges, we expected the following distribution:
monosemous nouns labelled as the first sense in the
range [0-α], nouns labelled as the second sense in
the range [γ-1] and polysemous nouns instantiat-
ing the alternation of the two senses in [α-γ]. The
populations of the three ranges were than evaluated
against the classes of the dataset annotated with pol-
ysemous nouns, from which we removed WE that
proved to preserve insufficient information due to
low frequency of the noun in the corpus (see 3.4.).
We selected two pairs of lexical classes for the eval-
uation, namely ANI-EDI, a typical regular polysemy
alternation, and WOR-EDI, an impossible alterna-
tion according to the literature. While for the former
a certain number of polysemes in the middle of the
continuum was expected, for the latter the expecta-
tion was to find two groups of nouns laying at the
ends of the continuum, and nothing in the middle.

Along with Utt and Padó (2011), in order to chose
the best threshold for the two pairs of classes we ex-
perimented with different values for α and γ and
evaluated the resulting populations of the ranges
with the Mann-Whitney U-Test, a non parametric
test that is used to test whether two populations are
significantly different or not. The output of the test

is the U-value, which can range from 0 to a number
computed considering the values of the two popu-
lations in exam. In our case, values of U close to
0 would mean that monosemous and polysemous
nouns lay in different ranges, while high values of
U indicate that they are approximately evenly dis-
tributed on the continuum.

For ANI-EDI we identified the best threshold for
α=0.23 (U=46 on a maximum value of 5671) and
γ=0.59 (U=227, max value 9730), with p≤0.05 for
both the results. As expected, EDI-nouns were in
the range [0-α], ANI-nouns in the range [γ-1] and
polysemes in [α-γ]. The low values of U indicate
that, even if there was a partial overlapping of the
three populations on the continuum, there were sig-
nificant differences among them.

For WOR-EDI the identification of best values for
α and γ was fairly straightforward. Since all the
nouns labelled as WOR were in the range [0-0.26]
and the nouns labelled as EDI in the range [0.63-
1], the values of the two thresholds were at α=0.26
(U=0, p≤0.05) and γ=0.63 (U=0, p≤0.05). In table
5 are shown the results obtained using the polysemy
index for the classification of polysemous nouns for
the two class pairs ANI-EDI and WOR-EDI.

ANI-EDI
range precision recall f-score
[0-α]/EDI 0.97 0.96 0.96
[α-γ]/ANI EDI 0.73 0.88 0.81
[γ-1]/ANI 0.97 0.93 0.95

WOR-EDI
range precision recall f-score
[0-α]/WOR 1 1 1
[α-γ]/WOR EDI / / /
[γ-1]/EDI 1 1 1

Table 5: Results of the evaluation of the Sense Index.

4.2 Discussion

For both the class alternations taken into ac-
count, the results confirmed our expectation to find
monosemous nouns on the ends of the continuum,
and disemous nouns (if present) in the middle. This
was especially true for WOR-EDI, in which nouns
were clearly polarized at the ends of the continuum
and no polysemous nouns instantiating this alterna-
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tion were found among them.
Following the comparison of the sense index re-

sults for ANI-EDI with those of the k=4+1 cluster-
ing, some conclusions can be drawn. Firstly, the
general improvement in the f-score of ANI, EDI and
ANI EDI proved that the method presented in this
section outperformed the clustering algorithm in the
task of polysemy detection.

Secondly, the significant improvement in recall
for ANI EDI showed that by exploiting the informa-
tion provided by the sense index it was possible to
detect those polysemous nouns with a strongly pre-
dominant sense that were misclassified with the pre-
vious method, even if there were few exceptions.
Tuna was found among nouns laying in the EDI
range, but close to the threshold α (tuna’s index is
19, α=23). As for polysemes found in the ANI range
some explanations can be advanced: sheep and cow
are not usually employed to denote meat as they
have a corresponding term specific for this use; snail
is very seldom meant as food; for rabbit we conjec-
ture that there are a number of figurative uses that
made it more distant for the group of edible things.

The results show that the sense index has consid-
erably increased ANI EDI recall but, to some ex-
tent, at the expenses of the precision, what was al-
ready expected after the U-test which showed the
existence of some overlap between ranges. Never-
theless, the general increase in f-score terms for the
three involved classes shows the benefits of the in-
dex approach.

The correspondence of the values of the thresh-
olds α and γ placed on the two continua was al-
most perfect: 0.23 and 0.59 on ANI-EDI, 0.26 and
0.63 on WOR-EDI. This means that the separation
of the ranges on the continuum was consistent be-
tween different senses alternations, thus proving the
robustness of the method.

Finally, the considerable distance between the
first polysemous noun (tuna), laying at point 0.19,
and the last one (octopus) at point 0.70 on the ANI-
EDI continuum, reflects the fact that the distribu-
tional characteristics of polysemes are more disperse
than those of monosemous nouns.

5 Conclusions

We have presented an ongoing work that proposes a
method for the detection and representation of pol-
ysemous nouns based on the semantic information
preserved in WE. We initially showed that polyse-
mous nouns instantiating a particular sense alterna-
tion group together in a specific area of the vector se-
mantic space. Subsequently, we proposed a method
by which, given a pair of lexical classes, a sense
index defining the degree of membership to such
classes is assigned to each noun. In this method, pol-
ysemy is implicitly represented as a balanced value
of the degree of membership. We finally showed that
it is possible to identify two thresholds α and γ such
that nouns having sense index included in the ranges
[0-α] and [γ-1] are monosemous nouns belonging to
the first and the second class of the pair respectively,
while polysemes are included in the range between
α and γ.

Results, although limited in scale, show that the
method allows a clear separation between monose-
mous belonging to a lexical class and polysemous
nouns instantiating specific sense alternation, also
accounting for those polysemes with a strong asym-
metry in sense predominace.

In future work, we plan to double check that the
results are independent of the datasets, provided
enough data is considered. Furthermore, more ex-
periments with other class alternations are planned
as well as particular application of our sense index
in actual WSD applications.
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Abstract

We tackle the question: how much supervision
is needed to achieve state-of-the-art perfor-
mance in part-of-speech (POS) tagging, if we
leverage lexical representations given by the
model of Brown et al. (1992)? It has become
a standard practice to use automatically in-
duced “Brown clusters” in place of POS tags.
We claim that the underlying sequence model
for these clusters is particularly well-suited for
capturing POS tags. We empirically demon-
strate this claim by drastically reducing super-
vision in POS tagging with these representa-
tions. Using either the bit-string form given
by the algorithm of Brown et al. (1992) or the
(less well-known) embedding form given by
the canonical correlation analysis algorithm
of Stratos et al. (2014), we can obtain 93%
tagging accuracy with just 400 labeled words
and achieve state-of-the-art accuracy (> 97%)
with less than 1 percent of the original training
data.

1 Introduction

While fully supervised POS tagging is largely con-
sidered a solved problem today, this is hardly the
case for unsupervised POS tagging. Despite much
previous work (Smith and Eisner, 2005; Johnson,
2007; Toutanova and Johnson, 2007; Haghighi and
Klein, 2006; Berg-Kirkpatrick et al., 2010), results
on this task are complicated by varying assumptions
and unclear evaluation metrics (Christodoulopoulos
et al., 2010). Perhaps most importantly, they are not
good enough to be practical. Even with indirect su-
pervision, for example the prototype-driven method

of Haghighi and Klein (2006) which assumes a set
of word examples for each tag type, the best per-
position accuracy remains in the range of mid-70%.

Recent work has taken a middle ground between
fully supervised and unsupervised setups by exploit-
ing existing resources, for example by projecting
POS tags from a supervised language or using tag
dictionaries (Das and Petrov, 2011; Li et al., 2012;
Täckström et al., 2013).

In this work, we focus on minimizing the amount
of labeled data required to obtain a good POS tag-
ger. The key to our approach is the use of lexical
representations induced by the clustering model of
Brown et al. (1992). We argue that this model is
particularly appropriate for representing POS tags
given their nearly deterministic nature (Section 2).
This sheds light on why the representations derived
under this model reveal the underlying POS tag in-
formation of words.

We empirically demonstrate the validity of our
observation by using these representations to dras-
tically reduce the number of training examples re-
quired for good POS tagging performance on En-
glish, German, and Spanish newswire datasets. For
instance, on the 12-tag English dataset, we ob-
tain tagging accuracy of 93% with just 400 labeled
words. We obtain tagging accuracy of 97.03%
(about a half percent behind fully supervised mod-
els) with just 0.74% of the original training data.

Our aim is orthogonal to the discussion in Man-
ning (2011) who investigates what is needed to go
beyond the current state-of-the-art POS tagging per-
formance. Our focus is on reaching that perfor-
mance with as little supervision as possible.
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Figure 1: Two representational schemes under the Brown model. (a) Bit-string representations: the path from the root
to a word is encoded as a bit-string. (b) CCA vector representations.

2 Motivation

2.1 POS tags are almost deterministic

Certain words are genuinely ambiguous (e.g., set
can be a verb or a noun): this was the motivation
of the use of statistical models in the early days of
computational linguistics (Church, 1988). However,
it is also true that many words are deterministically
mapped to correct POS tags (e.g., the is always a
determiner). A simple experiment highlights this
property. Let count(w, t) be the number of times
word w is tagged as t in the training data (likewise,
count(w) and count(t) are counts of wordw and tag
t). Define a deterministic mapping f : w 7→ t from
words to tags as

f(w) =
{

arg maxt count(w, t) if count(w) > 0
arg maxt count(t) otherwise

In our datasets, this naı̈ve procedure in fact yields
reasonable tagging accuracies: 92.22% for coarse
tags and 88.50% for fine-grained tags (averaged
across three languages).

This observation suggests that the following re-
stricted class of HMMs might be sufficient for mod-
eling the characteristics of POS tags:

• π(t) is the prior probability of tag type t.

• t(t′|t) is the probability of transitioning from tag
type t to tag type t′.

• o(w|t) is the probability of emitting word type w
from tag type t.

• (Restriction) For each word type w, we have
o(w|t) > 0 only for a unique tag type t and
o(w|t′) = 0 for all other tag types t′ 6= t.

In other words, we assume that tag types partition
word types while imposing a first-order sequence
structure on tag types.

2.2 Brown et al. (1992) model

This class of restricted HMMs is precisely the model
proposed by Brown et al. (1992)—henceforth the
Brown model. A popular use of this model is ag-
glomerative word clustering: the result is a hierar-
chy over word types, such as the one shown in Fig-
ure 1(a). In practice, each word type is represented
as a bit-string indicating the path from the root.
These bit-strings have been used as discrete (binary)
features in various natural language tasks such as
named-entity recognition (Miller et al., 2004) and
dependency parsing (Koo et al., 2008).

Recently, Stratos et al. (2014) showed that a
variant of canonical correlation analysis (CCA)
(Hotelling, 1936) can be used to provably re-
cover the clusters under the Brown model. Un-
der this method, each word is represented as an m-
dimensional vector wherem is the number of hidden
states in the model: see Figure 1(b) for illustration.
This can be used as m real-valued features in dis-
crminative models. Note that real-valued represen-
tations can reflect ambiguity (e.g., set in the illus-
tration) which can be seen as a benefit over discrete
representations.
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By the above observation, we conjecture that the
hidden states of the Brown model capture POS tags.
Then the bit-string and embedding representations
essentially “give away” the POS tag associated with
a word. In experiments, we show that this is indeed
the case and not far removed from the idealized il-
lustration in Figure 1.

3 Method

In this section, we describe our tagging framework
MINITAGGER, which is pleasantly simple but sur-
prisingly effective. It uses an off-the-shelf discrim-
inative classifier to map a word’s context to a POS
tag. Concretely, given a sentence x and a position i
in x, we extract a feature vector φ(x, i) ∈ Rd and
train a multi-class classifier to map φ(x, i) to a POS
tag. To clarify, this is not the the HMM model de-
scribed in the previous section: the HMM model un-
derlies Brown bit-strings and CCA embeddings.

This framework has compelling benefits. First, it
allows for learning from partially labeled sentences
since each word is an independent sample. Sec-
ond, training and tagging can be very fast since they
do not involve dynamic programming required for
structured models. Third, arbitrary features can be
easily and effectively incorporated. Finally, there
are many well-oiled public implementations of dis-
criminative classifiers such as support-vector ma-
chines (SVMs), thus building an efficient and effec-
tive MINITAGGER takes only a minimal effort.

3.1 Feature templates
We use a baseline feature function base that maps
a sentence-position pair (x, i) to a a 0-1 vector
base(x, i) indicating

• Identities of xi−1, xi+1, xi, xi−2, xi+2

• Prefixes and suffixes of xi up to length 4

• Whether xi is capitalized, numeric, or non-
alphanumeric

Let bit(x) be a binary vector indicating prefixes
of the Brown bit-string corresponding to x.1 Let
cca(x) ∈ Rm be an m-dimensional CCA embed-
ding corresponding to x.

1Past work has used various complex schemes on which pre-
fixes to use, e.g., see Koo et al. (2008). For simplicity, we use
every prefix in this work.

φ(x, i) Definition
BASE base(x, i)

BIT
base(x, i)⊕ bit(xi)

⊕bit(xi−1)⊕ bit(xi+1)

CCA
base(x,i)
||base(x,i)|| ⊕ cca(xi)

||cca(xi)||
⊕ cca(xi−1)
||cca(xi−1)|| ⊕ cca(xi+1)

||cca(xi+1)||

Table 1: Feature templates for MINITAGGER: ⊕ is the
vector concatenation operation.

Table 1 shows the feature templates we use to
obtain a vector representation of (x, i). ⊕ is the
vector concatenation operation. BASE is a base-
line template which uses only the spelling features
of the current word and the identities of neighbor-
ing words. BIT is the same as BASE but augmented
with Brown bit-strings. CCA is the same as BASE
but augmented with CCA embeddings with appro-
priate normalization.

3.2 Sampling methods

3.2.1 Active learning
We also deploy active learning to find the most

informative words for labeling in attempt to reduce
the amount of training data. While there is a rich
literature on this topic (see Settles (2010) for a sur-
vey), we focus on a simple form of margin sampling
in this work. Every time the model is allowed to
have an additional label, it actively selects the word
from a pool of unannotated words whose predicted
tag is the least confident.

To be precise, let s(x, i, y) be the score of label y
for sentence-position pair (x, i). For example, a lin-
ear SVM may define s(x, i, y) = w>y φ(x, i) where
wy is the model parameter and φ(x, i) is a feature
template in Table 1. To obtain M labeled examples,
we specify the initial seed size k ≤ M and the step
size ξ (for simplicity, assume ξ divides M − k) and
proceed as follows:

1. Select the top k most frequent word types (a
random occurrence of each type) for labeling.

2. For (M − k)/ξ times:

(a) Train a model with the current set of la-
beled examples.
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NOUN VERB ADP ADJ ADV NUM
community Microsoft kept is from romantic boldly 1
enterprise AT&T made was between mystical selfishly 2

law Unocal invented were for macho frequently 3
anthem Chrysler squandered are [on heroic cynically 4
invader Hexcel lent had in straight-ahead wisely 6
pastime Tosco memorized becomes towards piquant clumsily 7
heritage Geico witnessed ‘s betwen cushy effectively 8

curriculum Starwave enjoyed has betweeen ghoulish carefully 5

Table 2: Nearest neighbors of some example words along with their associated universal tags (measuring the l2 distance
between CCA word vectors).

(b) Label ξ examples (x, i) with the small-
est “confidence” values s(x, i, y1) −
s(x, i, y2) where

y1 := arg max
y

s(x, i, y)

y2 := arg max
y 6=y1

s(x, i, y)

During active learning, the model operates on unan-
notated data provided that we supply labels for se-
lected examples (we simulate this setting with la-
beled data). Note that the selection of examples is
inherently tied to the choice of features. Indeed, our
experiments show that it is crucial to use lexical rep-
resentations for active learning to work effectively.

Large values of k and ξ can be used to speed up
active learning (possibly at the cost of performance
loss). Since our focus is on maximizing performance
with minimal supervision, we use k = ξ = 1. We
leave the speed-performance tradeoff of active learn-
ing for future work.

3.2.2 Random and frequent-word sampling
In addition to active learning, we consider the fol-

lowing methods for obtaining M labeled words.

• Random sampling: Select M words uniformly
at random (without replacement).

• Frequent-word sampling: Select random occur-
rences of the M most frequent word types.

Note that frequent-word sampling is optimal if there
really is a deterministic mapping from word types
to tag types. But since the assumption does not
hold perfectly, it has severe limitations in practice.

We have found that frequent-word sampling outper-
forms random sampling for small values of M but
starts to lag behind as M increases.

4 Experiments

4.1 Setting

We experimented on 3 languages: English, German,
and Spanish. For all these languages, we used the
train/dev/test datasets of the universal treebank (Mc-
Donald et al., 2013)—both the reduced tagset ver-
sion, which we denote by EN12, GE12, and SP12,
and the original tagset version, which we denote
by EN45, GE16, and SP24. The number in the
dataset name refers to the number of tag types in
that dataset: e.g., EN45 is an English dataset with
45 possible tags.

For each language, we derived Brown represen-
tations (by which we mean both the bit-string and
embedding forms) from a corpus of unlabeled text.
For English, we used a corpus of about 772 million
words from various sources of (mostly newswire)
text. For German and Spanish, we used the n-gram
statistics in Google Ngram (Michel et al., 2011).
The number of words was about 64 billion for Ger-
man and 83 billion for Spanish.

We used the implementation of Liang (2005) to
derive bit-string word representations for English:
for German and Spanish, we used the agglomerative
clustering technique of Stratos et al. (2014) since
Liang’s implementation did not support operating
directly on n-grams. We used the CCA algorithm of
Stratos et al. (2014) to derive 50-dimensional word
embeddings. Table 2 displays nearest neighbors
(i.e., words whose associated CCA embeddings are
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# labels Sampling Features EN12 GE12 SP12 EN45 GE16 SP24
200 random BASE 74.52 72.91 77.47 70.00 60.39 67.01

frequent-word BASE 79.42 78.36 77.88 74.58 68.83 73.92
active BASE 66.67 71.00 69.90 61.05 61.01 64.60

BIT 88.53 81.71 85.18 79.89 71.18 81.39
CCA 89.34 81.30 87.63 81.68 76.60 86.54

400 random BASE 80.18 76.13 79.96 75.26 69.08 76.66
frequent-word BASE 85.44 82.69 79.93 82.07 75.68 80.44

active BASE 76.06 77.56 80.69 77.24 67.93 79.29
BIT 93.00 87.53 89.94 88.38 77.82 86.53
CCA 92.29 88.17 91.70 88.55 80.48 89.06

1000 random BASE 85.39 81.31 85.92 81.72 73.61 82.53
frequent-word BASE 89.94 85.04 88.93 87.53 79.31 85.93

active BASE 85.65 86.27 88.16 85.02 78.54 84.91
BIT 95.21 91.18 93.45 92.81 83.91 91.73
CCA 95.03 92.48 94.37 92.22 84.40 91.97

Table 3: Dev performance of MINITAGGER when only 200, 400, and 1000 labeled words are used.

the closest in l2 distance) of some example words.
We see that these embeddings are remarkably good
at relating the POS tag information to Euclidean dis-
tance, confirming our hypothesis in Section 2.

We built a MINITAGGER using the liblinear pack-
age of Fan et al. (2008).2 We primarily compared
our model with conditional random fields (CRFs)
(Lafferty et al., 2001). We used the implementation
of Okazaki (2007).

While we do not rigorously compare runtime per-
formances in this work, we note that the computa-
tional advantages of MINITAGGER are very useful in
practice. Training/tagging takes only a few seconds
with baseline features; with more complex features
such as word embeddings, it still takes much less
time than what is required by a CRF (which takes
hours with baseline features).

4.2 Effect of Brown representations
4.2.1 With limited supervision

We first look at the effect of using Brown repre-
sentations when only a limited amount of training
data is available: a scenario in which the role of
such lexical representations can be prominent. We
select a subset of training data (by words) with vari-
ous sampling schemes described in Section 3.2.

Fixed amount of data. Table 3 shows the perfor-
2Our code is available at: https://github.com/

karlstratos/minitagger.
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Figure 2: Dev performance of MINITAGGER with vary-
ing amounts of supervision (on EN12).

mance on the development portion when MINITAG-
GER is trained on 200, 400, and 1000 labeled words.
Active learning together with Brown representations
gives dramatic improvement in accuracy when the
amount of training data is limited. With 200 ran-
domly sampled labels, the baseline model obtains
an average accuracy of 74.97% across EN12, GE12,
and SP12. This improves to 86.09% when labels are
actively selected with CCA features. A striking re-
sult is that we can obtain an accuracy of 93% with
only 400 labeled words on the 12-tag English data.

The performance of various sampling methods
and features on EN12 is plotted in Figure 2: it is
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Dataset Target acc BASE BIT CCA
EN12 97% 33200 10300 7000
GE12 94% 8600 4800 3000
SP12 96% 13700 6900 2700
EN45 96% 34400 17800 7700
GE16 92% 33500 15200 13200
SP24 95% 26500 8600 6000

EN12 GE12 SP12 EN45 GE16 SP24
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Table 4: (a) Smallest numbers of actively selected labels required by MINITAGGER to reach the target dev performance:
92–97%. The target performance is defined to be the accuracy of the fully supervised baseline rounded down to a whole
number (Table 5). (b) As percentages of the original training data.

clear that active sampling with Brown bit-string or
CCA embedding features outperforms others consis-
tently and very significantly.

Fixed target accuracy. Table 4(a) shows the small-
est numbers of labeled words required to achieve tar-
get performance, where the target performance is de-
fined to be the accuracy of the fully supervised base-
line rounded down to a whole number (Table 5). We
repeatedly increase the training size by 100 and re-
port the first size that allows MINITAGGER to reach
the target accuracy. These numbers are presented as
percentages of the size of the original training data
in Table 4(b).

We see that active learning with lexical repre-
sentations provides dramatic reduction in training
data while maintaining good performance. In all
cases, using CCA embeddings as features for ac-
tive learning outperforms using Brown bit-strings,
although sampling takes much longer with CCA em-
beddings since there are many more non-zero fea-
tures. MINITAGGER does almost as well as when
fully supervised with less than 1% of the training
data on English: > 97% accuracy with 0.74% of
the data on the 12-tag version, and > 96% accuracy
with 0.81% of the data on the 45-tag version.

4.2.2 With full supervision

We also examine the effect of Brown representa-
tions in a fully supervised setting. Table 5 shows
the performance of different tagging methods on
the development portion when all training data is
used. We see that Brown representations are helpful
even under full supervision: MINITAGGER, a sim-
ple greedy model, outperforms CRF when equipped
with Brown representations.

Table 5 also shows the performance of MINITAG-
GER and CRF on the test portion. For MINITAG-
GER, we additionally consider a model trained only
on the actively selected samples with CCA features
in Table 4 which are sufficient to reach state-of-the-
art performance on the dev portion. As percent-
ages of the original training data, these samples con-
stitute 0.74% for EN12, 1.13% for GE12, 0.72%
for SP12, 0.81% for EN45, 4.98% for GE16, and
1.60% for SP24—1.66% on average. The accuracy
of MINITAGGER equipped with Brown representa-
tions is again generally higher than that of CRF. Fur-
thermore, MINITAGGER achieves competitive per-
formance using only a fraction of the original train-
ing set.
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Eval Model Features Data EN12 GE12 SP12 EN45 GE16 SP24
dev MINI BASE all 97.42 94.91 96.75 96.51 92.44 95.42

BIT all 97.56 95.09 96.98 96.63 92.67 95.89
CCA all 97.67 94.94 97.12 96.81 92.81 95.99

CRF default all 97.37 94.56 96.59 96.59 91.76 95.61
test MINI CCA all 97.90 94.79 95.88 97.25 92.16 94.70

MINI CCA active 97.20 (0.74) 94.09 (1.13) 94.27 (0.72) 96.43 (0.81) 91.59 (4.98) 93.06 (1.60)
CRF default all 97.54 94.33 94.88 97.03 91.12 93.48

Table 5: Performance of MINITAGGER (MINI in short) and CRF on the dev and test portions. The Data column
specifies the amount of training data: “all” means all training data is used, “active” means only the labeled examples
actively selected (with the same CCA features) in Table 4 are used: the amount of actively selected examples as a
percentage of the original training data is shown in parantheses.

5 Related work

We make a few remarks on related works not already
discussed earlier. Our work extends a rich body of
previous work on reducing annotation efforts with
seed examples, unlabeled data, and training exam-
ple selection (Yarowsky, 1995; Blum and Mitchell,
1998; Collins and Singer, 1999; Miller et al., 2004;
Koo et al., 2008; Kim and Snyder, 2013). In partic-
ular, Miller et al. (2004) investigate semi-supervised
named-entity recognition based on Brown clusters
and active learning. Koo et al. (2008) investi-
gate semi-supervised dependency parsing based on
Brown clusters.

The direction that Ringger et al. (2007) pursue is
perhaps the most similar to ours. They attempt to
reduce supervision required for high POS tagging
performance based on active learning. But a critical
difference is that they do not use word representa-
tions: in contrast, word representations are central
to our approach.

Another closely relevant work is the work of Gar-
rette and Baldridge (2013) who aim to learn a good
POS tagger from limited resources. Notably, they
faithfully simulate tagging resource-poor languages
with human annotators. Our contribution is differ-
ent in several important ways. Most importantly,
our results are much more striking in the aspect of
minimizing supervision. We obtain > 90% accu-
racy with a few hundred labeled words, whereas
Garrette and Baldridge (2013) obtain 71-78% with
1,537-2,650 labeled words and tag dictionaries (i.e.,
the result of two hours of annotation efforts). They
also do not make use of word representations which
are the highlight of this work.

6 Conclusion

We have argued that that the sequence model of
Brown et al. (1992), often used for deriving lexical
representations, is particularly appropriate for cap-
turing POS tags. We have demonstrated this claim
by drastically reducing the amount of labeled data
required for state-of-the-art POS tagging accuracy
with word representations derived under the Brown
model. Our simple framework MINITAGGER allows
one to learn a functioning POS tagger with merely
a few hundred labeled tokens, or an accurate POS
tagger with less than 1% of the normally considered
amount of training data.

We focused on utilizing lexical representations in
a greedy framework, which is well-suited for the
per-position accuracy metric (which is the standard
metric for POS tagging). However, the result may be
quite different if other metric is chosen, for instance
the per-sentence accuracy metric. Thus improving
tagging performance under different metrics using
lexical representations may be a fruitful direction.

While they are not considered in this work, lexical
representations not derived under the Brown model
such as the skip-gram model in the WORD2VEC
package Mikolov et al. (2013) can certainly be used
for the same task. It may be illuminating to compare
such different representations.
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Abstract

We propose a novel approach to learning dis-
tributed representations of variable-length text
sequences in multiple languages simultane-
ously. Unlike previous work which often de-
rive representations of multi-word sequences
as weighted sums of individual word vec-
tors, our model learns distributed representa-
tions for phrases and sentences as a whole.
Our work is similar in spirit to the recent
paragraph vector approach but extends to the
bilingual context so as to efficiently encode
meaning-equivalent text sequences of multi-
ple languages in the same semantic space.
Our learned embeddings achieve state-of-the-
art performance in the often used crosslingual
document classification task (CLDC) with an
accuracy of 92.7 for English to German and
91.5 for German to English. By learning
text sequence representations as a whole, our
model performs equally well in both classifi-
cation directions in the CLDC task in which
past work did not achieve.

1 Introduction

Distributed representations of words, also known as
word embeddings, are critical components of many
neural network based NLP systems. Such represen-
tations overcome the sparsity of natural languages
by representing words with high-dimensional vec-
tors in a continuous space. These vectors encode
semantic information of words, leading to success
in a wide range of tasks, such as sequence tag-
ging, sentiment analysis, and parsing (Collobert et
al., 2011; Maas et al., 2011; Socher et al., 2013a;

Chen and Manning, 2014). As a natural extension,
being able to learn representations for larger lan-
guage structures such as phrases or sentences, has
also been of interest to the community lately, for in-
stance (Socher et al., 2013b; Le and Mikolov, 2014).

In the multilingual context, most of the recent
work in bilingual representation learning such as
(Klementiev et al., 2012; Mikolov et al., 2013b; Zou
et al., 2013; Hermann and Blunsom, 2014; Kočiský
et al., 2014; Gouws et al., 2014) only focus on learn-
ing embeddings for words and use simple functions,
e.g., idf-weighted sum, to synthesize representations
for larger text sequences from their word members.
In contrast, our work aims to learn representations
for phrases and sentences as a whole so as to repre-
sent non-compositional meanings.

In essence, we extend the paragraph vector ap-
proach proposed by Le and Mikolov (2014) to
the bilingual context to efficiently encode meaning-
equivalent multi-word sequences in the same seman-
tic space. Our method only utilizes parallel data and
eschews the use of word alignments. When tested on
the often used crosslingual document classification
(CLDC) tasks, our learned embeddings yield state-
of-the-art performance with an accuracy of 92.7 for
English to German and 91.5 for German to English.
One notable feature of our model is that it performs
equally well in both classification directions in the
CLDC task in which past work did not achieve as
we detail later in the experiment section.

2 Related work

Word representations – Work in learning dis-
tributed representations for words can largely be
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grouped into two categories: (a) pseudo-supervised
methods which make use of properties in the unan-
notated training data as supervised signals and (b)
task-specific approaches that utilizes annotated data
to learn a prediction task. For the former, word
embeddings are often part of neural language mod-
els that learn to predict next words given contexts
by either minimizing the cross-entropy (Bengio et
al., 2003; Morin, 2005; Mnih and Hinton, 2009;
Mikolov et al., 2010; Mikolov et al., 2011) or max-
imizing the ranking margins (Collobert and Weston,
2008; Huang et al., 2012; Luong et al., 2013). Rep-
resentatives for the latter include (Collobert and We-
ston, 2008; Maas et al., 2011; Socher et al., 2013a)
which finetune embeddings for various tasks such
as sequence labelling, sentiment analysis, and con-
stituent parsing.
Larger structure representations – Learning dis-
tributed representation for phrases and sentences is
harder because one needs to learn both the com-
positional and non-compositional meanings beyond
words. A method that learns distributed represen-
tations of sentences, which is closely related to our
approach, is the paragraph vector by Le and Mikolov
(2014). The method attempts to predict words in
N -grams of a sentence, given the same shared sen-
tence vector. Errors are backpropagated to train not
only the word vectors but also the sentence vector.
This method has an advantage that it only requires
training data to be sequences of words unlike other
work that require annotated data such as parse trees
(Socher et al., 2013b; Socher et al., 2013a).
Multilingual embedding – Previous work to learn-
ing multilingual distributed representations, often
optimize for a joint objective consisting of several
monolingual components, such as neural language
models, and a bilingual component to tie representa-
tions across languages together. The bilingual objec-
tive varies through different approaches and can be
formulated as either a multi-task learning objective
(Klementiev et al., 2012), a translation probability
(Kočiský et al., 2014), or an L2 distance of various
forms between corresponding words (Mikolov et al.,
2013b; Zou et al., 2013; Gouws et al., 2014).

The work of Hermann and Blunsom (2014) and
Chandar A P et al. (2014) are similar to our work
in eliminating the monolingual components and just
training a model with bilingual objective to pull

distributed representations of parallel sentences to-
gether. These approaches, however, only use sim-
ple bag-of-word models to compute sentence repre-
sentations and has a potential disadvantage that it is
hard to capture the non-compositional meanings of
sentences. Instead, we learn representations for text
sequences as a whole, similar to Le and Mikolov
(2014), but in the bilingual context.

3 Joint-space bilingual embedding

In this section, we describe our method to learn the
distributed representations of sentences from two
languages given a parallel corpus. Our learned
representations have the property that sequences of
words with equivalent meanings across different lan-
guages will have their representations clustered to-
gether in the shared semantic space. We call this
property the clustering constraint.

Our method is based on the following assump-
tions observed by (Le and Mikolov, 2014): the dis-
tributed representation vector of a sequence of words
can contribute its knowledge to predict the N -grams
in the sequence, and conversely, if a vector can con-
tribute well to the task, then one can think of it as the
representation of the sequence. Since the assump-
tion is not made specific to any language, we gener-
alize it to learn the distributed representation of word
sequences in multiple languages. However, instead
of duplicating the representations to have one vector
per sentence per language, we simply force parallel
sentences in the languages of consideration to share
only one vector. This allows us to avoid a bilingual
term in our learning objective function to cluster the
corresponding vectors together.

Figure 1 illustrates the architecture of our model.
Each word in each language is associated with a
D-dimensional vector, whereas each parallel sen-
tence is tied to the same sentence vector of di-
mension P . These word and sentence vectors
are used to predict N -grams in both of the sen-
tences. More precisely, suppose that s1, s2, ..., sS

and t1, t2, ..., tT are our two parallel sentences that
share the same sentence representation v. For every
N -gram [wi−N+1, wi−N+2, ..., wi], where w can be
either s or t, our model computes the N -gram prob-
ability as follows

p(wi|wi−N+1, ..., wi−1) = p(wi|f) (1)
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Figure 1: Our architecture to learn bilingual distributed representations of sentences. sent is the shared
context that contributes to predicting N -grams in both sentences.

where f is a feature vector computed based on the
N -gram and the shared sentence vector v.

There are several ways to compute f . As pro-
posed in (Le and Mikolov, 2014), one can either
take the average of v and the word embeddings of
wi−N+1, wi−N+2, ..., wi−1 or concatenate them to
form f . In the former “average” approach, one al-
ways needs D=P , which implies that the contribu-
tion of v is less impactful as it needs to compete with
the other (N − 1) word representations in the aver-
age term. In the latter “concatenate” approach, the
dimension of f is P +(N −1)×D, which suggests
that the model cannot afford to have large word em-
bedding size or longer N -grams. To overcome both
problems, we propose to concatenate v with the sum
of the word vectors in each of the N -grams. More
precisely

f =

v; i−1∑
j=i−N+1

wj

 (2)

This hybrid approach allows us the freedom to tune
D and P for our purpose.

There are also numerous approaches for the clas-
sifier that predicts the next word. However, to op-
timize for efficiency, we narrow our choices to the
factorized multiclass classifier, also known as the hi-
erarchical softmax (Morin, 2005). The words in the
vocabulary of each language are represented as leaf-
nodes of a binary tree. Each node n of the tree has
a vector vp whose dimension is equal to that of the
feature vector f . These vectors encode the model’s
belief whether a f belongs to the left or the right
child of n

p(go left|node n, f) = σ
(
fT · vn

)
(3)

where σ(·) is the logistic sigmoid function and vn is
a vector associated to the node n. The probability
of seeing a word is then factored into the product
of probabilities of the node along the path from the
tree’s root to the node corresponding to it.

At training time, pairs of parallel sentences are
shown to the model for several epochs. The model
maintains the shared sentence vectors and updates
them, along with the word vectors and hierarchical
softmax parameters of both languages, to minimize
the cross-entropy prediction error

J = −
∑
(s,t)

log p(s, t), (4)

where the probability of the pair of sentences (s, t) is
computed simply based on the Markov assumption

p(s, t) =
S∏

i=1

p(si|si−N+1, ..., si−1)

×
T∏

j=1

p(tj |tj−N+1, ..., tj−1) (5)

At test time, the model is given one sentence in
one of the languages it has been trained on. To
compute the representation of that sentence, we ran-
domly initialize a vector and train it in the same set-
ting as above, but to predict only N -grams from one
sentence. We update only the sentence vector; other
parameters are preserved. We want to emphasize
that due to the random initialization, the sentence
embeddings computed by our model are not deter-
ministic, in the sense that if the model sees a sen-
tence twice, it is possible that two different embed-
dings will be learned for the same sentence. This
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might potentially be a cause of nondeterminism if
other models attempt to learn or classify based on
these sentence vectors. However, our training objec-
tive for each N -gram has the form

JN -gram = −
∑

n

log
(
σ
(
fT · vn

))
, (6)

Since σ(·) is log-concave, our training objective is
convex. This guarantees a global minimum sen-
tence embedding vector to which our sentence vec-
tors would converge. Moreover, at train time, the
model has been trained to minimize the prediction
errors of pairs of sentences that share the same sen-
tence vector, its parameters have adapted to this
manner. Hence, at test time, although two sentence
vectors are learned independently, one can expect
that they converge to close points in the shared se-
mantic space.

4 Experiments

4.1 Training data and procedures

We attempt to learn the distributed representation for
arbitrary sequences of words in English and Ger-
man. We train our model using the Europarl
v7 multilingual corpora (Koehn, 2005), in particu-
lar the English-German corpus. The corpus consists
of multilingual parliament documents automatically
aligned into 1.8M equivalent pairs of sentences. We
preprocess the corpus by filtering out the tokens that
appear less than 5 times and desegment the German
compound words. This leads to the final set of 43K
English words and 95K German words.

Parameters of our model are updated using a
gradient-based method. While for each pair of sen-
tences, the prediction and N -grams and parameter
updates are performed in sequence, our training im-
plementation uses the multithreading approach to
train through pairs of sentences in our training cor-
pus in parallel and updates parameters with asyn-
chronous gradient descent. Since our model predicts
N -gram probabilities, we tune our hyperparame-
ters, including P , D and the learning rate, based on
the model’s perplexity on the newstests devel-
opment data provided by the Workshop in Machine
Translation1.

1http://www.statmt.org/wmt15/

At the beginning of our training procedure, we
use word2vec (Mikolov et al., 2013a) to guide
our hierarchical softmax trees. In particular, first
we precompute the distributed representations for
all the tokens in all the languages and run the K-
Means algorithm to classify our word vectors into
C classes based on L2 distance. Then, we sort each
language’s vocabulary into contiguous strides of the
same class. Finally, we construct our hierarchical
softmax tree as the weight-balanced binary tree on
each of the sorted vocab. The resulted hierarchi-
cal softmax trees thus have the semantic informa-
tion about the cluster of words held by each of its
nodes, similar to the WordNet taxanomy tree (Fell-
baum, 1998).

We performed experiments with different settings
for the model’s architecture, such as the dimension
P of sentence vectors, D of word vectors, and N -
gram length N , and the learning rate. Our finding is
that P ≈ 5D generally gives the best performance.
Also we used the start learning rate of 0.0001 which
decreases as the model is trained for more epochs.
We trained all models for 50 epochs. In Section 5,
we will discuss the effect of the parameters P and
D. Following, we report our best experiment results,
with P = 500, D = 100, N = 7 and C = 500.

4.2 Document classification on RCV1/RCV2

We test the learned bilingual distributed representa-
tions on the English-German Cross-Lingual Docu-
ment Classification (CLDC, henceforth), proposed
by (Klementiev et al., 2012). The corpus con-
sists of documents from Reuter, written in English
and German, annotated into 4 categories: Corpo-
rate/Industrial, Economics, Government/Social, and
Markets. The documents are separated into 1K
training documents and 5K test documents for each
language. Each document in the dataset consist
of only a few sentences, so the data is similar to
the training data that our model has been trained
on. The learned models are required to provide the
distributed representations of all these documents,
which are then passed to a perceptron algorithm to
learn from training data and classify test data. The
key challenge is that the perceptron algorithm has to
learn in English and classify in Germen (en→de) or
vice versa (de→en). To make the learning problem
feasible, the document compositional model must
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satisfy the clustering constraint mentioned in Sec-
tion 3.

As in (Klementiev et al., 2012), the CLDC dataset
was proposed to evaluate embeddings of words only,
so we follow the author in using the document com-
positional model where the document vector is com-
puted by taking the sum of all embeddings of the
words that appear in the document, weighted by
their inverse document frequencies (idf). We refer to
this method as para sum. It demonstrates that the
English and German word embeddings learned by
our model indeed satisfy the clustering constraint.
Our model achieves competitive classification result
with para sum.

However, our model has not only the word
embeddings but also the capability of computing
the distributed representation of arbitrary word se-
quences, so we propose computing the document
vectors in this manner. We call this method
para doc. We find that para doc gives signif-
icantly better results than para sum, especially on
the de→en direction. In Table 1, we present our
classification results on the CLDC task and compare
them against strong baselines. Specifically, we first
show the results of the original baselines in (Kle-
mentiev et al., 2012), then we show the stronger
baselines (Chandar A P et al., 2014; Hermann and
Blunsom, 2014), which perform considerably bet-
ter but the gains are uneven between en→de and
de→en. Finally, we show that our method works
better than all these baselines. While para sum
outperforms the all the baselines but still with a
significantly worse result in de→en, para doc
achieves better results and at once, avoids the asym-
metry of all the other approaches.

5 Discussion

5.1 Symmetry of multilingual model

The key to succeed on the CLDC task is that equiv-
alent documents in English and German should be
mapped into similar points in the joint semantic
space. This goal, however, is hard to achieve by us-
ing the idf weighted sum of word vectors in docu-
ments as proposed by (Klementiev et al., 2012). The
major reason for this is perhaps due to the linguis-
tic asymmetry between English and German. For
example, verbs in German have more conjugations

Model en→de de→en
Majority class 46.8 46.8
Glossed 65.1 68.6
Machine translation 68.1 67.4
I-Matrix 77.6 71.1
Autoencoder 91.8 72.8
Compositional Add+ 87.7 77.5
Compositional Bigram+ 86.1 79.0
para sum 90.6 78.8
para doc 92.7 91.5

Table 1: Performances on CLDC English-German.
Each model is trained on one language and tested
on the other one. The numbers reported are the per-
centage of correctly predicted test documents. The
first four baselines (Klementiev et al., 2012) are less
sensitive to languages, so we do not observe large
difference between the tasks en→de and de→en.
Other methods that involve weighted sum of word
vectors by (Chandar A P et al., 2014) and (Hermann
and Blunsom, 2014) perform better on en→de than
on de→en. Our work bridges the gap and simul-
taneously achieves state-of-the-art performance on
both tasks.

than their English counterparts and there is gener-
ally a large number of compound words in German.
These phenomena are evidenced by the fact that the
German vocab size is about twice of that of English
(95K versus 43K) according to our training data.
As a result, many German words appear less often,
giving the model less opportunity to optimize for
their representations. All these observations explain
that it is inferior to simply represent documents as
as weighted sum of the embeddings of their words.
As highlighted in Table 1, methods that adopt the
weighted average approach all suffer from the dis-
crepancy between en→de and de→en CLDC re-
sults. Note that such asymmetry also holds for our
learned word vectors when we simply sum them up
(the para sum row).

On the other hand, our second approach to com-
pute document vectors does not suffer from this
problem. At train time, we have already aimed at
learning the same distributed representation for sen-
tences (the clustering constraint on vectors of equiv-
alent words follows only as a consequence). At test
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time, the same clustering constraint leads the doc-
ument vectors computed by our model to be more
symmetric than the weighted sum of word vectors.
This symmetrization explains why our classification
results on en→de and de→en using para doc
are about equally strong, and both are better than
those of para sum.

5.2 Effects of embedding dimensions
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Figure 2: Test results for the de→en CLDC task
across training epochs. Larger P gives better result
while converging slower at test time.

We train four models on English-German data
with with D = 128 and P ∈ {128, 256, 512, 1024}
and compare their test performances as training pro-
gresses. As demonstrated in Figure 2, models with
larger P give better classification results (though
they require more test iterations to converge to good
sentence embeddings).

6 Conclusion

In summary, we have presented our novel approach
to computing distributed representations of arbitrary
word sequences in different languages from unan-
notated parallel data. Our method achieves state-
of-the-art performance on a bilingual benchmark be-
tween English and German. We also gave our intu-
itions to explain why the model works even though
it is nondeterministic while computing sentence vec-
tors at test time. Further intuitions also suggest that
it is possible to incorporate new languages into the
model without hurting the previously known one. In

the future, we plan to investigate the model’s capac-
ity to learn embeddings in other languages, such as
French.
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Abstract

Recent interest in distributed vector represen-
tations for words has resulted in an increased
diversity of approaches, each with strengths
and weaknesses. We demonstrate how di-
verse vector representations may be inexpen-
sively composed into hybrid representations,
effectively leveraging strengths of individual
components, as evidenced by substantial im-
provements on a standard word analogy task.
We further compare these results over differ-
ent sizes of training sets and find these ad-
vantages are more pronounced when training
data is limited. Finally, we explore the rela-
tive impacts of the differences in the learning
methods themselves and the size of the con-
texts they access.

1 Introduction

Distributed vector representations allow words to
be represented in a continuous space. By learning
these representations using unsupervised methods
over large corpora, these models capture key dis-
tributional aspects of word function and meaning.
In particular, such representations provide a valu-
able response to issues of data sparsity by providing
simple similarity measures between terms. Whether
used indirectly in terms of those similarity measures
(e.g. for smoothing in language models) or directly
as features to a model for tasks such as parsing (Lei
et al., 2014), these representations have proved in-
creasingly valuable to a variety of NLP tasks (Ben-
gio et al., 2013).

Given these benefits, a number of approaches
have been explored for generating these represen-
tations beginning with early work in connectionist

modeling (McClelland et al., 1986) and expanding
into applications in text analysis. Recently, in part
spurred by the resurgence of neural network meth-
ods, vector representations have enjoyed renewed at-
tention, expanding beyond their previous scope with
the appearance of a variety of new techniques for
their generation and applications for their use.

The various approaches have been shown to have
a variety of strengths and weaknesses and it is pre-
cisely in the context of this proliferation that our
work is focused. Presented with diversity of tech-
niques, other areas of machine learning have found
excellent results with the use of ensemble meth-
ods (Dietterich, 2000), combining multiple tech-
niques to capture the strengths of each. We exam-
ine whether similar gains are available here through
the combination of multiple existing techniques for
generating semantic vector representations.

Recent work has shown that relationships in these
models (such as gender differences or pluralization)
are often linear (Mikolov et al., 2013b). Drawing
on this, we explore composition through linear com-
binations of these representational spaces. In par-
ticular, we explore combinations of a popular neural
network method (Word2Vec) (Mikolov et al., 2013a)
with Distributed Vector Representations in Sigma
(DVRS) (Ustun et al., 2014), a method based on
prior work in holographic representation (Jones and
Mewhort, 2007). We demonstrate that various meth-
ods of composing these vectors can produce hybrid
representations which perform significantly better
than either method in isolation. This leap in per-
formance is particularly pronounced when working
with smaller datasets, opening up intriguing possi-
bilities for domains which lack large corpora.
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2 Related Work

Most techniques for generating semantic vector
spaces focus on the distributional properties of
texts, building representations based on word co-
occurrence patterns. Key factors differentiating
these methods include the size of the context used
in this process, and how the context is used.

Document-level representations consider co-
occurrences at the document level, often making use
of weighting factors such as tf-idf. Techniques such
as Latent Semantic Analysis (LSA) (Deerwester et
al., 1990) make use of this approach, building a
word-document co-occurrence matrix for an entire
corpus.

Other methods make use of a sliding window of
words in a corpus, considering only words which
occur within a certain distance of the target. The
skip gram and continuous bag of words methods in
Word2Vec are examples of this approach. Rather
than a fixed width sampling space, other approaches
make use of either sentence level (Levy and Gold-
berg, 2014a) (critical when using sentence-level
parsing information) or paragraph windows, making
use of the structure of the text itself to determine the
window size.

Yet another class of methods makes use of ran-
domly initialized word values with updates based
on the local context. Techniques such as as BEA-
GLE (Jones and Mewhort, 2007) capture ordering
information through the use of circular convolutions
while DVRS makes use of piecewise vector multi-
plications over random projections.

As we make particular use of DVRS and
Word2Vec, it is worth looking at the methods used
by each in more detail.

2.1 DVRS

DVRS (Ustun et al., 2014) is a method for gener-
ating semantic vector representations based on ideas
introduced in Jones and Mewhort (2007)’s BEAGLE
system. Each word is represented by two vectors.
The fixed environmental vector, e(i), is randomly
generated by drawing each element of the vector
from a uniform distribution on [−1, 1). The lexical
vector l(i) captures the word’s distributional mean-
ing and is updated over the course of training.

As the corpus is processed, the lexical vector for

each encountered word is updated based on its para-
graph context c(k) and its sentence order context
o(k). The paragraph context is the sum of the en-
vironmental vectors in the paragraph, excluding the
word being updated.

c(k) =
n∑

i=1

e(i),where i 6= k

The order context is based on the sentence and
makes use of sequence vectors, random vectors
which correspond the relative positions from the tar-
get word (by defaults ±4). The word order informa-
tion, o(k), is then calculated as follows (where ∗ is
the pointwise product operation):

o(k) =
4∑

j=−4

s(j) ∗ e(k + j),

where j 6= 0 and 0 < (k + j) ≤ n.
DVRS updates via gradient descent where the gra-

dient is based on the weighted sum of the order and
context vectors.

l(k) = l(k) + wc
ˆc(k) + wo

ˆo(k)

In this update process, we see a precursor of the
compositional techniques described below in that
DVRS is already effectively composing two repre-
senations (the context and order spaces) into a com-
bined representation.

2.2 Word2Vec
The Word2Vec model learns word representations
through a pair of architectures similar to standard
feedforward neural net language models. The Con-
tinuous Bag-of-Words (CBOW) model effectively
averages the vectors of all the words in a given con-
text. The model is trained by predicting the cur-
rent word based on the projected average of the sur-
rounding context. The continuous Skip-gram model
is similar, but instead of predicting the current word
based on context, predicts the surrounding words
based on the current. Words within a certain dis-
tance before and after the current word are predicted
with the network optimized for these predictions.

3 Experiment 1: Methods of composing
word representations

We extend the underlying concept of DVRS, the no-
tion that multiple vector spaces can be linearly com-
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bined to provide more effective distributional rep-
resentations, by exploring the possibility of com-
bining vector representations from completely sep-
arate generation techniques and the impact of dif-
ferent methods of composition. In particular, we
explore the composition of Word2Vec and DVRS,
effectively combining vectors produced by a neu-
ral network approach (particularly the predictive ap-
proach provided by the skip-gram model) with the
larger context and count-based co-occurrence aggre-
gation of the DVRS model. Across these compo-
nents, we compare the compositional techniques of
direct vector addition with vector concatenation.

We began by exploring alternative methods of
combining vector representations. In particular, we
looked at the differences between vector addition
and concatenation. To get a better sense of the
strengths and limits of these methods, we also com-
pared against an oracle method where each of the in-
dividual models was tested and, if either was able to
provide the correct answer, the oracle provided the
answer from that model (exploring a hypothetically
ideal simple combination of the two models).

For each of the following methods, we trained
vectors against both the first 108 bytes of a
Wikipedia dump from March 3, 2006 (enwik8) and
the first 109 bytes of the same dump (enwik9)1. The
data was initially pre-processed to convert all text to
lower case, convert numbers to text, and eliminate
links and other references2.

For Word2Vec, we used the default settings (win-
dow size of 10, negative sampling (25), sampling
(1e-4), and trained over 15 iterations) to create vec-
tors of 300 and 1024 dimensions using both the
skip gram and CBOW models. For DVRS, we cre-
ated vectors of both 300 and 1024 dimensions, both
using the default DVRS combination of order and
context vectors and each of these components sepa-
rately. These numbers were chosen based on previ-
ously published results where these values produced
the best results for DVRS (1024 dimensions) and
Word2Vec (300) respectively.

We tested combining these representational
spaces through concatenation and addition. Addi-

1Obtained from http://cs.fit.edu/˜mmahoney/
compression/textdata.html.

2We used the script provided with the Wikipedia dump by
Matt Mahoney.

tion required that the two spaces have the same rank
and was accomplished using simple vector addition.
The value for each word in the new space was the
normalized sum of its two component spaces.

xnew = x1 + x2

We compared this against the direct concatenation
of the two vectors for a given word. This allowed for
the use of vectors with different underlying ranks.

xnew = x_
1 x2

3.1 Results
There are a number of ways of evaluating the qual-
ity of vector representations. The space can be
evaluated directly, for example by considering tar-
get words in terms of their evaluated similarity to
their nearest neighbors in the space. Alternately, the
space itself can be evaluated in terms of its useful-
ness as a feature for a known task.

We make use of the set of approximately 20,000
word analogy tests introduced by Mikolov et al
(Mikolov et al., 2013a). Covering a mix of semantic
and syntactic categories, each problem is based on
a simple pattern of the form “A is to A* as B is to
B*.” Given A, A*, and B, the system is required to
predict the correct B*. The test set includes 8,869
semantic test instances (with categories such as na-
tional capitals of the form “Athens is to Greece as
Helsinki is to [Finland]”) and 10,675 syntactic test
instances (with categories such as superlatives such
as “strong is to strongest as warm is to [warmest]”).
We randomly split these tests, reserving 20% of the
data for development and optimization and making
use of the remaining 80% (15646 questions) for the
test results below.

For experiment 1, the results are summarized
in Table 1 (representations trained on the enwik8
dataset) and Table 2 (representations trained on the
enwik9 dataset). For enwik8, among the individual-
model directly-trained vectors, the Word2Vec skip
gram model produced the best results with an overall
accuracy of 30% on the test set compared to DVRS’
best perfromance of 27%. However, while the skip
gram model was always the top performer on the
syntactic categories, DVRS turned in the best results
on the semantic categories.

We then explored several methods of combining
these vectors with the results summarized in Ta-
ble 1. The addition of the 300-dimensional DVRS
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vectors (overall performance 0.23) with the 300-
dimensional skip gram vectors (overall performance
0.30) led to an overall improvement to 0.32. How-
ever, concatenating these two vectors improved the
overall performance to 39%. Concatenating the
best two performing vector sizes for each method
(DVRS-1024, SG-300), yielded a slightly below
peak overall accuracy of 0.38. Finally, we compared
these results to an oracle method where, rather than
composing the representations, we had each repre-
sentation make its prediction and, if either was cor-
rect, used that as the oracle’s response. This yielded
an overall accuracy of 41%.

Next, we tested the methods against enwik9 as
seen in Table 2. With additional training data,
the performance of both methods jumped, with
Word2Vec’s skip gram model improving to an ac-
curacy of 0.64 and DVRS improving to 0.43. While
DVRS no longer showed the strong advantage on the
semantic categories, nonetheless the concatenation
of the two results showed a significant improvement
to 0.67.

4 Experiment 2: Impacts of varying model
parameters and input data

Following up on the initial experiment, we began to
explore how much of the differences came from the
structures of the algorithms versus the data available
to the models. We varied the size of the context
available to both Word2Vec and DVRS and the win-
dow size used by Word2Vec. In particular, we var-
ied the parameters available to the best performing
combinations from the previous experiment. Given
the results of our prior experiment, we focused on
concatenation rather than additive combinations.

We trained vectors against two versions of the en-
wik9 dump, one divided into paragraphs, the other
into sentences. For Word2Vec, we varied the win-
dow size from 10 to 50, testing against both para-
graph and sentence versions. Given the expanded
window size, we chose to include the continuous
bag of words (CBOW) model for Word2Vec. This
is an alternative to the skip gram model which does
not take into account word ordering. Given this, it
seemed like this model might do better given the
larger window size. DVRS structurally makes use of
the full context available, so running it against para-

graphs and sentences provided an analogous shift in
effective window size.

4.1 Results

For this experiment, the results are summarized in
Table 3. As seen in the previous experiment, the
concatenated models generally did better than the
component models. While window size made a
slight difference for all the models, the differences
in the algorithms seemed more important (with the
caveat that more data is required for a definitive
statement on this). In particular, the Word2Vec mod-
els and DVRS responded in opposite directions to
having access to a larger window of data. DVRS per-
formance improved slightly (from 0.407 to 0.409)
while the Word2Vec models degraded slightly (for
skip grams, from 0.640 to 0.594). This seems nat-
ural given that both Word2Vec models make use of
sampling. Given that, a larger window simply dis-
tributes those samples over a larger and, likely, less
meaningful space. Meanwhile, DVRS combines the
complete context window to which it has access into
a single factor, making larger windows more valu-
able to it (although at the cost of obscuring more
local relations such as syntactic factors).

Nonetheless, as seen with DVRS where, in spite
of inferior overall performance, it still proved effec-
tive as a concatenative element, we wanted to ex-
plore whether Word2Vec-trained vectors with larger
windows might prove more effective in an ensemble.
The results suggest that this may be the case. In par-
ticular, the concatenation of the two best perform-
ing Word2Vec models (the skip gram and CBOW
models trained on sentences with a window size of
10) performed slightly worse (accuracy 0.655) than
models which blended the best individual Word2Vec
vectors (skip gram, sentence, window 10) with oth-
ers (CBOW, paragraph, window 50) trained on a
larger window (accuracy 0.664). However, the re-
sults here are sufficiently close that it will require
more tests on a larger range of data before a general
rule can be suggested.

Overall, the best performing concatenations were
those where the differences in the two components
was greatest. So, within Word2Vec-trained vectors,
the skip gram with window 10 trained on sentences
with the CBOW model with window 50 trained
on paragraphs (0.664). As in the previous experi-
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Vector size Overall Semantic Syntactic
DVRS 300 0.23 0.31 0.15
DVRS 1024 0.27 0.40 0.17
Skip gram (SG) 300 0.30 0.24 0.34
SG 1024 0.25 0.17 0.32

Add DVRS-300, SG-300 300 0.32 0.31 0.33
Concatenate DVRS-300, SG-300 600 0.39 0.38 0.39
Add DVRS-1024, SG-1024 2048 0.36 0.33 0.38
Concatenate DVRS-1024, SG-1024 2048 0.38 0.36 0.40
Concatenate DVRS-1024, SG-300 1324 0.38 0.38 0.39

Oracle DVRS-1024, SG-300 1024/300 0.41 0.44 0.39

Table 1: Performance on word analogy problems with vectors trained against the first 108 bytes of Wikipedia.

Vector size Overall Semantic Syntactic
DVRS 300 0.41 0.59 0.26
DVRS 1024 0.43 0.62 0.28
SG 300 0.64 0.69 0.60
SG 1024 0.57 0.60 0.55

Add 300-DVRS, 300-SG 300 0.64 0.72 0.58
Concatenate 300-DVRS, 300-SG 600 0.67 0.74 0.60
Add 1024-DVRS, 1024-SG 1024 0.60 0.66 0.55
Concatenate 1024-DVRS, 1024-SG 2048 0.61 0.68 0.55
Concatenate DVRS-1024, SG-300 1324 0.66 0.73 0.60

Oracle DVRS-1024, SG-300 1024/300 0.70 0.79 0.62

Table 2: Performance on word analogy problems with vectors trained against the first 109 bytes of Wikipedia.

ments, the best overall result (although marginally
so) came from the concatenation of skip gram, sen-
tence, window 10 with DVRS trained on paragraphs
(0.671). Finally, even in cases where we were com-
bining vectors from the same model but with differ-
ent window sizes, we still found a small but consis-
tent improvement in overall performance (for skip
grams from 0.640 to 0.662, for CBOW from 0.635
to 0.660, and for DVRS from 0.409 to 0.426).

Care must be taken not to take these results as a
claim that a specific combination recipe is correct
or preferred. Instead, what our results show con-
vincingly is that the combination of diverse repre-
sentations can leverage strengths of individual rep-
resentations, and that the effects of vector combina-
tion should be investigated in the context of specific
tasks, which we leave as future work.

5 Discussion and Future Work

The question remains of how and why these compo-
sitions are working. While we do not claim a final
answer to this question, we can point to several fac-
tors given these experiments. For the concatenated
composition technique, we are left with the two vec-
tors from the original spaces normalized into a sin-
gle vector. For cosine similarity, the key factor is the
dot product. For two vectors xc and yc which were
formed by concatenating the corresponding vectors
x1 and x2 from the original spaces, this yields:

xc · yc = x1 · y1 + x2 · y2

As such, cosine similarity in the concatenated
space is determined by a linear combination of the
dot products of the component vectors. This pro-
vides an intuitive story for some of the behaviors
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Vector size Overall Semantic Syntactic
skip gram (SG), paragraph (para), window 50 200 0.596 0.648 0.554
SG, sentence (sent), win 50 200 0.594 0.648 0.550
SG, sent, win 10 200 0.640 0.682 0.607
CBOW, para, win 50 200 0.603 0.672 0.547
CBOW, sent, win 50 200 0.599 0.661 0.548
CBOW, sent, win 10 200 0.635 0.673 0.604
DVRS, sent 300 0.407 0.590 0.259
DVRS, para 300 0.409 0.592 0.261

concat SG sent win 10, CBOW sent win 10 400 0.655 0.711 0.609
concat SG sent win 10, CBOW para win 50 400 0.664 0.735 0.607
concat SG sent win 10, SG para win 50 400 0.662 0.720 0.614
concat CBOW sent win 10, CBOW para win 50 400 0.660 0.727 0.605
concat DVRS para, SG sent win 10 500 0.671 0.744 0.612
concat DVRS sent, DVRS para 600 0.426 0.616 0.273
concat DVRS sent, CBOW para win 50 500 0.645 0.741 0.566
concat DVRS sent, SG sent win 10 500 0.666 0.739 0.606

Table 3: Variations on window size and data structure with vectors trained against the first 109 bytes of Wikipedia.

seen in that a close match with the correct answer
in one space will tend to overcome drift in the other.
However, a precise accounting of the variations in
this behavior is one area where further work is re-
quired. In particular, exploring the impact of varia-
tions in the weights of this linear combination (eas-
ily done simply by weighting one of the vectors prior
to concatenation) is an obvious first step. Addition-
ally, it will be interesting to explore the combination
of more than two vectors, effectively defining a new
semantic space over those bases.

Generally, in the continuing discussion about the
relative merits of count-based and prediction-based
methods (Baroni et al., 2014), the present work sug-
gests that there may not be a need to choose. By
combining both methods through simple composi-
tional functions, we show that it is possible to com-
bine the benefits of both models in a single hy-
brid representation. Given the extensive work put
into the development of distributed representations
and the known variations in relative strengths and
weaknesses, the benefit of these simple combination
schemes is intriguing. We plan to explore the effects
of vector combination in downstream tasks.

This work provides several key initial pieces. The
first is an existence proof that, even with the most

basic approaches and settings, it is possible to im-
prove on the performance of individual models with
only minimal increases in system complexity. Sec-
ond, these experiments demonstrate that the local
performance of a given representation is not nec-
essarily a complete representation of its value as a
component. In particular, inferior representations
may still encode information which proves valuable
to an ensemble. Finally, the observed improvements
when vectors trained using the same method but
with differing window sizes suggests that it may be
possible to improve the performance of these algo-
rithms (both Word2Vec models and DVRS) by mak-
ing use of these observations, perhaps through the
use of variable window sizes. In particular, we do
not suggest that vector combination is the only way
to achieve these improvements. There are multiple
routes to incorporating this information within a sin-
gle method.

One clear next step is to explore optimizing the
weights of the components of the combinations
in the context of particular tasks. Additionally,
given recent discussions over alternative similar-
ity measures (Levy and Goldberg, 2014b), it will
be interesting to explore the generalization across
spaces where non-linear composition may be re-
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quired. More generally, the combination of repre-
sentations may point towards tensor methods where
multiple factors are preserved in the tensor structure
itself.
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Abstract

We present a simple method to learn contin-
uous representations of dependency substruc-
tures (links), with the motivation of directly
working with higher-order, structured embed-
dings and their hidden relationships, and also
to avoid the millions of sparse, template-based
word-cluster features in dependency parsing.
These link embeddings allow a significantly
smaller and simpler set of unary features for
dependency parsing, while maintaining im-
provements similar to state-of-the-art, n-ary
word-cluster features, and also stacking over
them. Moreover, these link vectors (made
publicly available) are directly portable as off-
the-shelf, dense, syntactic features in vari-
ous NLP tasks. As one example, we incor-
porate them into constituent parse reranking,
where their small feature set again matches the
performance of standard non-local, manually-
defined features, and also stacks over them.

1 Introduction

Word representations and more recently, word em-
beddings, learned from large amounts of text have
been quite successful as features in various NLP
tasks (Koo et al., 2008; Turian et al., 2010; Col-
lobert et al., 2011; Dhillon et al., 2012; Al-Rfou’ et
al., 2013; Bansal et al., 2014; Guo et al., 2014; Pen-
nington et al., 2014; Yu and Dredze, 2014; Faruqui
et al., 2014; Wang et al., 2015). While these word
representations do capture useful, dense relation-
ships among known and unknown words, one still
has to work with sparse conjunctions of features on
the multiple words involved in the substructure that

a task factors on, e.g., head-argument links in de-
pendency parsing. Therefore, most statistical depen-
dency parsers still suffer from millions of such con-
joined, template-based, n-ary features on word clus-
ters or embeddings (Koo et al., 2008; Bansal et al.,
2014). Some recent work has addressed this issue,
via low-rank tensor mappings (Lei et al., 2014), fea-
ture embeddings (Chen et al., 2014), or neural net-
work parsers (Chen and Manning, 2014).

Secondly, it would also be useful to learn dense
representations directly for the higher-order sub-
structures (that structured NLP tasks factor on) so
as to explicitly capture the useful, hidden relation-
ships among these substructures, instead of relying
on the sparse word-conjoined relationships.

In this work, we propose to address both these
issues by learning simple dependency link embed-
dings on ‘head—argument’ pairs (as a single con-
catenated unit), which allows us to work directly
with linguistically-intuitive, higher-order substruc-
tures, and also fire significantly fewer and sim-
pler features in dependency parsing, as opposed to
word cluster and embedding features in previous
work (Koo et al., 2008; Bansal et al., 2014), while
still maintaining their strong accuracies.

Trained using appropriate dependency-based con-
text in word2vec, the fast neural language model
of Mikolov et al. (2013a), these link vectors allow
a substantially smaller set of unary link features (as
opposed to n-ary, conjoined features) which provide
savings in parsing time and memory. Moreover,
unlike conjoined features, link embeddings allow
a tractable set of accurate per-dimension features,
making the feature set even smaller and the feature-
generation process orders of magnitude faster (than
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hierarchical clustering features).
At the same time, these link embedding features

maintain dependency parsing improvements simi-
lar to the complex, template-based features on word
clusters and embeddings by previous work (Koo et
al., 2008; Bansal et al., 2014) (up to 9% relative error
reduction), and also stack statistically significantly
over them (up to an additional 5% relative error re-
duction).

Another advantage of this approach (versus pre-
vious work on feature embeddings or special neu-
ral networks for parsing) is that these link embed-
dings can be imported as off-the-shelf, dense, syn-
tactic features into various other NLP tasks, similar
to word embedding features, but now with richer,
structured information, and in tasks where plain
word embeddings have not proven useful . As an ex-
ample, we incorporate them into a constituent parse
reranker and see improvements that again match
state-of-the-art, manually-defined, non-local rerank-
ing features and stack over them statistically sig-
nificantly. We make our link embeddings publicly
available1 and hope that they will prove useful in
various other NLP tasks in future work, e.g., as
dense, syntactic features in sentence classification
or as linguistically-intuitive, initial units in vector-
space composition.

2 Dependency Link Embeddings

To train the link embeddings, we use the speedy,
skip-gram neural language model of Mikolov et
al. (2013a; 2013b) via their toolkit word2vec.2 We
use the original skip-gram model and simply change
the context tuple data on which the model is trained,
similar to Bansal et al. (2014) and Levy and Gold-
berg (2014). The goal is to learn similar embeddings
for links with similar syntactic contextual properties
like label, signed distance, ancestors, etc.

To this end, we first parse the BLLIP corpus
(minus the PTB portion)3 using the baseline MST-
Parser (McDonald et al., 2005b). Next, for each
predicted link, we create a tuple, consisting of the
parent-child pair p—c (concatenated as a single unit,
same as p c) and its various properties such as the

1ttic.edu/bansal
2https://code.google.com/p/word2vec/
3Same dataset as what was used to train the BROWN clusters

in Koo et al. (2008), for comparability.

N.Y.–Yonkers, Md.–Columbia, N.Y.–Bronx, Va.–Reston,
Ky.–Lexington, Mich.–Kalamazoo, Calif.–Calabasas, ...
boost–revenue, tap–markets, take–losses, launch–fight,
reduce–holdings, terminate–contract, identify–bidders, ...
boosting–bid, meeting–schedules, obtaining–order,
having–losses, completing–review, governing–industry, ...
says–mean, adds–may, explains–have, contend–has,
recalls–had, figures–is, asserted–is, notes–would, ...
would–Based, is–Besides, was–Like, is–From, are–Despite,
said–Besides, says–Despite, reported–As, ...
began–Meanwhile, was–Since, are–Often, would–Now,
had–During, were–Over, was–Late, have–Until, ...
Catsimatidis–Mr., Swete–Mr., Case–Mr., Montoya–Mr.,
Byerlein–Mr., Heard–Mr., Leny–Mr., Graham–Mrs., ...
only–1.5, about–170, nearly–eight, approximately–10,
almost–15, some–80, Only–two, about–23, roughly–50, ...

Table 1: Example clusters of the link embeddings.

link’s dependency relation label l, the grandparent
dependency relation label gl, and the signed, binned
distance d:

“d<D> gl<GL> p—c l<L> d<D>”, (1)

We then run the skip-gram model on the the above
context tuples (Eq. 1) with a window-size of 2,
dimension-size of 100, and a min-count cutoff of 4
to give us a vocabulary of around 92K.4 We also
tried other context settings, e.g., where we add more
lexicalized, link-based context to the tuple such as
the neighboring grandparent-parent link gp—p:

“gl<GL> gp—p p—c d<D> l<L>”, (2)

but the setting in Eq. 1 performs slightly better
(based on the development set).

Clusters: Table 1 shows example clusters ob-
tained by clustering link embeddings via MAT-
LAB’s linkage + cluster commands, with
1000 clusters.5 We can see that these link embed-
dings are able to capture useful groups and subtle
distinctions directly at the link level (without hav-
ing to work with all pairs of word types), e.g., based
on syntactic properties like capitalization, verb form,
position in sentence; and based on topics like loca-
tion, time, finance, etc.

4We add subscripts to all context tokens so as to treat them
differently and remove them from the vocabulary after training.

5http://www.mathworks.com/help/stats/
linkage.html, http://www.mathworks.com/
help/stats/cluster.html
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3 Dependency Parsing Experiments

In this section, we will first discuss how we use the
link embeddings as features in dependency parsing.
Next, we will present empirical results on feature
space reduction and on parsing performance on both
in-domain and out-of-domain datasets.

3.1 Features

The BROWN cluster features are based on Bansal et
al. (2014), who follow Koo et al. (2008) to add 1st
and 2nd order features to MSTParser based on pre-
fixes (of length 4, 6, 8, and 12) of the 0-1 hierarchi-
cal clustering bit-strings (via the bigram class-based
language model of Brown et al. (1992)) of the head
and argument, siblings, intermediate words, etc. See
McDonald et al. (2005a) and Koo et al. (2008) for
the exact feature templates.

For link embeddings, we tried two feature types:

Bucket features: For each dimension of the link
vector, we fire a simple indicator feature, where the
feature name consists of the dimension index d and
the bucketed vector value b at that index (using a
bucket of 0.25), i.e., simply d∧b, as compared to the
large list of n-ary feature templates in previous work,
which include various conjunctions, in-between and
surrounding word information, etc. (see McDonald
et al. (2005a) and Koo et al. (2008)). We have an-
other feature that additionally includes the signed,
bucketed distance of the particular link in the given
sentence.

Also note the difference of our unary bucket fea-
tures from the binary bucket features of Bansal et al.
(2014), who had to work with pairwise, conjoined
features of the head and the argument. Hence, they
used features on conjunctions of the two bucket val-
ues from the head and argument word vectors, firing
one pairwise feature per dimension, because firing
features on all dimension pairs (corresponding to an
outer product) led to an infeasible number of fea-
tures. The result discussion of these feature differ-
ences in presented in §3.2.

Bit-string features: We first hierarchically cluster
the link vectors via MATLAB’s linkage function
with {method=ward, metric=euclidean} to get 0-1
bit-strings (similar to BROWN). Next, we again fire a
small set of unary indicator features that simply con-

System Number of features
Baseline 5M
BROWN 13M
Bansal et al. (2014) 30M
Bucket 15K
Bit-string 1M

Table 2: Number of features.

System Dev Test
Baseline 92.4 91.9
+ BROWN 93.2 92.7
+ Bucket 93.0 92.3
+ Bit-string 92.9 92.6
+ BROWN + Bucket 93.4 93.0
+ BROWN + Bit-string 93.4 93.1

Table 3: UAS results on WSJ.

sist of the link’s bit-string prefix, the prefix-length,
and another feature that adds the signed, bucketed
distance of that link in the sentence.6

3.2 Setup and Results

For all experiments (unless otherwise noted), we fol-
low the 2nd-order MSTParser setup of Bansal et al.
(2014), in terms of data splits, parameters, prepro-
cessing, and feature thresholding. Statistical signifi-
cance is reported based on the bootstrap test (Efron
and Tibshirani, 1994) with 1 million samples.

First, we compare the number of features in
Table 2. Our dense, unary, link-embedding based
Bucket and Bit-string features are substantially
fewer than the sparse, n-ary, template-based features
used in the MSTParser baseline, in BROWN, and
in the word embedding SKIPDEP result of Bansal et
al. (2014). This in turn also improves our parsing
speed and memory. Moreover, regarding the pre-
processing time taken to generate these various fea-
ture types, our Bucket features, which just need the
fast word2vec training, take 2-3 orders of magni-
tude lesser time than the BROWN features (15 mins.
versus 2.5 days)7; this is also advantageous when

6We again used prefixes of length 4, 6, 8, 12, same as the
BROWN feature setting. For unknown links’ features, we re-
place the bucket or bit-string prefix with a special ‘UNK’ string.

7Based on a modern 3.50 GHz desktop and 1 thread. The
Bit-string features additionally need hierarchical clustering, but
are still at least twice as fast as BROWN features.
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System Test Average
Baseline 83.5
+ BROWN 84.2
+ Bucket 84.0
+ Bit-string 83.8
+ BROWN + Bucket 84.6
+ BROWN + Bit-string 84.4

Table 4: UAS results on Web treebanks.

training and parsing with representations of new do-
mains or languages.

Table 3 shows the main UAS (unlabeled at-
tachment score) results on WSJ, where each ‘+
X’ row denotes adding type X features to the
MSTParser baseline. All the final test improve-
ments, i.e., Bucket (92.3) and Bit-string (92.6) w.r.t.
Baseline (91.9), and BROWN + Bucket (93.0) and
BROWN + Bit-string (93.1) w.r.t. BROWN (92.7),
are statistically significant at p < 0.01. More-
over, the Bit-string result (92.6) is the same, i.e.,
has no statistically significant difference from the
BROWN result (92.7), and also from the Bansal et
al. (2014) SKIPDEP result (92.7). Therefore, the
main contribution of these link embeddings is that
their significantly simpler, smaller, and faster set
of unary features can match the performance of
complex, template-based BROWN features (and of
the dependency-based word embedding features of
Bansal et al. (2014)), and also stack over them. We
also get similar trends of improvements on the la-
beled attachment score (LAS) metric.8

Moreover, unlike Bansal et al. (2014), our Bucket
features achieve statistically significant improve-
ments, most likely because they fired D pairwise,
conjoined features, one per dimension d, consisting
of the two bucket values from the head and argument
word vectors. This would disallow the classifier to
learn useful linear combinations of the various di-
mensions. Firing D2 features on all dimension pairs
(corresponding to an outer product) would lead to an
infeasible number of features. On the other hand, we
have a single vector for head+argument, allowing us
to fire just D features (one per dimension) and still
learn useful dimension combinations in linear space.

8Note that one can achieve even stronger results by tuning
separate prefix lengths for the Bit-string versus the BROWN +
Bit-string cases.

Dev Test
Parsing Model F1 EX F1 EX
Baseline (1-best) 90.6 39.4 90.2 37.3
Baseline (log p(t|w)) 90.4 38.9 89.9 37.3
+ Config 91.8 43.8 91.1 40.6
+ Bit-string 91.1 40.3 90.9 40.6
+ Config + Bit-string 92.0 43.9 91.4 42.0
Table 5: F1 results of constituent reranker on WSJ.

We also report out-of-domain performance, in Ta-
ble 4, on the Web treebank (Petrov and McDon-
ald, 2012) test sets, directly using the WSJ-trained
models. Again, both our Bucket and Bit-string link-
embedding features achieve decent improvements
over Baseline and they stack over BROWN, while us-
ing much fewer features. Moreover, one can hope-
fully achieve bigger gains by training link embed-
dings on Web or Wikipedia data (since BLLIP is
news-domain).

4 Off-the-shelf: Constituent Parsing

Finally, these link embeddings are also portable as
off-the-shelf, dense, syntactic features into other
NLP tasks, either to incorporate missing syntac-
tic information, or to replace sparse (n-ary lexical-
ized or template-based) parsing features, or where
word embedding features are not appropriate and
one needs higher-order embeddings, e.g., in con-
stituent parsing (see Andreas and Klein (2014)).

Therefore, as a first example, we import our link
embedding features into a constituent parse reranker.
We follow Bansal and Klein (2011), reranking 50-
best lists of the Berkeley parser (Petrov et al., 2006).
We first extract dependency links in each candidate
constituent tree based on the head-modifier rules of
Collins (2000). Next, we simply fire our Bit-string
features on each link, where the feature again con-
sists of just the prefix bit-string, the prefix length,
and the signed, bucketed link distance.9

Table 5 shows these reranking results, where 1-
best and log p(t|w) are the two Berkeley parser base-
lines, and where Config is the state-of-the-art, non-
local, configurational feature set of Huang (2008),

9Based on development set tuning, we use prefixes 4, 6, 8,
and then gaps of 4 up to the full-length for ‘+ Bit-string’ and
prefixes 4, 6, 8, 12, 16, and full-length for ‘+ Config + Bit-
string’.
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which in turn is a simplified merge of Charniak and
Johnson (2005) and Collins (2000) (here configura-
tional). Again, all our test improvements are sta-
tistically significant at p < 0.01: Bit-string (90.9)
over both the baselines (90.2, 89.9); and Config
+ Bit-string (91.4) over Config (91.1). Moreover,
the Bit-string result (90.9) is the same (i.e., no sta-
tistically significant difference) as the Config re-
sult (91.1). Therefore, we can again match the
improvements of complex, manually-defined, non-
local reranking features with a much smaller set
of simple, dense, off-the-shelf, link-embedding fea-
tures, and also complement them statistically signif-
icantly.

5 Related Work

As mentioned earlier, there has been a lot of use-
ful, previous work on using word embeddings for
NLP tasks such as similarity, tagging, NER, senti-
ment analysis, and parsing (Turian et al., 2010; Col-
lobert et al., 2011; Dhillon et al., 2012; Huang et al.,
2012; Al-Rfou’ et al., 2013; Hisamoto et al., 2013;
Andreas and Klein, 2014; Bansal et al., 2014; Guo
et al., 2014; Pennington et al., 2014; Wang et al.,
2015), inter alia.

In related work, Bansal et al. (2014) also use
dependency context to tailor word embeddings to
dependency parsing. However, their embedding
features are still based on the sparse set of n-ary,
word-based templates from previous work (McDon-
ald et al., 2005a; Koo et al., 2008). Our structured
link embeddings achieve similar improvements as
theirs (and better in the case of direct, per-dimension
bucket features) with a substantially smaller and
simpler (unary) set of features that are aimed to
directly capture hidden relationships between the
substructures that dependency parsing factors on.
Moreover, we hope that similar to word embeddings,
these link embeddings will also prove useful when
imported into various other NLP tasks as dense, con-
tinuous features, but now with additional syntactic
information.

There has also been some recent, useful work
on reducing the sparsity of features in dependency
parsing, e.g., via low-rank tensors (Lei et al., 2014)
and via neural network parsers that learn tag and
label embeddings (Chen and Manning, 2014). In

related work, Chen et al. (2014) learn dense fea-
ture embeddings for dependency parsing; however,
they still work with the large number of manually-
defined feature templates from previous work and
train embeddings for all those templates, with an aim
to discover hidden, shared information among the
large set of sparse features. We get similar improve-
ments with a much smaller and simpler set of unary
link features; also, our link embeddings are more
portable to other NLP tasks than template-based em-
beddings specific to dependency parsing.

Other work includes learning distributed struc-
tured output via dense label vectors (Srikumar and
Manning, 2014), learning bilexical operator embed-
dings (Madhyastha et al., 2014), and learning joint
word embeddings and composition functions based
on predicate-argument compositionality (Hashimoto
et al., 2014).

Our main goal is to directly learn embeddings on
linguistically-intuitive units like dependency links,
so that they can be used as non-sparse, unary fea-
tures in dependency parsing, and also as off-the-
shelf, dense, syntactic features in other NLP tasks
(versus more intrinsic approaches based on feature
embeddings or neural network parsers, which are
harder to export).

6 Conclusion and Future Work

We presented dependency link embeddings, which
provide a small, simple set of unary features for
dependency parsing, while maintaining statistically
significant improvements, similar and complemen-
tary to sparse, n-ary, word-cluster features. These
link vectors are also portable as off-the-shelf syntac-
tic features in other NLP tasks; we import them into
constituent parse reranking, where they again match
and stack over state-of-the-art, non-local reranking
features. We release our link embeddings (avail-
able at ttic.edu/bansal) and hope that these
will prove useful in various other NLP tasks, e.g.,
as dense, syntactic features in sentence classification
or as linguistically-intuitive, initial units in vector-
space composition.

In future work, it will be useful to try obtaining
stronger parsing accuracies via newer, better rep-
resentation learning tools, e.g., GloVe (Pennington
et al., 2014), and by training on larger quantities
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of automatically-parsed data. It will also be useful
to perform intrinsic evaluation of these link embed-
dings on appropriate syntactic datasets and metrics,
and extrinsic evaluation via various other NLP tasks
such as sentence classification. Finally, it will be in-
teresting to try parsers or frameworks where we can
directly employ the embeddings as features, instead
of bucketing or clustering them.
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Abstract 

We present the architecture of a deep learn-

ing pipeline for natural language pro-

cessing. Based on this architecture we built 

a set of tools both for creating distributional 

vector representations and for performing 

specific NLP tasks. Three methods are 

available for creating embeddings: feed-

forward neural network, sentiment specific 

embeddings and embeddings based on 

counts and Hellinger PCA. Two methods 

are provided for training a network to per-

form sequence tagging, a window approach 

and a convolutional approach. The window 

approach is used for implementing a POS 

tagger and a NER tagger, the convolutional 

network is used for Semantic Role Label-

ing. The library is implemented in Python 

with core numerical processing written in 

C++ using parallel linear algebra library for 

efficiency and scalability. 

1 Introduction 

Distributional Semantic Models (DSM) that rep-

resent words as vectors of weights over a high 

dimensional feature space (Hinton et al., 1986), 

have proved very effective in representing se-

mantic or syntactic aspects of lexicon. Incorpo-

rating such representations has allowed improv-

ing many natural language tasks. They also re-

duce the burden of feature selection since these 

models can be learned through unsupervised 

techniques from text. 

Deep learning algorithms for NLP tasks ex-

ploit distributional representation of words. In 

tagging applications such as POS tagging, NER 

tagging and Semantic Role Labeling (SRL), this 

has proved quite effective in reaching state of art 

accuracy and reducing reliance on manually en-

gineered feature selection (Collobert et al, 2011). 

Word embeddings have been exploited also 

in constituency parsing (Collobert, 2011) and 

dependency parsing (Chen and Manning, 2014).  

A further benefit of a deep learning approach 

is to allow performing multiple tasks jointly, and 

therefore reducing error propagation as well as 

improving efficiency. 

This paper presents DeepNL, an NLP pipe-

line based on a common Deep Learning architec-

ture: it consists of tools for creating embeddings, 

and tools that exploit word embeddings as fea-

tures. The current release includes a POS tagger, 

a NER, an SRL tagger and a dependency parser. 

Two methods are supported for creating em-

beddings: an approach that uses neural network 

and one using Hellinger PCA (Lebret and Col-

lobert 2014). 

2 NLP Toolkits 

A short survey of NLP toolkits is presented by 

Krithika and Akondi (2014). 

NLTK is among the most well-known and 

comprehensive NLP toolkits: it is written in Py-

thon and provides a number of basic processing 

facilities (tokenization, splitting, statistical anal-

ysis of corpora, etc.) as well as machine learning 

algorithms for classification and clustering. Cur-

rently it does not provide any tool based on word 

embeddings, however it can be interfaced to 

SENNA
1
 or it can be used in conjunction with 

Gensim
2
 which provides several algorithms for 

performing unsupervised semantic modeling 

from plain text, including word embeddings, 

random indexing, LDA (Latent Dirichlet Alloca-

tion). 

The Stanford NLP Toolkit (Manning et al., 

2014) is written in Java and provides tools for 

tokenization, sentence splitting, POS tagging, 

NER, parsing, sentiment analysis and temporal 

expression tagging. As a recent inclusion, it pro-

                                                           
1 http://ronan.collobert.com/senna/ 
2 http://radimrehurek.com/gensim/ 
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vides a dependency parser based on neural net-

work and word embeddings (Chen et al., 2014). 

OpenNLP
3
 is a machine learning library writ-

ten in Java that supports the most common NLP 

tasks, such as tokenization, sentence segmenta-

tion, POS tagging, named entity extraction, 

chunking, parsing, and coreference resolution. 

Typically each tool built with these libraries 

uses a different approach or an most suitable al-

gorithm for the task: for example Sanford NLP 

uses Conditional Random Fields for NER while 

the POS tagger uses MaxEntropy and both re-

quire a set of rich features that need to be manu-

ally engineered. 

DeepNL differs from these toolkits since it is 

based on a common deep learning architecture: 

all tools exploit the same core neural network 

and use mostly just word embeddings as fea-

tures. For example the POS tagger and the NER 

tagger have an identical structure, and they differ 

only in the way they read/write documents and 

in the configuration of the discrete features used: 

the POS tagger uses word suffixes while the 

NER uses gazetteer dictionaries. Embeddings are 

used as features, providing a continuous rather 

than discrete representation of text. 

The ability of creating suitable embeddings 

for various tasks is critical for the proper work-

ing of the tools in DeepNL; hence the toolkit 

integrates algorithms for creating word embed-

dings from text, either in unsupervised or super-

vised fashion. 

3 Building Word Embeddings 

Word embeddings provide a low dimensional 

vector space representation for words, where 

values in each dimension may represent syntac-

tic or semantic properties. 

DeepNL provides two methods for building 

embeddings, one is based on the use of a neural 

language model, as proposed by (Turian and 

Bengio; Collobert et al., 2011; Mikolov et al., 

2010) and one based on spectral method as pro-

posed by Lebret and Collobert (2013). 

The neural language method can be hard to 

train and the process is often quite time consum-

ing, since several iterations are required over the 

whole training set. Some researchers provide 

precomputed embeddings for English
4
. The Pol-

                                                           
3 http://opennlp.apache.org/ 
4 http://ronan.collobert.com/senna/ 

http://metaoptimize.com/projects/wordreprs/ 

http://www.fit.vutbr.cz/˜imikolov/rnnlm/ 

http://ai.stanford.edu/˜ehhuang/ 

yglot project (Al-Rafou et al., 2013) makes 

available embeddings for several languages, 

built from the plain text of Wikipedia in the re-

spective language, and the Python code for com-

puting them
5
, that supports GPU computations 

by means of Theano
6
. 

Mikolov et al. (2013) developed an alterna-

tive solution for computing word embeddings, 

which significantly reduces the computational 

costs. They propose two log-linear models, 

called bag of words and skip-gram model. The 

bag-of-word approach is similar to a feed-

forward neural network language model and 

learns to classify the current word in a given 

context, except that instead of concatenating the 

vectors of the words in the context window of 

each token, it just averages them, eliminating a 

network layer and reducing the data dimensions. 

The skip-gram model tries instead to estimate 

context words based on the current word. Further 

speed up in the computation is obtained by ex-

ploiting a mini-batch Asynchronous Stochastic 

Gradient Descent algorithm, splitting the training 

corpus into partitions and assigning them to mul-

tiple threads. An optimistic approach is also ex-

ploited to avoid synchronization costs: updates 

to the current weight matrix are performed con-

currently, without any locking, assuming that 

updates to the same rows of the matrix will be 

infrequent and will not harm convergence. 

The authors published single-machine multi-

threaded C++ code for computing the word vec-

tors
7
. A reimplementation of the algorithm in 

Python is included in the Genism library 

(Řehůřek and Petr Sojka, 2010). In order to ob-

tain comparable speed to the C++ version, they 

use Cython for interfacing a coding in C of the 

core function for training the network on a single 

sentence, which in turn exploits the BLAS li-

brary for algebraic computations. 

The DeepNL implementation is written in 

Cython
8
 and uses C++ code which exploits the 

Eigen
9
 library for efficient parallel linear algebra 

computations. Data is exchanged between 

Numpy arrays in Python and Eigen matrices by 

means of Eigen Map types. On the Cython side, 

a pointer to the location where the data of a 

Numpy array is stored is obtained with a call 

like: 

                                                           
5 https://bitbucket.org/aboSamoor/word2embeddings 
6 http://deeplearning.net/software/theano/ 
7 https://code.google.com/p/word2vec 
8 http://docs.cython.org/ 
9 http://eigen.tuxfamily.org/ 
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<FLOAT_t*>np.PyArray_DATA(self.nn.hid

den_weights) 

and passed to a C++ method. On the C++ side 

this is turned into an Eigen matrix, with no com-

putational costs due to conversion or allocation, 

with the code: 

Map<Matrix> hidden_weights( 

hidden_weights, numHidden, numInput) 

which interprets the pointer to a double as a ma-

trix with numHidden rows and numInput col-

umns. Since Eigen by default uses column-major 

order while Numpy uses row-major order, the 

class Matrix above is declared as: 

typedef Eigen::Matrix<double, Eig-

en::Dynamic, Eigen::Dynamic, Eig-

en::RowMajor> Matrix;  

3.1 Word Embeddings through Hellinger 

PCA 

Lebret and Collobert (2013) have shown that 

embeddings can be efficiently computed from 

word co-occurence counts, applying Principal 

Component Analysis (PCA) to reduce dimen-

sionality while optimizing the Hellinger similari-

ty distance. 

Levy and Goldberg (2014) have shown simi-

larly that the skip-gram model by Mikolov et 

al.(2013) can be interpreted as implicitly factor-

izing a word-context matrix, whose values are 

the pointwise mutual information (PMI) of the 

respective word and context pairs, shifted by a 

global constant.  

DeepNL provides an implementation of the 

Hellinger PCA algorithm using Cython and the 

LAPACK library SSYEVR from Scipy
10

. 

Cooccurrence frequencies are computed by 

counting the number of times each context word 

w  D occurs after a sequence of T words: 

𝑝(𝑤|𝑇) =
𝑝(𝑤, 𝑇)

𝑝(𝑇)
=

𝑛(𝑤, 𝑇)

∑ 𝑛(𝑤, 𝑇)𝑛
 

where n(w, T) is the number of times word w 

occurs after a sequence of T words. The set D of 

context word is normally chosen as the the sub-

set of the top most frequent words in the vocabu-

lary V. 

The word co-occurrence matrix C of size 

|V||D| is built.  The coefficients of C are 

square rooted and then its transpose is multiplied 

by it to obtain a symmetric square matrix of size 

                                                           
10 https://docs.scipy.org/doc/scipy-

0.15.1/reference/generated/scipy.linalg.lapack.ssyevr.html 

|V||V|, to which PCA is applied to obtain the 

desired dimensionality reduction. 

3.2 Sentiment Specific Word Embeddings 

For the task of sentiment analysis, semantic 

similarity is not appropriate, since antonyms end 

up at close distance in the embeddings space. 

One needs to learn a vector representation where 

words of opposite polarity are further apart. 

Tang et al. (2014) propose an approach for 

learning sentiment specific word embeddings, by 

incorporating supervised knowledge of polarity 

in the loss function of the learning algorithm. 

The original hinge loss function in the algorithm 

by Collobert et al. (2011) is: 

LCW(x, x
c
) = max(0, 1  f(x) + f(x

c
)) 

where x is an ngram and x
c
 is the same ngram 

corrupted by changing the target word with a 

randomly chosen one, f(·) is the feature function 

computed by the neural network with parameters 

θ. The sentiment specific network outputs a vec-

tor of 2 dimensions, one for modeling the gener-

ic syntactic/semantic aspects of words and the 

second for modeling polarity. 

A second loss function is introduced as objec-

tive for minimization: 

LSS(x, x
c
) = max(0, 1  s(x) f(x)1 + 

   s(x) f(x
c
)1) 

where s is an indicator function reflecting the 

sentiment polarity of a sentence, 

𝛿𝑠(𝑥) = {
1 𝑖𝑓 𝑓𝑔(𝑥) = [1,0]

0 𝑖𝑓 𝑓𝑔(𝑥) = [0,1]
 

where f
g
(x) is the gold distribution for ngram x. 

The overall hinge loss is a linear combination of 

the two: 

L(x, x
c
) = LCW(x, x

c
) + (1 – ) LSS(x, x

c
) 

The gradient for the output layer is given by the 

formula: 

(

𝜕ℒ
𝜕𝑓𝜃(𝑥)

𝜕ℒ
𝛿𝑓𝜃(𝑥𝑐)

)

0

= {
(

−1

1
)  𝑖𝑓 ℒ𝐶𝑊(𝑥, 𝑥𝑐) > 0

(
0

0
)  otherwise

 

(

𝜕ℒ
𝜕𝑓𝜃(𝑥)

𝜕ℒ
𝛿𝑓𝜃(𝑥𝑐)

)

1

= {
(

1

−1
)  𝑖𝑓 ℒ𝑆𝑆(𝑥, 𝑥𝑐) > 0

(
0

0
)  otherwise

 

DeepNL provides an algorithm for training po-

larized embeddings, performing gradient descent 
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using an adaptive learning rate according to the 

AdaGrad method (Duchi et al, 2011). The algo-

rithm requires a training set consisting of sen-

tences annotated with their polarity, for example 

a corpus of tweets. The algorithm builds embed-

dings for both unigrams and ngrams at the same 

time, by performing variations on a training sen-

tence replacing not just a single word, but a se-

quence of words with either another word or an-

other ngram. 

4 Deep Learning Architecture 

DeepNL adopts a multi layer neural network 

architecture, as proposed in (Collobert et al., 

2011): 

1. Lookup layer. It maps word feature indi-

ces to a feature vector, as described be-

low. 

2. Linear layer. Fully connected network 

layer, represented by matrix M1 and in-

put bias b1. 

3. Activation layer (e.g. hardtanh) 

4. Linear layer. Fully connected network 

layer, represented by matrix M2 and in-

put bias b2 

5. Softmax layer. Computes the softmax of 

the output values, producing a probabil-

ity distribution of the outputs. 

Overall, the network computes the following 

function: 

f(x) = softmax(M2 a(M1 x + b1) + b2) 

where M1  Rhd
, b1  Rd

, M2  Roh
, b2  Ro

, 

are the parameters, with d the dimension of the 

input, h the number of hidden units, o the num-

ber of output classes, a() is the activation func-

tion. 

4.1 Lookup layer 

The first layer of the network transforms the in-

put into a feature vector representation. Individ-

ual words are represented by a tuple of K dis-

crete features, w  D1
Dk

, where Dk
 is the 

dictionary for the k-th feature. 

Each feature has its own lookup table 

𝐿𝑇𝑊𝑘(∙) , with a matrix of parameters to be 

learned 𝑊𝑘 ∈  ℝ𝑑𝑘×|𝒟𝑘| , where Dk
 is the dic-

tionary for the k-th feature and d
k
 is a user speci-

fied vector size. The lookup table layer 𝐿𝑇𝑊𝑘(∙) 

associates a vector of weights to each discrete 

feature f  Dk
: 

𝐿𝑇𝑊𝑘(𝑓) =  〈𝑊𝑘〉𝑓
1  

where 〈𝑊𝑘〉𝑓
1 ∈ ℝ𝑑𝑘 is the fth column of W and dk 

is the word vector size (a hyper-parameter to be cho-

sen by the user). 

The feature vector for word w becomes the 

concatenation of the vectors for all features: 

𝐿𝑇𝑊1(𝑤1)𝐿𝑇𝑊2(𝑤2) ⋯ 𝐿𝑇𝑊𝐾(𝑤𝑘) 

This vector of features for word w, is passed as 

input to the network. W
k
, M1, b1, M2 and b2 are 

the parameters to be learned by backpropagation. 

4.2 Feature Extractors 

The library has a modular architecture that al-

lows customizing a network for specific tasks, in 

particular its first layer, by supplying extractors 

for various types of features. 

An extractor is defined as a class that inherits 

from an abstract class with the following inter-

face: 

class Extractor(object): 

   def extract(self, tokens) 

   def lookup(self, feature) 

   def save(self, file) 

   def load(self, file) 

Method extract, applied to a list of tokens, ex-

tracts features from each token and returns a list 

of IDs for those features. The argument is a list 

of tokens rather than a single token, since fea-

tures might depend on consecutive tokens. For 

instance a gazetteer extractor needs to look at a 

sequence of tokens to determine whether they 

are mentioned in its dictionary. 

Method lookup returns the vector of weights 

for a given feature. Methods save/load allow 

saving and reloading the Extractor data to/from 

disk. 

Extractors currently include an Embeddings 

extractor, implementing the word lookup feature, 

a Caps, Prefix and Postfix extractors for deal-

ing with capitalization and prefix/postfix fea-

tures, a Gazetteer extractor for dealing with the 

gazetteers typically used in a NER, and a cus-

tomizable AttributeFeature extractor that ex-

tracts features from the state of a Shift/Reduce 

dependency parser, i.e. from the tokens in the 

stack or buffer as described for example in Nivre 

(2007). 
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5 Sequence Taggers 

For sequence tagging, two approaches were pro-

posed in Collobert at al. (2011), a window ap-

proach and a sentence approach. The window 

approach assumes that the tag of a word depends 

mainly on the neighboring words, and is suitable 

for tasks like POS and NE tagging. The sentence 

approach assumes that the whole sentence must 

be taken into account by adding a convolution 

layer after the first lookup layer and is more 

suitable for tasks like SRL. 

We can train a neural network to maximize 

the log-likelihood over the training data. Denot-

ing by  the trainable parameters, including the 

network and the transition scores, we want to 

maximize the following log-likelihood with re-

spect to : 

∑ log 𝑝(𝑡|𝑥, 𝜃)

(𝑥,𝑡)∈𝑇

 

where x are all training sentences and t their cor-

responding tag sequence. 

The score s(x, t, ) of a sequence of tags t for 

a sentence x, with parameters , is given by the 

sum of the transition scores and the tag scores: 

𝑠(𝑥, 𝑡, 𝜃) = ∑(𝑇(𝑡𝑖−1, 𝑡𝑖) + 𝑓𝜃(𝑥𝑖 , 𝑡𝑖))

𝑛

𝑖=1

 

where T(i, j) is the score for the transition from 

tag i to tag j, and f(ti, xi) is the output of the 

network at word xi for tag ti. The probability of a 

sequence y for sentence x can be expressed as: 

𝑝(𝑦|𝑥, 𝜃) =
𝑒𝑠(𝑥,𝑦,𝜃)

∑ 𝑒𝑠(𝑥,𝑡,𝜃)
𝑡

 

If we define: 

logadd
𝑖

𝑥𝑖 = log ∑ 𝑒𝑥𝑖

𝑖

 

the log of the conditional probability of the cor-

rect sequence y is given by: 

log 𝑝(𝑦|𝑥, 𝜃) = 𝑠(𝑥, 𝑦, 𝜃) − logadd
𝑡

𝑠(𝑥, 𝑡, 𝜃) 

The probability can be computed iteratively by 

defining: 

𝜕𝑖(𝑎) = logadd
𝑡𝑖=𝑎

𝑠(𝑥1
𝑖 , 𝑡1

𝑖 , 𝜃) 

= logadd
𝑏

(𝜕𝑖−1(𝑏) + 𝑇(𝑏, 𝑎)) + 𝑓𝜃(𝑎, 𝑖)  ∀𝑎 

and finally 

logadd
𝑡

𝑠(𝑥, 𝑡, 𝜃) = logadd
𝑎

𝛿|𝑥|(𝑎) 

In order to avoid numeric overflows, the func-

tion logadd must be computed carefully, i.e. by 

subtracting the maximum value to the coeffi-

cients before performing exponentiation and 

then re-adding the maximum. 

The computation of the gradients can be per-

formed at once for the whole sequence exploit-

ing matrix operations whose computation can be 

optimized and parallelized using suitable linear 

algebra libraries. We implemented two versions 

of the network trainer, one in Python using 

NumPy
11

 and one in C++ using Eigen
12

. 

Here for example is the Python code for 

computing the  in the above equation: 

delta = scores 

delta[0] += transitions[-1] 

tr = transitions[:-1].T 

for i in xrange(1, len(delta)): 

  # sum by rows 

  logadd = logsumexp(delta[i-1]+tr, 

1) 

  delta[token] += logadd 

The array scores[i, j] contains the output of 

the neural network for the i-th element of the 

sequence and for tag j, delta[i, j] represents 

the sum of all scores ending at the i-th token 

with tag j; transitions[i, j] contains the 

current estimate of the probability of a transition 

from tag i to tag j.  

6 Experiments 

We tested the DeepNL sequence tagger on the 

CoNLL 2003 challenge
13

, a NER benchmark 

based on Reuters data. The tagger was trained 

with three types of features: the word embed-

dings from SENNA, a “caps” feature telling 

whether a word is in lowercase, uppercase, title 

case, or had at least one non-initial capital letter, 

and a gazetteer feature, based on the list provid-

ed by the organizers. The window size was set to 

5, 300 hidden variables were used and training 

was iterated for 40 epochs. In the following table 

we report the scores compared with the system 

by Ando et al. (2005) which uses a semi-

supervised approach and with the results by the 

released version of SENNA
14

: 

 

 

 

 

                                                           
11 http://www.numpy.org/ 
12 http://eigen.tuxfamily.org/ 
13 http://www.cnts.ua.ac.be/conll2003/ner/ 
14 http://ml.nec-labs.com/senna/ 

113



System F1 

Ando et al. 2005 89.31 

SENNA 89.51 

DeepNL 89.38 

Table 1. Performance on the NER task, using the 

CoNLL 2003 benchmark. 

The slight difference with SENNA might be ex-

plained by the use of different gazetteers. 

The same sequence tagger can be used for 

POS tagging. In this case the discrete features 

used are the same capitalization feature as for the 

NER and a suffix feature, which denotes whether 

a token ends with one of the 455 most frequent 

suffixes of length one or two characters in the 

training corpus. 

Table 2 presents the results achieved by the 

POS tagger trained on the Penn Treebank, com-

pared with the results of the reference system by 

Tuotanova et al. (2003), which uses rich fea-

tures, and with the original SENNA implementa-

tion. 

System Precision 

Toutanova et al. 2003 97.24 

SENNA 97.28 

DeepNL 97.12 

Table 2. Performance on the POS task, using the Penn 

Treebank, sections 0-18 for training, sections 22-24 

for testing. 

Both these experiments confirm that word em-

beddings can replace the use of complex manu-

ally engineered features for typical natural lan-

guage processing tasks. 

7 Dependency Parsing 

We have adapted to the use of embeddings our 

original transition based dependency parser 

DeSR (Attardi et al., 2009), that was already 

based on a neural network. The parser uses the 

neural network to decide which action to per-

form at each step in the analysis of a sentence. 

Looking at a short context of past analyzed to-

kens and next input tokens, it must decide 

whether the two current focus tokens can be 

connected by a dependency relation. In this case 

it performs a reduction, creating the dependency, 

otherwise it advances on the input. The original 

implementation used a large set of discrete fea-

tures to represent the current context. 

The deep learning version of the parser ex-

ploits word embedding as features and also cre-

ates a dense vector representation for the remain-

ing discrete features. A specific extractor (At-

tributeExtractor) was built for this purpose. 

8 Conclusions 

We have presented the architecture of DeepNL, 

a library for building NLP applications based on 

a deep learning architecture. The implementation 

is written in Python/Cython and uses C++ linear 

algebra libraries for efficiency and scalability, 

exploiting multithreading or GPUs where avail-

able. 

The implementation of DeepNL is available 

on GitHub
15

. 

The availability of a library that allows creat-

ing embeddings and training a deep learning ar-

chitecture using them might contribute to the 

development of further tools for linguistic analy-

sis. 

For example we are planning to build a clas-

sifier for performing identification of affirma-

tive, negative or speculative contexts in sentenc-

es. 

We are also considering additional ways of 

creating embeddings, for example to generate 

context sensitive embeddings that could provide 

word representations that disambiguate among 

word senses. 
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Abstract

Vector representations for language has been
shown to be useful in a number of Natural
Language Processing tasks. In this paper, we
aim to investigate the effectiveness of word
vector representations for the problem of As-
pect Based Sentiment Analysis. In particular,
we target three sub-tasks namely aspect term
extraction, aspect category detection, and as-
pect sentiment prediction. We investigate the
effectiveness of vector representations over
different text data and evaluate the quality of
domain-dependent vectors. We utilize vec-
tor representations to compute various vector-
based features and conduct extensive experi-
ments to demonstrate their effectiveness. Us-
ing simple vector based features, we achieve
F1 scores of 79.91% for aspect term extrac-
tion, 86.75% for category detection, and the
accuracy 72.39% for aspect sentiment predic-
tion.

1 Introduction

Natural language representation in continuous vec-
tor space has been successfully used in many NLP
tasks (Al-Rfou et al., 2013; Bansal et al., 2014;
Bowman et al., 2014; Boyd-Graber et al., 2012;
Chen and Rudnicky, 2014; Guo et al., 2014; Iyyer
et al., 2014; Levy and Goldberg, 2014; Mikolov et
al., 2013c). Previous research attempted to employ
vector representations to present the syntactic and
semantic information in textual content. In this pa-
per, we aim to investigate the effectiveness of vec-
tor space representations for Aspect Based Sentiment

Analysis in which we aim to capture both seman-
tic and sentiment information encoded in user gen-
erated content such as product reviews.

Sentiment analysis or opinion mining deals with
computational analysis of people’s opinions, senti-
ments, attitudes and emotions towards target entities
such as products, organizations, individuals, topics
and their attributes (Liu, 2012). The majority of
early approaches to this research problem (Pang et
al., 2002; Pang and Lee, 2005; Baccianella et al.,
2009) attempted to detect the overall sentiment of a
sentence, paragraph, or text span regardless of the
entities (e.g., restaurants) and their aspects (e.g.,
food, service) expressed in context. However, only
considering overall sentiments fails to capture the
sentiments over the aspects on which an entity can
be reviewed (Lu et al., 2011). For example, although
the restaurant review shown in Table 1 might ex-
press an overall positive sentiment, it additionally
expresses a positive sentiments toward the restau-
rant’s food and service, as well as negative senti-
ment toward the restaurant’s ambiance. To achieve
this aim, aspect based sentiment analysis attempts
to extract the aspects (or semantic labels) of given
target entities and the sentiment expressed towards
each aspect (Hu and Liu, 2004; Liu, 2012). For this
purpose, three sub-tasks need to be addressed: (1)
aspect term extraction, (2) aspect category detec-
tion, and (3) aspect sentiment prediction. We briefly
describe these sub-tasks here:

Aspect term extraction identifies aspect terms
(or semantic labels) appeared in a given text about
a target entity. For instance, in the review in Ta-
ble 1, the aspects are “orecchiette with sausage and
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Our agreed favorite is the orecchiette with sausage
and chicken and usually the waiters are kind enough
to split the dish in half so you get to sample both
meats. But, the music which is sometimes a little
too heavy for my taste.

Table 1: An example of restaurant review.

chicken”, “waiters”, “dish”, “meats” and “music”,
and the target entity is “restaurant”. Multi-word as-
pect terms are treated as single aspect, like “orecchi-
ette with sausage and chicken” in the example.

Aspect category detection identifies (latent) as-
pect categories available in a given text. Aspect cat-
egories are coarser than aspect terms, and they do
not necessarily occur as terms in the text. For ex-
ample, the review in Table 1 contains the latent as-
pect categories “food”, “service”, and “ambiance”.
Aspect categories are often considered as predefined
categories (e.g., “price”, “food”) with respect to the
target entities.

Aspect sentiment prediction identifies the senti-
ment toward aspect terms as positive, negative, neu-
tral, or conflict (i.e., both positive and negative) for
a given set of aspect terms in a text. For exam-
ple, in the review in Table 1, the aspects “orecchi-
ette with sausage and chicken” and “waiters” are
positive, while “music” is negative, and “dish” and
“meats” are neutral.

To tackle the above problems and investigate the
utility of vector representation models for aspect
based sentiment analysis, we present a supervised
approach in which vector representations of aspect
terms and categories are effectively utilized for as-
pect based sentiment analysis. Our approach out-
performs the baselines and provides significant per-
formance using the simple vector-based features as
compared to previous approaches using different
text-based features (Pontiki et al., 2014).

The remainder of this paper describes our ap-
proach (Section 2), followed by experimental results
and analysis (Section 3), and finally conclusion.

2 Method

Distributed vector representations, described by
Schütze (Schütze, 1992a; Schütze, 1992b), asso-
ciate similar vectors with similar words and phrases.

These vectors provide useful information for the
learning algorithms to achieve better performance in
Natural Language Processing tasks (Mikolov et al.,
2013c). Most approaches to computing vector rep-
resentations use the observation that similar words
appear in similar contexts (Firth, 1957; Sahlgren,
2006; Mikolov, 2012; Socher, 2014).

To compute the vector representations
of words, we use the skip-gram model of
Word2Vec (Mikolov, 2014; Mikolov et al.,
2013a; Mikolov et al., 2013b; Mikolov et al.,
2013d). The Skip-gram model aims to find word
representations that are useful for predicting the sur-
rounding words in a sentence or document (Mikolov
et al., 2013b). The model needs a large amount of
unstructured text data for training the word vector
representations.

When training the skip-gram model we use the
GoogleNews dataset (Mikolov, 2014) that contains 3
million unique words and about 100 billion tokens.
In addition, to account for the effect of domain infor-
mation on the quality of word representations, we
employ a dataset of restaurant reviews1 from Yelp
that contains 131,778 unique words and about 200
million tokens. We constructed 300-dimensional
word vectors for all these words.

We propose to utilize word vector representations
to compute vector-based features for the three sub-
tasks of aspect based sentiment analysis. We em-
ploy these features in a supervised learning setting
to address the above tasks. Our data (reviews) are
first analyzed by Stanford tokenizer (Manning et
al., 2010), POS-tagger (Toutanova et al., 2003) and
dependency-tree extractor (de Marneffe and Man-
ning, 2008). Then, the pre-processed data and word
representations are used to compute task-specific
features as explained in the following subsections.

2.1 Aspect Term Extraction

The objective of this sub-task is to extract aspect
terms from reviews with respect to a target entity
(e.g, restaurant) as explained in Section 1. This task
can be considered as part of Semantic Role Label-
ing (SRL). Previous research has shown that Condi-
tional Random Fields (CRFs) (Lafferty et al., 2001)

1This dataset is available on: http://www.yelp.com/
dataset_challenge.
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and sequence tagging with Structural Support Vector
Machines (SVM-HMM) (Altun et al., 2003) are ef-
fective for the SRL task (Cohn and Blunsom, 2005).
As such, we employ CRFsuite (Okazaki, 2007) and
SVM-HMM (Altun et al., 2003) with word vec-
tor representations as features to label the token se-
quence with respect to two possible tags: “Aspect”
and “Not-Aspect”, where an aspect can be multi-
word. To the best of our knowledge, this is the
first attempt of solving the problem of aspect term
extraction using CRFsuite or SVM-HMM with vec-
tor representations as features. Furthermore, in ad-
dition to the above vector features, we employ the
POS-tags information as an extra feature. This is
mainly because “nouns” are strong candidates to be
aspects (Blinov and Kotelnikov, 2014; Pontiki et al.,
2014). However, this feature is more effective for
the single term aspects as we will discuss in Section
3.

2.2 Aspect Category Detection
The objective of this sub-task is to detect the aspect
categories expressed in a sentence with respect to
a given set of categories (e.g., food, service, price,
ambience, anecdotes/miscellaneous) as explained in
Section 1. Since a sentence can contain several cat-
egories, we employ multi-label one-vs-all Support
Vector Machines (SVMs) in conjunction with the
following vector-based features for a given sentence:

Normalized Average Vector (NAV) is obtained by
averaging the vector representations of the words in
the sentence. That is, given a sequence of words
S = w1, w2, ..., wn, the normalized average vector
is computed as follows:

NAV =
1
N

∑N
i=1 vi∣∣∣ 1

N

∑N
i=1 vi

∣∣∣ (1)

where N is the number of words, vi is the vector
representation of wi in the sentence, and |x| means
the L2 − norm of x. In addition, we only consider
adjectives, adverbs, nouns, and verbs to compute the
NAV. This is because these word types capture most
semantic and sentiment information in a sentence.

Token Numbers (TN) is number of words in sen-
tence that used to compute NAV. Although NAV is
effective for this task, some information like TN is
missing during the averaging process.

Category Similarities (CS) are computed for each
predefined aspect category. To compute CS, we first
identify a set of words (called seeds) for each cate-
gory by selecting top 20 nearest word vectors to the
vector of category name. Then, for each category,
we compute the cosine similarity between its seed
vectors and the word vectors of the input sentence.
We consider the maximum cosine similarity as a fea-
ture representing the similarity between the category
and the input sentence.

2.3 Aspect Sentiment Prediction

The objective of this task is to predict the sentiments
for a given set of aspects in a sentence as positive,
negative, neutral and conflict (i.e., both positive and
negative) as explained in Section 1. For this task,
we apply one-vs-all SVM and the following vector-
based features for a given aspect:

Average Dependency Vector (ADV) is obtained
by averaging the vector representations of the depen-
dency words (DW) for the aspect. We define depen-
dency words for an aspect as the words that modify
or modified by the aspect in dependency tree of the
input sentence.

Rating Vectors (RV) are the same as ADV fea-
tures but they are computed using the vector repre-
sentations trained on different subsets of our data.
We have five subsets, each subset contains only re-
views with a specific review rating. Ratings range
from 1 (strong negative) to 5 (strong positive). Pre-
vious researches showed the impact of the word (w)
distribution over different ratings (r) to compute the
sentiment of the word (i.e., P (r|w)) (de Marneffe et
al., 2010) and construct opinion lexicon (Amiri and
Chua, 2012). Using this feature, we can investigate
the distribution of words and their vector represen-
tations in different ratings.

Positive/Negative Similarities (PNS) are obtained
by computing the highest cosine similarity between
DW vectors and the vectors of a set of posi-
tive/negative sentiment words. The sentiment words
are automatically computed by selecting top 20 of
nearest neighbor word vectors to the vectors of the
word “excellent” for positive and “poor” for nega-
tive seeds. Furthermore, the difference between the
positive and negative similarities is used as an addi-
tional feature.
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Categories food srvc. price amb. misc. Total
Train 1,232 597 321 431 1,132 3,713
Test 418 172 83 118 234 1,025

Table 2: Category distributions over the dataset.

3 Evaluation and Results

We evaluate our vector-based approach on the as-
pect term extraction, aspect category detection, and
aspect sentiment prediction tasks. We use the restau-
rant review dataset provided by (Pontiki et al., 2014;
Ganu et al., 2009) that contains 3,041 training and
800 test sentences. The training dataset contains
3,693 aspects and 3,713 categories, and test dataset
contains 1,134 aspects and 1,025 categories. In the
dataset, the predefined aspect categories are food,
service, price, ambiance, anecdotes/miscellaneous,
and Table 2 shows the distributions of these cate-
gories over the dataset.

Aspect Term Extraction The results of our
vector-based approach for this task are shown in Ta-
ble 3. As explained in Section 2.1, we employ CRFs
and SVM-HMM for this task. As features we utilize
POS-tags of aspect terms and their vector represen-
tations computed by word2vec trained on Yelp (Y)
or GoogleNews (G) data. Their corresponding re-
sults are shown in the fourth and fifth rows of the ta-
ble. These results indicate the vector representations
trained on Yelp data leads to a high performance
in both SVM and CRF. This is while the Google-
News dataset contains a larger vocabulary of around
3M words as compared to the Yelp data with around
100K words. This implies the effectiveness of the
domain in the quality of word representations.

To evaluate the effectiveness of the vector-based
features, we repeat our experiments with only POS-
tags of the aspect terms. The performance is sig-
nificantly dropped, as shown in the third row of the
table. Although the nouns can be strong candidates
for aspects (Blinov and Kotelnikov, 2014), the ma-
jority of aspects, like multi-word aspects cannot be
captured by only considering their POS-tags.

The first cell of Table 3 shows the F1 performance
of 47.15% produced by our baseline (Pontiki et al.,
2014). The baseline creates a dictionary of aspect
terms from the training data, and then a given se-
quence of words are tagged as aspects by looking up

Baseline-F1 = 65.65 SVM (C = 0.1)
Features Precision Recall F1
NAV (Y) 89.02 80.68 84.64
NAV + TN (Y) 90.42 81.07 85.49
NAV + TN + CS (Y) 91.18 82.73 86.75
NAV + TN + CS (G) 91.51 81.07 85.98

Table 4: Results for the aspect category detection task.

the dictionary. This approach cannot handle the out
of vocabulary aspects.

Aspect Category Detection The results of our
vector-based approach for this task are shown in Ta-
ble 4. As explained in Section 2.2, SVMs are ap-
plied to this task with a combination of Normal-
ized Average Vector (NAV), Token Numbers (TN)
and Category Similarities (CS) features for a given
sentence. These features employ the word2vec
trained on Yelp (Y) or GoogleNews (G) to obtain the
vector representations. Their corresponding results
are shown in the fifth and sixth rows of the table. The
results imply the impact of our vector-based features
that lead to the highest performance using the Yelp
data.

To evaluate the effectiveness of above vector-
based features, we repeat our experiments with dif-
ferent combination of them. It leads to the lower
performances by using NAV and TN and ignoring
the CS, as shown in the forth row of Table 4., and by
using NAV and ignoring both CS and TN, as shown
in the third row of the table.

The first cell of Table 4 shows an F1 performance
of 65.65% obtained by the baseline (Pontiki et al.,
2014). Given a sentence, the baseline first retrieves
a set of K similar sentences from the training data.
The similarity of two sentences is then determined
by computing the Dice Coefficient between the sets
of distinct words in the two sentences (Pontiki et al.,
2014). Finally, the input sentence is tagged by the
most frequent aspect categories appeared in the K
retrieved sentences. The limitation of this approach
is that it employs the text-based similarity measure
to measure the semantic similarity between the sen-
tences. However, the results in the table shows
that the vector-based features can better capture the
semantic similarity between the sentences as com-
pared to the text-based features.
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Baseline-F1 = 47.15 CRF Suite SVM HMM
Features Precision Recall F1 Precision Recall F1
POS-tags 44.09 9.87 16.13 44.58 9.43 15.57
POS-tags + word2vec (Y) 82.38 72.57 77.16 77.33 78.83 78.08
POS-tags + word2vec (G) 82.69 74.16 78.19 76.88 74.51 75.68

Table 3: Results for the aspect term extraction task.

Baseline-Accuracy = 64.28 SVM (C = 0.1)
Features Pos-F1 Neg-F1 Neu-F1 Accuracy
ADV (Y) 82.70 52.30 31.39 71.34
RV (Y) 83.26 51.79 32.85 71.95
RV + PNS (Y) 83.48 53.29 32.97 72.39

Table 5: Results for the aspect sentiment prediction task.

Aspect Sentiment Prediction The results of our
approach for this task are shown in Table 5. The
SVMs are applied to this task and the parameter C
for SVMs is optimized through cross-validation on
training data. The third row of the table shows the
results when we use the Average Dependency Vec-
tor (ADV) computed based on word2vec trained
on the whole Yelp (Y) data. As explained in Section
2.3, to investigate the distribution of words (Amiri
and Chua, 2012) and their vector representations
over different ratings, we present Rating Vectors
(RV). RV features include 4 ADVs in which four
vector representations for a word are computed on
Yelp reviews with ratings 1, 2, 4, and 5, respectively.
Reviews with the rating 3 are not considered, be-
cause they are mostly of neutral or conflict orienta-
tion. Using RV results in a better performance, as
shown in the fourth row of Table 5. However, there
is not a significant difference between the results of
experiments with RV and ADV. The reason is that
most of the reviews in the Yelp data have positive
ratings (i.e., ratings 4 and 5) and as such the distri-
butions of words does not dramatically changed as
compared to the whole review data.

The highest performance is achieved when we use
the combination of RV and Positive/Negative Sim-
ilarities (PNS) features, as shown in the fifth row
of the Table 5. Since the vector representations for
some positive and negative words (e.g., good and
bad) are similar, PNS feature provides more infor-
mation for a classifier to distinguish between these

vectors by defining a set of positive and negative
vectors, as explained in Section 2.3.

The first cell of Table 5 shows a performance
of 64.28% obtained by our baseline (Pontiki et al.,
2014). The baseline tags a given aspect in a test sen-
tence by the most frequent sentiment for the aspect
in top K similar training sentences to the test sen-
tence. In addition, for the out of vocabulary aspects,
the majority sentiment over all aspects in training
data will be assigned.

4 Related Work

Previous works on aspect based sentiment analy-
sis (Liu, 2012; Pang and Lee, 2008) attempted to
tackle sentiment and semantic labeling using differ-
ent approaches such as sequence labeling (Choi and
Cardie, 2010; Yang and Cardie, 2013), syntactic pat-
terns (Zhao et al., 2012; Xu et al., 2013; Zhou et al.,
2013), topic models (Lu et al., 2011). While some
works first separate the semantic and sentiment in-
formation and then label them (Mei et al., 2007;
Zhao et al., 2010), some other previous works pre-
sented joint models for joint semantic and sentiment
labeling (Lin and He, 2009; Jo and Oh, 2011).

Vector representations for words and phrases has
been found useful for many NLP tasks (Al-Rfou et
al., 2013; Bansal et al., 2014; Bowman et al., 2014;
Boyd-Graber et al., 2012; Chen and Rudnicky, 2014;
Guo et al., 2014; Iyyer et al., 2014; Levy and Gold-
berg, 2014). Given the success of the previous works
the effectiveness of recursive neural networks in re-
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lating semantically similar words, in this research,
we investigated the impact of word representations
techniques for aspect based sentiment analysis. In
particular, we aimed to employ vector-based fea-
tures using word representations to capture both se-
mantic and sentiment information.

5 Conclusion

In summary, we employed vector representations of
words to tackle the problem of Aspect Based Sen-
timent Analysis. We introduced several effective
vector-based features and showed their utility in ad-
dressing the aspect term extraction, aspect category
detection, and aspect sentiment prediction sub-tasks.
Our vector space approach using these features per-
formed well compared to the baselines. To fur-
ther improvement, these vector-based features can
be combined with text-based features used typically
for each sub-task.
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Abstract

We explore new methods of improving Cur-
riculum Vitæ (CV) parsing for German docu-
ments by applying recent research on the ap-
plication of word embeddings in Natural Lan-
guage Processing (NLP). Our approach inte-
grates the word embeddings as input features
for a probabilistic sequence labeling model
that relies on the Conditional Random Field
(CRF) framework. Best-performing word em-
beddings are generated from a large sample
of German CVs. The best results on the ex-
traction task are obtained by the model which
integrates the word embeddings together with
a number of hand-crafted features. The im-
provements are consistent throughout differ-
ent sections of the target documents. The ef-
fect of the word embeddings is strongest on
semi-structured, out-of-sample data.

1 Introduction

Curriculum Vitæ (CV) parsing refers to the task of
processing and transforming the relevant informa-
tion contained in a given CV. The goal is to produce
structured output detailing the information presented
in the document, including personal information, ed-
ucation items, work experience, or further skills.

CV Parsing is used in multiple real world scenar-
ios. Nowadays, job seekers are frequently presented
with the option of simply uploading the required
documents into an application system, which then
automatically processes the data and directly up-
loads the candidate information into the correspond-
ing databases. Given structured information on the
candidate, recruiters are able to quickly search for

potential matches, and systems are enabled to gen-
erate personalized recommendations that meet the
candidate’s specific skill set.

CV Parsing poses an interesting challenge to
modern Natural Language Processing (NLP) tech-
niques, because the documents consist of a mixture
of semi-structured and free form text with a high de-
gree of variance in the data. The semi-structured text
often takes the shape of attribute-value pairs. Typ-
ical examples with regard to personal information
would be

Name: John Doe, or
Phone: 212 / 123-5678.

A considerable portion of CVs contain personal
information without any left context, e.g.

John Doe, MD
900 Main Street

New York, NY

Free form text is most often encountered in work
experience items, such as

2006–2008 Software Developer
Eastman Kodak Company

Rochester, NY

Led a small team, investigated current sys-
tems, and created applications.

High variance in the data stems from the fact that
we are dealing with CVs from all possible industries
and locations, and on any possible skill level. As a
result, there will always be unknown words in the
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entities we seek to extract, most commonly when
processing names, addresses, jobs, or companies.

While CV Parsing combines many different NLP
components, in this paper we will focus on one task
in particular: the extraction of two different types
of entities from pre-segmented sections, namely the
section containing the personal information of the
applicant, and his or her work related information.

More precisely, we investigate the contribution of
word embeddings versus word type (or one-hot) rep-
resentations as input feature for a sequence labeling
model based on Conditional Random Fields (CRF).
By using word embeddings instead of word types,
the model is able to utilize large amounts of unla-
beled data to supplement the supervised training.

We show that using word embeddings as addi-
tional input feature to the CRF model greatly im-
proves the overall model performance. Word em-
beddings also enhance model performance on out-
of-sample data, since the model no longer relies on
only the fixed observations in the training data.

2 Related work

To our knowledge, the availability of prior research
on CV parsing is very limited. Yu et al. (2005) de-
sign a cascaded Information Extraction (IE) frame-
work for CV extraction, comparing flat models
based on Hidden Markov Models (HMM) and Sup-
port Vector Machines (SVM) with a hierarchical hy-
brid model.

Over the past decade, there has been an increasing
research interest in the application of word embed-
dings to complex tasks in language processing. As
input features for different CRF models, word em-
beddings are already effectively used in a wide range
of NLP systems, including Named Entity Recogni-
tion (Demir and Ozgur, 2014), chunking and Part-
of-Speech Tagging (Huang and Yates, 2009). Turian
et al. (2010) evaluate different techniques for in-
ducing word representations and detail significant
improvements for supervised NER and chunking
systems when also incorporating word embeddings.
Wang and Manning (2013) suggest that linear model
architectures benefit from a high-dimensional, dis-
crete feature space. Guo et al. (2014) investigate
different approaches on transforming skip-gram em-
beddings (Mikolov et al., 2013) correspondingly,

and report higher performance than directly using
the word embeddings with supervised NER as eval-
uation task. We extend previous work by exploring a
novel task in NER, as well as directly comparing the
effect of using word types versus word embeddings
and how this affects the robustness of the model.

3 Task

As indicated above, our task is to extract struc-
tured information from the personal and the expe-
rience sections of a diverse set of German input
CVs. We solve this extraction task by treating it as
a conventional NER problem. Unlike most previ-
ous NER work that focuses on extracting the stan-
dard name/organization/location/other entities, our
domain has an extended set of entities.

For personal information, we extract 6 different
entities, specifically the full name of the candidate,
the contact address, birthday, phone number, nation-
ality, and email address. From the work experience
section, we extract 3 entities, namely the job title,
job duration, as well as the company and location.
Since experience sections of CVs usually contain
multiple previous job descriptions, the task is to ex-
tract the given information for each of these jobs.

4 Methodology

We first discuss word embeddings in Section 4.1, be-
fore we move on to a formal description of the CRF
architecture in Section 4.2.

4.1 Word Embeddings

Word embeddings are continuous vector represen-
tations induced from unlabeled input text of arbi-
trary length. Each dimension of the word embed-
ding represents a latent feature of the word. Intu-
itively, this kind of meaning representation captures
useful properties of the word, both semantically and
syntactically (Mikolov et al., 2013).

Word embeddings are typically learned using
neural networks (Collobert and Weston, 2008) or
clustering as underlying predictive model. Turian
et al. (2010) provide a comparison of multiple ap-
proaches. Recently, Mikolov et al. (2013) proposed
a simple and computationally efficient way to learn
word embeddings. In the skip-gram model architec-
ture, the hidden layer is replaced by a shared pro-
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jection layer, and a window of size c surrounding
words wt−c, .., wt−1, wt+1, .., wt+c from word wt is
predicted. The training objective is to learn word
embeddings which are good predictors for the sur-
rounding words. This is done by maximizing the
average log probability over the data:

1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt)

In order to avoid a costly computation propor-
tional to the size of the vocabulary, p(wt+j |wt) is
computed using the hierarchical softmax function
as an approximation of the softmax functions. In-
creasing the window size c can improve accuracy at
the expense of training time, since it results in more
training examples.

4.2 Conditional Random Fields
The Conditional Random Fields (CRF) model is a
state-of-the-art sequence labeling method first intro-
duced by Lafferty et al. (2001).

CRFs are a undirected, graphical model trained
to maximize a conditional probability distribution
given a set of features. The most common graph-
ical structure used with CRF is linear chain. Let
Y = (y1, ..., yT ) denote a sequence of labels and
X = (x1, ..., xT ) denote the corresponding obser-
vations sequence. The sequence of labels is the con-
cept we wish to predict (e.g. target phrases, named-
entity, POS, etc.). The observations are the words in
the input string. Given a linear chain CRF, the con-
ditional probability p(Y |X) is computed as follows:

p(Y |X) =
1
ZX

T∏
t=1

exp

{
K∑

k=1

λkfk(yt, yt−1, xt)

}

ZX is a normalizing constant such that all the
terms normalize to one, fk is a feature function, and
λk is a feature weight. CRF offers an advantage over
generative approaches by relaxing the conditional
independence assumption and allowing for arbitrary
features in the observation.

For all our experiments we use CRFsuite1, an im-
plementation of CRF for labeling sequential data

1http://www.chokkan.org/software/
crfsuite/

provided by Okazaki (2007). We choose an ap-
propriate learning algorithm based on accuracy on
the development set and use Limited-memory BFGS
optimization (Nocedal, 1980).

5 Experimental setup

We start by describing our data sets in Section 5.1.
Section 5.2 details the feature set implemented in the
models. Section 5.3 provides details on the generat-
ing of the word embeddings, and Section 5.4 speci-
fies the model evaluation.

5.1 Data

We use two separate data sets for evaluation: the
main set, and an additional out-of-sample set. Ta-
ble 1 provides an overview of the number of docu-
ments and section-specific entities contained in the
main set and the out-of-sample dataset.

Main set OOS

Train Dev Test Test

#Docs 1010 233 214 25

#Pers 6736 1634 1388 n/a

#Exp 20687 4569 4410 356

Table 1: Distribution of documents and personal
and experience entities over main set and

out-of-sample (OOS) dataset.

In total, the main set is comprised of a sample
of 1457 annotated German documents. This sam-
ple was randomly split into training (1010 docu-
ments), development (233 documents), and test par-
tition (214 documents). All sequence labeling mod-
els are trained on the training partition. The test par-
tition is used to evaluate the model performance of
previously unseen but similar data.

In addition, we evaluate the performance of the
same model on an out-of-sample dataset. This is
done in order to measure how well the model gen-
eralizes to unseen data from an inherently different
sample, i.e. CVs from a new domain not included in
the original sample. The out-of-sample set is com-
prised of a sample of 25 annotated German CVs.
These documents are only annotated for experience
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entities, but since each document contains an aver-
age of 4.4 work experience items, it provides us with
approximately 115 examples of each entity.

Personal information entities usually occur only
once per document. Experience entities occur at
most once per work experience item. Each docu-
ment contains 5.9 work experience items on average.

5.2 Features

As indicated in Section 4.2, the CRF model learns
based on a number of predefined features. The hand-
crafted features include mostly simple orthographic
features that account for the beginning and end of a
line, unknown words, digits, single characters, multi
spaces, capitalization, as well as the first and last to-
ken of each line. In addition, high frequency token
features encode the 200 most frequent words in the
training data in a one-hot binary vector. This is done
separately for personal and work experience section.

Similarly, we implement a one-hot representation
of word types incorporating all tokens that occur at
least twice in the training data. Most importantly, we
also implement word embeddings of any given word
type as one feature per dimension. We use a BIO
encoding (Ramshaw and Marcus, 1995) for labels,
resulting in 13 labels for the personal section, and 7
labels for the experience section. Each label spans
entire tokens.

5.3 Generating Word Embeddings

To generate the word embeddings, we use the open
source word2vec2 toolkit. We conduct a number of
experiments to determine most suitable parameters
settings. We tune the number of latent dimensions
on the development set and find 150 dimensions to
give us the best results. Except for vector size, we
use default parameters. Applying the skip-gram ar-
chitecture has proven to be robust across trials.

We experiment with various data sources, in-
cluding the German Wikipedia, different batches of
sample CVs, and spidered job postings. Overall
best word embeddings for the information extraction
tasks are generated from a set of 200K German sam-
ple CVs containing approximately 145.5M tokens.

2https://code.google.com/p/word2vec/

5.4 Evaluation

We evaluate five models based on three different
groups of features (cf. Table 2). The first baseline
model uses only the hand-crafted features. We com-
pare this baseline to two models which incorporate
either a feature vector for the word types, or a fea-
ture vector for the word embeddings, respectively.
Finally, we combine the hand-crafted features with
word types or word embeddings for two additional
models.

Character-based overlap scores are computed for
averaged precision, recall, and F1 scores to evalu-
ate the performance of the models on personal and
experience sections. We use character-based overlap
instead of token-based overlap scores to penalize the
incorrect labeling of longer tokens. Recall that our
labeling always spans entire tokens.

6 Results

The macro-averaged precision, recall, and F1 scores
for the entities in the personal and experience sec-
tions, for the different phrase models on the main
test partition, are shown in Table 2.

For the personal section, the models using only
word types or only word embeddings give the lowest
performance. This is due to the fact that personal
sections have a semi-structured layout and content
words, which are already well captured when using
the hand-crafted orthographic features together with
the high frequency token feature.

On less structured experience sections, the effect
of the word embeddings is much stronger. By us-
ing only word embeddings as features for the model,
we outperform the hand-crafted feature baseline by
3.9% on average. The best performance is achieved
by combining word embeddings and hand-crafted
features, resulting in 96.0% averaged F1 score on
the personal section, and 84.0% F1 score on the ex-
perience section.

We compare the performance of experience entity
extraction on the main test partition with its perfor-
mance on the out-of-sample data. The results are
presented in Table 3. Since word embeddings are
learned from large amounts of unlabeled data, we
verify that word embeddings also enhance the model
performance on the out-of-sample data. Indeed, we
observe a 10.1% increase in recall on the out-of-
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Personal section Experience section

Model
Prec Rec F1

[%]
Prec Rec F1

(avg.) (avg.) (avg.) (avg.) (avg.) (avg.)

Hand-crafted features 94.5 94.0 94.3 84.7 69.8 76.4

Word types 94.7 91.2 92.3 85.3 67.7 75.3

Word embeddings 94.9 93.1 93.9 87.0 74.6 80.3

Word types + features 95.2 95.0 95.1 88.4 74.3 80.6

Word embeddings + features 96.3 95.7 96.0 89.6 79.2 84.0

Table 2: Macro-averaged precision, recall, and F1 scores of the phrase models on the main test partition.

Test set Out-of-sample set

Model
Prec Rec F1

[%]
Prec Rec F1

(avg.) (avg.) (avg.) (avg.) (avg.) (avg.)

Word types + features 88.4 74.3 80.6 82.3 57.0 65.6

Word embeddings + features 89.6 79.2 84.0 83.3 67.1 73.8

Table 3: Experience phrase model performance on test partition and out-of-sample dataset.

sample data when using word embeddings instead
of word types. Using word embeddings also leads
to a greater improvement in F1 score on the out-of-
sample set (+8.2%) compared with the main test par-
tition (+3.5%). This suggests that the word embed-
dings increase the robustness of the model towards
the lexical variety comprised in CVs from additional
industries.

The results support our hypothesis that the ob-
served improvements are mostly due to the Distri-
butional Hypothesis (Firth, 1957), and the enhanced
handling of out-of-vocabulary words: by using word
embeddings rather than one-hot representations, the
models are able to more accurately predict labels on
words that did not occur in the training data.

7 Future Work

Based on the limited sets of sample documents at
hand, we currently learn word embeddings from
much less data than has been suggested in previous
related work. Thus, we are planning on investigat-
ing the impact of data source and amount of data for
word embedding generation.

Since the focus of the work presented was on Ger-
man documents, we would additionally like to verify
that the results generalize to other languages. First
initial test runs on Portuguese indicate that similar
improvements can be reproduced easily.

It would also be interesting to move beyond the
CRF architecture by comparing performances of dif-
ferent sequence labeling methods on the given task.

8 Conclusion

We describe how word embeddings can be success-
fully applied to the task of CV parsing. Using the
skip-gram architecture, we learn word embeddings
from a large set of unlabeled German CVs, and im-
plement them as additional feature to our CRF based
sequence labeling model.

Results on the personal section show that neither
word types, nor word embeddings alone perform
well enough to beat the baseline model based on
hand-crafted features only. When combining word
types or word embeddings with the hand-crafted fea-
tures, word embeddings outperform the word types.
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We observe that the improvements from the word
embeddings combined with hand-crafted features
carry over to semi-structured and free form work ex-
perience text. Applying word embeddings together
with hand-crafted features additionally greatly im-
proves the performance on an out-of-sample dataset.
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Abstract

We replicate the syntactic experiments of
Mikolov et al. (2013b) on English, and ex-
pand them to include morphologically com-
plex languages. We learn vector representa-
tions for Dutch, French, German, and Span-
ish with the WORD2VEC tool, and investigate
to what extent inflectional information is pre-
served across vectors. We observe that the ac-
curacy of vectors on a set of syntactic analo-
gies is inversely correlated with the morpho-
logical complexity of the language.

1 Introduction

Mikolov et al. (2013b) demonstrate that vector rep-
resentations of words obtained from a neural net-
work language model provide a way of capturing
both semantic and syntactic regularities in language.
They observe that by manipulating vector offsets
between pairs of words, it is possible to derive an
approximation of vectors representing other words,
such as queen ≈ king − man + woman. Similarly,
an abstract relationship between the present and past
tense may be computed by subtracting the base form
eat from the past form ate; the result of compos-
ing such an offset with the base form cook may turn
out to be similar to the vector for cooked (Figure 1).
They report state-of-the-art results on a set of anal-
ogy questions of the form “a is to b as c is to ”,
where the variables represent various English word
forms.

Our work is motivated by two observations re-
garding Mikolov et al.’s experiments: first, the syn-
tactic analogies that they test correspond to morpho-
logical inflections, and second, the tests only eval-
uate English, a language with little morphological

Figure 1: An example of vector offsets.

complexity. In this paper, we replicate their syntac-
tic experiments on four languages that are more mor-
phologically complex than English: Dutch, French,
German, and Spanish.

2 Replication Experiments

In order to to validate our methodology, we first
replicate the results of Mikolov et al. (2013b) on En-
glish syntactic analogies.

2.1 Training Corpus for Word Vectors

The vectors of Mikolov et al. (2013b) were trained
on 320M tokens of broadcast news data, as de-
scribed by Mikolov et al. (2011). Since we have no
access to this data, we instead train English vectors
on a corpus from the Polyglot project (Al-Rfou et al.,
2013), which contains tokenized Wikipedia dumps
intended for the training of vector-space models.
For comparison with the results of Mikolov et al.
(2013b), we limit the data to the first 320M lower-
cased tokens of the corpus.
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Mikolov et al. (2013b) obtain their best results
with vectors of size 1600 that combine several mod-
els, but do not elaborate how this composite model
was constructed. Instead, we take as a point of ref-
erence their second-best model, which employs 640-
dimensional vectors produced by a single recursive
neural network (RNN) language model.1

Rather than use an RNN model to learn our own
vectors, we employ the far simpler skip-gram model.
Mikolov et al. (2013a) show that higher accuracy
can be obtained using vectors derived using this
model, which is also far less expensive to train. The
skip-gram model eschews a language modeling ob-
jective in favor of a logistic regression classifier that
predicts surrounding words. The WORD2VEC pack-
age includes code for learning skip-gram models
from very large corpora.2 We train 640-dimensional
vectors using the skip-gram model with a hierarchi-
cal softmax, a context window of 10, sub-sampling
of 1e-3, and a minimum frequency threshold of 10.

2.2 Test Set

The test set of Mikolov et al. (2013b) is publicly
available3. They extract their gold standard inflec-
tions, as well as frequency counts, from tagged
newspaper text. Their test set was constructed as
follows: after tagging 267M words, the 100 most
frequent plural nouns, possessive nouns, compara-
tive adjectives, and verbal infinitives were selected.
Each was paired with 5 randomly-selected words
of the same part-of-speech, and analogy questions
were constructed for each word pair. For example,
for the pair people and city, two questions are cre-
ated: people:person :: cities:city, and its mirror: per-
son:people :: city:cities.

To solve the analogies in this test set, we ap-
ply the word-analogy tool that is included with
WORD2VEC. For each analogy a : b :: c :?, the
tool searches the entire vocabulary for the vector d
that is most similar to the vector estimated by per-
forming a linear analogy on the query triplet a, b, c:

d = argmaxd′ = cos(d′, c+ b− a) (1)

We calculate accuracy as the percentage of analogies

1The vectors are available at http://rnnlm.org.
2https://code.google.com/p/word2vec.
3http://research.microsoft.com/en-us/projects/rnn

Test Set M13 Ours
Adjectives 21.0 18.8

Nouns 40.1 55.2
Verbs 54.8 50.6

Table 1: The results of replicating the experiments of
Mikolov et al. (2013b) on English.

whose answers are correctly predicted, according to
an exact match.

The analogies involve nouns, adjectives, and
verbs. Nominal analogies consist of comparisons
between singular and plural forms, and possessive
and nominative forms. Due to the tokenization
method used in our training corpus, we are unable to
build vectors for English possessives. We therefore
modify the nominal test set to only include questions
that contain the singular vs. plural distinction. We
make no changes to the adjectival and verbal anal-
ogy sets. The adjectival set contains analogies be-
tween the comparative and the superlative, the com-
parative and the base, and the superlative and the
base. The verbal set includes comparisons between
the preterite, the infinitive, and the 3rd person singu-
lar present, but not the past and present participles.

2.3 Results

In Table 1, we report two numbers for each part of
speech. The first, labeled as M13, is the result of ap-
plying the vectors of Mikolov et al. (2013b) to their
test set. The results match the results reported in
their paper, except for the nominal results, which
reflect our modifications described in Section 2.2.
The removal of the possessives improves the accu-
racy from 25.2% reported in the original paper to
40.1%. The second column, labeled as Ours, reports
the results for our vectors, which were trained using
WORD2VEC on the English data described in Sec-
tion 2.1.

Our verbal and adjectival vectors obtain slightly
lower accuracies than the RNN trained vectors of
Mikolov et al. (2013b), but they are not far off.
For nouns, however, we obtain higher accuracy than
Mikolov et al. The tokenization method that re-
moves possessives from consideration may produce
better vectors for singular and plural forms, as it in-
creases the frequency of these types.
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3 Multilingual Experiments

Our second set of experiments examine to what ex-
tent the syntactic regularities are captured by word
vectors in four other languages: Dutch, French, Ger-
man, and Spanish.

3.1 Training Corpora for Word Vectors

As in the previous experiment, our training corpora
are from the Polyglot project. We limit each cor-
pus to the first 320M lowercased tokens, except for
the Dutch corpus, which has only 180M tokens.
Since the WORD2VEC tool cannot handle Unicode,
we map all non-ASCII characters to unused ASCII
characters. We run WORD2VEC with exactly the
same hyper-parameters as in Section 2.1. The En-
glish experiments in this section use the same train-
ing data and vectors as in Section 2, but we construct
a new test set to match our methodology for the other
languages.

3.2 Test Sets

In order to make results between multiple languages
comparable, we made several changes to the con-
struction of syntactic analogy questions. We follow
the methodology of Mikolov et al. (2013b) in limit-
ing analogy questions to the 100 most frequent verbs
or nouns. The frequencies are obtained from corpora
tagged by TREETAGGER (Schmid, 1994).

We identify inflections using manually con-
structed inflection tables from several sources.
Spanish and German verbal inflections, as well
as German nominal inflections, are from a Wik-
tionary data set introduced by Durrett and DeNero
(2013).4 Dutch verbal inflections and English ver-
bal and nominal inflections are from the CELEX
database (Baayen et al., 1995). French verbal in-
flections are from Verbiste, an online French conju-
gation dictionary.5

Whereas Mikolov et al. create analogies from var-
ious inflectional forms, we require the analogies to
always include the base dictionary form: the in-
finitive for verbs, and the nominative singular for
nouns. In other words, all analogies are limited to

4We exclude Finnish because of its high morphological
complexity and the small size of the corresponding Polyglot
corpus.

5http://perso.b2b2c.ca/sarrazip/dev/verbiste.html

Set I Q Example
EN-V 5 3096 go:gone see:?
NL-V 9 5136 gaan:gegaan zien:?
DE-V 27 6514 gehen:gegangen sehen:?
FR-V 48 15573 aller:allé voir:?
ES-V 57 22579 ir:ido ver:?
EN-N 2 876 bear:bears lion:?
DE-N 8 1804 Bär:Bären Löwe:?

Table 2: The number of inflectional slots (I) and analogy
questions (Q) for each language set.

comparisons between the base form and an inflected
form. This is to prevent a combinatorial explosion
of the number of analogies in languages that contain
dozens of different inflection forms. We also create
new English test sets using this methodology, in or-
der to ensure a fair cross-lingual comparison. Table
2 shows the number of analogy questions for each
language set. Note that the languages are ordered
according to increasing morphological complexity.

Following Mikolov et al., we ensure that all analo-
gies contain at least one pair of non-syncretic forms.
It would make little sense to include analogies such
as “set is to set as put is to ?” because both verbs in
question have the same present and past tense form.
However, we do allow analogies which involve syn-
cretic forms for one half of the analogy. For exam-
ple, either taken or took is a correct answer to “play
is to played as take is to ?”. These types of questions
account for an average of 2.8% of analogies, rang-
ing from 0% for English nouns to 8.9% for German
verbs.

The number of questions for each language is a
function of the number of inflectional forms, but it is
not a simple linear relationship. If each English verb
had five different inflections, each with sufficient
frequency in the training corpus, we would expect
4000 questions for 100 verbs. This is because each
verb should ideally be compared to five other verbs,
with the base form paired with the other four inflec-
tional forms, in both directions. The actual number
of questions is smaller because some forms are iden-
tical, while other forms are observed less frequently
than our minimum threshold of 10.
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Set All Inflections Inflection Subset
EN-V 52.6 (21.3k) 52.6 (21.3k)
NL-V 37.8 (4.5k) 33.5 (7.0k)
DE-V 29.4 (5.0k) 40.0 (8.9k)
FR-V 25.9 (0.5k) 45.6 (8.6k)
ES-V 22.8 (0.5k) 48.2 (10.6k)

EN-N 52.2 (46.9k) 52.2 (46.9k)
DE-N 28.2 (18.0k) 31.9 (35.6k)

Table 3: Accuracy on analogy questions. The median fre-
quencies of the types involved are provided in brackets.

3.3 Results

We conduct two experiments to quantify the extent
that the syntactic regularities observed in English
hold in the other languages. In the first experiment,
which is referred to as All Inflections, we measure
the accuracy of vectors on all inflected forms. In
the second experiment, named Inflection Subset, we
attempt to factor out the variation in the number of
inflectional forms across languages by considering
only the forms that are observed in English (five
forms for verbs, and two forms for nouns).

The results of the experiments are in Table 3. In
the All Inflections column, we see that the overall
accuracy decreases as the morphological complex-
ity increases. However, the Inflection Subset column
reveals an opposite trend: the accuracy is increasing
towards the bottom of the table, (although English
stands out as a clear exception). Looking across the
rows, the accuracy on the inflection subset is higher
than on all inflections, except on Dutch. Noun analo-
gies are only tested on two languages, but they seem
to follow the same trends as verbs.

The results in Table 3 are not easy to interpret. It
appears the lower frequencies of multiple inflected
word forms make the task more difficult, which is
reflected in the All Inflections results. The median
frequencies of individual verb forms in French and
Spanish are approximately one-tenth of the corre-
sponding numbers in Dutch and German, which in
turn are about one-fourth of the English median.
However, these ratios are not neatly correlated with
the accuracy results in Table 3.

Regarding the contrasting results in the Inflection
Subset column, we conjecture that a larger num-

ber of inflections may make individual forms easier
to disambiguate. This in turn allows WORD2VEC

to learn more precise vectors for each word type.
The median frequencies of the forms in the inflec-
tion subset tend to be higher than the correspond-
ing values computed for all inflections, but there is
a substantial variation between different languages.
Dutch, in particular, sees a similar increase in me-
dian frequency to German, but while German accu-
racy increases, Dutch decreases. We conclude that
although frequency is an important factor when per-
forming syntactic analogies with vectors, there must
be other factors contributing to these results.

It is perhaps unsurprising that English is the win-
ner on its own inflection set. However, another rea-
son that English does not follow the trend in the
Inflection Subset column may be related to the fre-
quencies of its small set of wordforms, which are
uniformly higher than in other languages. The ex-
periments that we describe in the next section pro-
vide additional insights into these results.

4 Hyper-Parameter Experiments

In this section, we describe experiments that quan-
tify how the quality of the vectors is affected by the
window size and the amount of training data.

4.1 Window size

First, we investigate the role that the window size
has on the accuracy of learned vectors. We expect
that larger window sizes may create more topic-
oriented vectors, while small windows result in
vectors that capture syntactic information (Turney,
2012). While all experiments in Section 3 used a
window size of 10, the languages have different syn-
tactic and morphological patterns, and some of the
results observed in Section 3 may simply be a side
effect of better or worse window sizes for particular
languages. We run an experiment that tests window
sizes of 1, 3, 5 and 10, calculating the analogy accu-
racy for each language and each window size.

Figure 2 shows the results for varying window
sizes. While no single window size is best for all lan-
guages, we observe that the morphologically com-
plex languages perform better with larger windows.
One benefit that larger window sizes may provide is
access to more information during vector training,
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Figure 2: Accuracy for different context windows.

which may be important when each type is observed
less frequently. Our next experiment directly inves-
tigates the impact of the training data size.

4.2 Learning curves

In this section, we investigate how varying the size
of the vector training data affects the vector accu-
racy. We progressively subsample the training data:
starting with the complete training set, we construct
a 50% subsample by selecting each sentence for in-
clusion with probability 0.5. We then iterate this
process, each time sampling roughly 50% of the sen-
tences from the previously created subsample, until
we have a subsample that is only 1.6% of the orig-
inal training data. This gives us training sets with
approximately 1.6, 3.1, 6.3, 12.5, 25, 50, and 100%
of the full corpora. We set the window size to 5 for
this experiment; the other hyper-parameters are the
same as those in Section 2.1.

The learning curves for verbs and nouns are
shown in Figure 3. We see that the trends observed
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Figure 3: Learning curves.

in Section 3 hold regardless of the amount of data
that is used for training: namely, the accuracy of the
vectors is inversely correlated with the number of
inflection slots in a given language set. Secondly,
while the English curves are beginning to level off,
the curves for the other languages continue to rise,
even as we reach 100% of our data. This suggests
that there would be little gain in adding more En-
glish data, but a potential gain to be seen by adding
more data to the other languages. This seems to sup-
port our hypothesis that the sparsity of the data is at
least partially responsible for the lower accuracies
on the morphologically complex languages.

5 Conclusion

The results of our experiments show that it is pos-
sible to learn vectors that preserve morphological
information even for languages with complex in-
flectional systems. The accuracy of vectors on a
set of syntactic analogies in four tested languages
is lower than in English, and it appears to be in-
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versely proportional to morphological complexity,
as measured by the number of inflections in the lan-
guage. When we limit our test set to the small set
of inflections common across languages, we see im-
provements in the accuracy, which positively corre-
late with the complexity of the language. This sug-
gests that for frequently observed phenomena, mor-
phological complexity may be an advantage, making
each type distinct and easier to model. Additional
experiments suggest that the accuracy on more com-
plex languages may further improve if more training
data is provided.

These results suggest two possible avenues for
future work. The first is to build morphologically-
aware vectors, such as those of Botha and Blunsom
(2014), so that the more morphologically complex
languages can make better use of limited training
data. The second is to investigate methods that can
distinguish syncretic forms in context. For example,
it could be possible to modify the joint word-sense
and vector induction algorithm of Neelakantan et al.
(2014) to focus on syntactic parts-of-speech instead
of topical senses.
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Abstract

Matrix factorization of knowledge bases in uni-
versal schema has facilitated accurate distantly-
supervised relation extraction. This factor-
ization encodes dependencies between textual
patterns and structured relations using low-
dimensional vectors defined for each entity
pair; although these factors are effective at
combining evidence for an entity pair, they are
inaccurate on rare pairs, or for relations that
depend crucially on the entity types. On the
other hand, tensor factorization is able to over-
come these shortcomings when applied to link
prediction by maintaining entity-wise factors.
However these models have been unsuitable
for universal schema. In this paper we first
present an illustration on synthetic data that ex-
plains the unsuitability of tensor factorization
to relation extraction with universal schemas.
Since the benefits of tensor and matrix factor-
ization are complementary, we then investigate
two hybrid methods that combine the benefits
of the two paradigms. We show that the combi-
nation can be fruitful: we handle ambiguously
phrased relations, achieve gains in accuracy
on real-world relations, and demonstrate that
entity embeddings encode entity types.

1 Introduction

Distantly-supervised relation extraction has gained
prominence as it utilizes automatically aligned data to
train accurate extractors. Universal schema, in partic-
ular, has found impressive accuracy gains by (1) treat-
ing the distant-supervision as a knowledge-base (KB)
containing both structured relations such as bornIn

∗First two authors contributed equally to the paper.

and surface form relations such as “was born in” ex-
tracted from text, and (2) by completing the entries
in such a KB using joint and compact encoding of
the dependencies between the relations (Riedel et al.,
2013; Fan et al., 2014; Chang et al., 2014). Matrix
factorization is at the core of this completion: Riedel
et al. (2013) convert the KB into a binary matrix with
entity-pairs forming the rows and relations forming
the columns. Factorization of this matrix results in
low-dimensional factors for entity-pairs and relations,
which are able to effectively combine multiple evi-
dence for each entity pair to predict unseen relations.

An important shortcoming of this matrix fac-
torization model for universal schema is that no
information is shared between the rows that con-
tain the same entity. This can significantly im-
pact accuracy on pairs of entities that are not
mentioned together frequently, and for relations
that depend crucially on fine-grained entity types,
such as schoolAttended, nationality, and
bookAuthor. On the other hand, tensor factoriza-
tion for knowledge-base completion maintains per-
entity factors that combine evidence from all the
relations an entity participates in, to predict its re-
lations to other entities – a task known as link predic-
tion (Nickel et al., 2012; Bordes et al., 2013). These
entity factors, as opposed to pairwise factors in ma-
trix factorization, can be quite effective in identifying
the latent, fine-grained entity types. Thus, in the light
of the above problems of matrix factorization, the use
of tensor factorization for universal schema is tempt-
ing. However, directly applying tensor factorization
to universal schema has not been successful. Strong
results were obtained only through a combination
with matrix factorization predictions, and the use of
predefined type information (Chang et al., 2014).
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In this paper, we explore the application of matrix
and tensor factorization for universal schema data.
On simple, synthetic relations, we contrast the rep-
resentational capabilities of these methods (in § 3.1)
and investigate their benefits and shortcomings.We
then propose two hybrid tensor and matrix factoriza-
tion approaches that, by combining their complemen-
tary advantages, is able to overcome the shortcom-
ings on synthetic data. We also present improved
accuracy on real-world relation extraction data, and
demonstrate that the entity embeddings are effective
at encoding entity types.

2 Matrix and Tensor Factorization

In this section we introduce universal schemas and
various factorization models that can be used to com-
plete knowledge bases of such schemas.

2.1 Universal Schema
A universal schema is defined as the union of all
OpenIE-like surface form patterns found in text and
fixed canonical relations that exist in a knowledge
base (Riedel et al., 2013). The task here is to com-
plete this schema by jointly reasoning over surface
form patterns and relations. A successful approach
to this joint reasoning is to embed both kinds of re-
lations into the same low-dimensional embedding
space, which can be achieved by matrix or tensor
factorization methods. We will study such represen-
tations for universal schema in this paper.

2.2 Matrix Factorization with Factors over
Entity-Pairs

In matrix factorization for universal schema, Riedel
et al. (2013) construct a sparse binary matrix of size
|P| × |R| whose rows are indexed by entity-pairs
(a, b) ∈ P and columns by surface form and Free-
base relations s ∈ R. Subsequently, generalized
PCA (Collins et al., 2001) is used to find a rank-k
factorization, i.e., with relation factors r ∈ R|R|×k

and entity-pair factors p ∈ R|P|×k, the probability of
a relation s and two entities a and b is:

P (s(a, b)) = σ(rs · pab) (1)

where σ is the sigmoid function. Using this factor-
ization, similar entity-pairs and relations are embed-
ded close to each other in a k-dimensional vector

space. Since this model uses embeddings for pairs
of entities, as opposed to per-entity embeddings, we
refer to such models as pairwise models. Pairwise
embeddings are especially suitable when working
with universal schema data, since they can represent
correlations between surface pattern relations and
structured relations compactly. Furthermore, they
combine multiple evidences specific to an entity-pair
to predict a relation between them. Since the ob-
served data matrix contains only true entries, the
parameters are learned using Bayesian personalized
Ranking (Rendle et al., 2009) that supports implicit
feedback.

Riedel et al. (2013) explore a number of variants
of this factorization, including a neighborhood model
that learns local classifiers, and an entity model that
includes entity representations (we revisit this formu-
lation in Section 2.3.4). In the rest of this paper we
will only use the basic factorization model (referred
to as Model F) as the primary pairwise embedding
model, however the ideas apply directly to these vari-
ants as well.

There are a few shortcomings of models that rely
solely on pairwise embeddings. To learn an appropri-
ate representation of an entity-pair, the two entities
need to be mentioned together frequently, which is
not the case for many entity-pairs of interest. Since
predicting relations often relies on the entity types,
this lack of ample relational evidence for an entity
pair can result in poor estimation of their types, and
hence, of their relations. Further, a large number
of pairwise relation instances (relative to the num-
ber of entities) results in a large number of model
parameters, leading to scalability concerns.

2.3 Tensor Factorization with Entity Factors

Instead of using a matrix, it can be natural to rep-
resent the binary relations in universal schema as a
mode-3 tensor. Here we allocate one mode for re-
lations, one for entities appearing as first argument
of relations, and the last mode for entities as second
argument. This formulation allows the use of tensor
factorization approaches that we will describe here.
We use ea ∈ Rk to refer to the embedding of an
entity a. In cases where the position of the entity re-
quires different embeddings, we use ea,1 and ea,2 to
represent its occurrence as first and second argument,
respectively.
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2.3.1 CANDECOMP/PARAFAC-Decomposition
In CANDECOMP/PARAFAC-decomposition (Harsh-

man, 1970) the data tensor is approximated using a
finite sum of rank one tensors, i.e.,

P (s(a, b)) = σ

(∑
k

r(k)
s e(k)

a e
(k)
b

)
. (2)

This decomposition was originally introduced with-
out the logistic function, i.e., in its linear form. How-
ever since the additional non-linearity is beneficial
for factorizing for binary data (Collins et al., 2001;
Bouchard et al., 2015), we use the version above for
our relational data.

2.3.2 Tucker2 Decomposition and RESCAL

CP-decomposition is quite restrictive since it does
not take advantage of correlations between multi-
ple entities and relations (Nickel et al., 2012). A
more expressive factorization is Tucker decompo-
sition (Tucker, 1966), where in its standard formu-
lation, a mode-3 tensor is decomposed into a core
tensor and three matrices. However, it is computa-
tionally expensive to estimate the core tensor, thus
in practice the data tensor is often factorized only
along two (instead of three) modes, which is referred
to as Tucker2 decomposition. A natural choice for
relational data is to keep the relational mode fixed,
and thus represent each relation as a k × k matrix
(e.g. Rs for relation s) and entities as k-vectors:

P (s(a, b)) = σ((Rs × ea,1) · eb,2). (3)

Like PARAFAC, the Tucker2 model was originally
introduced in the linear form, however we use the
logistic version here. A variant of Tucker2 decom-
position that has been applied very successfully in
knowledge base completion is RESCAL (Nickel et
al., 2012), where each entity in has a single shared
embedding irrespective of its argument position. Al-
though a logistic version of RESCAL has also been
introduced by Nickel and Tresp (2013), we use the
linear form since an open-source implementation of
the logistic version is not available.

2.3.3 TransE
Another formulation that is based on entity rep-

resentations is the translating embeddings model by

Bordes et al. (2013). The idea is that if a relation s be-
tween two entities a and b holds, that relation’s vector
representation rs should translate the representation
ea to the second argument eb, i.e.,

score(s(a, b)) = −‖(ea + rs)− eb‖2. (4)

In this work we use a variant of TransE in which
different embeddings are learned for an entity for
each argument position.

2.3.4 Model E

Furthermore, we isolate the entity factorization in
Riedel et al. (2013) by viewing it as tensor factor-
ization. In this model, each relation is assigned an
embedding for each of its two arguments, i.e.,

P (s(a, b)) = σ(rs,1 · ea + rs,2 · eb). (5)

Although not explored in isolation by Riedel et al.
(2013), model E can be used on its own to predict
relations between entities, even if they have not been
observed to be in a relation.

3 Combined Tensor and Matrix
Factorization for Universal Schema

In the previous section, we provided background on
matrix factorization with pairwise factors, followed
by a tensor factorization based formulation of univer-
sal schema. Although matrix factorization performs
well for universal schema (Riedel et al., 2013), it is
not robust to sparse data and does not capture latent
entity types that can be crucial for accurate relation
extraction. On the other hand, although tensor factor-
ization models are able to compactly represent entity
types using unary embeddings, they are unable to
adequately represent the pair-specific information
that is necessary for modeling relations. It is worth
noting that tensor factorization for universal schema
has been proposed by Chang et al. (2014), who also
observed that tensor factorization by itself performs
poorly (even with additional type constraints), and
the predictions need to be combined with matrix fac-
torization to be accurate. In this section we will
present the fundamental differences between matrix
and tensor factorization, and examine a few hybrid
models that can address these concerns.
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Figure 1: RGB Relations: Best viewed in color.
Black is a sparsely observed relation between any
pair of entities. Red relations correspond to each
black edge, and a model that learns this implication
can generalize to test instances (red dotted edge).
Green relation exists between white and gray entities
(we omit many of these edges for clarity), requiring
the model to learn latent entity types. Finally, Blue
relations exist for pairs where both a black and green
relation is observed.

3.1 Illustration Using Synthetic Relations

As an illustration of the limitations, we present exper-
iments on a simple, synthetic relation extraction task.
The generated data consists of entities that belong
to one of two types, and the following four types of
relations (see Figure 1 for an example): (a) Black
relations that are observed randomly between any
two entities (with probability 0.5), (b) Red relations
that exist between all pairs for which a Black relation
exists, similar to a bornIn relation corresponding
to each observed “X was born in Y” surface pat-
tern, (c) Green relations that appear between all pairs
of entities of different types, and (d) Blue relations
that appear between entity pairs that are of different
types and a Black relation was observed between
them. These Blue relation instances represent the
relations that often occur in real-data: an ambiguous
surface pattern such as “X went to Y” corresponds to
schoolAttended relation only if the arguments
are of certain types. We create such a dataset over
100 entities, and with 5 different sets of such relations
(thus 20 total relations, and each entity is assigned 5
of 10 types), and hold out a random 10% of the Red,
Green, and Blue relations for evaluation.

These relations target the strengths of the factoriza-
tion representations. Red relations, as they directly
correlate with observed Black instances, should be
trivial for matrix factorization.1 Similarly, Green rela-

1In fact, the set of all Red relations can be represented by
rank 2 factors, see Bouchard et al. (2015).
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Figure 2: Matrix versus Tensor Factorization on
RGB Data: illustrating that the tensor factoriza-
tion approaches (E, RESCAL, PARAFAC, TransE,
and Tucker2) are effective only on Green, while ma-
trix factorization (F) only on Red. On Blue, both
paradigms are unable to generalize.

tions are based on, and clearly define, the latent types
of the entities, and thus tensor factorization with en-
tity embeddings should be able to near-perfectly gen-
eralize these relations. The converse is more difficult
to anticipate; it is unclear how matrix factorization
can represent the types needed for Green relations,
or whether tensor factorization can encode the Black-
Red correspondence. Further, it is not easy to see
how any of these approaches will generalize to the
Blue relation.

We show the average precision curves on held-out
relations for a pairwise embedding approach (matrix
factorization F from §2.2) and many of the unary em-
beddings methods from §2.3, with rank 6 in Figure 2.
As expected, matrix factorization (F) is able to cap-
ture the Red relation accurately, however unary em-
beddings are not able to generalize to it. On the other
hand, unary embeddings are able to learn the Green
relation which the pairwise approach fail to predict
accurately. Blue relations, which most closely model
many kinds of relations that occur in text, unfortu-
nately, are not represented well by these approaches
that use either unary or pairwise embeddings.

3.2 Hybrid Factorization Models

Since matrix and tensor factorization techniques are
quite limited in their representations even on the sim-
ple, synthetic data, we now turn to hybrid matrix and
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Figure 3: Overview of the Models: Some of the models explored in this work, showing pairwise (F) and
unary (E) models, along with their combinations (FE and RFE), for computing P (s(a, b)).

tensor factorization models that represent entity types
for universal schema. We describe two possible com-
binations, models FE and RFE, summarized in Fig-
ure 3. Note that these approaches are distinct from
collective factorization (Singh and Gordon, 2008)
that can be used when extra entity information is
available as unary relations.

3.2.1 Combined Model (FE)

As the direct combination of a pairwise model (Eq.
1) with an entity model (Eq. 5), we consider the FE
model from Riedel et al. (2013), i.e., the additive
combination of the two:

P (s(a, b)) = σ(rs · eab + rs,1 · ea + rs,2 · eb) (6)

Both the matrix factorization model F and entity
model E can de defined as special cases of this model,
by setting rs,1/2 or rs to zero, respectively.

3.2.2 Rectifier Model (RFE)

A problem with combining the two models addi-
tively, as in FE, is that one model can easily override
the other. For instance, even if the type constraints of
a relation are violated, a high score by the pairwise
model score might still yield a high prediction for
that triplet. To alleviate this shortcoming, we experi-
mented with rectifier units (Nair and Hinton, 2010)
so that a score of model F or model E first needs to
reach a certain threshold to influence the overall pre-
diction for a triplet. Specifically, we use the smooth
approximation of a rectifier ⊕(x) = log(1 + ex) and
define the probability for a triplet as follows:

P (s(a, b)) = ⊕(rs · pab)⊕ (rs,1 · ea + rs,2 · eb)

3.3 Parameter Estimation

As by Riedel et al. (2013), we use a Bayesian person-
alized ranking objective (Rendle et al., 2009) to esti-
mate parameters, i.e., for each observed training fact,
we sample an unobserved fact for the same relation,
and maximize their relative ranking using AdaGrad.
For all models we use k = 100 as dimension of la-
tent representations, an initial learning rate of 0.1,
and `2-regularization of all parameters with a weight
of 0.01. For CANDECOMP/PARAFAC and RESCAL

we use the open-source scikit-tensor2 package
with default hyper-parameters.

4 Experiments

In order to evaluate whether the hybrid models are
able to effectively combine the benefits of matrix
and tensor factorization, we first present experiments
on synthetic data in Section 4.1. For a more real-
world evaluation, we also experiment with universal
schema for distantly-supervised relation extraction
in Section 4.2.

4.1 Synthetic RGB Relations

In Section 3.1 we described a simple synthetic data
set consisting of multiple Red, Green, and Blue rela-
tions constructed in order to illustrate the restrictions
in the representation capabilities of matrix and tensor
factorization models. Here we revisit the dataset us-
ing the proposed combined tensor and matrix factor-
ization approaches to evaluate whether these hybrid
models are able to compete with tensor and matrix
factorization on the relations they are good at (Green
and Red, respectively), but more importantly, whether
the combined approaches can represent the Blue rela-

2http://github.com/mnick/scikit-tensor
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Figure 4: Hybrid Methods on RGB Data: Average precision as the rank is varied. FE and RFE perform as
well (or better than) tensor factorization on Green and matrix factorization on Red, but importantly, are able
to encode the Blue relations that matrix or tensor factorization fail to model.

R13-F TR-R13 E F RFE FE

MAP 60 57 56 59 57 62
Weighted MAP 64 61 51 66 60 66

Table 1: Distantly-Supervised Relation Extrac-
tion: Weighted and unweighted mean average preci-
sion for Freebase relations, as achieved by a number
of relation extractors, including pairwise (F), unary
(E), and hybrid (FE and RFE) models.

tions that matrix and tensor factorization approaches
fail to generalize to. In Figure 4 we present the av-
erage precision on the held-out data as the rank is
varied for a number of approaches (we omit the re-
maining tensor factorization approaches for clarity
since they perform similar to RESCAL and Model E).
On the Red relation (Figure 4a), tensor factorization
is close to random, while combined factorization ap-
proaches (FE and RFE) are competitive to, and often
outperform, matrix factorization (F). Similarly, on the
Green relation (Figure 4b), the combined approaches
perform as well as tensor factorization, while matrix
factorization is not much better than random. Finally,
on the Blue relation on which matrix and tensor fac-
torization fare poorly, the combined approaches are
able to obtain high accuracy, in particular achieve
close to 90% average precision with only a rank of 5.
Although the same rank corresponds to different num-
bers of parameters for each method, the trend clearly
indicates these results do not depend significantly on
the number of parameters.

4.2 Universal Schema Relation Extraction

With the promising results shown on synthetic data,
we now turn to evaluation on real-world information
extraction. In particular, we evaluate the models on
universal schema for distantly-supervised relation ex-
traction. Following the experiment setup of Riedel et
al. (2013), we instantiate the universal schema ma-
trix over entity pairs and text/Freebase relations for
New York Times data, and compare the performance
using average precision of the presented models. Ta-
ble 1 summarizes the performance of our models,
as compared to existing approaches (see Riedel et
al. (2013) for an overview). In particular, TR-R13
takes the output predictions of matrix factorization,
and combines it with an entity-type aware RESCAL

model (Chang et al., 2014).3 Tensor factorization
approaches perform poorly on this data. We present
results for Model E, but other formulations such as
PARAFAC, TransE, RESCAL, and Tucker2 achieved
even lower accuracy; this is consistent with the results
in Chang et al. (2014). Models that use the matrix fac-
torization (F, FE, R13-F and RFE) are significantly
better, but more importantly, the hybrid appraoch FE
achieves the highest accuracy. It is unclear why RFE
fails to provide similar gains, in particular, perform-
ing slightly worse than matrix factorization. Note
that we are not introducing a new state-of-art here,
the neighborhood model (NF) that achieves a higher
accuracy is omitted for clarity.

3Here, as in Riedel et al. (2013), we only evaluate on entity
pairs that are linked to Freebase, thus the performance of Chang
et al. (2014) is lower than their reported results.
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LG Electronics
Genentech, Industrial and Commercial Bank of China,

Broadway Video, Pollack, Bank Hapoalim, Caremark Rx,
Mitchell Gold, Tellabs, Cathay Pacific, Eircom

La Stampa
Toronto Star, O Globo, The Daily Telegraph,

El Diario, Le Devoir, Politika, The Straits Times,
The Day, RedEye, The Globe

Fatherland
Answered Prayers, Age of Innocence, Auntie Mame,
House of Meetings, Bergdorf Blondes, Berlin Diary,

Clarissa, Eminent Victorians, Darkness Visible, Gossamer

Table 2: Nearest-Neighbors for a few randomly-
selected entities based on their embeddings, demon-
strating that similar entities are close to each other.

4.3 Entity Embeddings and Types

Although the focus of this work is relation extraction,
and the models are trained primarily for finding rela-
tions, in this section we explore the learned entity em-
beddings. The low-dimensional entity embeddings
have been trained to predict the binary relations that
the entity participates in, and thus we expect entities
that participate in similar relations to have similar
embeddings. To investigate whether the embeddings
capture this intuition, we compute similarities of a
few randomly selected entities with every other entity
using the cosine distance of the FE entity embed-
dings, and show the 10 nearest neighbors in Table 2.
The nearest neighbors definitely capture the entity
types, for example all the neighbors of “La Stampa”
are newspapers in other parts of the world, which is
quite impressive considering no explicit type informa-
tion was available during training. However, the gran-
ularity of the types depends on the textual patterns
and relations in the schema; for “LG Electronics”,
the neighbors are mostly generic commercial institu-
tions, perhaps because the observed surface patterns
are similar across these types of organizations.

Since the embeddings enable us to compute the
similarity between any two entities, we also present
a 2D visualization of the entities in the data using
the t-Distributed Stochastic Neighbor Embedding
(t-SNE) (van der Maaten and Hinton, 2008) tech-
nique for dimensionality reduction. Further, to in-
vestigate whether the embeddings represent correct

Figure 5: Visualizing entity embeddings, where the
colors correspond to their types (person, location,
organization, author, actor/musician, sports per-
son, politician). Best viewed in color.

entity types, we perform an automatic, error-prone
alignment of the entity strings to Freebase by finding
a prominent entity that has the string as its name,
and extract its types. Figure 5 shows the projection
for 10 000 randomly selected entities, colored as per
their type. We see that the entity embeddings are
able to separate most of the coarse level types, as
locations are clustered quite separately from the or-
ganizations and people, but further, even fine-grained
person types occur as distinct collections, for exam-
ple politicians and sportsmen. There is some clus-
ter overlap as well, especially between the different
person types such as authors, actors/musicians, and
politicians; it is unclear whether this arises due to
incorrect entity linking, inexact two-dimensional pro-
jection, entities that belong to multiple types, or from
inaccurate embeddings caused by insufficient data.

5 Conclusions and Future Work

Although tensor factorization has been widely used
for knowledge-base completion for structured data,
it performs poorly on universal schema for relation
extraction. Matrix factorization, on the other hand,
is appropriate for the task as it is able to compactly
represent the correlations between surface pattern and
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structured KB relations, however learning pairwise
factors is not effective for entity pairs with sparse
observations or for identifying latent entity types.
We illustrate the differences between these matrix
and tensor factorization using simple relations, and
further, construct an additional relation that none of
these approaches are able to model. Motivated by this
need for combining their complementary benefits, we
explore two hybrid matrix and tensor factorization
approaches. Along with being able to model our
constructed relations, these approaches also provided
improvements on real-world relation extraction. We
further provide qualitative exploration of the entity
embedding vectors, showing that the embeddings
learn fine-grained entity types from relational data.

Our investigations suggest a number of possible
avenues for future work. Foremost, we would like to
investigate why the hybrid models, which perform
significantly better on synthetic data, fail to achieve
similar gains on real-world relations. Second, in-
cluding tensor factorization in the universal schema
model enables us to augment the model with external
entity information such as observed unary patterns
and Freebase types, in order to aid both relation ex-
traction and entity type prediction. Lastly, these hy-
brid approaches also enable extension of universal
schema directly to n-ary relations, allowing a variety
of models based on the choice of matrix or tensor
representation for each relation.
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Abstract

Categorical compositional distributional mod-
els unify compositional formal semantic mod-
els and distributional models by composing
phrases with tensor-based methods from vec-
tor representations. For the tensor-based com-
positions, Milajevs et al. (2014) showed that
word vectors obtained from the continuous
bag-of-words (CBOW) model are competitive
with those from co-occurrence based mod-
els. However, because word vectors from the
CBOW model are trained assuming additive
interactions between context words, the word
composition used for the training mismatches
to the tensor-based methods used for evaluat-
ing the actual compositions including point-
wise multiplication and tensor product of con-
text vectors. In this work, we show whether
the word embeddings from extended CBOW
models using multiplication or tensor product
between context words, reflecting the actual
composition methods, can show better perfor-
mance than those from the baseline CBOW
model in actual tasks of compositions with
multiplication or tensor-based methods.

1 Introduction

In recent years, there has been a surge of inter-
est in using word vectors for modeling semantics.
Mikolov et al. (2013a,b) introduced word2vec
that includes the continuous bag-of-words (CBOW)
model and the skip-gram model.1 These models
have been most widely used for generating word
vectors to be used for word related tasks because of

1https://code.google.com/p/word2vec

their efficient but still effective architectures. The
CBOW model takes the mean vector of projections
of the context words and use it to predict the target
word as the following objective function:2

1
T

T∑
t=1

ln p

wt

∣∣∣∣∣∣ 1
2c

∑
−c≤j≤c,j ̸=0

pt+j

 , (1)

where T is the total number of words in a corpus, wt

is the tth word, pt is the tth word vector, and c is the
half window size.

Milajevs et al. (2014) showed that the word vec-
tors generated from the CBOW model are compet-
itive with those from co-occurrence based models
for both simple arithmetic compositions and tensor-
based compositions for categorical compositional
distributional models (Coecke et al., 2010).3

Categorical compositional distributional models
represent compositional semantics with algebra of
Pregroup by representing each grammatical reduc-
tion as a linear map in vector spaces (Coecke et al.,
2010; Kartsaklis et al., 2012). For example, cats like
milk consists of a subject noun, a transitive verb re-
quiring a subject and an object, and an object noun,
respectively. In Pregroup grammar, the types of the
three words in this example are n,

(
nrsnl

)
, and n,

respectively, where n is a noun, nr can be combined
with a n in the left, nl can be combined with a n
in the right, and s is a declarative statement. Then,

2Although sum is used in Mikolov et al. (2013a), the current
version of word2vec implementation uses mean.

3Although Milajevs et al. (2014) described that the skip-
gram model was used to generate the word vectors, the CBOW
model was actually used in their work.
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they can be reduced to represent the entire phrase
with single entity as follows:

n
(
nrsnl

)
n → 1snln → 1s1 → s (2)

In the reduction, nr is composed with the left n re-
sulting in an identity element, 1. Then, nl is com-
posed with the right n resulting in another 1. Be-
cause 1 is an identity element, 1s1 is reduced to s.

Since there is no specification of actual imple-
mentation of the composition in categorical compo-
sitional distributional models, different composition
methods have been introduced; they are reviewed
in Section 2. However, there are few studies about
the vector representation of single words regarding
those compositions.

One issue of using the word vectors from the
CBOW model as the constituent vectors for tensor-
based composition is that their assumptions of the
composition are different. Word embeddings of the
CBOW model are trained with an additive context
composition, which is the mean of the context pro-
jection. However, most tensor-based compositions
use point-wise multiplication or tensor product as
composition operators. This means that there is a
mismatch between the composition method used for
the training of the underlying word vectors and the
actual composition methods we evaluate.

To alleviate the mismatch, we introduce exten-
sions of the CBOW model with multiplicative in-
teractions between word projections to obtain word
embeddings more suitable for the tensor-based com-
positions. For four datasets, evaluating different
types of compositions, we show that those exten-
sions of the CBOW model improve the performance
of the actual composition tasks with multiplication
or tensor product operations.

2 Tensor-based compositions

Prior to discussing the modification to the CBOW
algorithm, we review different composition methods
used in the literature (Table 1).

Addition and Multiplication are compositions by
point-wise addition and multiplication, respectively
(Mitchell and Lapata, 2008). They can be done sim-
ply without any other information, but they cannot
reflect word orders and grammatical structures.

Mitchell and Lapata (2008, 2009) showed that
composition by multiplication can be more effec-
tive than composition by addition because additive
models compose by considering the content alto-
gether whereas multiplicative models focus on the
content relevant to the composition by scaling each
element of one with the strength of the correspond-
ing element of the other. Using multiplication as the
composition method could be unstable in the previ-
ous work because multiplication with zero or nega-
tive values changes the value abruptly (Mitchell and
Lapata, 2009). In our models, however, these in-
stability issues could be alleviated since the train-
ing model adapt the constituent word vectors to
be proper for the composition by multiplication.
Mitchell and Lapata (2010) also showed that the
tensor product is effective to represent composition
because it allows the interactions between different
features in different vectors whereas point-wise mul-
tiplication can interact with only the same feature in
different vectors. Therefore, we also examine an ex-
tension of the CBOW model using tensor product
for modeling local context.

There are neural network models using multi-
plicative interactions in the architectures. Sum-
Product Networks use layer-wise multiplicative in-
teractions (Poon and Domingos, 2011; Cheng et al.,
2014) and multiplicative recurrent neural networks
use multiplication of hidden state outputs from pre-
vious time step with the current word projections
(Sutskever et al., 2011; Irsoy and Cardie, 2014).
These approaches capture multiplicative interactions
with hidden layer outputs. Our approach instead uti-
lizes multiplicative interactions in the training of the
CBOW model, making the embedded vector spaces
more in tune with the compositions of end tasks.

The third to the last composition methods of Ta-
ble 1 shows tensor-based composition methods for
representing phrases consist of subjects, transitive
verbs, and objects in categorical compositional dis-
tributional models. verb =

∑
i
−−→
Sbji ⊗ −−→Obji repre-

sents a verb with the subjects and the objects of the
verb across the corpus. The subject and the object
of each transitive verb required for calculating verb
are identified from the dependency tree of PukWaC
1.0 dataset, which consists of web documents in .uk
domain crawled with the medium-frequency words
from the British National Corpus (BNC) (Burnard,
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Method Phrase Composition formula Reference

Addition
w1w2...wn

−→w1 +−→w2 + ... +−→wn Mitchell and Lapata (2008)Multiplication −→w1 ⊙−→w2 ⊙ ...⊙−→wn

Relational Sbj Verb Obj verb⊙ (−−→Sbj ⊗−−→Obj) Grefenstette and Sadrzadeh (2011a)
Kronecker ṽerb⊙ (−−→Sbj ⊗−−→Obj) Grefenstette and Sadrzadeh (2011b)

Copy sbj. Sbj Verb Obj
−−→
Sbj ⊙ (V erb×−−→Obj) Kartsaklis et al. (2012)

Copy obj. −−→
Obj ⊙ (V erb

⊤ ×−−→Sbj)

Frob. add.
Sbj Verb Obj

(−−→Sbj ⊙ (V erb×−−→Obj)) + (−−→Obj ⊙ (V erb
⊤ ×−−→Sbj))

Kartsaklis and Sadrzadeh (2014)Frob. mult. (−−→Sbj ⊙ (V erb×−−→Obj))⊙ (−−→Obj ⊙ (V erb
⊤ ×−−→Sbj))

Frob. outer (−−→Sbj ⊙ (V erb×−−→Obj))⊗ (−−→Obj ⊙ (V erb
⊤ ×−−→Sbj))

Table 1: Tensor-based composition methods (Milajevs et al., 2014).

2007) as the seeds (Baroni et al., 2009; Johansson,
2007). 4 ṽerb = −−→

verb ⊗ −−→verb represents a verb as
the tensor product of the corresponding verb vector.
Those methods consider the relations between tran-
sitive verbs and their subjects and objects. There-
fore, we can represent their compositions more ef-
fectively. Recursive neural tensor networks also use
tensor product information in the recursive compo-
sition (Socher et al., 2013), but they require training
labels and only support binary compositions.

Relational and Kronecker represent each phrase
by the multiplication of the verb matrix to the ten-
sor product of the subject and the object (Grefen-
stette and Sadrzadeh, 2011a,b). Although they can
represent interactions between subjects and objects
as well as the verbs, it is difficult to compose them
with other phrases in a uniform way since the result
dimensionality is the square of the original vectors.
In addition, dealing with large dimensional tensors
is not very scalable.

The fifth to the last composition methods use
Frobenius operators for the compositions (Kartsak-
lis et al., 2012), which can resolve the dimensional-
ity issues by maintaining the original dimensionality
through matrix-vector multiplication. In Copy sub-
ject, the verb matrix verb is multiplied with the ob-
ject vector and then composed with the subject vec-
tor by point-wise multiplication. Copy object is op-
posite in terms of the positions of the subject and the
object. These two methods are different ways of di-
agonal placement of a plane into a cube (Kartsaklis
et al., 2012). The last three methods, Frobenius ad-

4Available at http://wacky.sslmit.unibo.it/
doku.php?id=corpora.

dition, multiplication, and outer product, represent
different combinations of Copy subject and Copy
object (Kartsaklis and Sadrzadeh, 2014).

3 Extending the CBOW model with
multiplicative interactions between word
projections

As briefly discussed in the introduction, the CBOW
model is an additive model in terms of the composi-
tion since the mean of the context word projections
is used to predict the target word. As many com-
position methods in Table 1 use multiplication or
tensor product as the composition operators, if these
operators are used to compose the contexts in the
CBOW model, then the training process can opti-
mize the model to consider their word embeddings
to be composed with those multiplicative operations.
Therefore, we can train word embeddings that are
more suitable for the composition methods that we
are evaluating.

In the CBOW model, the point-wise mean of the
word projections is used to predict the target word
as shown in Equation 1. In addition to the baseline,
we experimented with adding different multiplica-
tive terms as shown in Table 2. The added terms
are selected to reflect the operations of composition
methods in Table 1 and their combinations. In the
expressions, pi is the projection of the ith input con-
text word and c is the size of the context window,
which is the number of neighboring words used as
the input for each direction.

The second model, mult, uses only the multiplica-
tion of projections, which best fits to the composi-
tion by point-wise multiplication. The third and the
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Type Expression

1 mean (baseline, Milajevs et al. (2014))
∑
−c≤i≤c,i̸=0 pi/2c

2 pointwise multiplication
∏
−c≤i≤c,c≠0 pi

3 mean + pointwise multiplication mean +
∏
−c≤i≤c,c̸=0 pi

4 concat{mean, pointwise multiplication} concat{mean,
∏
−c≤i≤c,c ̸=0 pi}

5 mean + projection of pi−1 and pi+1 mean +Wpconcat{pi−1, pi+1}
6 projection of tensor product of pi−1 and pi+1 Wtp(pi−1 ⊗ pi+1)
7 mean + projection of tensor product of pi−1 and pi+1 mean +Wtp(pi−1 ⊗ pi+1)

Table 2: Different outputs of the projection layer. pi is the projection of the ith input context word, c is the size of the
context window, and Wp and Wtp are projection matrices.

fourth models evaluate the performance when both
the additive and multiplicative interactions are used
together since their combination has been shown to
be effective (Mitchell and Lapata, 2008). The third
model adds the additive terms and multiplicative
terms whereas the fourth model concatenates these
terms so that they influence the output separately.

In the fifth to the last models, we try to further use
the information from pi−1 and pi+1, which are the
projections of the nearest neighbor words of the ith
target word in the training corpus. The fifth model
concatenates pi−1 and pi+1 and project to the orig-
inal dimension with a projection matrix Wp. This
result is added to the baseline model so that infor-
mation from the nearest words considering the order
can be used to estimate the target. Wp is also up-
dated during the training.

In the sixth model, since the tensor-based com-
positions are used as Table 1 and they can rep-
resent multiplicative interactions between different
features, we use the tensor product of the projections
of (pi−1 and pi+1). The tensor product output is also
projected to the original dimensionality by multiply-
ing a projection matrix Wtp, which is also updated
during the training. Although this model can use
more powerful interactions of neighbor words, it can
only use the information from the nearest neighbor
words and it cannot use two word sentences in the
training corpus for the training. To deal with these
issues, in the last model, we combine the mean with
the projection of the tensor product.

4 Experiment results

To evaluate the five different CBOW-based mod-
els proposed in Section 3, we use the following
datasets: similarity of transitive verbs with multi-

ple senses from Grefenstette and Sadrzadeh (2011a),
three-word sentence similarity from Kartsaklis and
Sadrzadeh (2014), paraphrase detection from Dolan
et al. (2013), and dialog act tagging for the Switch-
board corpus (Godfrey et al., 1992) from Stolcke
et al. (2000). These are all the datasets evaluated in
Milajevs et al. (2014)’s work as well. Each phrase
in the first two datasets is fixed as a subject, a tran-
sitive verb, and an object whereas the length of each
phrase in the last two datasets is arbitrary.

There are several differences between our word
vectors and the ones used in Milajevs et al. (2014).
First, we use BNC as the training set while Mi-
lajevs et al. (2014) use pretrained word vectors
from word2vec that are trained using GoogleNews
dataset. To reduce the size of projection matri-
ces, all the words are lower-cased and words occur-
ring 20 times or less are converted to the words’
POS tags. Second, instead of negative sampling,
our models use hierarchical softmax as the objective
function, where each word is represented as a leaf
node of Huffman tree since hierarchical softmax is
better for training with infrequent words (Mikolov
et al., 2013b). Third, we use gradient clipping for
more stable training since gradient can be fluctuating
when the projections are multiplied. All the other
parameters for the training are the same as those
used for Milajevs et al. (2014)’s experiments.

Using the mean as the network combination func-
tion can be considered a reimplementation of Mi-
lajevs et al. (2014)’s system subject to the changes
mentioned above. We trained the CBOW-based
models and obtained 300 dimensional word vec-
tors, which are with the same dimensionality used
in Mikolov et al. (2013a,b); Milajevs et al. (2014).
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Task Method (Milajevs et al., 2014) mean mult mean + concat mean + nbr outer prj mean +
mult {mean,mult} nbr prj nbr outer prj

Similarity
of tran-
sitive
verbs

Verb only 0.107 0.130 0.014 0.136 0.204 0.187 0.072 0.250
Addition 0.149 0.066 0.012 0.046 -0.030 0.100 0.111 0.145

Multiplication 0.095 0.160 0.249 0.058 0.219 0.113 0.050 0.204
Kronecker 0.117 0.160 0.160 0.121 0.229 0.168 0.047 0.245
Relational 0.362 0.330 0.276 0.319 0.280 0.344 0.316 0.365
Copy sbj. 0.131 0.249 0.064 0.262 0.209 0.262 0.168 0.290
Copy obj. 0.456 0.302 0.361 0.329 0.382 0.300 0.371 0.322
Frob. add. 0.359 0.337 0.293 0.345 0.288 0.349 0.250 0.355
Frob. mult. 0.239 0.270 0.252 0.255 0.189 0.293 0.196 0.309
Frob. outer. 0.375 0.330 0.275 0.339 0.351 0.329 0.293 0.387

Sentence
similarity

Verb only 0.561 0.528 0.360 0.520 0.531 0.527 0.260 0.536
Addition 0.689 0.728 0.572 0.738 0.770 0.722 0.401 0.706

Multiplication 0.341 0.062 0.625 0.178 0.440 0.110 0.269 0.220
Kronecker 0.561 0.206 0.623 0.277 0.501 0.203 0.003 0.457
Relational 0.618 0.505 0.665 0.540 0.527 0.525 0.157 0.574
Copy sbj. 0.405 0.390 0.453 0.353 0.436 0.396 0.139 0.454
Copy obj. 0.655 0.481 0.607 0.487 0.500 0.488 0.190 0.510
Frob. add. 0.585 0.489 0.610 0.407 0.528 0.439 0.210 0.501
Frob. mult. 0.387 0.211 0.608 0.323 0.419 0.335 0.065 0.349
Frob. outer. 0.622 0.504 0.664 0.510 0.544 0.524 0.165 0.569

Table 3: Spearman’s ρ on the similarity of transitive verbs with multiple senses (top) and three-word sentence similarity
(bottom). The mean column can be considered an implementation of the Milajevs et al. (2014)’s model on the BNC
corpus.

4.1 Fixed phrases (three-word)

Table 3 shows the experiment results for the three-
word phrases. The first column represents the two
evaluation tasks, the second column is the composi-
tion methods described in Table 1, and the third col-
umn shows the results of neural word embeddings
(NWE) from previous work (Milajevs et al., 2014).5

Bold entries in the table indicate the highest scores
among our models.

In the datasets, human annotators rated each
phrase pair for semantic similarity (from 1 “no sim-
ilarity” to 7 “high similarity”). As each unique
phrase pair is judged by multiple people, following
Milajevs et al. (2014), we took the mean of the rat-
ings to set the rating of each unique pair. Scores in
the table entries are Spearman’s ρs. A high value
of Spearman’s ρ in the table means that the similar-
ity of the composed phrases in the vector space is
highly correlated with the semantic similarity of the
phrases judged by humans. Therefore, if a model
shows high scores, it reflects that the model is good
at representing the semantics for those short phrases.

5The word vectors are available at
https://drive.google.com/file/d/
0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit.

4.1.1 Similarity of transitive verbs

The top of Table 3 shows the results for the sim-
ilarity of 199 three-word phrase (subject, transitive
verb, and object) pairs introduced in Grefenstette
and Sadrzadeh (2011a).6 In each phrase pair, the
transitive verbs are the same but the subjects and the
objects are different for each other. We try to iden-
tify the senses of a transitive verb with the different
contexts. For example, “meet” is a verb with multi-
ple senses. If the given subject is “system” and the
object is “specification”, “meet” would be seman-
tically closer to “satisfy” than “visit”. Then, given
“system meets specification” and “system satisfies
specification” as a pair, the judge would give a high
rating for the similarity of the verbs.

Our results were not consistently better than Mi-
lajevs et al. (2014)’s results. However, considering
that the model used for the previous work and our
baseline (mean) are similar CBOW models, the per-
formance difference would mainly due to the differ-
ent training sets (GoogleNews and BNC). Among
our models, adding tensor product result to the mean
(mean+nb outer prj) showed the best performance
in most types of compositions. Interestingly, the

6Available at http://www.cs.ox.ac.uk/
activities/compdistmeaning/GS2011data.txt.
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power seems to come from the combination of mean
and the tensor product, as both individually perform
worse than the combination. For this dataset, as the
verbs are the same for both phrases in each pair, the
subjects and the objects play important roles for the
verb disambiguation. When a transitive verb is an
ith word in a sentence denoted as wi, in many cases,
the subject and the object are wi−1 and wi+1, re-
spectively. Since tensor product of the i− 1th word
projection and the i + 1th word projection can rep-
resent multiplicative interactions between different
features of the two words, considering the tensor
product of those projections in the model could be
helpful to identify the transitive verbs.

4.1.2 Similarity of three-word phrases
The bottom of Table 3 shows the evaluation re-

sults on the similarity of 109 three-word phrase pairs
with human judged ratings from (Kartsaklis and
Sadrzadeh, 2014).7 For example, the similarities of
two sentences like “programme offer support” and
“service provide help” are evaluated.

In this evaluation, considering the interleaved
words with tensor product (mean+nb outer prj) still
showed better performance than the baseline (mean)
for the most composition methods except addi-
tion. However, the multiplication only model, mult,
showed the best performance in most cases except
when verb only or addition were used as the compo-
sition methods.

4.2 Arbitrary length phrases

The three-word phrases in the previous section are
useful for the evaluation of the tensor-based compo-
sitions since we do not need to care about the struc-
tural variations of the phrases. However, we would
be more interested in phrases where the lengths are
not fixed. As each phrase can have different length,
we cannot use the tensor-based compositions used
for the fixed-length phrases. Therefore, we evalu-
ated the composition of each phrase by only using
point-wise addition and multiplication.

Table 4 shows the accuracies of classification
tasks given arbitrary length phrases as the inputs.
The results evaluate whether composition of arbi-

7Available at http://www.cs.ox.ac.uk/
activities/compdistmeaning/emnlp2013_turk.
txt.

trary length phrases can be well represented with the
word vectors from the proposed models.

4.2.1 Paraphrase detection
The top of Table 4 shows the binary classification

accuracies on the Microsoft Research Paraphrase
Corpus (Dolan et al., 2013), which consists of arbi-
trary length phrase pairs. In this dataset, each phrase
pair comes with a binary label: 1 if the phrases were
judged to be paraphrases, 0 otherwise. The mini-
mum, mean, and maximum lengths of the phrases in
the training set are 6, 19.8, and 35, respectively.

With this dataset, we can evaluate if our models
work well for representing general phrases. Follow-
ing the setting of Milajevs et al. (2014)’s work, we
trained a linear binary classifier on 2000 phrase pairs
and tested on 1726 phrase pairs. The classifier is
trained to find the threshold of cosine similarity de-
ciding if two phrases are paraphrases or not.

Comparing to the baseline CBOW model, there
were no significant gain in the proposed models for
the composition by addition. However, using mul-
tiplication of the projections (mult) showed signifi-
cantly better performance when composed by mul-
tiplication, and started to show statistical insignifi-
cance to additive composition methods when tested
by McNemar’s test with p-value 0.05.

4.2.2 Dialog act tagging
The bottom of Table 4 shows the classification ac-

curacies of dialog act tagging (Stolcke et al., 2000)
on the Switchboard corpus (Godfrey et al., 1992).
Switchboard is a collection of about 2400 telephone
dialogs among 543 speakers in the United States.
Each utterance is assigned one of 42 dialog-act tags,
which summarize syntactic, semantic and pragmatic
information about the turns (e.g., yes/no question,
yes answer, agree).8 The minimum, mean, and max-
imum lengths of the phrases in the training set are
0, 34.1, and 549, respectively. Zero length phrases
exist because of the preprocessing, and they are ig-
nored.

The task in this section is identifying the dialog
act tags from given utterances. Following Milajevs
and Purver (2014); Milajevs et al. (2014), we used
the first 1115 utterances as the training set and the

8The tags are described in http://web.stanford.
edu/˜jurafsky/ws97/manual.august1.html.
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Task Method (Milajevs et al., 2014) mean mult mean + concat mean + nbr outer prj mean +
mult {mean,mult} nbr prj nbr outer prj

Paraphrase
detection

Addition 0.73 0.686 0.665 0.690 0.688 0.689 0.684 0.688
Multiplication 0.42 0.393 0.652 0.388 0.587 0.387 0.412 0.371

Dialog act
tagging

Addition 0.63 0.638 0.636 0.633 0.636 0.636 0.565 0.626
Multiplication 0.58 0.522 0.606 0.593 0.515 0.581 0.573 0.598

Table 4: Accuracies on the paraphrase detection (top) and the dialog act tagging (bottom). The mean column can be
considered an implementation of the Milajevs et al. (2014)s model on our training set.

following 19 utterances as the test set. We also con-
catenated utterances separated by an interruption by
the other person (Webb et al., 2005), and we re-
moved disfluency markers and punctuation signs.
Once we have the vectors composed by either ad-
dition or multiplication for all of the utterances in
the training set, the vector dimensionality is reduced
to 50 by Singular Value Decomposition (SVD) and
a k-nearest-neighbor classifier (k=5) is used to iden-
tify the dialog act tags.9 The baseline (mean) model
showed the best performance for the composition by
addition and the mult model was the best for the
composition by multiplication, but the differences
were insignificant in this case.

The results on both evaluation for arbitrary length
phrases support that matching the composition of
contexts for the training of constituent word vectors
with the actual composition methods shows better or
competitive performance.

5 Discussion

We showed the experiment results on seven types
of word vectors trained using different composition
methods. Overall, we can see that multiplicative in-
teractions in the CBOW models can help represent-
ing compositions that are multiplicative in nature.

Using only the multiplication of projections
showed significant improvement for all the evalu-
ated datasets when the phrases are composed with
multiplications. Because the composition used for
the training of word vectors is matching to the ac-
tual evaluated compositions, we can think that the
word vectors are trained to represent their multipli-
cations properly. One evidence is that the mean of
word vectors of the mult model is around 0.12 while
the means of the other models are around 0. Since

9We used scikit-learn (Pedregosa et al., 2011) to run SVD
and k-NN classifiers.

there are fewer negative elements in the word vec-
tors of the mult model, the composition by multi-
plication produces relatively more positive values.
This possibly gives more stable results when used
in multiplication-based compositions since fluctu-
ations of the composition by multiplication with
negative values is reduced. In the task of transi-
tive verb disambiguation, since the interactions be-
tween non-adjacent subjects and objects are impor-
tant, having their tensor product as a term in the
model (mean+nbr outer prj) was noticeably help-
ful. In the task of three-word phrase similarity, us-
ing the tensor product as a term still showed bet-
ter performance than using the models of mean and
mean+mult in most cases except when the phrases
are composed with addition. Interestingly, however,
the model with only multiplication showed the best
performance for most of the compositions by multi-
plication and tensor product.

In summary, for better representation of phrase
compositions, we showed that it can be helpful to
train the word embedding models by composing the
input contexts of the model to be similar to the ac-
tual composition methods to be used because the
word vectors are adjusted to more properly repre-
sent the composition by the composition method
used. Specifically, using point-wise multiplication
in the training model consistently showed better per-
formance when the actual composition is also mul-
tiplication. The mean+nbr outer prj model, which
is with the combination of mean and tensor prod-
uct also showed better or similar performance for
tensor-based composed phrases compared to the
mean model and the mean+mult model.

One issue is that we used the word vectors of
targets’s neighbors to obtain tensor product terms.
Since only the compositions of subjects, verbs, and
objects are evaluated, we can expect better perfor-
mance if only tensor products of subject-object pairs
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are used as the tensor product terms. As future work,
An in-depth analysis of the strengths and weak-
nesses of each approach would be helpful to gain
more insights about the patterns we see in the re-
sults.
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Abstract

Recent work in learning bilingual repre-
sentations tend to tailor towards achiev-
ing good performance on bilingual tasks,
most often the crosslingual document clas-
sification (CLDC) evaluation, but to the
detriment of preserving clustering struc-
tures of word representations monolin-
gually. In this work, we propose a
joint model to learn word representations
from scratch that utilizes both the con-
text coocurrence information through the
monolingual component and the meaning
equivalent signals from the bilingual con-
straint. Specifically, we extend the re-
cently popular skipgram model to learn
high quality bilingual representations effi-
ciently. Our learned embeddings achieve
a new state-of-the-art accuracy of 80.3 for
the German to English CLDC task and
a highly competitive performance of 90.7
for the other classification direction. At
the same time, our models outperform best
embeddings from past bilingual represen-
tation work by a large margin in the mono-
lingual word similarity evaluation.1

1 Introduction

Distributed word representations have been key to
the recent success of many neural network mod-
els in tackling various NLP tasks such as tagging,
chunking (Collobert et al., 2011), sentiment anal-
ysis (Maas et al., 2011; Socher et al., 2013b), and
parsing (Socher et al., 2013a; Chen and Manning,
2014). So far, most of the focus has been spent
on monolingual problems despite the existence of
a wide variety of multilingual NLP tasks, which
include not only machine translation (Brown et

1All our code, data, and embeddings are publicly avail-
able at http://stanford.edu/˜lmthang/bivec.

al., 1993), but also noun bracketing (Yarowsky
and Ngai, 2001), entity clustering (Green et al.,
2012), and bilingual NER (Wang et al., 2013).
These multilingual applications have motivated
recent work in training bilingual representations
where similar-meaning words in two languages
are embedded close together in the same high-
dimensional space. However, most bilingual rep-
resentation work tend to focus on learning em-
beddings that are tailored towards achieving good
performance on a bilingual task, often the cross-
lingual document classification (CLDC) task, but
to the detriment of preserving clustering structures
of word representations monolingually.

In this work, we demonstrate that such a goal of
learning representations of high quality both bilin-
gually and monolingually is achievable through
a joint learning approach. Specifically, our joint
model utilizes both the context concurrence infor-
mation present in the monolingual data and the
meaning equivalent signals exhibited in the par-
allel data. The key for our approach to work is
in designing a bilingual constraint consistent with
monolingual components in our joint objective.
To that end, we propose a novel bilingual skip-
gram model that extends the recently proposed
skipgram approach (Mikolov et al., 2013a) to the
bilingual context. Our model is efficient to train
and achieves state-of-the-art performance in the
CLDC task for the direction from German to En-
glish. At the same time, we demonstrate that
our model well preserves the monolingual cluster-
ing structures in each language both quantitatively
through the word similarity task and qualitatively
through our detailed analysis.

2 Background

2.1 Monolingual Models

Existing approaches to distributed word represen-
tation learning divide into two categories: (a) neu-
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ral probabilistic language models and (b) margin-
based ranking models. The former specify ei-
ther exactly or approximately distributions over all
words w in the vocabulary given a context h, and
representatives of that approach include (Bengio
et al., 2003; Morin, 2005; Mnih and Hinton, 2009;
Mikolov et al., 2010; Mikolov et al., 2011). The
later eschew the goal of training a language model
and try to assign high scores for probable words w
given contexts h and low scores for unlikely words
w̃ for the same contexts. Work in the later trend in-
cludes (Collobert and Weston, 2008; Huang et al.,
2012; Luong et al., 2013).

Recently, Mikolov et al. (2013a) introduced the
skipgram (SG) approach for learning solely word
embeddings by reversing the prediction process,
that is, to use the current word to infer its sur-
rounding context, as opposed to using preceding
contexts to predict subsequent words in traditional
language model approaches. SG models greatly
simplify the standard neural network-based archi-
tecture to only contain a linear projection input
layer and an output softmax layer, i.e., there is
no non-linear hidden layer. Despite its simplicity,
SG models can achieve very good performances
on various semantic tasks while having an advan-
tage of fast training time.

We adapt SG models in our bilingual approach.
Specifically, we follow Mikolov et al. (2013c)
to use the negative sampling (NS) technique so
as to avoid estimating the computationally ex-
pensive normalization terms in the standard soft-
max. Negative sampling is a simplified version
of the noise contrastive estimation method (Gut-
mann and Hyvärinen, 2012), which attempts to
differentiate data from noise by means of logis-
tic regression. Specifically, in the SG-NS model,
every word w has two distributed representations:
the input vector x

(i)
w and the output one x

(o)
w . For

NS to work, one needs to define a scoring func-
tion to judge how likely a word wn is likely to be
a neighbor word of the current word w. We use a
simple scoring function (Mikolov et al., 2013c) as
follows, score(w,wn) = x

(i)
w
⊤x

(o)
wn . In our evalu-

ation, we consider the embedding of a word as the
sum of its input and output vectors.

2.2 Bilingual Models

Before delving further into comparing our models
with those of others, let us first categorize different
approaches to training bilingual word representa-

tions to three schemes: bilingual mapping, mono-
lingual adaptation, and bilingual training.

In Bilingual Mapping, word representations are
first trained on each language independently and
a mapping is then learned to transform represen-
tations from one language into another. The ad-
vantage of this method lies in its speed as no fur-
ther training of word representations is required
given available monolingual representations. Rep-
resentatives for this approach includes the recent
work by Mikolov et al. (2013b) which utilizes a set
of meaning-equivalent pairs (translation pairs) ob-
tained from Google Translate to learn the needed
linear mapping.

Monolingual Adaptation, on the other hand,
assumes access to learned representations of a
source language. The idea is to bootstrap learn-
ing of target representations from well trained em-
beddings of a source language, usually a resource-
rich one like English, with a bilingual constraint
to make sure embeddings of semantically similar
words across languages are close together. In this
scheme, the recent work by Zou et al. (2013) con-
siders the unsupervised alignment information de-
rived over a parallel corpus to enforce such a bilin-
gual constraint.

Bilingual Training, unlike the previous schemes
which fix pretrained representations on either one
or both sides, attempts to jointly learn represen-
tations from scratch. To us, this is an interesting
problem to attest if we can simultaneously learn
good vectors for both languages. Despite there has
been an active body of work in this scheme such
as (Klementiev et al., 2012; Hermann and Blun-
som, 2014; Kočiský et al., 2014; Chandar A P
et al., 2014; Gouws et al., 2014), none of these
work has carefully examined the quality of their
learned bilingual embeddings using monolingual
metrics. In fact, we show later in our experiments
that while the existing bilingual representations
are great for their cross-lingual tasks, they perform
poorly monolingually.

3 Our Approach

We hypothesize that by allowing the joint model to
utilize both the cooccurrence context information
within a language and the meaning-equivalent sig-
nals across languages, we can obtain better word
vectors both monolingually and bilingually. As
such, we examine the following general joint ob-
jective similar to (Klementiev et al., 2012; Gouws
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et al., 2014):

α(Mono1 + Mono2) + βBi (1)

In this formulation, each monolingual model,
Mono1 and Mono2, aims to capture the clustering
structure of each language, whereas the bilingual
component, Bi, is used to tie the two monolingual
spaces together. The α and β hyperparameters bal-
ance out the influence of the mono components
over the bilingual one. When α = 0, we arrive
at the model proposed in (Hermann and Blunsom,
2014), whereas α=1 results in (Klementiev et al.,
2012; Gouws et al., 2014) as well as our approach.
Their models and ours, however, differ in terms of
the choices of monolingual and bilingual compo-
nents detailed next.

3.1 Model Choices

In terms of the monolingual component, any
model listed in Section 2.1 can be a good candi-
date. Specifically, Klementiev et al. (2012) uses a
neural probabilistic language model architecture,
whereas Gouws et al. (2014) adapts the skipgram
model trained with negative sampling.

When it turns to capturing bilingual constraints,
these work generally use a different type of ob-
jectives for their bilingual models compared to the
monolingual ones. For example, Klementiev et al.
(2012) transforms the bilingual constraints into a
multitask learning objective, whereas Gouws et al.
(2014) minimizes the L2-loss between the bag-of-
word vectors of parallel sentences.2

In contrast to the existing approaches, we use
the same type of models for both of our mono-
lingual and bilingual constraints. Specifically, we
adapt the skipgram model with negative sampling
(SG-NS) to the bilingual context. Such a consis-
tent choice of architectures results in a natural and
effective way of building bilingual models from
existing monolingual models (see §2.1).

In our case, we extend the word2vec software3,
an efficient implementation of the SG-NS, to build
our fast code for bilingual representation learn-
ing. More importantly, we emperically show that
our method is effective in learning representations
both monolingually and bilingually as compared

2Hermann and Blunsom (2014) also uses a similar L2-
loss. Chandar A P et al. (2014) optimizes for the autoencoder
reconstruction loss between sentence pairs, while Kočiský et
al. (2014) defines an energy function for the translation prob-
abilities between words across languages.

3https://code.google.com/p/word2vec/

moderness wirtschaftliches !!"#$%&'() und Finanzzentrum 

financial center modern economic trade and 

Figure 1: Bilingual Skipgram Model – besides
predicting within languages, the model also pre-
dicts cross-lingually based on the alignment in-
formation. Glosses for German text are: modern
economy trading [finance center].

to existing approaches which use different archi-
tectures for monolingual and bilingual constraints.

3.2 Bilingual Skipgram Model (BiSkip)

The motivation behind our proposed bilingual
skipgram (BiSkip) model is to be able to pre-
dict words crosslingually rather than just monolin-
gually as in the standard skipgram model. Imag-
ine if we know that the word trade is aligned to
and has the same meaning as the German word
Handels- as in Figure 1, we can simply substitute
trade and use Handels- to predict the surrounding
words such as financial and economic.

Concretely, given an alignment link between a
word w1 in a language l1 and a word w2 in an-
other language l2, the BiSkip model uses the word
w1 to predict neighbors of the word w2 and vice
versa. That has the effect of training a single skip-
gram model with a joint vocabulary on parallel
corpora in which we enrich the training examples
with pairs of words coming from both sides in-
stead of just from one language. Alternatively, one
can also think of this BiSkip model as training four
skipgram models jointly which predict words be-
tween the following pairs of languages: l1 → l1,
l2 → l2, l1 → l2, and l2 → l1.

In our work, we experiment with two variants of
our models: (a) BiSkip-UnsupAlign where we uti-
lize unsupervised alignment information learned
by the Berkeley aligner (Liang et al., 2006) and
(b) BiSkip-MonoAlign where we simply assume
monotonic alignments between words across lan-
guages. For the former, if a word is unaligned but
at least one of its immediate neighbors is aligned,
we will use either the only neighbor alignment or
an average of the two neighbor alignments. For
the latter, each source word at position i is aligned
to the target word at position [i ∗ T/S] where S
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and T are the source and target sentence lengths.
These two variants are meant to attest how im-
portant unsupervised alignment information is in
learning bilingual embeddings.

4 Experiments

4.1 Data

We train our joint models on the parallel Europarl
v7 corpus between German (de) and English (en)
(Koehn, 2005), which consists of 1.9M parallel
sentences (49.7M English tokens and 52.0M Ger-
man tokens). After lowercasing and tokenizing we
map each digit into 0, i.e. 2013 becomes 0000.
Other rare words occurring less than 5 times are
mapped to <unk>. The resulting vocabularies are
of size 40K for English and 95K for German.

4.2 Training

We use the following settings as described in
(Mikolov et al., 2013c): stochastic gradient de-
scent with a default learning rate of 0.025, nega-
tive sampling with 30 samples, skipgram with con-
text window of size 5, and a subsampling rate4 of
value 1e-4. All models are trained for 10 epochs
and the learning rate is decayed to 0 once training
is done. We set the hyperparameters in Eq. (1) to
1 for α and 4 for β in our experiments.

4.3 Evaluation Tasks

We evaluate our models on two aspects: (a) mono-
lingually with a word similarity task and (b) bilin-
gually through a cross-lingual document classifi-
cation setup.

4.3.1 Word Similarity

This task measures the semantic quality of the
learned word vectors monolingually over various
word similarity datasets which have been used in
papers on word embedding learning lately. For
each dataset, we report a Spearman’s rank corre-
lation coefficient between similarity scores given
by the learned word vectors and those rated by hu-
mans. For English, we utilize the following pub-
licly available datasets: WordSim353 (353 pairs),
MC (30 pairs), RG (65 pairs), SCWS (1762 pairs),
and RW (2034 pairs). See (Luong et al., 2013) for
more information about these datasets.

4Smaller values mean frequent words are discarded more
often, see (Mikolov et al., 2013c) and the word2vec code for
more details.

To evaluate the semantic quality of German em-
beddings, we devise our own version of the Word-
Sim353 German counterpart. Our procedure is as
follows: we first used Google Translate to get Ger-
man translations for the 437 distinct tokens in the
English WordSim353. We then asked two German
speakers to help us verify these translations, out of
which, we fixed 23 translation pairs.

4.3.2 Cross-lingual Document Classification
To judge the bilingual aspect of our models, we
follow (Klementiev et al., 2012) in using a cross-
lingual document classification task: train with
1000 and test on 5000 RCV-labeled documents.5

In this setup, a multi-class classifier is trained us-
ing the averaged perceptron algorithm. The fea-
ture vector for each document is the averaged vec-
tor of words in the document weighted by their
idf values. A classification model trained on one
language is then applied directly to classify new
documents in another language without retraining.
This is an example of transfer learning of models
from a resource-rich language into a resource-poor
one. The premise for such a setup to work is be-
cause word vectors in these languages are embed-
ded in the same space, so document feature vec-
tors are constructed consistently across these two
languages and trained weights can be reused.

5 Results

In this section, we present results of our joint mod-
els trained on the Europarl corpus. Our first focus
is on the CLDC evaluation where we compare per-
formances achieved by our BiSkip models over the
best CLDC results from past work. Specifically,
we utilize the best set of embeddings from each of
the following bilingual work: (a) multitask learn-
ing model (Klementiev et al., 2012), (b) bilingual
without alignment model (Gouws et al., 2014), (c)
distributed word alignment model (Kočiský et al.,
2014), (d) autoencoder model (Chandar A P et al.,
2014), and (e) compositional model (Hermann and
Blunsom, 2014).

The above models are compared against our
two BiSkip models, one utilizing the unsuper-
vised alignments (UnsupAlign) and one assuming
monotonic alignments (MonoAlign); we trained
both 40- and 128-dimensional vectors to be com-
parable with existing embeddings. Simultane-

5Our experiments are based on the same code and data
split provided by the authors.
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Models Dim Data
Word Similarity CLDC

de en
en→de de→en

WS353 WS353 MC RG SCWS RW
Existing best models

I-Matrix 40 Europarl+RCV 23.8 13.2 18.6 16.4 19.0 07.3 77.6 71.1
BilBOWA 40 Europarl+RCV 86.5 75.0

DWA 40 Europarl 83.1 75.4
BAE-cr 40 Europarl+RCV 34.6 39.8 32.1 24.8 29.3 20.5 91.8 74.2

CVM-Add 128 Europarl 28.3 19.8 21.5 24.0 28.9 13.6 86.4 74.7
Our BiSkip models

MonoAlign
40 Europarl 43.8 41.0 33.9 32.2 39.5 24.4 86.4 75.6
128 Europarl 45.9 46.0 30.4 27.1 43.4 25.3 89.5 78.4

UnsupAlign

40 Europarl 43.0 40.2 31.7 32.1 37.6 23.1 87.6 77.8
128 Europarl 45.5 45.8 36.6 32.3 42.3 24.6 88.9 77.4
256 Europarl 46.7 47.3 37.9 35.1 43.2 24.5 88.4 80.3
512 Europarl 47.4 49.3 45.7 35.1 43.4 24.0 90.7 80.0

Table 1: German (de) - English (en) bilingual embeddings – results of various models in terms of both
the monolingual (word similarity) and bilingual (cross-lingual document classification) tasks. Spear-
man’s rank correlation coefficients are reported for word similarity tasks, whereas accuracies on 1000
RCV-labeled documents are used for CLDC. We compare our BiSkip embeddings to the best ones from
past work: multitask I-Matrix (Klementiev et al., 2012), bilingual without alignment BilBOWA (Gouws
et al., 2014), distributed word alignment DWA (Kočiský et al., 2014), autoencoder BAE-cr (Chandar A P
et al., 2014), and compositional CVM-Add (Hermann and Blunsom, 2014). Numbers in boldface high-
light the best scores per metric. We italicize the second best results and mark for models where we do
not have access to the trained embeddings.

ously, we test if these learned bilingual embed-
dings still preserve the clustering properties mono-
lingually in terms of their performance on the
word similarity datasets.

At 40 dimensions, both our BiSkip embed-
dings outperform those produced by the model in
(Klementiev et al., 2012) over all aspects. Our
MonoAlign model also surpasses the CLDC per-
formances of the BilBOWA model (Gouws et al.,
2014). These two models we are comparing to are
most similar to ours in terms of the joint objective,
i.e. with two monolingual language models and a
bilingual component.

The fact that the embeddings in (Klementiev
et al., 2012) perform poorly on the monolingual
aspects, i.e. the word similarity tasks, supports
one of our early observations that it is important
to design a bilingual component that is consistent
with the monolingual models (§3.1). Otherwise,
the model will make a tradeoff between obtaining
good performance for bilingual tasks over mono-
lingual tasks as seems to be the case for the embed-
dings produced by the multitask learning model.

Our 40-dimensional embeddings also rival
those trained by much more complex models

than ours such as the autoencoder model BAE-cr
(Chandar A P et al., 2014). It is worthwhile to
mention that beside the Europarl corpus, the au-
toencoder model was also trained with the RCV
documents on which the CLDC classifiers were
built, which is an advantage over our model. De-
spite this, our MonoAlign representations outper-
form the embeddings in (Chandar A P et al., 2014)
over all word similarity datasets and CLDCde→en.

Larger dimensions – When learning higher di-
mensional embeddings, which is an advantage of
our joint models as it is very fast to train com-
pared to other methods, the results across all met-
rics well correlate with the embedding sizes as we
increase from 40, 128, 256, to 512. Our 256- and
512-dimensional embeddings trained with unsu-
pervised alignments produce strong results, signif-
icantly better than all other models in terms of the
word similarity datasets and achieve state-of-the-
art performance in terms of the CLDCde→en with
an accuracy of 80.3. For CLDCen→de, our model
reaches a very high score of 90.7, close to the best
published result of 91.8 produced by the autoen-
coder model.6

6The 256- and 512-dimensional MonoAlign models do
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january microsoft distinctive
en de en de en de gloss

BiSkip

january januar microsoft microsoft distinctive unverwechselbare distinctive
july februar ibm ibm character darbietet presents

december juli linux walt features eigenheit peculiarity
october dezember ipad mci individualist unschtzbarer invaluable
march november blockbuster linux patrimony charakteristische characteristic

february jahres doubleclick kurier diplomacies identittsstiftende identity
april oktober yahoo setanta splendour christlich-jdischen christian-jewish

november april rupert yahoo vocations identittsfindung identity-making
september august alcatel warner multi-faith zivilisationsprojekt civilization project

august juni siemens rhne-poulenc characteristics ost-west-konflikt east-west conflict

Autoencoder

january januar microsoft microsoft distinctive rang rank
march mrz cds cds asset wiederentdeckung rediscovery

october oktober insider warner characteristic echtes real
july juli ibm tageszeitungen distinct bestimmend determining

december dezember acquisitions ibm predominant typischen typical
1999 jahres shareholding telekommun* characterise bereichert enriched
june juni warner handelskammer derive sichtbaren visible

month 1999 online exchange par band band
year jahr shareholder veranstalter unique ausgeprgte pronounced

september jahresende otc geschftsfhrer embraces vorherrschende predominant

Table 2: Nearest neighbor words – shown are the top 10 nearest English (en) and German (de) words
for each of the following words in the list {january, microsoft, distinctive} as measured by the Euclidean
distances given a set of embeddings. We compare our learned vectors (BiSkip-UnsupAlign, d = 128)
with those produced by the autoencoder model (Chandar A P et al., 2014). For the word distinctive,
we provide Google Translate glosses for German words. The word telekommunikationsunternehmen is
truncated into telekommun*.

Alignment effects – It is interesting to observe
that the 40- and 80-dimensional MonoAlign mod-
els with a simple monotonic alignment assumption
can rival the UnsupAlign models, which uses un-
supervised alignments, in many metrics. Overall,
all our models are superior to the DWA approach
(Kočiský et al., 2014) which learns distributed
alignments and embeddings simultaneously.

Word similarity results – It is worthwhile to
point out that this work does not aim to be best
in terms of the word similarity metrics. Past work
such as (Pennington et al., 2014; Faruqui and
Dyer, 2014) among many others, have demon-
strated that higher word similarity scores can be
achieved by simply increasing the vocabulary cov-
erage, training corpus size, and the embedding di-
mension. Rather, we show that our model can
learn bilingual embeddings that are naturally bet-
ter than those of existing approaches monolin-
gually.

6 Analysis

Beside the previous quantitative evaluation, we ex-
amine our learned embeddings qualitatively in this
section through the following methods: (a) nearest

not yield consistent improvements across metrics, so we ex-
clude them for clarity.

neighbor words and (b) embedding visualization.

6.1 Nearest Neighbor Words

For the former method, we follow (Chandar A P
et al., 2014) to find, for each English word, a list
of top 10 English and German words closest to it
based on Euclidean distance in a learned bilingual
space. Our list of words include {january, mi-
crosoft, distinctive}, in which the first two choices
are made by the previous work. We compare our
learned embeddings using the BiSkip-UnsupAlign
model (d = 128) with those produced by the au-
toencoder model in (Chandar A P et al., 2014).

Examples in Table 2 demonstrate that our
learned representations are superior in two as-
pects. Bilingually, our embeddings succeed in se-
lecting the 1-best translations for all words in the
list, whereas the other model fails to do so for the
word distinctive. Monolingually, our embeddings
possess a clearly better clustering structure. For
example, all months are clustered together, around
the word january, whereas that is not the case
for the other embeddings with the occurrences of
{1999, month, year} in the top 10 list. Our em-
beddings also find very relevant neighbor words
for the word microsoft such as {ibm, yahoo, etc.}.

We also examine the BiSkip-MonoAlign model
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Figure 2: Bilingual Embeddings of German and English words about banking and financial

in this aspect. Overall, the BiSkip-MonoAlign
model exhibits very similar monolingual proper-
ties as in the BiSkip-UnsupAlign one, i.e., it clus-
ters all months together and even places {google,
patents, merger, software, copyright} as closest
words to microsoft. On the other hand, the BiSkip-
MonoAlign fails to find correct translations for the
word distinctive, emphasizing the fact that knowl-
edge about word alignment does offer the BiSkip-
UnsupAlign model an advantage.

6.2 Embedding Visualization

In this section, we visualize embeddings of the
German and English words in banking and finan-
cial context. The two-dimensional visualizations
of word vectors are produced using the t-SNE al-
gorithm (van der Maaten and Hinton, 2008). Fig-
ure 2 shows that English-German words with sim-
ilar meanings are close to each other, e.g., “man-
agers” and “managern”. Monolingually, German
compound words, such as “welthandelsorganisa-
tion” and “investitionsbank”, also appears next to
each other. These observations further demon-
strate the ability of our models to learn representa-
tions well both bilingually and monolingually.

7 Related Work

We have previously discussed in Section 2 models
directly related to our work. In this section, we
survey other approaches in learning monolingual
and bilingual representations.

Current work in dimensionality reduction of
word representations can be broadly grouped into

three categories (Turian et al., 2010): (a) dis-
tributional representations learned from a co-
occurrence matrix of words and contexts (docu-
ments, neighbor words, etc.) using techniques
such as LSA (Dumais et al., 1988) or LDA (Blei
et al., 2003), (b) clustering-based representations,
e.g., Brown et al. (1992)’s hierarchical clustering
algorithm which represents each word as a binary
path through the cluster hierarchy, and (c) dis-
tributed representations, where each word is ex-
plicitly modeled by a dense real-valued vector and
directly induced by predicting words from con-
texts or vice versa as detailed in Section 2.1.

Moving beyond monolingual representations,
work in constructing bilingual vector-space mod-
els divides into two main streams: (a) those that
make use of comparable corpora and (b) those that
only require unaligned or monolingual text. The
former includes various extensions to standard
techniques such as bilingual latent semantic mod-
els (LSA) (Tam and Schultz, 2007; Ruiz and Fed-
erico, 2011) or bilingual/multilingual topic mod-
els (LDA) (Zhao and Xing, 2007; Ni et al., 2009;
Mimno et al., 2009; Vulic et al., 2011). In this
work, the general assumption is that aligned doc-
uments share identical topic distributions. The lat-
ter stream, which eschews the use of compara-
ble data, generally requires a small initial lexicon
which is extracted either manually or automati-
cally (e.g., cognates, string edit distances, etc.).
Representatives of this strand include work that
extends CCA (Haghighi et al., 2008; Boyd-Graber
and Blei, 2009), mapping representations of words
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in different languages into the same space, as well
as work that follows a bootstrapping style to it-
eratively enlarge the initial lexicon (Peirsman and
Padó, 2010; Vulić and Moens, 2013).

8 Conclusion

This work proposes a novel approach that jointly
learns bilingual representations from scratch by
utilizing both the context concurrence informa-
tion in the monolingual data and the meaning-
equivalent signals in the parallel data. We advo-
cate a new standard in training bilingual embed-
dings, that is, to be good in not only gluing repre-
sentations bilingually but also preserving the clus-
tering structures of words in each language.

We provide a key insight to train embeddings
that meet the above two criteria, that is, to design
a bilingual constraint that is consistent with the
monolingual models in our joint objective. Our
learned representations are superior to the best em-
beddings from past bilingual work in two tasks:
(a) the crosslingual document classification one in
which we achieve a new state-of-the-art perfor-
mance for the direction from German to English,
and (b) the word similarity evaluation where we
outperform other embeddings by a large margin
over all datasets. We also evaluate the learned vec-
tors qualitatively by examining nearest neighbors
of words and visualizing the representations.

Lastly, it would be interesting to extend our
method to multiple languages as in (Hermann and
Blunsom, 2014) and to be able to train on a large
amount of monolingual data similar to (Gouws et
al., 2014).
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Abstract

This paper presents a case study of using
distributed word representations, word2vec
in particular, for improving performance
of Named Entity Recognition for the e-
Commerce domain. We also demonstrate that
distributed word representations trained on a
smaller amount of in-domain data are more ef-
fective than word vectors trained on very large
amount of out-of-domain data, and that their
combination gives the best results.

1 Introduction

On-line commerce has gained a lot of popularity
over the past decade. Large on-line C2C market-
places like eBay, Alibaba, and Amazon feature a
very large and long-tail inventory with millions of
items (product offers) entered into the marketplace
every day by a large variety of sellers.

To manage items effectively and provide the best
user experience, it is critical for these marketplaces
to structure their inventory into descriptive name-
value pairs (called properties) and ensure that items
of the same kind (digital cameras, for instance) are
described using a unique set of properties (brand
name, model number, zoom, resolution, etc.). This
is important for recommendations in merchandising,
providing faceted navigation, and assisting business
intelligence applications.

While some sellers (generally large, professional
retailers) provide rich, structured descriptions of
their products (using schemas or global trade item
numbers), the vast majority of sellers only provide
unstructured natural language descriptions. In the

latter case, one solution to the problem of structuring
e-commerce inventory is to use techniques such as
Named-Entity Recognition (NER) to extract proper-
ties from the textual description of the items. The
scale at which on-line marketplaces operate makes
it impractical to solve this problem manually. 1

This paper focuses on NER, generally defined
as the task of classifying elements of text into
predefined categories (often referred to as entity
types or entities). Entities usually include names
of persons, organizations, locations, times, and
quantities (CoNLL-2003 dataset), as well as na-
tionalities or religious groups, products (vehicles,
weapons, foods, etc.), and titles of books or songs
(Ontonotes 5.0 dataset).

In the e-commerce domain, these entities
are item properties such as brand name,
color, material, clothing size, golf
club type, makeup shade code, sun
protection factor, etc. Another important
specificity of the e-commerce domain with respect
to NER is that the sentences are usually much
shorter than in other applications and don’t exhibit
the grammatical structure of natural language.

This paper investigates whether distributed word
vectors benefit NER in the e-commerce domain.
Distributed word representations based on neural
networks from unlabeled text data have proven use-
ful for many natural language tasks, including NER.
In fact, Passos et al. (2014) reported results compa-

1For instance, in late 2014, eBay.com reported 800 million
available items at any given time and more than 25 million sell-
ers. Alibaba.com reported 8.5 million sellers. Amazon.com has
not disclosed similar information.
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rable to state-of-the-art for the CoNLL 2003 NER
task using such representations. In this paper, we
evaluate distributed word vectors with a focus on us-
ing in–domain data for their training.

In the remainder of this paper, we first explain
the specificity of NER in the e-commerce domain
and describe the approach we use for performing the
task. In Section 3, we describe our datasets. In Sec-
tion 4, we describe the setting of the experiments we
have conducted and discuss the results in Section 5.
Finally, we review related works in Section 6.

2 NER for e-Commerce

The e-commerce domain raises specific challenges
for NER. This section describes in detail the task,
and the methodology we have chosen to tackle it.

2.1 Description of the task

We consider the task of named entity recognition
(NER) on text from the e-commerce domain. The
text data associated with an e-commerce item usu-
ally consists of two parts: the title and the descrip-
tion. In the current work, we focus only on item
titles since item descriptions are often optional, vary
greatly from seller to seller and between market-
places, and are not shown on the search results page.
The item title is a short sentence usually consisting
of a sequence of approximately 10 to 35 nouns, ad-
jectives, and numbers. They rarely contain verbs,
pronouns, or determiners. The title is mandatory for
most marketplaces, as it is indexed by the search en-
gine and searched against by users of the website.
Snippets shown in search result pages are generated
from the titles of the items in the search result set.

Table 1 shows some examples of item titles (rows
1, 3, 5) from various online marketplaces. These
examples show that sellers use capitalization and
special characters as visual features in a manner
not necessarily consistent with conventional English
grammar rules. Besides their limited grammatical
structure and the lack of contextual information due
to their length, titles also contains typographical er-
rors and abbreviations. While many abbreviations
are standard in the e-commerce domain and used
across all marketplaces (such as “w/” for “with”,
“NIB” for “new in box”, “BNWT” for “brand new
with tag”, etc.), some are seller specific and are often

difficult to decipher.
Performing NER for e-commerce involves classi-

fying the various tokens in the title of an item into
property names (entities) relevant to that item. Ta-
ble 1 also shows the annotated entities (rows 2, 4, 6)
for each of the titles. Section 3 provide details about
the e-commerce categories, and the empirically de-
fined entities within each of those categories. Next,
we describe the approach that we use for NER.

2.2 Approach
Following current best practices, we approach NER
as a sequence labeling problem. We use linear–
chain Conditional Random Field (CRF) (Lafferty et
al., 2001) which has been shown to achieve the best
performance for many applications of NER (Suzuki
and Isozaki, 2008; Lin and Wu, 2009; Passos et
al., 2014), including NER for the e-commerce do-
main (Putthividhya and Hu, 2011).

We use a fairly standard set of lexical features
used in most NER systems, including character af-
fixes. Our features are detailed in Section 4.

In addition to the lexical features, modern NER
systems also attempt to leverage some form of vec-
tor representation of the syntactic and semantic
properties of the tokens. While discrete word rep-
resentations derived from word clusters have been
shown to be very beneficial to NER (Miller et al.,
2004; Lin and Wu, 2009; Ratinov and Roth, 2009;
Turian et al., 2010), more and more attention is be-
ing paid to distributed word representations since the
introduction of efficient algorithms to produce them
(Mikolov et al., 2013). Passos et al. (2014), for in-
stance, reported performance comparable to state-
of-the-art NER systems using a modified skip–gram
model trained to predict membership of words to a
domain specific lexicon.

To the best of our knowledge, all the results re-
ported so far for NER used distributed word vec-
tors trained from documents composed in standard,
mostly grammatical English (Collobert and Weston,
2008; Turian et al., 2010; Baroni et al., 2014; Passos
et al., 2014). However, it is clear that some phrases
in the e-commerce domain have a very different
meaning than in conventional English. For instance,
“adventure time,” “baby, the stars shine bright,”
and “miss me” are a few examples of e-commerce
brand names which occur rarely in Wikipedia. In
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1: Apple iPhone 6 - 16GB - Space Grey ( Unlocked ) Smartphone
2: b p p d c c a t
3: Cole Haan Men ’s Carter Grand Cap Oxford
4: b b g g p p t
5: Womens CRISTINALOVE SHOULDER DRESS - Size XL - L@@K
6: b t t s

Table 1: Examples of annotated titles for different e-commerce categories from various online marketplaces. Entity
types are denoted by the single letters: “a”– “contract,” “b”– “brand name,” “c”– “color,” “d”– “dimension,” “g”–
“gender,” “p”– “product name or number,” “t”– “type,” “s”– “size.”

this paper, we investigate whether useful distributed
representations can be learned from fairly unstruc-
tured, short, ungrammatical documents such as e-
commerce titles and capture enough e-commerce se-
mantics to benefit NER. We also study how they
compare to distributed vectors trained from a non
e-commerce corpus.

3 Data

To make discovering and browsing the inventory
easy, most on-line marketplaces organize their in-
ventory into a category structure similar to a topic
hierarchy. eBay and Alibaba hierarchies comprise
around 40 top level nodes, called categories, and
more than 10,000 leaf nodes. The goods from differ-
ent categories are usually very different in nature as
exemplified by eBay categories such as “Antiques,”
“Clothing, Shoes & Accessories,” and “Toys & Hob-
bies,” to name a few.

3.1 Data Selection

The models trained for our experiments focus on a
subset of five popular categories, namely Cellphones
(CELLPH), Cellphone Accessories (CELLACC),
Men’s Shoes (MSHOES), Watches (WATCHES), and
Women’s Clothing (WCLOTH). Our datasets consist
of user-defined e-commerce item titles. Table 2 pro-
vides statistics about these titles. Titles were tok-
enized using CoreNLP (Manning et al., 2014).

3.2 Training and testing data

Training and testing data for CRF was produced by
manually labeling data. Based on the labeling re-
sources available, we sampled 2,000 titles for most
categories. Splitting these samples resulted in the
training and test splits shown in Table 3.

category # titles # tokens vocab. size
CELLPH 29M 46M 23K

CELLACC 143M 1.8B 114K
MSHOES 61M 665M 95K

WATCHES 97M 959M 190K
WCLOTH 150M 1.6B 118K

Table 2: Approximate statistics for the in-domain titles
(B: billion, M: million, K: thousand). The vocabulary
size is based on a minimum count of 50.

category titles tokens vocab
CELLPH 1500 / 500 20776 / 7056 3806 / 1647

CELLACC 1330 / 443 18650 / 6195 4964 / 2261
MSHOES 1485 / 494 19278 / 6373 5424 / 2513

WATCHES 1339 / 495 15735 / 5828 5176 / 2487
WCLOTH 3098 / 500 39196 / 6279 7576 / 2621

Table 3: Training / test data splits (titles, token count,
vocabulary size) for each category.

3.3 Entity Types

An important step in preparing the data was de-
termining which properties of the items are most
important to each category (concretely, which en-
tities should be targeted). Because items across
categories are quite different and can vary greatly
in nature, a unique set of entities was used for
each category, though several entities are com-
mon across categories (e.g. brand, color).
For example, a title in WCLOTH might contain
the properties brand, type, size, style,
color whereas a title in CELLPH might describe an
item by brand, product name, storage
size, contract. These tags were chosen based
on frequently occurring, user-defined properties that
are assigned to an item. This set was manually pared
down based on how much coverage an entity set
could achieve while maintaining a manageable num-
ber of entities. While it would be ideal to have a set
of entities such that every word in a title is tagged,
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this does not scale well and makes the annotation
task more difficult. Table 4 shows the set of entities
used for each category and the distribution of enti-
ties over the individual tokens within each category.

3.4 Annotation Procedure
Titles in Table 3 were annotated by two language
specialists. Annotators had access to the listing page
of the item in question to use as a reference. This
page typically includes some pictures as well as a
description of the item which may provide informa-
tion about a particular token and reduce the amount
of research required to correctly label a token (e.g.
an obscure brand name). The two annotators re-
grouped after tagging to resolve disagreements be-
tween the individually tagged data sets. Agreement
scores between the annotators were calculated using
unweighted Cohen’s Kappa with the following re-
sults: CELLPH: .92, CELLACC: .82, MSHOES: .78,
WATCHES: .81, WCLOTH: .93. BIO encoding was
not used for these datasets, but experimenting with
it is important, and we plan do so in future work.

3.5 word2vec training data
For training the category–specific in–domain word
vector representations, the set of tokenized titles
referred to in Table 2 are used for the respec-
tive category. Section 4 provides details about the
word2vec training process.

4 Experiments

We now present our experimental results for NER
on e-commerce item titles. The goal of our work is
not necessarily to present the best possible results
for this task. Instead, our experiments are driven
by the following two questions: (1) Are distributed
word representations created from highly unstruc-
tured data (namely, e-commerce item titles) bene-
ficial for the task of named entity recognition on
the same kind of unstructured data? (2) How do
distributed word vector representations created from
out-of-domain (namely, non e-commerce data) com-
pare with those created from in-domain data?

4.1 Training
We use the CRFsuite package (Okazaki, 2007) for
our experiments. Following Turian et al. (2010),
we use stochastic gradient descent (SGD) for our

feature comment
w0, w−1, w+1 current token,

tokens in window of 1
〈w−2,w−1〉, 〈w+1,w+2〉 left and right bigram
CLASS(w−1, w0, w+1) ALLCAPS, Initcap,

UpperCamelCase, etc.
|w0| length of current token
RELPOS(w0) relative position in the

item title
AFFIXES(w−1, w0, w+1) up to 3-character prefixes

and suffixes
t−1 tag of the previous token

Table 5: Table shows the features that we use for our
baseline.

training, and allow negative state features and nega-
tive transition features. The l2 regularization hyper–
parameter (c2 for CRFsuite) is tuned using a ran-
domly chosen subset of 30% sentences (item ti-
tles) held out as the development set during train-
ing. The final model is retrained on the entire train-
ing set using the best value of c2 (which varies de-
pending on the feature configuration). The set of
c2 values we tried is {0.001, 0.005, 0.01,
0.05, 0.1, 1, 2, 5, 10, 50, 100}.

4.2 Baseline Features

Table 5 shows the features that we use for our base-
line. We refer to this feature set by the name BASE
in our results section.

We also experimented with larger window sizes
(two and three) for all of the windowed features
listed in Table 5, however, the performance degraded
for larger window sizes. We believe this is due to the
highly unstructured nature of text in the item titles.

4.3 Distributed Word Vector Features

We explored two different types of sources of text
for the generation of distributed word representa-
tions for our task. First, we used word vectors
trained by Baroni et al. (2014) — in particular, the
“best predict vectors” made available by the au-
thors2. These are, for our purposes, vectors trained
on out-of-domain text corpora. Results using fea-
tures based on these word vectors are denoted by
the name BASE+GEN. In our experiments, features
based on word vectors are always added on top of

2http://clic.cimec.unitn.it/composes/
semantic-vectors.html
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Category Tag
CELLPH Product Name 17.8%, Brand 11.3%, Dimension 7.4%, Color 5.2%, Contract 3.8%, Operating Sys-

tem 2.1%, Location 0.4%, no tag 52.0%
CELLACC Product Name 25.6%, Type 19.4%, Brand 7.3%, Feature 3.8%, Material 2.4%, Color 2.3%, Style

1.2%, Connectivity 1.1%, Pattern 0.6%, Battery Capacity 0.4%, Location 0.4%, Finish 0.3%, Fit
0.3%, Storage Capacity 0.3%, Storage Format 0.2%, Sports Team 0.2%, no tag 34.2%

MSHOES Product Line 28.2%, Brand 11.4%, Color 8.8%, Size 6.9%, Type 5.6%, Gender 3.9%, Pur-
pose/Occasion/Activity 2.9%, Material 2.2%, Height 1.3%, Style 1.1%, Pattern 0.4%, no tag 27.3%

WATCHES Product Name 13.8%, Brand 9.3%, Type 7.4%, Feature 5.1%, Gender 4.7%, Material 4.0%, Color
3.1%, Movement 2.9%, Component 2.9%, Style/Purpose/Occasion 2.9%, Size 1.1%, Display Type
0.8%, Location 0.8%, Purity/Quality 0.3%, Shape 0.2%, Closure 0.1%, no tag 40.6%

WCLOTH Type 16.0%, Brand 8.3%, Size 7.3%, Color 4.0%, Material 3.8%, Purpose/Occasion/Activity 3.2%,
Style 2.1, Pattern 1.5%, Location 0.8%, no tag 53.0%

Table 4: The entities targeted by our NER system and their distributions over total tokens for each category.

our baseline features (BASE). Second, we used word
vectors trained on a large set of in-domain data for
each of the five categories, namely e-commerce item
titles for the respective categories. The word vec-
tors for each category were trained separately, in or-
der to provide the “purest” form of in–domain data.
Results using features based on these word vectors
are denoted by the name BASE+DOM. Additionally,
we also conduct experiments using features based on
both the in–domain as well as out–of–domain word
vectors. Results using this combined set of word
vector features are denoted by BASE+ALL.

Word vector features are computed for w0, w−1,
and w+1— that is, for the current token and its two
surrounding tokens. Here too, we experimented with
larger window sizes, but that resulted in a lower
overall performance.

4.4 word2vec

Both the out–of–domain and the in–domain word
vectors that we train are trained using the
word2vec toolkit3 (Mikolov et al., 2013). De-
tails of how the out–of–domain word vectors were
trained is provided by Baroni et al. (2014) — their
400–dimensional word vectors were trained on ap-
proximately 2.8 billion tokens using word2vec’s
continuous bag–of–words (cbow) representation,
with a window size of five.

Initially, we experimented with several parame-
ter choices for training our word2vec models. In
particular, we tried the following grid of values:
representation: skip-gram, continuous bag–of–

3https://code.google.com/p/word2vec

words (cbow); context window size: {2, 5}, down–
sampling parameter: {1e-3, 1e-4, 1e-5}; hier-
archical softmax: {off, on}; # of negative sam-
ples: {5, 10}; word frequency cutoff: {10, 50};
and word vector dimensionality: {50, 100, 200,
300, 400, 500}. Based on this parameter sweep,
we found that the following parameters worked best
overall for our task: representation: skip-gram, con-
text window size: 2, down–sampling parameter:
1e-3, hierarchical softmax: off, # negative sam-
ples: 10, word frequency cutoff: 50. These are the
settings we use for all the results reported in this
paper. As for the word vector dimensionality, we
tuned it based on our validation set (similar to the c2
parameter for CRFsuite), using the following set of
values: {50, 100, 200, 300, 400, 500}). In our
results we will report the best word vector dimen-
sionality when features based on in–domain word
vectors are used.

The skip-gram representation worked better in
our experiments for capturing semantics of the word
co-occurrences in the item titles. This is consistent
with the comparative analysis published by Mikolov
et al. (2013) between skip-gram and cbow mod-
els — the cbow models were found to be better for
syntactic tasks while the skip-gram models were
better for semantic tasks. A narrower context win-
dow is better for our highly unstructured data.

5 Results and Discussion

Table 6 shows our complete set of results. We
report the weighted token–level precision, recall,
and F1 score for all our experiments: F1weighted =
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config prec. rec. F1 # dims

C
E

L
L

P
H BASE .9505 .9497 .9501 NA

BASE+DOM .9590 .9590 .9590 100
BASE+GEN .9560 .9554 .9557 NA
BASE+ALL .9604 .9599 .9601 300

C
E

L
L

A
C

C BASE .8571 .8567 .8569 NA
BASE+DOM .8723 .8731 .8727 500
BASE+GEN .8648 .8649 .8648 NA
BASE+ALL .8806 .8812 .8809 300

M
S

H
O

E
S BASE .8248 .8213 .8230 NA

BASE+DOM .8491 .8486 .8488 100
BASE+GEN .8376 .8338 .8357 NA
BASE+ALL .8581 .8550 .8565 200

W
A

T
C

H
E

S BASE .8243 .8210 .8227 NA
BASE+DOM .8382 .8384 .8383 200
BASE+GEN .8386 .8372 .8379 NA
BASE+ALL .8496 .8480 .8488 200

W
C

L
O

T
H BASE .8600 .8619 .8609 NA

BASE+DOM .8874 .8882 .8878 400
BASE+GEN .8752 .8732 .8742 NA
BASE+ALL .8883 .8892 .8887 400

Table 6: Table shows the full set of results (weighted pre-
cision, recall, and F1) for each of the five e-Commerce
categories we experiment with. The last column shows
the best (tuned) word2vec dimensionality for the in–
domain word vectors.∑

t∈{tags} p(t)F1(t), where p(t) is the relative fre-
quency of tag t in the test set and F1(t) is the F1
score for tag t.

Several trends are clear from the results. First,
the combined feature set based on in–domain and
out–of–domain word vectors (BASE+ALL) gives the
best performance for all categories, with a boost of
2+ percentage points over BASE for all categories
except CELLPH. Second, most of the improvement
over the baseline (BASE) is achieved by the in–
domain word vector features (BASE+DOM). Except
for the WATCHES category, the out–of–domain word
vector features by themselves are less useful com-
pared to the in–domain vectors. This is not entirely
surprising. However, it is worth noting for a cou-
ple of reasons: (1) The in–domain data we have, as
mentioned earlier, is highly unstructured, and it is
not obvious that word vectors trained on such data
will be meaningful, let alone useful in a quantitative
evaluation like the one we have presented. (2) The
in–domain data that we use for word vector train-
ing is, in most cases, significantly smaller than the
dataset used for training the out–of–domain word

vectors. While we directly use the word vectors
from Baroni et al. (2014) as our out–of–domain vec-
tors (since they have been shown to perform well
across a range of semantic relatedness tasks), in the
future it might be worth tuning the out–of–domain
word vectors specifically for our task.

In order to gain an understanding of where the
distributed word representations are useful, we per-
formed an error analysis on the predictions from
our various models. Table 7 shows several differ-
ent item titles where our trained models differed.
The table shows, for example, that the BASE+DOM
model is able to identify “Movistar” as a brand
correctly, while the BASE model is not. This is in-
teresting because “Movistar” does not appear in our
training data at all. However, it does have a rep-
resentation in our word2vec model, and thus the
BASE+DOM model is able to correctly tag it. The
BASE+DOM model also correctly tags both tokens
in “Red Pocket” as a brand, unlike the BASE+GEN
model, which tags them as color and contract
incorrectly. This shows that the in–domain se-
mantic representation for the token “Red” is more
useful compared to its out–of–domain representa-
tion. Finally, there are also cases where the out–of–
domain semantic representation adds value: “TAN-
GERINE”, for example, is correctly predicted as a
color by BASE+ALL, but not by BASE+DOM be-
cause it is not present in our in–domain vectors.

6 Related Work

6.1 Word representations

The problem of modeling the meaning of words in
text has been approached in various ways includ-
ing distributional semantics (see Turney and Pan-
tel (2010), Erk (2012) for surveys), word cluster-
ing (Brown et al., 1992; Lin and Wu, 2009), and,
more recently, distributed representations (Mnih and
Hinton, 2007; Collobert and Weston, 2008).

While word clusters and distributional approaches
have been shown to be very effective for NER ap-
plications (Miller et al., 2004; Lin and Wu, 2009;
Ratinov and Roth, 2009; Turian et al., 2010; Dhillon
et al., 2011), direct applications of distributed rep-
resentations to NER systems did not show benefit
over Brown clusters (Turian et al., 2010). However,
Passos et al. (2014) recently reported performance
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sample titles

BASE+DOM > BASE

New Samsung Galaxy S3 i9300 Unlocked Movistar (brand, no-tag) Claro (brand, no-tag)
Vodafone (brand, no-tag) ATT Fido O2 (brand, product) Fido
VERTU SUPER (no-tag, product) LUXURY CELLPHONE CONSTELLATION
AYXTA (product, no-tag) PINK (color, no-tag) WITH RUBBY KEY NEVER USED

BASE+DOM > BASE+GEN

Brand New Nokia 101 100 Unlocked GSM Cellular Phone Phantom (color, no-tag)
Black 2 SIM / w MP3
iPhone 4S STRAIGHT TALK 32GB White Net10 ATT H2 AIO (brand, product)
AirVoice (brand, product) Red (brand, color) Pocket (brand, contract) unlocked

BASE+ALL > BASE+DOM

NEW IN BOX SONY ERICSSON W380a W380 BLACK ORANGE
TANGERINE (color, no-tag) UNLOCKED GSM Phone
NEW Unlocked black BlackBerry Bold 9900 gsm cell phone
telus (brand, no-tag) rogers (brand, no-tag) koodoo pda

Table 7: A small sample of errors made by our various models on the CELLPH category. The first column shows the
models being compared (“>” stands for “better than”). The predictions of the models differ for the underlined tokens.
In parentheses, the prediction from the correct model is shown first, followed by the prediction of the incorrect model.

comparable to state-of-the-art NER systems using a
modified skip-gram model trained to predict mem-
bership of words to a domain specific lexicon.

6.2 E-Commerce
E-commerce has recently garnered attention in the
natural language processing research community.

Ghani et al. (2006) and Putthividhya and Hu
(2011) also address the problem of structuring items
in the e-commerce domain through NER and present
experimental results on data similar to ours, but do
not leverage word vector representations. Mauge
et al. (2012) presents an unsupervised approach for
identifying attribute names and values from unstruc-
tured natural language listings seen in e-commerce
sites. Finally, unrelated to NER, Shen et al. (2012)
proposed a method for hierarchical classification of
product offers which they validated on eBay data.

7 Conclusions

Distributed word representations have been used
successfully for improving performance on sev-
eral natural language processing tasks in the recent
past, including the task of named entity recognition
(NER). Much of the work, however, has focused
on learning these word representations from corpora
that consist of relatively well–formed, grammatical
language. Moreover, the NER tasks that used these
word representations were also based on similar
well–formed language. In this work we explore dis-
tributed word representations based on e-commerce
domain item titles, which are highly unstructured in

nature. We also evaluate our constructed word vec-
tors on the task of NER for these item titles.

Our experiments show the following: (1) It is
possible to learn useful (as evaluated quantitatively
on an NER task) distributed word representations
based on unstructured e-commerce item title data.
(2) The word representations that we train on a rel-
atively small amount of in–domain data are, in gen-
eral, more useful than word representations trained
on very large out–of–domain data. (3) The combi-
nation of in–domain and out–of–domain word rep-
resentations gives the best result, adding domain–
knowledge where necessary, while also using back-
ground general knowledge from out–of–domain rep-
resentations.

Based on our experiments, there are a couple
of interesting questions that may be considered for
future research. First, we use the most straight-
forward way of combining in–domain and out–of–
domain knowledge – training these word represen-
tations separately and using features based on both
of them. Whether it is possible to learn better word
representations by considering in–domain and out–
of–domain data simultaneously at training time is an
open question. Second, in our task formulation, the
multiple e-commerce categories were trained sepa-
rately even though they share some semantic tags.
This can be improved upon in the future by consid-
ering approaches to multi–task learning.
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Abstract

Word embeddings have recently proven useful
in a number of different applications that deal
with natural language. Such embeddings suc-
cinctly reflect semantic similarities between
words based on their sentence-internal con-
texts in large corpora. In this paper, we show
that information extraction techniques provide
valuable additional evidence of semantic re-
lationships that can be exploited when pro-
ducing word embeddings. We propose a joint
model to train word embeddings both on reg-
ular context information and on more explicit
semantic extractions. The word vectors ob-
tained from such an augmented joint train-
ing show improved results on word similarity
tasks, suggesting that they can be useful in ap-
plications that involve word meanings.

1 Introduction

In recent years, the idea of embedding words in a
vector space has gained enormous popularity. This
success of such word embeddings as semantic rep-
resentations has been driven in part by the develop-
ment of novel methods to efficiently train word vec-
tors from large corpora, such that words with sim-
ilar contexts end up having similar vectors. While
it is indisputable that context plays a vital role in
meaning acquisition, it seems equally plausible that
some contexts would be more helpful for this than
others. Consider the following sentence, taken from

This research was partially funded by China 973 Program
Grants 2011CBA00300, 2011CBA00301, and NSFC Grants
61033001, 61361136003, 20141330245.

Wikipedia, a commonly used training corpus for
word representation learning:

Although Roman political authority in
the West was lost, Roman culture would
last in most parts of the former Western
provinces into the 6th century and beyond.

In this example sentence, the token “parts” does not
seem to bear any particularly close relationship with
the meaning of some of the other tokens, e.g. “Ro-
man” and “culture”. In contrast, the occurrence of
an expression such as “Greek and Roman mythol-
ogy” in a corpus appears to indicate that the two
tokens “Roman” and “Greek” likely share certain
commonalities. There is a large body of work on
information extraction techniques to discover text
patterns that reflect semantic relationships (Hearst,
1992; Tandon and de Melo, 2010).

In this paper, we propose injecting semantic in-
formation into word embeddings by training them
not just on general contexts but paying special at-
tention to stronger semantic connections that can be
discovered in specific contexts on the Web or in cor-
pora. In particular, we investigate mining informa-
tion of this sort from enumerations and lists, as well
as from definitions. Our training procedure can ex-
ploit any source of knowledge about pairs of words
being strongly coupled to improve over word em-
beddings trained just on generic corpus contexts.

2 Background and Related Work

Words are substantially discrete in nature, and thus,
traditionally, the vast majority of natural language
processing tools, both rule-based and statistical,
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have regarded words as distinct atomic symbols.
Even methods that rely on vectors typically made
use of so-called “one-hot” representations, which al-
locate a separate dimension in the vector space for
every content word in the vocabulary. Such rep-
resentations suffer from two problems. First, vec-
tors for two distinct word forms have distinct vec-
tors without any overlap, which means that the vec-
tor similarities for any two distinct individual word
forms will fail to reflect any possible syntactic or se-
mantic similarities between them. Second, the vec-
tor space dimensionality is proportional to the vo-
cabulary size, which can be very large. For instance,
the Google 1T corpus has 13M distinct words.

To address these two problems, other representa-
tions have been proposed. Brown clustering (Brown
et al., 1992) organizes words into a binary tree based
on the contexts in which they occur. Latent Semantic
Analysis and Indexing (LSA/LSI) use singular value
decomposition (SVD) to identify the relationships
between words in a corpus. Latent Dirichlet Anal-
ysis (LDA) (Blei et al., 2003), a generative graphi-
cal model, views each document as a collection of
topics and assigns each word to these topics.

Recently, neural networks have been applied to
learn word embeddings in dense real-valued vector
spaces. In training, such an approach may com-
bine vector space semantics with predictions from
probabilistic models. For instance, Bengio et al.
(2003) present a neural probabilistic language model
that uses the n-gram model to learn word embed-
dings. The network tries to use the first n− 1 words
to predict the next one, outperforming n-gram fre-
quency baselines. Collobert et al. (2011) use word
embeddings for traditional NLP tasks: POS tagging,
named entity recognition, chunking, and semantic
role labeling. Their pairwise ranking approach tries
to maximize the difference between scores from text
windows in a large training corpus and correspond-
ing randomly generated negative examples. How-
ever, the training for this took about one month. The
next breakthrough came with Mikolov et al. (2013a),
who determined that, for the previous models, most
of the complexity is caused by the non-linear hid-
den layer. The authors thus investigated simpler net-
work architectures to efficiently train the vectors at a
much faster rate and thus also at a much larger scale.

Their word2vec1 implementation provides two ar-
chitectures, the CBOW and the Skip-gram models.
CBOW also relies on a window approach, attempt-
ing to use the surrounding words to predict the cur-
rent target word. However, it simplifies the hidden
layer to be just the average of surrounding words’
embeddings. The Skip-gram model tries to do the
opposite. It uses the current word to predict the sur-
rounding words. Both architectures can be trained
in just a few hours, while obtaining state-of-the-art
embeddings.

Distributed word representations now have been
applied to numerous natural language processing
tasks. For instance, they have been used for sen-
timent analysis (Socher et al., 2013), paraphrase
detection (Socher et al., 2011), machine transla-
tion (Devlin et al., 2014), relation extraction (Chang
et al., 2014), and parsing, just to name a few. Some
of these works use neural network models, e.g. re-
cursive neural networks, auto-encoders, or convo-
lutional neural networks. Others use word embed-
dings directly as features for clustering or classifica-
tion with alternative machine learning algorithms.

There have been other proposals to adapt the
word2vec model. Similar to previous work on se-
mantic spaces based on dependency parse relations
(Padó and Lapata, 2007), Levy and Goldberg (2014)
rely on dependency parsing to create word embed-
dings. These are able to capture contextual relation-
ships between words that are further apart in the sen-
tence while simultaneously filtering out some words
that are not directly related to the target word. Fur-
ther analysis revealed that their word embeddings
capture more functional but less topical similarity.
Faruqui et al. (2015) apply post-processing steps to
existing word embeddings in order to bring them
more in accordance with semantic lexicons such as
PPDB and FrameNet. Wang et al. (2014) train em-
beddings jointly on text and on Freebase, a well-
known large knowledge base. Their embeddings
are trained to preserve relations between entities in
the knowledge graph. Rather than using structured
knowledge sources, our work focuses on improving
word embeddings using textual data by relying on
information extraction to expose particularly valu-
able contexts in a text corpus.

1https://code.google.com/p/word2vec/
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3 Joint Model

Our model simultaneously trains the word embed-
dings on generic contexts from the corpus on the one
hand and semantically significant contexts, obtained
using extraction techniques, on the other hand. For
the regular general contexts, our approach draws on
the word2vec CBOW model (Mikolov et al., 2013a)
to predict a word given its surrounding neighbors in
the corpus.

At the same time, our model relies on our abil-
ity to extract semantically salient contexts that are
more indicative of word meanings. Our algorithm
assumes that these have been transformed into a set
of word pairs known to be closely related. These
pairs of related words are used to modify the word
embeddings by jointly training them simultaneously
with the word2vec model for regular contexts. Due
to this more focused information, we expect the fi-
nal word embeddings to reflect more semantic in-
formation than embeddings trained only on regular
contexts.

Given an extracted pair of semantically related
words, the intuition is that the embeddings for the
two words should be pulled together. We formalize
this intuition with following objective:

1
T

T∑
t=1

∑
wr

log p(wr|wt)

Here, wr is a word related to another word wt ac-
cording to the extractions, and T is the vocabulary
size.

Thus, given a word wt, we try to maximize the
probability of finding its related words wr. Tradi-
tionally, the softmax function is used for the proba-
bility function. Its time complexity is proportional to
the vocabulary size. Here, we use negative sampling
as a speed-up technique (Mikolov et al., 2013b).
This is a simplified version of Noise Contrastive Es-
timation (NCE) (Mnih and Teh, 2012), which re-
duces the problem of determining the softmax to
that of binary classification, discriminating between
samples from the data distribution and negative sam-
ples.

In the training procedure, this amounts to simply
generating k random negative samples for each ex-
tracted word pair. That is, we replace wr with ran-
dom words from the vocabulary. For the negative

samples, we assign the label l = 0, while for the
original word pairs, l = 1. Now, for each word pair
we try to minimize its loss function:

Loss = −l · log f − (1− l) · log(1− f)

f = σ(vT
wt
· vwr)

Here, σ(·) is the sigmoid function σ(x) = 1
1+e−x

and vwt , vwr refer to the vectors for the two words
wt and wr. We use stochastic gradient descent to
optimize this function. The formulae for the gradient
are easy to compute:

∂Loss

∂vwr

= −(l − f) vwt

∂Loss

∂vwt

= −(l − f) vwr

This objective is optimized alongside with the
original word2vec CBOW objective. Our overall
model combines the two objectives. Training the
model in parallel with the word2vec model allows us
to inject the extracted knowledge into the word vec-
tors such that they are reflected during the word2vec
training rather than just as a post-processing step.
Thus the two components are able to mutually influ-
ence each other.

Both objectives contribute to the embeddings’
ability to capture semantic relationships. Training
with the extracted contexts enables us to adjust word
embeddings based on concrete evidence of semantic
relationships, while the use of general corpus con-
texts enables us to maintain the advantages of the
word2vec model, in particular its ability to benefit
from massive volumes of raw corpus data.

4 Information Extraction

Our model can flexibly incorporate semantic rela-
tionships extracted using various kinds of informa-
tion extraction methods. Different kinds of sources
and extraction methods can bring different sorts of
information to the vectors, suitable for different ap-
plications. In our experiments, we investigate two
sources: a dictionary corpus from which we extract
definitions and synonyms, and a general Web cor-
pus, from which we extract lists. Our model could
similarly be used with other extraction methods, or
in fact any method to mine pairs of semantically re-
lated words.
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word wt definition wr for wt

Befuddle to becloud and confuse as with liquor
Befuddled dazed by alcoholic drink
Befuddled unclear in mind or intent filled with bewilderment
Befuddled confused and vague, used especially of thinking
Beg to ask earnestly for, to entreat, or supplicate for, to beseech
word wt synonym wr for wt

Effectual effectual, efficacious, effective
Effectuality effectiveness, effectivity, effectualness
Efficacious effectual
Efficaciousness efficacy

Table 1: Definitions and synonyms from the GCIDE

player, captain, manager, director, vice-chairman
group, race, culture, religion, organisation, person
Italian, Mexican, Chinese, Creole, French
prehistoric, roman, early-medieval, late-medieval, post-medieval, modern
ballscrews, leadscrews, worm gear, screwjacks, linear, actuator
Cleveland, Essex, Lincolnshire, Northamptonshire, Nottinghamshire, Thames
Valley, South Wales

Table 2: Lists of related words extracted from UKWaC

4.1 Definition Extraction

One can safely assume that any large, broad-
coverage Web corpus will contain significant occur-
rences of word definitions, e.g. whenever new ter-
minology is introduced. These can be harvested us-
ing broad-coverage Definition Extraction methods
(Sierra et al., 2009).

Instead of adopting such generic methods that are
intended to operate on arbitrary text, another op-
tion, appropriate for Web corpora, is to specifically
identify the kinds of Web sources that provide high-
quality definitions, e.g. Wiktionary or Wikipedia. In
fact, when compiling a Web corpus with the explicit
purpose of using it to train word representations, one
may reasonably wish to explicitly ensure that it in-
cludes dictionaries available on the Web. Obviously,
the definitions from a dictionary can provide mean-
ingful semantic relationships between words.

In our experiments, we use the GNU Collabo-
rative International Dictionary of English (GCIDE)
as our dictionary corpus, which is derived from an
older edition of Webster’s Revised Unabridged Dic-
tionary. From this data, we extract the dictionary

glosses as genuine definitions as well as synonyms.
In the dictionary, they are indexed by the 〈def〉 and
〈syn〉 tags. We ignore other embedded tags within
the definitions and synonym entries. These provide
additional word usage notes and other attributes that
are not significant in our work. In total, we obtain
208,881 definition entries. Some words have multi-
ple meanings and thus are part of several entries. We
also obtain 10,148 synonym entries, each of which
consists of one or more synonyms for a given word.
Table 1 shows some examples of this extraction. We
can observe that the definition and synonym extrac-
tions indeed appear to convey valuable information
about semantic proximity of words.

4.2 List Extraction

Lists and enumerations are another promising
source of information. Words that occur together
within a list are not just semantically connected but
often even of the same type. These sorts of contexts
thus also have the potential to improve the word em-
beddings. We extract them from the UKWaC cor-
pus (Baroni et al., 2009), a general broad-coverage
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corpus crawled from the Web, but limited to the .uk
domain. After post-crawl cleaning, it contains a to-
tal of about 2 billion words. It is annotated with POS
and dependency tags, which simplifies our work of
extracting high-quality lists.

To extract lists of similar words, we use a simple
rule-based method. We first search for continuous
appearances of commas, which indicate a possible
list of similar things. To filter out noise, we require
that the entries in the list be approximately of equal
length. The length of each entry should be in the
range from 1 to 4. Longer entries are much more
likely to be short sentences or clauses, which are not
very useful when our aim is to obtain lists of sim-
ilar words. We also restrict list items to be nouns
and adjectives using the POS tags provided with the
UKWaC.

Additionally, we rely on special search patterns
matching for instance “include A, B, C, (and) D”,
“A and(or) B”, “cities(or other nouns) like A, B, C,
D”, “cities(or other nouns) such as A, B, C, (and)
D”, etc. Here, the letters A, B, and so on, refer to
the extracted target words, while other words and
punctuation, merely indicating the occurrence of the
lists, are removed, e.g. commas or the word “and”.

In total, 339,111 lists are extracted from the
UKWaC, examples of which are shown in Table 2.
We see that although there is some noise, the list
extraction also captures semantically meaningful re-
lationships. The words in the lists tend to be of the
same or similar type and represent similar or related
things.

5 Experiments and Evaluation

In order to investigate the impact of extractions on
word embeddings, we conduct an empirical analysis
based on semantic relatedness assessments.

5.1 Data

Our model relies on two types of input. For seman-
tically salient contexts, we rely on the data and ex-
traction techniques described above in Section 4 to
obtain pairs of related words.

For the regular contexts used by the CBOW
model, we rely on a 2010 Wikipedia data set2.

2http://nlp.stanford.edu/data/
WestburyLab.wikicorp.201004.txt.bz2

We normalize the text to lower case and remove
special characters. After prepocessing, it contains
1,205,009,210 tokens. We select words appearing at
least 50 times and obtain a vocabulary of 220,521
words.

5.2 Training
Having obtained two kinds of extracted word con-
texts, we use these separately to train word embed-
dings jointly with the word2vec model. Our training
implementation relies on a multi-threaded architec-
ture in which some threads optimize for the origi-
nal word2vec objective, training on different parts
of the corpus. At the same time, alongside with
these threads, further threads optimize based on the
extracted pairs of words using the objective given
earlier. All threads asynchronously update the word
embeddings, using stochastic gradient descent steps.
Thus, both the raw corpus for the word2vec model
and the related word pairs can bring their informa-
tion to bear on the word embeddings.

We use 20 threads for the CBOW architecture,
which runs faster than the Skip-gram model. The
window size of the CBOW model is set to 8. We run
it for 3 passes over the Wikipedia data set, which is
sufficient to achieve good results. We sample 10 ran-
dom words as negative examples for each instance.

Additional threads are used for the extracted pairs
of words. We use 4 threads each for lists and def-
initions (by splitting definitions) and one thread for
synonyms. In each case, the extractions lead to pos-
itive pairs of semantically related words. For def-
initions and synonyms, the word pair consists of a
headword and one word from its definition, or of the
headword and one of its synonyms. For the list ex-
traction setup, the training word pairs consist of any
two words from the same list. For these word pairs,
we also randomly sample 10 words as the corre-
sponding negative examples. They update the word
embeddings jointly with the CBOW model. This
way, the semantic information they contain can be
used to adjust the results from word2vec.

We use different learning rates to control each
source’s contribution to the final word embeddings.
We set the initial learning rate for the CBOW threads
to be 0.050 and report results for different rates for
the other threads, ranging from 0.001 to 0.1.

We stop training the word embeddings in the fol-

172



0 0.02 0.04 0.06 0.08 0.1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

α

sp
ea

rm
an

 c
or

re
la

tio
n 

co
ef

fic
ie

nt

 

 
syn and def
list
baseline

Figure 1: Spearman’s ρ for wordsim-353

lowing way to ensure convergence: when all the
CBOW threads finish, the other threads are termi-
nated. This is because the extractions are supple-
mentary to the CBOW model, which is the main
source to train the word vectors. This mode of op-
eration also ensures that we are always training on
both components of the model jointly rather than al-
lowing one component to dominate towards the end.
We did also experiment with pre-defined numbers of
iterations for the additional threads to control con-
vergence, but the results were not very different.

5.3 Evaluation and Analysis

We use the wordsim-353 (Finkelstein et al., 2001)
and MEN (Bruni et al., 2014) datasets to evaluate
the semantic similarities reflected in the final word
embeddings. Wordsim-353 and MEN are datasets
of English word pairs with human-assigned similar-
ity judgements. They are often used to train or test
semantic similarity measures of words. We calcu-
late the cosine distance of word embeddings for the
word pairs in wordsim-353 and MEN and compare
them to the scores from human annotations.

Fig. 1 shows the Spearman’s correlation coeffi-
cients for the wordsim-353 dataset. Even for a learn-
ing rate α as low as 0.001 for the additional threads,
we can obtain some improvement over the CBOW
baseline (which corresponds to an α setting of 0.0).
As α increases, the result gets better. The best result
we get for synonyms and definitions is 0.706, while
for lists from UKWaC, it is 0.693. The best learn-
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Figure 3: Spearman’s ρ for MEN

ing rate for the definitions and synonyms is 0.020,
while for the list extractions, it is 0.040. Both lead to
noticeably better results than the CBOW baseline’s
correlation coefficient of 0.642. Note that for large
α, the augmentation performs worse than the base-
line. This is expected, as an overly high learning rate
causes information from the related words to over-
whelm the original CBOW model, leading to exces-
sively biased final embeddings.

Fig. 3 plots the results on the MEN dataset. The
best-performing learning rate is different from that
for wordsim-353. In particular, well-performing
learning rates are slightly smaller. For the defini-
tions and synonyms, the best is 0.002, while for the
lists, the best learning rate is 0.020. After training
jointly, we obtain higher correlation coefficients for
the MEN similarity task.

wordsim-353 MEN

CBOW (baseline) 0.642 0.736
Definitions and synonyms 0.706 0.748
Lists 0.693 0.749

Table 3: Best results for the word similarity tasks

Table 3 provides a summary of the best results
that we obtain on the two similarity tasks.3 It can
be seen that we obtain higher correlation coefficients
for these tasks. This suggests that the word vectors

3Unfortunately, there is no independent tuning set from the
same distribution and thus we follow previous work in reporting
best results on the final set.
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Figure 2: A t-SNE visualization of the word embeddings, comparing the CBOW baseline (left) with that of our joint
model (right)

capture more semantic properties of words and thus
may be used in applications that benefit from seman-
tic information.

Finally, we plot a sample of the word embeddings
obtained from the joint training with definitions and
synonyms using t-SNE (van der Maaten and Hin-
ton, 2008). t-SNE is a technique for visualization of
high-dimensional datasets using dimensionality re-
duction. The perplexity of the Gaussian kernel for
the t-SNE is set to 15. Figure 2 shows a plot for 26
words: levity, lewd, and merry, and their synonyms.
We see that our model successfully distinguishes the
different meanings of these words while reflecting
semantic relationships.

6 Conclusion

We have presented a way to improve word embed-
dings by drawing on the idea that certain contexts
exhibit more semantically meaningful information
than others. Information extraction methods allow
us to discover such contexts and mine semantic rela-
tionships between words. We focus on word defini-
tions and synonyms, as well as on lists and enumer-
ations. The final word embeddings after joint train-
ing show better correlation coefficients in similar-
ity tasks. This suggests that information extraction
methods can help word vectors capture more mean-
ing, making them useful for semantic applications
and calling for further research in this area.
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Abstract

The majority of research on Arabic Named
Entity Recognition (NER) addresses the
the task for newswire genre, where the
language used is Modern Standard Ara-
bic (MSA), however, the need to study
this task in social media is becoming more
vital. Social media is characterized by
the use of both MSA and Dialectal Ara-
bic (DA), with often code switching be-
tween the two language varieties. De-
spite some common characteristics be-
tween MSA and DA, there are significant
differences between which result in poor
performance when MSA targeting systems
are applied for NER in DA. Addition-
ally, most NER systems rely primarily on
gazetteers, which can be more challenging
in a social media processing context due
to an inherent low coverage. In this paper,
we present a gazetteers-free NER system
for Dialectal data that yields an F1 score of
72.68% which is an absolute improvement
of ≈ 2 − 3% over a comparable state-of-
the-art gazetteer based DA-NER system.

1 Introduction

Named Entity Recognition (NER) is the task of
tagging names with a predefined set of named
entity types (e.g. Location, Person) in open-
domain text (Nadeau and Sekine, 2007). NER
has been shown to improve Information Retrieval
performance (Thompson and Dozier, 1997) and
Question Answering (QA) performance where
(Ferrndez et al., 2007) shows that, on average,
questions contain ≈ 85% Named Entities.

In the current world of ubiquitous social media
presence, processing informal genre is becoming
ever more crucial. One of the prevalent genre in

social media in need for text mining is microblog
data such as Twitter. Twitter data is character-
ized by being massive. Off the shelf NER systems
trained on formal genre such as newswire fail to
process such data, thereby current research in in-
formation extraction has been specifically target-
ing this genre (Ritter et al., 2011). This prob-
lem is quite significant in English and is ever more
pronounced in lower resourced languages such as
Arabic.

Arabic has gained more attention recently due
to the increased availability of annotated datasets.
Arabic NER systems, as other languages, are do-
main dependent and mainly trained on news cor-
pora or other well structured data that uses the
Modern Standard Arabic (MSA) variety of the lan-
guage (Benajiba et al., 2007) and (Abdallah et
al., 2012). Arabic, in general, poses additional
challenges to Natural Language Processing (NLP)
tasks, as opposed to other languages, due its rich
morphology and highly inflected nature. More-
over, Arabic is also one of those languages that
exists in a state of diglossia where multiple forms
of the language exist in the same context, the stan-
dard formal form, MSA, used in formal settings
(education, formal speeches, etc.) and the spoken
vernaculars that differ significantly from MSA,
known as Dialectal Arabic (DA) that are used per-
vasively in informal settings such as in social me-
dia. Since MSA and DA co-exist, we note that
people very often code switch between the two va-
rieties within the same utterance which is reflected
in microblog data. Hence NLP systems targeting
the Twitter genre needs to account for this phe-
nomenon.

Compared to English NER, here are some ex-
ample challenges posed for Arabic NER (Abdul-
Hamid and Darwish, 2010):

• Lack of capitalization: Capitalization in
Latin languages is a strong indicator of
Named Entity (NE). However, in Arabic,
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proper nouns are not capitalized, which ren-
ders the identification of NEs more compli-
cated;

• Nominal Confusability: Some words can be
proper nouns, nouns, or adjectives. For in-
stance, jamiyolap1 which means ’beautiful’
can be a proper noun or an adjective. Another
example, jamAl, which means ’beauty’, is a
noun but can be a common noun or a proper
name;

• Agglutination: Since Arabic exhibits con-
catenative morphology, we note the pervasive
presence of affixes agglutinating to proper
nouns as prefixes and suffixes (Shaalan,
2014). For instance, determiners appear as
prefixes Al as in (AlqAhrp, ’Cairo’), likewise
with affixival prepositions such as l, ’for’
(ldm$q ’for/to/from Damascus’), as well as
prefixed conjunctions such as w, ’and’, as in
(wAlqds ’and Jerusalem’);

• Absence of Short Vowels (Diacritic Mark-
ers): Written MSA, even in newswire, is
underspecified for short vowels, aka undia-
critized, which results in higher ambiguity
that can only be resolved using contextual in-
formation (Benajiba et al., 2009). Examples
of ambiguity are: mSr, may be miSor as in
’Egypt’ or muSir as in ’insistent’; qTr may
be the name of the country ’Qatar’ if vow-
elized/diacritized as qaTar, qaTor for ’sugar
syrup’, quTor for ’diameter’.

In addition to the afore mentioned challenges,
in general, for Arabic NER in general compared to
Latin-based languages, DA NER faces additional
issues:

• Lack of annotated data for supervised DA
NER;

• Lack of standard orthographies or language
academics (Habash et al., 2013): Unlike
MSA, the same word in DA can be rewritten
in so many forms, e.g. mAtEyT$, mtEyt$, mA
tEyT$, ’do not cry’, are all acceptable variants
since there is no one standard;

• Lack of comprehensive Gazetteers: this is a
problem facing all NER systems for all lan-
guages addressing NER in social media text,

1We use the Buckwalter encoding system to
render Arabic. For a reference listing please see
http://www.qamus.org/transliteration.htm

since by definition such media has a ubiqui-
tous presence of highly productive names ex-
emplified by the usage of nick names, hence
the PERSON class in social media NER will
always have a coverage problem;

• Applying NLP tools designed for MSA to
DA results in considerably lower perfor-
mance, thus the need to build resources and
tools that specifically target DA (Habash et
al., 2012).

The majority of existing NER systems rely on
the use of gazetteers to improve the system accu-
racy (Kazama and Torisawa, 2007), however, large
external resources are correlated with higher per-
formance cost. In this paper, we study the impact
of word representation and embedding features
on Arabic NER performance for Twitter and Di-
alectal Arabic, and demonstrate that our proposed
features show comparable and superior results to
other NER systems that use large gazetteers. Our
contributions are as follows:

• Show the impact of using word representa-
tions and embedding on NER performance;

• Propose a set of features that does not include
the use of external resources;

• Produce comparable NER performance to
other systems that use large gazetteers.

2 Related Work

Significant amount of work in the area of NER has
taken place. In (Nadeau and Sekine, 2007), the
authors survey the literature of NER and report on
the different sets of used features such as contex-
tual and morphological features. Although more
research has been employed in the area of English
NER, Arabic NER has been gaining more atten-
tion recently. Similar to other languages, several
approaches have been used for Arabic NER: Rule-
based methods, Statistical Learning methods, and
a hybrid of both.
In (Shaalan and Raza, 2009), the authors present
rule-based NER system for MSA that comprises
gazetteers, local grammars in the form of regu-
lar expressions, and a filtering mechanism that
mainly focuses on rejecting incorrect NEs based
on a blacklist. Their system yields a performance
of 87.7% F1 measure for the Person label (PER),
85.9% for Location (LOC), and 83.15% for Or-
ganization (ORG) when evaluated against corpora
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developed by the authors. (Elsebai et al., 2009)
proposed a rule-based system targeting PER in
MSA. It uses the Buckwalter Arabic Morphologi-
cal Analyser (BAMA) and a set of keywords. The
proposed system yields an F-score of 89% when
tested on an in-house annotated dataset of 700
news articles extracted from Aljazeera television
website.

Although rule based approaches proved suc-
cessful to some extent, most recent NER research
focuses on Statistical Learning techniques due
to the shortcomings of rule based approaches in
terms of coverage and robustness (Nadeau and
Sekine, 2007). For example, (Benajiba et al.,
2007) proposes an MSA NER system (ANERsys)
based on n-grams and maximum entropy. The au-
thors also introduce ANERCorp corpora and AN-
ERGazet gazetteers. (Benajiba and Rosso, 2008)
further modify ANERsys in terms of the underly-
ing machinery to use Conditional Random Fields
(CRF) sequence labeling as the statistical learn-
ing framework. ANERsys uses the following fea-
tures: part of speech (POS) tags, Base Phrase
Chunks (BPC), gazetteers, and nationality infor-
mation. The latter feature is included based on
the observation that PER occur after mentioning
the nationality, in particular in newswire data. In
(Benajiba et al., 2008), a different classifier is
built for each NE type. The authors study the ef-
fect of features on each NE type, then the over-
all NER system is a combination of the different
classifiers that target each NE class label indepen-
dently. The set of features used is a combina-
tion of general features as listed in (Benajiba and
Rosso, 2008) and Arabic-dependent (morphologi-
cal) features. Their system’s best performance is
83.5% for ACE 2003, 76.7% for ACE 2004, and
81.31% for ACE 2005, respectively. (Benajiba
et al., 2010) presents an Arabic NER system that
incorporates lexical, syntactic, and morphological
features and augmenting the model with syntactic
features derived from noisy data as projected from
Arabic-English parallel corpora. The system F-
score performance is 81.73%, 75.67%, 58.11% on
ACE2005 Broadcast News, Newswire, and Web
blogs, respectively. The authors in (Abdul-Hamid
and Darwish, 2010) suggest a number of features,
some of which we incorporate in our current DA-
NER system, namely, the head and trailing 2-
grams (L2), 3-grams (L3), and 4-grams (L4) char-
acters in a word. (Abdul-Hamid and Darwish,

2010) produce near state-of-the-art results with the
use of generic and language independent features
that we use to generate baseline results (BL).
(Shaalan and Oudah, 2014) presents a hybrid ap-
proach that targets MSA and produces state-of-
the-art results. However, we could not get ac-
cess to the exact rules employed, we were not able
to replicate their results. The rule-based compo-
nent is identical to their previous proposed rule-
based system in (Shaalan and Raza, 2009). The
features used in their study are a combination of
the rule-based rules in addition to morphologi-
cal, capitalization, POS tag, word length, and dot
(i.e. if a word has an adjacent dot) features. All
the previous work mentioned above focused on
MSA, albeit with variations in genres to the ex-
tent exemplified by the ACE data and author gen-
erated data. However, unlike the work mentioned
above, (Darwish and Gao, 2014) proposed an
NER system that specifically targets microblogs
as a genre, as opposed to newswire data. Their
proposed language-independent system relies on
a set of features that is similar to (Abdul-Hamid
and Darwish, 2010), with the use of a simple yet
effective domain adaptation approach (Daumé et
al., 2010) based on a two-pass semi supervised
method. Their NER system on Twitter data yields
an overall F-score=65.2% (76.7% for LOC, 55.6%
for ORG, and 55.8% for PER).
In our prior work, (Zirikly and Diab, 2014), we
proposed a small set of annotated DA data and
DA-NER system that yields an F-score=70.3%.
We used n-gram, gazetteers and an extensive set
of morphological features. In our current work, we
explore the impact of using word embedding fea-
tures and how can word representations and em-
bedding replace the use of dictionaries and even
generate better performance.

3 Approach

In this paper, we adopt a supervised machine
learning approach. Supervised approaches have
been shown to outperform unsupervised ap-
proaches for the NER task (Nadeau et al., 2006).
We use Conditional Random Fields (CRF) se-
quence labeling as described in (Lafferty et al.,
2001). Guided by previous work, for exam-
ple (Benajiba and Rosso, 2008) demonstrates that
CRF yields better results over other supervised
machine learning techniques for the task of NER.
One of the goals of our empirical investigation is
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to show the impact of using skip-gram word em-
bedding and word representations on the NER per-
formance, with the potential of these features sub-
stituting the use of extensive large gazetteers.

3.1 Baseline

For our baseline system (BL), we reimplemented
the features proposed in (Abdul-Hamid and Dar-
wish, 2010) that produced the best results: pre-
vious and next word, and leading and trailing +/-
(2-4) character ngrams. These features are cho-
sen as a preferred set for the baseline since they
are directly applicable to DA, as none of the fea-
tures rely on the availability of morphological or
syntactic analyzers. This baseline is also adapted
from (Darwish and Gao, 2014). We opted for this
baseline as opposed to (Darwish and Gao, 2014)’s
NER system since they use Wikipedia gazetteers
(WikiGaz) for their NER system.2 However, we
report the results of applying their features using
exact match against the gazetteers’ entries in Sec-
tion 4.3.

3.2 Our NER Features

In addition to the features employed in the baseline
BL, we introduce the following additional features
in our NER system:

• Lexical Features: character n-gram features,
the leading and trailing character bigrams
(L2), trigrams (L3), and quadrigrams (L4);

• Contextual Features (CTX): The surround-
ing undiacritized words of a context window
= ±1;(W-1,W0,W1);

• Gazetteers (GAZ): Although our work
mainly targets NER systems without the use
of external sources, but we added GAZ fea-
tures for comparison purposes. The gazetteer
used is the union of: i) ANERGaz: pro-
posed by (Benajiba and Rosso, 2008), which
contains 2183 LOC, 402 ORG, and 2308
PER; and ii) WikiGaz: large Wikipedia
gazetteer (Darwish and Gao, 2014), which
contains 50141 LOC, 17092 ORG, and
65557 PER. We followed this strategy for text
matching against gazetteer entries:

2Though the authors kindly gave us access to the actual
gazetteer, we were unable to replicate their results since the
gazetteer matching method is not detailed in their paper.

– Exact match (EM-GAZ): For more effi-
cient search, we use Aho-Corasick Al-
gorithm (Aho and Corasick, 1975) that
has linear running time in terms of the
input length plus the number of match-
ing entries in a gazetteer. When a
word sequence matches an entry in the
gazetteer;

– Partial match(PM-GAZ): This feature is
created to handle the case of compound
gazetteer entries. If the token is part of
the compound name then this feature is
set to true. For example, if the gazetteer
entry is yAsr ErfAt ’Yasser Arafat’ and
the input text is yAsr BrkAt then PM-
GAZ for the token yAsr will be set to
true. This is particularly useful in per-
sons names;

– Levenshtein match (LVM-GAZ): We
use Levenshtein distance (Levenshtein,
1966) to compare the similarity between
the input and a gazetteer entry. This
is based on the observation that social
media data might contain non-standard
spelling of words since it contains the
DA variety.

• Morphological Features: The morphologi-
cal features that we employ in our feature set
are generated by MADAMIRA (Pasha et al.,
2014). The set comprises the following:

– Part of Speech (POS) tags: We use
POS tags generated from MADAMIRA
within a window of ±1 (POS-1, POS0,
POS1);

– Capitalization (CAPS): In order to cir-
cumvent the lack of capitalization in
Arabic, we check the capitalization of
the translated NE which could indi-
cate that a word is an NE (Benajiba
et al., 2008). This feature is depen-
dent on the English gloss generated by
MADAMIRA. This feature is set to true
when the gloss starts with a capital let-
ter;

– Aspect (ASP), person (PERS), procl-
itics0 (PROC0), proclitics1 (PROC1),
proclitics2 (PROC2), proclitics3
(PROC3), enclitics0 (ENC0); de-
tailed description for these features is
provided in Table 1;
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Feature Feature Values
Aspect Verb aspect: Command, Imperfective, Perfective, Not applicable
Person Person Information: 1st, 2nd, 3rd, Not applicable
Proclitic3 Question proclitic: No proclitic, Not applicable, Interrogative particle
Proclitic2 Conjunction proclitic: No proclitic, Not applicable, Conjunction f, Connective particle f, Response conditional

f, Subordinating conjunction f, Conjunction w, Particle w, Subordinating conjunction w
Proclitic1 Preposition proclitic: No proclitic, Not Applicable, Interrogative i$, Particle b, Preposition b, Progressive verb

particle b, Preposition E, Preposition ElY, Preposition fy, Demonstrative hA, Future marker H, Preposition
k, Emphatic particle l, Preposition l, Preposition l + preposition b, Emphatic l + future marker H, Response
conditional l + future marker H, Jussive l, Preposition l, Preposition mn, Future marker s, Preposition t, Particle
w, Preposition w, Vocative w, vocative yA

Proclitic Article proclitic: No proclitic, Not Applicable, Demonstrative particle A, Determiner, Determiner Al + negative
particle mA, Negative particle lA, Negative particle mA, Negative particle mA, Particle mA, relative pronoun mA

Enclitics Pronominals: No enclitic, Not applicable, 1st person plural/singular, 2nd person dual/plural, 2nd person fem-
inine plural/singular, 2nd person masculine plural/singular, 3rd person dual/plural, 3rd person feminine plu-
ral/singular, 3rd person masculine plural/singular, Vocative particle, Negative particle lA, Interrogative pronoun
mA, Interrogative pronoun mA, Interrogative pronoun mn, Relative pronoun mn, m, mA, Subordinating conjunc-
tion m, mA.

Table 1: Morphological Features

– isNum: Binary feature that is set to true
if the token is a number;

– isNoun: Binary feature that is set to
true if the token is proper noun (i.e.
POS=noun prop).

• Brown Clustering IDs (BC): Brown cluster-
ing (Brown et al., 1992) is a hierarchical clus-
tering approach that maximizes the mutual
information of word bigrams. Word repre-
sentations, especially Brown Clustering, have
been shown to improve the performance of
NER system when added as a feature (Turian
et al., 2010). In this work, we use Brown
Clustering IDs (BC) of variable prefix lengths
(4,5,6,7,10,13 and the full length of the clus-
ter ID) as features resulting in the following
set of features BC4, BC5, BC6, BC7, BC10,
BC13, and BC, respectively. For example if
AmrykA ’America’ has the brown cluster ID
BC=11110010 then BC7=1111001, whereas
BC10 and BC13 are empty strings. This fea-
ture is based on the observation that semanti-
cally similar words will be grouped together
in the same cluster and will have a common
prefix;

• Word2vec Cluster IDs : Word2vec is an al-
gorithm for learning embeddings using a neu-
ral network model (Mikolov et al., 2013).
Embeddings are represented by a set of latent
variables, where each word is represented by
a specific instantiation of these variables. In
our system, we apply K-means clustering on
the word vectors and use the clusters IDs as
features.

3.3 Datasets
We use Microblogs and Dialectal weblogs datasets
for our experiments:

• Twitter dataset: We use the training and test
data split proposed in (Darwish, 2013), where
the training dataset contains 3,646 tweets
which were randomly selected from tweets
that were authored in the period of May 3-12,
2012. The tweets were scraped from Twit-
ter using the query lang:ar. The testing data
contains 1,423 tweets that were randomly se-
lected from tweets authored between Novem-
ber 23, 2011 and November 27, 2011. This
dataset has also been used in (Darwish and
Gao, 2014) for testing. Both datasets are an-
notated using the Linguistics Data Consor-
tium ACE tagging guidelines;

• Dialectal Arabic dataset (DA-EGY): The
annotated data was chosen from a set of
web blogs that are manually identified by
LDC as Egyptian dialect and contains nearly
40k tokens. The data was annotated by
one native Arabic speaker annotator who
followed the Linguistics Data Consortium
guidelines for tagging. We use the same
80/20 train/test 5-fold cross validation split
proposed in (Zirikly and Diab, 2014)

Table 2 shows dataset statistics, namely number
of tokens, and the named entity types: PER, LOC,
and ORG.

Brown Clustering and word2vec Data In our
work, we run brown clustering and word2vec
three times based on the data genre: i) Newswire
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#Tokens #PER #LOC #ORG
Twitter-Train 55k 788 713 449
Twitter-Test 26k 464 587 316
DA-EGY 24k 311 155 19

Table 2: Twitter and DA-EGY Evaluation data
statistics

(NW): Arabic Gigaword, ANERCorp, and NW
data of ACE2005 and ACE2006; ii) Broadcast
News (BN): BN data of ACE2005 and ACE2006;
iii) Weblogs (WL): Twitter data (training and test-
ing), WL data of ACE2005 and ACE2006, and
Arabic Dialect3. The number of Brown and
word2vec clusters is empirically chosen; the best
results achieved are: 500, 200, 200 for brown clus-
tering on NW, BN, and WL respectively, as op-
posed to: 300,150,150 for word2vec on NW, BN,
and WL respectively.

Parametric features values We use the follow-
ing values for the parametric features:

• CTX features: we set context window = ±1
for words;

• LM-GAZ: Threshold of the number of dele-
tion, insertion, or modification ≤ 2;

• BC: Length of the prefixes of brown clusters
ID is set to 4,5,6,7,10,13, and full length of
cluster ID.

3.4 Data Normalization and Preprocessing
Arabic normalization has proven to improve re-
trieval results (Darwish et al., 2012). We apply
the following normalizations on training, testing,
BC and word2vec input data: i) Number normal-
izations: [0 − 9] → 8; ii) Hamza normalization:
hamza numerous forms are used interchangeably
depending on the role of a word in the sentence.
For instance, the term ”his sky” can be written
smA&h, smA’h, or smA}h, where the hamza takes
its form based on the term being subject, object,
or idafa (construct state indicating possessive), re-
spectively ′, >,<,&, }, |, {, ‘, Y → A; iii) Nor-
malizing elongated words: We remove consecu-
tive repeated letters that occur > 2.

Tools In this work, we use the following tools:

1. MADAMIRA (Pasha et al., 2014): For to-
kenization preprocessing and morphological
features such as gender and POS tags;

2. CRFSuite implementation (Okazaki, 2007).
3LDC2012T09

4 Experiments & Discussion

4.1 Features set

The list of feature sets used in our experiments are:

• Feature set1 (FS1): Baseline (BL) features,
as proposed in (Abdul-Hamid and Darwish,
2010) with the use of exact match against
the Wikipedia gazetteers (WikiGaz) for PER,
LOC, and ORG named entity types;

• Feature set2 (FS2): BL features with the use
of CAPS (English gloss capitalization) and
the current, previous and next POS;

• Feature set3 (FS3): FS2 features in addition
to ENC0, PROC0, PROC1, PROC2, PROC3,
as demonstrated in Table 1;

• Feature set4 (FS4): FS3 in addition to isNum,
isNoun binary features;

• Feature set5 (FS5): FS4 features with the use
of word2vec cluster IDs;

• Feature set6 (FS6): FS4 features with the
use of BC cluster IDs with different prefixes
length;

• Feature set7 (FS7): FS6 features with the use
of word2vec cluster IDs;

• Feature set8 (FS8): FS7 features with the use
of exact (EM-GAZ) and partial (PM-GAZ)
match against WikiGaz gazetteers’ entries;

• Feature set9 (FS9): FS8 features in addition
to the use of Levenshtein gazetteers’ entires
match with distance threshold set to 1 (LVM-
GAZ1);

• Feature set10 (FS10): FS7 features in addi-
tion to the use of Levenshtein gazetteers’ en-
tires match with distance threshold set to 2
(LVM-GAZ2);

• Feature set11 (FS11): FS8 features in addi-
tion to LVM-GAZ1 and LVM-GAZ2;

• Feature set12 (FS12): FS11 with the use pf
ASP and PERS morphological features;

• Feature set13 (FS13): FS7 in addition to ASP
and PERS features;

• Feature set14 (FS14): FS6 in addition to ASP
and PERS features;

• Feature set15 (FS15): FS5 in addition to ASP
and PERS features;
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4.2 Evaluation Metrics

We choose precision (PREC), recall (REC), and
harmonic F-measure (F1) metrics to evaluate the
performance of our NER system over accuracy.
This decision is based on the observation that the
baseline accuracy is always high as the majority of
the words in free text are not named entities.

4.3 Results & Discussion

Twitter Results: Table 3 illustrates results of
our NER system performance. We use the
weighted macro-average across the three NEs
(PER, LOC, ORG) to calculate the overall per-
formance. Although we were not able to
replicate (Darwish and Gao, 2014) results with
WikiGaz (F1=55% vs. 51.62%), but our proposed
features coupled with BC and word2vec surpass
their performance yielding an F1=57.84% without
the use of any external resources vs. 59.59% with
the use of gazetteers.4Although word2vec and BC
increase F1 ≈ 10% over BL, we note that BC im-
pact (+6%) is more significant in comparison to
word2vec with only 3% improvement. It is worth
mentioning that this is aligned with (Turian et al.,
2010) observations that Brown Clustering yields
better English NER performance as opposed to
word embedding. This is due to Brown Clus-
tering’s ability to induce rare words compared to
word embedding. We also note that our intuition
for using Levenshtein Matching approach, LVM-
GAZ, against gazetteers’ entries to overcome non-
standardization issue in DA shows 0.8% improve-
ment over EX-GAZ and PAR-GAZ. We should
note that LVM-GAZ very much depends on the
percentage of present DA variety in the data. The
results achieved are promising, especially in the
area of social media since generating gazetteers
that have high coverage is a challenging and ex-
pensive task.

When observing the MORPH feature set in
more details, we notice that CAPS and POS yield
the highest improvement over the baseline, espe-
cially in the PER class, this is mainly due to the
correct assignment of the Proper Noun POS tag to
this class confirming that POS tag is a strong indi-
cator for NE.

We study the impact of applying BC and
word2vec on different data genre. We take as an

4It should be noted that our use of the gazetteers is prob-
ably different from theirs thereby rendering our results with
gazetteers incomparable to their results.

example BC, shown in Figure 1. We note that
genre variations impose minimum impact on word
representations, thus we can induce that word2vec
and BC presents robust and domain-independent
features.

Figure 1: BC Data Genre and Performance corre-
lation

DA-EGY Results: We apply the feature sets
that yields the best result with and without the
use of gazetteers in Table 3 to our second evalu-
ation dataset DA-EGY. The reported result is the
average of 5-fold cross validation. As proposed
in (Zirikly and Diab, 2014), we omit ORG class
because there is less than 0.05% instances of ORG
in the annotated data, which does not represent a
fair training data to the system. Our system out-
performs the state-of-the-art results by ≈ 7% with
the use of gazetteers, and ≈ 2% without the use
of gazetteers. As shown in Table 4, we notice that
FS15, which uses word2vec features and excludes
BC features and gazetteers, generate very compa-
rable results (72.61%) to the best gazetteers-free
performance achieved 72.68%.

5 Conclusion & Future Work

In this paper we study the impact of word rep-
resentations and embedding on Arabic NER sys-
tem for social media data. We show that our pro-
posed gazetteers-free features surpass other NER
systems that use large gazetteers. This is a sig-
nificant advantage since gazetteers are expensive
to generate, especially in the area of social media
due to the low coverage of dictionaries. We show
that our proposed system improves NER perfor-
mance and outperforms state-of-the-art results for
Dialectal Arabic.
In future work, we would like to test the impact of
cross-lingual word embedding and representation
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LOC ORG PER Overall
F1 F1 F1 PREC REC F1

BL 49.15 38.38 48.78 83.25 31.77 45.99
BL+WikiGaz (Darwish and Gao, 2014) 65.5 41.5 48.5 79.3 42.1 55
FS1=BL + EX-GAZ (LOC,ORG,PER) 52.37 41.72 57.09 83.07 37.44 51.62
FS2=BL+CAPS+POS[-1,0,1] 51.23 38.6 59.2 79.89 38.1 51.59
FS3=FS2 +PROC{3,2,1,0}+ENC0 51.73 39.55 60.78 79.01 39.53 52.7
FS4=FS3+isNum+isNoun 51.56 39.48 60.91 79.11 39.53 52.72
FS5=FS4+word2vec 53.18 38.37 62.74 79.54 40.57 53.74
FS6=FS4+BC 55.41 40.46 65.02 81.83 42.6 56.03
FS7=FS6+word2vec 56.78 39.74 65.58 82.01 43.12 56.52
FS8=FS7+EX-GAZ+PAR-GAZ 58.02 41.87 67.09 81.83 44.94 58.02
FS9=FS8+LVM-GAZ1 58.1 40.71 67.33 81.25 44.94 57.87
FS10=FS7+LVM-GAZ2 59.63 41.4 67.39 81.71 45.47 58.42
FS11=FS9+LVM-GAZ2 59.63 41.28 68.17 81.93 45.86 58.8
FS12=FS11+ASP+PERS 61.03 41.28 68.92 81.7 46.9 59.59
FS13=FS7+ASP+PERS 58.29 38.11 68.32 80.89 45.01 57.84

Table 3: Twitter NER Results

LOC PER Overall
F1 F1 PREC REC F1

State-of-the-art 91.43 49.18 86.53 62.3 70.31
FS12 96.77 57.47 82.9 72.39 77.12
FS13 89.66 55.7 86.67 63.08 72.68
FS14 89.66 54.05 90 61.04 71.86
FS15 89.66 55.56 93.48 61.04 72.61

Table 4: DA-EGY NER Results

features on NER performance and test our system
with numerous different domains.
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Abstract

In this paper we compare the performance
of three approaches for estimating the latent
weights of terms for scientific document sum-
marization, given the document and a set of
citing documents. The first approach is a term-
frequency (TF) vector space method utilizing
a nonnegative matrix factorization (NNMF)
for dimensionality reduction. The other two
are language modeling approaches for predict-
ing the term distributions of human-generated
summaries. The language model we build ex-
ploits the key sections of the document and
a set of citing sentences derived from auxil-
iary documents that cite the document of in-
terest. The parameters of the model may be
set via a minimization of the Jensen-Shannon
(JS) divergence. We use the OCCAMS algo-
rithm (Optimal Combinatorial Covering Algo-
rithm for Multi-document Summarization) to
select a set of sentences that maximizes the
term-coverage score while minimizing redun-
dancy. The results are evaluated with standard
ROUGE metrics, and the performance of the
resulting methods achieve ROUGE scores ex-
ceeding those of the average human summa-
rizer.

1 Introduction

The volume of the scientific literature is vast and in-
creasing. It is commonly impossible for researchers
to read all the papers published even in their own
specialty, thus it is natural to apply text summariza-
tion methods to scientific literature. The problem we
consider is to summarize a scientific paper that has
been cited multiple times, given the paper (reference

paper) and a set of citing papers. Note that the citing
papers give additional insights into the impact of the
results presented in the original paper and also how
the paper is perceived by colleagues. Following the
approach of Qazvinian et al. (Qazvinian and Radev,
2008), we use the citing papers to help inform the
summary, but also build a language model to cover
the major sections of the paper such as the abstract
and the results sections. Thus, we form a summary
pooling information from the paper and how other
authors citing the paper view the contributions of the
paper.

The summarization system we consider for this
task consists of the following components:

1. Data Preprocessing and Segmentation
The reference document is processed, the in-
dividual sections of the paper (when present)
are isolated and extracted, and the document is
then sentence split.

2. Term Selection
Terms are formed with stemmed word bigrams
whose mutual information is significantly high.

3. Latent Term Weight Estimation
We explore two distinct approaches:

(a) A Vector Space Model based on a term-
frequency (TF) matrix representation of
the document and a nonnegative matrix
factorization (NNMF) approximation for
rank reduction.

(b) A Bigram Language Model built on the
selected bigrams for each document sec-
tion. The global language model is a
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convex combination of the section mod-
els. Each term is given a weight, which is
an estimate of the probability that a term
would occur in a human-generated sum-
mary.

4. Sentence Selection
We use the OCCAMS algorithm (Optimal
Combinatorial Coverage Algorithm for Multi-
Document Summarization) to select the sen-
tences.

In this paper, we use the Biomedical Summariza-
tion data1 recently released by the National Insti-
tute of Standards (NIST) to evaluate our approaches.
The Biomedical data consists of 20 documents (ref-
erence papers), each with 10 documents that cite it
(citation papers), a human-generated summary, and
set of citation sentences extracted from the citation
papers. (The citation sentences are the sentences of
the citation papers that refer to the reference docu-
ments.)

In section 3 we describe in details how these data
were preprocessed for the summarization task.

2 Related Work

In (Teufel and Moens, 2002) the authors use rhetor-
ical status of statements in a scientific article to pro-
duce a summary. They use machine learning to
identify rhetorical structure and produce extracted
sentences from the source document by filling in a
template to produce a summary. In (Qazvinian and
Radev, 2008) the authors use the citation network to
produce a summary of a scientific article and thereby
put the focus on what other authors wrote about a
paper as the prominent information to include in a
summary of a paper in the scientific literature. They
thus summarize a scientific document by what other
authors have written about the document. In con-
trast with (Teufel and Moens, 2002) and (Qazvinian
and Radev, 2008), in this paper, we use the sections
of the document and machine learning to estimate
the relative importance of the sections of the docu-
ment as well as the citing sentences that reflect what
other authors write about the referenced document.
Jensen-Shannon (JS) divergence correlate as well or

1http://www.nist.gov/tac/2014/BiomedSumm.

better with human judgments of a summary’s qual-
ity than ROUGE scoring for multidocument summa-
rization (Lin et al., 2006). In (Louis and Nenkova,
2009) the authors demonstrated that JS divergence
between automatically generated summaries and the
distribution of terms of the document yields a met-
ric for evaluating summaries without the need for
human-generated summaries. These results suggest
that JS-divergence is correlated with the intrinsic
quality of a summary. We therefore employ JS-
divergence and use both the provided human sum-
maries, and optionally the extracted text, to learn the
distribution of terms as would be used in a human-
generated summary.

3 Data Segmentation and Preprocessing

Each document from the NIST Biomedical collec-
tion contains one reference paper, a set of cita-
tion papers, and an annotation file containing cita-
tion sentences (citances). The vast majority of the
biomedical papers (both reference and citation pa-
pers) had a common structure. All but two of the
papers contained a well-defined Abstract or a Sum-
mary section; most papers contained a Results sec-
tion; and all concluded with a Reference Bibliogra-
phy section. We removed the Reference Bibliogra-
phy because its content is inappropriate for summa-
rization. The body of the reference paper was par-
titioned into three parts: abstract, results and other.
The abstract and the result parts contained the body
of the Abstract (or Summary) and the Results sec-
tions, respectively, if they were present. All remain-
ing sections2 of the paper were extracted and were
used for forming the other part of the paper. We
also extracted the citances from the annotation file
into a separate part, called citations. We used the en-
tire body of the reference paper except the Reference
Bibliography and the citations part to build the vec-
tor space model, and we used the abstract, results,
other, and citations parts for the language model ap-
proach for latent term weight estimation.

We trimmed the sentences of the abstract, results,
other, and citations parts to remove quoted, paren-
thetical or citation text. Doing this trimming im-

2Some papers contained subject specific sections or Method-
ology, or Discussion sections but they were not common across
the entire collection.
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proves the fidelity of the summarization. Finally, all
parts of the paper were segmented into individual
sentences.

4 Term Selection

Term selection first begins by finding a good back-
ground model and then using it to select a set of
stemmed word bigrams that occur significantly more
often than expected, specifically, we calculate the
frequency of each stemmed bigram in a document
set as well as the frequency of the stemmed bigram
in a background corpus of biomedical abstracts from
PubMed (National Institute of Health, 2014). We
employ theG−statistic, which is equivalent to a mu-
tual information statistic. This statistic was first sug-
gested by Ted Dunning (Dunning, 1993) to identify
“surprise words” and in context of summarization,
Lin and Hovy (Lin and Hovy, 2000) referred to them
as “signature terms.” The statistic computes likeli-
hood ratio and the p-value is computed under the as-
sumption null hypothesis that a given term occurs
with the same probability in the background as the
document set.

Here, instead of finding a small set of topic signa-
ture terms as proposed by (Lin and Hovy, 2000), we
use Dunning’s statistic to remove terms for which
the p-value is 0.001 or larger. For this threshold
about 40% of the bigrams will remain in lieu of a
topic signature model where 10−50 bigrams remain.

5 Sentence Selection

We use the OCCAMS algorithm (Davis et al., 2012)
to select sentences for the final summary. OCCAMS
uses techniques from combinatorial optimization
(approximation schemes for budgeted maximal cov-
erage and the knapsack problems) to select a set of
minimally overlapping sentences, whose combined
weight of terms covered is maximized. OCCAMS
views the document as a set of sentences. Each
sentence is viewed as a set of terms. The input to
the algorithm is the sentences of the document; the
lengths of the sentences, measured as the number of
words; and the latent weights of the terms, computed
in sections 6 and 7, for the two models we study.
(Conroy et al., 2013) gives an improved version of
the original OCCAMS algorithm (Davis et al., 2012)
that computes four potential summaries and chooses

the one of maximal combined term-weight cover-
age as the final summary. OCCAMS has a mini-
mal sentence length parameter that one can use to
discard sentences whose lengths (number of words)
falls below the specified minimal-length threshold.
The biomedical documents we summarized had a
higher-than-average sentence length, and we used
a threshold of 10 words per sentence, to generate
our result summaries. Summaries containing longer
sentences improve readability of the summaries gen-
erated (sentences containing nine words or less were
discarded), while shorter sentences improve scores
computed by automatic metrics.

6 Vector Space Model

The paper (Conroy et al., 2013) investigated the per-
formance of a variety of vector space models to-
gether with a variety of algebraic dimensionality
reduction techniques (LSA, LDA, and NNMF) to
summarize multi-lingual documents. In this paper
we consider a simple and well known vector space
model for text, namely the term frequency model,
and explore the use of NNMF to derive improved
term weights for scientific document summariza-
tion. To build a term-by-sentence matrix we use the
abstract, results, citances, and other parts of the ref-
erence paper, which is equivalent to taking the en-
tire body of the paper excluding the Reference Bib-
liogrpahy. We use only bigram terms with high
mutual information to form the terms of the docu-
ment. The (i, j)th component of the matrix A is the
frequency of the ith term in the jth sentence. We
use the MATLABTM nnmf() function, with 100 ran-
dom restarts and the alternating least squares option,
to compute a rank k approximation of the column
stochastic matrix derived from the term-sentence
matrix A by scaling the columns to sum to 1. Let
Ã be this column stochastic matrix and the NNMF
of this matrix gives Ã ≈ WH , where W and H
are nonnegative and W has k columns and H has
k rows. The weights of the terms given to the OC-
CAMS algorithm are chosen to be the row sums of
WH .

Table 1 shows ROUGE 1, 2, 3, and 4 scores of
OCCAMS summaries given estimates of the latent
weights of terms for values of the rank k = 2, 4,
and 35. In our experiments we computed NNMF
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System R1 R2 R3 R4
TF 0.511 0.166 0.065 0.030

NNMF 2 0.509 0.172 0.073 0.036
NNMF 4 0.504 0.171 0.074 0.036
NNMF 35 0.518 0.176 0.070 0.033

Avg Human 0.528 0.179 0.075 0.036
Best Human 0.572 0.219 0.110 0.071

Table 1: Vector Space Model based on TF and NNMF

approximations for all values of k ∈ [1, 50] but did
not observe improvements of the score beyond the
scores shown in Table 1. Our experiments show
that the NNMF rank approximation of the matrix re-
sults in improved ROUGE scores compared to the
baseline TF. It is also worth noting that the ROUGE
scores of the best rank approximations are close to
those of the averaged human ROUGE scores.

7 A Language Modeling Approach for
Scientific Document Summarization

We consider a language modeling approach to es-
timate the importance of the terms in the referenced
document to be summarized. This model is designed
to estimate the probability that a term will occur in
a human-generated summary of the referenced doc-
ument. As described in section 3 a referenced docu-
ment may be divided into abstract, results, and other
parts and these in addition to the citances represent
the “components” of the document, which are used
to build the language model for the referenced doc-
ument.

Specifically, we let p(d)
i,j be the estimate of the

probability that term i occurs in document compo-
nent j for the referenced document d. The estimate
p̂
(d)
i,j is computed by the maximum likelihood esti-

mate using the counts, and we then have∑
i

p̂
(d)
i,j = 1.

The probability that term i will occur in a human-
generated summary of document d is given by q(d)

i

and we estimated it for the purposes of training it
in one of two ways. The first is simply the max-
imum likelihood model which sums the frequency
observed in the human-generated summaries and

then normalizes to form a probability distribution.
We denote this estimate as q̂(d)

i .

The second estimate for q
(d)
i uses a discount

model and has a free parameter λ(d) with 0 ≤ λ(d) ≤
1, which is used to compute a convex combina-
tion of the estimates q̂ and the estimated probability
distribution formed by human selected “referenced
sentences.” The referenced sentences are those sen-
tences in the reference document that best support
the information given in the citances and were se-
lected by the humans as they were gathering infor-
mation to create their summaries. We let r̂(d)

i be the
maximum likelihood estimate that term i occurs in a
reference sentence. The discount model estimate of
q(d) is then given by

q̃(d) = λr̂(d) + (1− λ)q̂(d).

While discount model provides an opportunity to
smooth estimates, we defer its study to a later pa-
per since 10 document sets proved insufficient to
demonstrate a significant improvement.

7.1 Training the Language Model

We model the distribution of the terms in the hu-
man summaries as a simple mixture of the document
components. As such, we expect that for a given
document set d there exists a set of parameters αi

for i = 1, 2, ..., k where k is the number of compo-
nents in the document set, such that

τ(α, λ) =
∑

i

αip
(d)
i,j ≈ q̃(d). (7.1.1)

Solving this equation in the least squares sense
for both the parameters α and λ is the classical
method of canonical correlation (Seber, 2004). Al-
ternatively, we could seek to minimize a divergence
function such as JS, i.e.,

[α, λ] = argmin JSD(
∑

i

αip
(d)
i,j , q̃

(d)).

As first observed by (Lin et al., 2006) JS-
divergence predicts as well as ROUGE, and it has
continuous derivatives. The result of the training
gives an optimal values of α and λ, and for each
term t a term weight τt(α, λ), which is an estimate
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of the probability that a term will occur in a human-
generated summary given the component decompo-
sition and the training data. The optional smooth-
ing parameter, λ used for mixing human summaries
with the set of human extracts can be forced to 1
and the optimal α can be computed from approxi-
mating the human abstract bigram distribution alone
giving the term-weights for the unsmoothed proba-
bilities. In addition to the term-weights, recall that
a background model is used to discard bigrams with
low mutual information as was described in section
4. The low mutual information terms are thus given
a weight of 0.

7.2 Two Simple Language Models
Before discussing results of an optimized language
model, we consider the special case of equal weight-
ing of each document section. Recall that the sec-
tions of interest for summarization were limited to
the abstract, results, other parts, and the citing sen-
tences from the documents that reference the doc-
ument to be summarized. We consider the follow-
ing two simple language models on the set of sig-
nificantly high mutual information bigrams. In the
first model we build a language model by combin-
ing the four sections into one (LM1), and in the sec-
ond model we compute the maximum likelihood for
each section of the document combine them with
equal weighting (LM equal

4 ). The ROUGE-1, 2, 3,
and 4 scores of LM1 and LM equal

4 as well as the
best and average of the nine human summarizer
scores are given in Table 7.2. The lengths of both
the machine and human generated summaries were
limited to 250 words. Each of the differences be-
tween the ROUGE scores of LM1 and LM equal

4 are
statistically significant at or above the 99% confi-
dence level. We note that LM1 performs compara-
bly with TF baseline, whose term weights differ only
by a scale factor. Furthermore, the equal weighting
model scores higher than the average human and sig-
nificantly better than even the NNMF methods given
in section 6. Finally, we note that LMopt

4 , the lan-
guage model that results via the JS optimization de-
scribed in section 7.1, gives a slight improvement
in each of the ROUGE scores, but there is no sta-
tistically significant difference between the ROUGE
scores for LMopt

4 and LM equal
4 .

To measure the stability of the weighting coef-

System R1 R2 R3 R4
LM1 0.511 0.169 0.067 0.031

LM equal
4 0.559 0.210 0.095 0.052

LMopt
4 0.562 0.216 0.100 0.055

Avg Human 0.528 0.179 0.075 0.036
Best Human 0.572 0.219 0.110 0.071

Table 2: ROUGE Results for Three Language Models
and a Comparison to Human Performance

Figure 1: Language Model Coefficients for Document
Sections

ficients learned by the optimization we performed
1000 trials of the optimization. In each trial a ran-
dom subset of 10 of the reference papers and ci-
tances were chosen to perform the JS optimization.
Figure 1 gives a notched box plot of the result of the
experiment. The experiment demonstrates that the
result section is given a significantly higher weight
than the citations. Surprisingly the abstract is given
the lowest weight. Note that the median abstract
length of a doucment is about 145 words while hu-
man generated summaries are 250 words. Clearly,
the human summarizers, having the freedom to write
a summary longer than the median abstract length,
chose to focused on the results section and the ci-
tances and did not draw mainly from the abstract.

8 Conclusions

In this paper we compared the performance of a sim-
ple vector space model and two language modeling
approaches for estimating the latent weights of the

190



terms for scientific document summarization3 that
exploit the underlying structure of the document.
Our vector space model uses the TF representation
of the text and a low rank approximation of the
term-sentence matrix using NNMF. The TF vector
space model is a good basic model, but we showed
that it benefits from low rank NNMF approxima-
tion. The ROUGE scores of the summaries com-
puted with NNMF exceeded those of the basic TF
and were close to the average human ROUGE score.
However given the humanly generated segmentation
of a scientific paper (the sections abstract, result,
other, and citances of the document) gives rise to
a stronger language model that we show achieves a
performance exceeding that of the average human in
four ROUGE measures.
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Abstract

We present an unsupervised topic model
for short texts that performs soft clustering
over distributed representations of words.
We model the low-dimensional seman-
tic vector space represented by the dense
distributed representations of words using
Gaussian mixture models (GMMs) whose
components capture the notion of latent
topics. While conventional topic model-
ing schemes such as probabilistic latent se-
mantic analysis (pLSA) and latent Dirich-
let allocation (LDA) need aggregation of
short messages to avoid data sparsity in
short documents, our framework works on
large amounts of raw short texts (billions
of words). In contrast with other topic
modeling frameworks that use word co-
occurrence statistics, our framework uses
a vector space model that overcomes the
issue of sparse word co-occurrence pat-
terns. We demonstrate that our framework
outperforms LDA on short texts through
both subjective and objective evaluation.
We also show the utility of our framework
in learning topics and classifying short
texts on Twitter data for English, Spanish,
French, Portuguese and Russian.

1 Introduction

A popular way to infer semantics in an un-
supervised manner is to model a document as
a mixture of latent topics. Several schemes
such as latent semantic analysis (Deerwester et
al., 1990), probabilistic latent semantic analysis
(pLSA) (Hofmann, 1999) and latent Dirichlet al-
location (LDA) (Blei et al., 2003) have been used
to good success in inferring the high level mean-
ing of documents through a set of representative
words (topics). However, the notion of a docu-
ment has changed immensely over the last decade.

∗The author is currently with Apple, Inc., and can be
contacted at vrangarajansridh@apple.com.

Users have embraced new communication and in-
formation medium such as short messaging ser-
vice (SMS), chats, Twitter, Facebook posts, Insta-
gram and user comments on news pages/blogs in
place of emails and conventional news websites.
Document sizes have been reduced from a few
hundred words to few hundred characters1 while
the amount of data has increased exponentially.

Conventional topic models such as pLSA and
LDA learn latent topics in a corpus by exploit-
ing document-level word co-ocurrences. Hence,
these models typically suffer from data sparsity
(estimating reliable word co-occurrence statistics)
when applied to short documents. A popular
strategy to overcome this bottleneck is to aggre-
gate short texts into longer documents based on
user information, title category, etc. (Weng et al.,
2010; Hong and Davison, 2010). However, these
schemes are heuristic and highly dependent on
the data. Furthermore, such metadata may not be
available for short texts such as news titles, adver-
tisements or image captions.

In this work, we present an unsupervised topic
model that uses soft clustering over distributed
representations of words. The distributed word
representations are obtained by using a log-linear
model and we model the low-dimensional seman-
tic vector space represented by the dense word
vectors using Gaussian mixture models (GMMs).
TheK components of the Gaussian mixture model
can be considered as the latent topics that are cap-
tured by the model. Unlike long documents, these
short messages do not have long distance syntactic
or semantic dependencies and we find that the dis-
tributed representations learned over limited con-
text windows is sufficient in capturing the dis-
tributional similarity of words within a message.
In comparison with previous approaches to topic
modeling, we completely ignore the distribution
over documents and consider the entire corpus,
thereby eliminating the need for aggregation over
short messages. The framework presented here is

1Twitter currently imposes a limit of 140 characters for
each message
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unsupervised, language agnostic and scalable.

2 Related Work

In the tf-idf scheme (Salton and McGill, 1986), a
collection of documents is represented as a V ×D
matrix where the rows denote the terms (words)
and the columns contain tf-idf values for the cho-
sen terms (words). However, the approach re-
veals little about the underlying semantic struc-
ture of the documents. Latent semantic analysis
(LSA) (Deerwester et al., 1990) addressed the lim-
itations of the tf-idf scheme by performing singu-
lar value decomposition (SVD) on the V ×D ma-
trix. The LSA features are linear combinations of
the tf-idf features in a lower dimensional subspace
and can capture linguistic notions such as poly-
semy and synonymy.

Probabilistic latent semantic analysis
(pLSA) (Hofmann, 1999) improved on LSA
by modeling each word as a sample from a
mixture model, the components of which are
multinomial random variables (topics). One of
the main drawbacks of pLSA is that the topic
distributions are learned for particular documents
seen in training and consequently, the model is
difficult to use on unseen documents. Moreover,
the model size grows linearly with the size of the
corpus and hence is prone to overfitting. Latent
Dirichlet allocation (LDA) (Blei et al., 2003) is
a generative model that overcomes some of the
limitations of pLSI by using a Dirichlet prior
on the topic distribution. The model can hence
be used on unseen data and the parameters of
the model do not grow with the size of training
corpus.

LSA, pLSA and LDA have all been convention-
ally used on collection of documents that are typ-
ically at least a few hundred words. With the re-
cent popularity of communication media such as
SMS, Twitter, Facebook, Instagram, etc., many ef-
forts (Weng et al., 2010; Hong and Davison, 2010)
have addressed the application of topic models to
short texts. (Weng et al., 2010) addressed the prob-
lem of identifying influential users on Twitter us-
ing a modified PageRank algorithm. They used
LDA for inducing topics on user aggregated mes-
sages, i.e., a document is a collection of tweets
from a single user. The work in (Hong and Davi-
son, 2010) also experimented with different aggre-
gation strategies to apply LDA for inducing top-
ics. In (Ramage et al., 2010), a supervised version

of LDA was used to model individual messages.
However, such a scheme is not completely unsu-
pervised and hence not desirable for large amounts
of data than can span extremely large number of
topics (billions of tweets, Facebook posts, image
captions, etc.).

In contrast with previous approaches that have
either modified LDA or the input to LDA (by ag-
gregating short messages), our approach works
on the entire corpus (e.g., billions of tweets or
SMS messages) without any aggregation strategy
and is completely unsupervised. We learn dis-
tributed representations of words over sufficiently
long context windows and subsequently use Gaus-
sian mixture models to parameterize the vector
space represented by the distributed representa-
tions. Our framework is inspired by use of bot-
tleneck features obtained from neural networks
in hidden Markov model (HMM) based speech
recognition (Grezl and Fousek, 2008). We can po-
tentially use all the optimization and paralleliza-
tion techniques used in HMM-based speech recog-
nition to scale to large text data sets. The clos-
est approach to that proposed in this work is
the biterm topic model (BTM) (Yan et al., 2013)
that learns topics over an entire corpus of short
texts by directly modeling unordered word-pair
co-occurrences (biterms) over the corpus. In our
approach, the distributed representations capture
longer word contexts, i.e., each word is projected
into a vector that represents similarity between
words within the contextual window. Hence,
our approach can potentially capture context be-
yond unordered word-pair co-occurrences. Fur-
thermore, since we use dense vectors to repre-
sent terms, our approach does not suffer from
data sparsity issues typically encountered in co-
occurrence statistics based topic models.

3 Distributed Word Representations

Distributed representation of words (also called
word embeddings or continuous space representa-
tion of words) has become a popular way for cap-
turing distributional similarity (lexical, semantic
or even syntactic) between words. The basic idea
is to represent each word in vocabulary V with a
real-valued vector of some fixed dimensionD, i.e.,
wi ∈ RD ∀ i = 1, · · · , V . The idea of repre-
senting words in vector space was originally pro-
posed in (Rumelhart et al., 1986; Elman, 1991).
However, improved training techniques and tools
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Lookup Table D

D*9 (concatenation)

Linear

Tanh

Linear

former south african president nelson_mandela passed away r.i.p legend

f✓(s) f✓(sc)

Loss = max(0, 1� f✓(s) + f✓(sc))

Lookup Table D

D*9 (concatenation)

Linear

Tanh

Linear

former south african president goal passed away r.i.p legend

(b) Deep Neural Network Architecture

Figure 1: Illustration of obtaining distributed representations of words using two different approaches.
An entire tweet can be captured with sufficient context. For Figure 1(b), θ denotes the parameters of the
neural network while s and sc denote the correct and corrupt windows, respectively.

in the recent past have made it possible to obtain
such representations for large vocabularies.

Distributed representations can be induced for a
given vocabulary V in several ways. While they
are typically induced in the context of a deep neu-
ral network framework for a given task (Bengio
et al., 2003; Collobert and Weston, 2008; Bengio
et al., 2009; Turian et al., 2010; Mikolov et al.,
2010), recent work in (Mikolov et al., 2013) has
also shown that they can also be induced by using
simple log-linear models.

Figure 1 shows two different architectures for
inducing distributed representations. On the left
side, the architecture for the “continuous bag-of-
words” model (Mikolov et al., 2013) is shown
while the deep learning architecture for induc-
ing distributed representations in language mod-
els (Collobert and Weston, 2008) is shown on the
right. Both these frameworks essentially perform
a similar function in that the word representations
are created based on contextual similarity. Since,
the average sentence length for text media such
as Twitter messages, SMS messages, Facebook
posts, etc., is between 12-16 words, inducing dis-
tributed representations over similar length win-
dows can capture the semantic similarity between
the words in a message. In the next section, we
demonstrate how this property can be exploited to
perform topic modeling for short messages.

4 Gaussian Mixture Topic Model

We use a log-linear model for inducing the
distributed representations using the continuous-
bag-of-words architecture proposed in (Mikolov
et al., 2013). The continuous-bag-of-words
model is similar to the neural network language
model (Bengio et al., 2003) with the non-linear
layer replaced by a sum pooling layer, i.e., the
model uses a bag of surrounding words to pre-
dict the center word. Since the implementation
of this architecture was readily available through
the word2vec tool2, we used it for inducing the
representations. We used hierarchical sampling
for reducing the vocabulary during training and
used a minimum count of 5 occurrences for each
word. One can also use a deep neural network ap-
proach (Collobert and Weston, 2008) for inducing
the representations. However, the training of these
networks is extremely time consuming and we de-
cided to use the simple log-linear model in this
work. The framework presented here can work
with distributed representations obtained with any
methodology (latent semantic indexing, log-linear
models, feedforward neural networks, convolu-
tional neural networks, recurrent neural networks,
etc.).

We use the continuous-bag-of-words

2https://code.google.com/p/word2vec/

194



−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

automobilechrysler mercedes;benz

autozoneenginetire

dashboard

oil
diesel

silencer
politics

democrats
republicansobama

health

taxes

guns
foreign

ukraine
congress

mandela

nelson

madiba
africa

apartheid

rights

violationpresident

pistorius

condolence

loss

pregnancy

enfamiltwins
expecting

stroller
kids

ache

hormone

medicine

pacifier

Figure 2: Illustration of fitting a Gaussian mixture model to distributed representations. The dimension
of the distributed representations was reduced from 100 to 2 using principal component analysis and 4
GMM components were used.

model (Mikolov et al., 2013) to process all
windows of length wlen in a corpus and output
a D-dimensional vector di for each word wi
in the vocabulary V . wlen in our work is an
odd number, i.e., wlen = 11 implies a left and
right context of 5 words. Once we obtain the
set of word embeddings wi 7→ di, ∀i ∈ V ,
we use a Gaussian mixture model (GMM) to
learn a parametric model for the distributed
representations. Our idea is inspired from the
use of bottleneck features obtained using neural
networks for training HMM-based speech recog-
nition systems (Grezl and Fousek, 2008). Our
conjecture is that the Gaussian mixture model
can learn the latent topics by clustering over the
distributed representations that are already trained
with a semantic similarity objective (positional
and contextual similarity). The distributed repre-
sentations for the vocabulary V can be represented
as an V × D matrix where each row represents
a word wi in the vocabulary. If we choose to
model this data with K Gaussian components,
we need to estimate µk,Σk, p(k|wi)∀k ∈ K,
wi ∈ V , namely the means, covariances and
mixture weights. We denote the parameters for
the kth component by θk. We can use the standard
Expectation-Maximization (EM) algorithm for
Gaussian mixture models to estimate the param-
eters3 (Hastie et al., 2001). The EM algorithm
was initialized with k-means clustering. We use
diagonal covariance matrix approximation in this

3The computation can be parallelized by chunking the
V ×D matrix, computing sufficient statistics over the chunks
and finally accumulating the statistics.

work, i.e., Σk,∀k ∈ K are diagonal.
Given a new sentence s′ = {w′1, · · · , w′N}, we

can perform decoding in the following way to as-
sign the sentence to a particular topic k or a col-
lection of topics since one can obtain the posterior
distribution over the topics for each sentence.

k∗ = arg max
θk

p(k|w′1, · · · , w′N ) (1)

= arg max
θk

p(w′1, · · · , w′N |k)p(k) (2)

k∗ = arg max
θk

p(k)
N∏
i=1

p(w′i|k) (3)

where p(k) and p(w′i|k) are obtained from the
Gaussian mixture model. The notion of latent top-
ics in this model is represented by the K compo-
nents of the GMM. Figure 2 shows an example
of fitting a GMM to distributed representation of
words.

The key difference between our approach and
previous approaches to topic modeling is that we
start with a dense vector representation for each
word in place of a multinomial distribution that
is typically learned as part of the topic modeling
framework. Second, we do not use the notion of a
document since the distributed representations are
learned over windows over the entire corpus.

5 Data

We acquired a 10% random sample of Twitter fire-
hose data for 2 weeks across all languages. As a
first step, we filtered the tweets by language code.
Since the language code is a property set in the
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Language
en es fr pt ru

Corpus #voc #sents #voc #sents #voc #sents #voc #sents #voc #sents
Twitter 8371078 178770137 5820863 74784082 1697619 14383118 1816744 22031792 2410668 16025128

Table 1: Statistics of the data used to induce distributed representation in each language. en: English,
es: Spanish, fr: French, pt: Portuguese. #voc stands for the vocabulary and #sents denotes number of
sentences.

user profile, the language code does not guarantee
that all tweets are in the same language. We used
a simple frequency threshold for language iden-
tification based on language specific word lists
obtained from Wikitionary4. Subsequently, we
performed some basic clean-up such as replacing
usernames, hashtags, web addresses and numerals
with generic symbols such as user , hashtags ,
url and number . Finally, we removed all punc-

tuations from the strings and lowercased the text.
In this work, we perform our experiments on En-
glish, Spanish, French, Portuguese and Russian.

We also formed a stop word list to eliminate ex-
tremely common as well as rare words from our
topic models. For English, the stop word list com-
prised of words with frequency greater than 5 mil-
lion or less than 5 in the training data. For Spanish,
French, Portuguese and Russian, the stop list com-
prised of words with frequency greater than 25000
or less than 5 in the respective training data.

6 Experiments

First, we randomly replaced low frequency words
(less than 4 occurrences) with an UNK token
to keep the vocabulary open and subsequently
used the stop word list to filter the training data.
Distributed representations using the continuous-
bag-of-words log-linear model was used to obtain
wi 7→ di, ∀i ∈ V in each language. We exper-
imented with different dimensions of distributed
representations as well as mixture components.
Figure 3 shows some topics learned by the model
and the terms that comprise the topics for a model
learned with D=100 and K=200 on English Twit-
ter data. The terms are ranked by probability.

Unsupervised topic modeling schemes are in-
herently difficult to evaluate quantitatively. Per-
plexity of trained models on a held-out set is
typically used to objectively evaluate topic mod-
els (Blei et al., 2003). However, our scheme does
not model the generation process of short text doc-
uments. Hence, we use a variety of subjective and

4http://en.wiktionary.org/wiki/Wiktionary:Frequency lists

objective topic coherence measures to evaluate our
framework. We also present a comparison with a
state-of-the-art technique for modeling short texts,
namely, biterm topic model (BTM) (Yan et al.,
2013).

We perform unsupervised topic modeling ex-
periments on the phrasified English Twitter cor-
pus using three schemes. We use LDA as a base-
line and treat each tweet as an independent doc-
ument without any aggregation. We also use the
BTM topic model that has been proven to be a
suitable fit for short texts. For LDA, we used the
open-source implementation GibbsLDA++5 and
for BTM, we used the implementation associated
with (Yan et al., 2013). 6. All three schemes used
identical data. We set the parameters α = 0.05
and β = 0.01 for LDA and α = 50

K and β = 0.01
for BTM. The parameters for LDA and BTM were
optimized on held-out set with line search using
topic coherence metric described in Eq 4. We
performed training using our framework for vary-
ing window lengths (wlen), vector space dimen-
sion (D) and number of clusters (K). Specifically,
we trained GMMs with the following parameters,
wlen = {11, 13, 15, 17}, D = {50, 100} and
K = {50, 100, 200}.

First, we manually inspected the topics ob-
tained by our unsupervised distributed representa-
tion framework. A sample of the topics is shown in
Figure 3. Manual inspection of many of the topic
clusters (top ranked words in each cluster) indi-
cated promising results 7. As a subsequent step,
we asked three professional speech transcribers
(also NLP annotators) to subjectively rate the util-
ity of each topic (by displaying the top 50 words)
on a 1-3 Likert scale. A rating of 1 indicates com-
pletely useless topic cluster while 3 indicates use-
ful topic cluster. Useful was defined as a collection

5http://gibbslda.sourceforge.net
6http://code.google.com/p/btm/
7The topic clusters for all languages can be obtained

from https://github.com/annontopicmodel/
unsupervised_topic_modeling/. We are not able
to share the sentence clusters due to Twitter’s data policy.
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Figure 3: Terms with the highest probability for sample latent topics over the entire English Twitter
corpus. The topics were obtained by using wlen = 15, D=100 and K=200.

Context K Fleiss’ κ Mean rating Median rating
50 0.89 2.2 ± 0.78 2

wlen = 11 100 0.81 2.11 ± 0.79 2
200 0.82 2.15 ± 0.85 2
50 0.70 2.24 ± 0.77 2

wlen = 15 100 0.80 2.17 ± 0.88 2.5
200 0.78 2.11 ± 0.89 2.5
50 0.79 2.18 ± 0.82 2

wlen = 17 100 0.68 2.3 ± 0.89 3
200 0.54 2.18 ± 0.87 2

LDA 100 0.80 1.97 ± 1.01 2
BTM 100 0.78 1.84 ± 1.15 2

Table 2: Subjective evaluation of topic coherence across three annotators (D = 50)

of terms that indicated some meaningful semantic
property (e.g., movie names, politics, headlines,
superlatives, sad emoticons/words, etc.) that could
be used for a categorization task. In cases of am-
biguity, we asked the labelers to confer a rating of
2.

We computed the inter annotator agreement be-
tween the three labelers using Fleiss’ kappa met-
ric (Fleiss, 1971). The results are presented in Ta-
ble 2. The inter-annotator agreement is quite high
for the topic clusters induced with context win-
dows wlen of 11 and 15 words. The agreement is
lower for model trained with longer context win-
dow perhaps indicating that a window of length
11 or 15 words is sufficient for tweets. The mean
ratings are mostly higher than 2 and the median
rating for wlen = 15,K = {50, 100} are above
2. The subjective ratings are significantly better
than LDA and BTM. Hence, subjective evaluation
of topics learned using our framework are of con-
sistently high quality.

In order to objectively measure the quality of

topics, we also used coherence score (Mimno et
al., 2011). Given a topic z and a set of top
N words (ranked by likelihood) in z, Sz =
{wz1, · · · , wzN}, the coherence score is defined as:

C(z;Sz) =
N∑
n=2

n−1∑
l=1

log
D(wzn, w

z
l ) + 1

D(wzl )
(4)

where D(w) is the document frequency of word
w and D(w′, w) is the co-document frequency of
words w and w′. The coherence score was then
averaged across all topics to obtain the mean co-
herence score for each scheme, i.e., we computed
1
K

∑K
k=1C(zk;Szk). A high coherence score in-

dicates a good topic cluster. Figure 4 shows the
average topic coherence score over top N words
across varying wlen by fixing D = 50 and
K = 50. The topic clusters are more coherent
for wlen = 11 at lower values of N but for higher
values of N , the model with wlen = 13 performs
better. Since our vector space GMM model learns
topic distributions across the entire corpus, many
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clusters have a large number of terms with high
likelihoods. As a result, it is more appropriate to
choose a model with high topic coherence for large
values of N .
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Figure 4: Topic coherence versus top N words in
each topic for different values of wlen

Next, we analyze the effect of dimension of the
vector space model on the topic modeling frame-
work. Figure 5 plots the average topic coherence
for varying D. We find that for D = 100, the
model with lower K achieves better topic coher-
ence. In contrast, for D = 50, the model with
K = 200 is objectively better than the models
with K = {50, 100}. In the former case, the num-
ber of topics is smaller and hence a higher dimen-
sion is separating the vectors in a better fashion
while in the latter case, the increased number of
topics achieves better separation even with smaller
dimension vectors. One can balance the choice of
K and D based on the size of data and desired
clusters to be learned.
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Figure 5: Topic coherence versus top N words in
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In Figure 6, we plot the topic coherence score
for different cluster sizes. The plot shows that for
a givenN , the best coherence score is obtained for
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Figure 6: Topic coherence versus top N words in
each topic for different values of K

wlen = 15, D = 50,K = 200. In general for a
large dataset with millions of tweets, K = 200 re-
sults in better clustering since there are many top-
ics in the data. The model with wlen = 15 is
interesting since the context window is about the
same as the average length of a tweet. The topic
coherence scores for D = 100,K = 200 were
consistently lower than that of the above presented
results. It may again be due to the balance needed
in the separation of topics due to vector space di-
mension versus the total number of GMM compo-
nents. Finally, Figure 7 plots the topic coherence
score for our approach, BTM and LDA. The re-
sults clearly indicate that our framework performs
extremely well on short texts. While previous re-
sults using the BTM approach was only performed
on a few million tweets, our experiments are per-
formed on 178M tweets for English. The perfor-
mance of LDA and BTM are very similar while
our approach achieves significantly higher topic
coherence scores. Finally, Figure 8 shows the
topic coherence for Spanish, French, Portuguese
and Russian. Our proposed scheme clearly out-
performs LDA on large collections of short texts
across languages.

7 Discussion

Conventional topic modeling schemes such as
pLSA and LDA need to make modifications when
applied on short texts and messages through ag-
gregation strategies. We are not confounded with
such a problem since our framework works on
large amounts of raw short texts without the need
for any aggregation strategy. For media such as
Twitter, Facebook or SMS, aggregation over users
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or location is not a good strategy since the interests
of users is diverse and can change quickly. Besides
such information is not available for news titles,
image captions, etc. Our conjecture is that even
for longer documents (emails, news pages, etc.),
applying our scheme at the sentence level can be
used to accrue topics over the document. The bot-
tleneck is mainly due to the span of windows that
one can use to learn reliable distributed represen-
tations of words.

We used a log-linear model for learning dis-
tributed representations of words in this work.
However, our scheme can work with distributed
representations obtained by neural networks or la-
tent semantic indexing. The key requirement for
distributed representations to work with our GMM
framework is that they need to represent good par-
titioning of semantic concepts in the vector space

RD, where D is the dimensionality of the vector
space.

The GMM estimation in this work was simpli-
fied due to the assumption of diagonal covariance
matrices for the components. We conjecture that
the performance can be further improved with full
covariance matrices at the cost of computational
overhead involved in the Cholesky decomposition.
However, the diagonal covariance assumption im-
proves training time as the GMM parameter esti-
mation can be parallelized.

For short texts, the likelihood of a message con-
taining more than 2 or 3 topics is quite low. The
decoding scheme presented in this work can ob-
tain a complete posterior distribution over all top-
ics (GMM components) for each message. How-
ever, we found that the a large proportion of mes-
sages (over 80%) contained only one topic, i.e.,
the posterior distribution peaks for a particular
GMM component. Our scheme can potentially be
used for a variety of monitoring tasks such as de-
tection of offensive posts, removal of adult con-
tent, advertisement detection, targeted advertising
(retail, entertainment, sports), sentiment classifi-
cation, etc., since such posts are all clustered to-
gether.

8 Conclusion

We presented a novel unsupervised topic model-
ing framework for short texts that uses distributed
representations of words and phrases. Our frame-
work models the low-dimensional semantic vector
space represented by the dense word vectors us-
ing Gaussian mixture models. By learning repre-
sentations over sufficiently long context windows,
we find that one can learn robust word embed-
dings that can be exploited to learn the semantics
of entire short messages. The work presented here
was inspired by the use of bottleneck features in
HMM-based speech recognition and one can po-
tentially use all the optimization techniques used
to estimate GMMs over large datasets (thousands
of hours of speech) for modeling large amounts
of text. Our experimental results indicate that our
scheme can reliably learn latent topics and can be
used to categorize short messages with high fi-
delity in comparison with LDA and biterm topic
model. Our scheme is language agnostic and we
demonstrated the utility of our scheme in English,
Spanish, French, Portuguese and Russian tweets.
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Abstract

Only very few users disclose their physical lo-
cations, which may be valuable and useful in
applications such as marketing and security
monitoring; in order to automatically detect
their locations, many approaches have been
proposed using various types of information,
including the tweets posted by the users. It is
not easy to infer the original locations from
textual data, because text tends to be noisy,
particularly in social media. Recently, deep
learning techniques have been shown to re-
duce the error rate of many machine learning
tasks, due to their ability to learn meaning-
ful representations of input data. We investi-
gate the potential of building a deep-learning
architecture to infer the location of Twitter
users based merely on their tweets. We find
that stacked denoising auto-encoders are well
suited for this task, with results comparable to
state-of-the-art models.

1 Introduction

Many real-world applications require the knowledge
of the actual locations of users. For example, on-
line advertisers would like to target potential buyers
in particular regions. There are easy ways to ob-
tain user locations, for example, social media ser-
vice providers allow users to provide their locations,
mostly through GPS locating or by manual specifi-
cation. However, only a small proportion of users
actually provide location information. The propor-
tion of users who specify their locations in their pro-
files is reported to be 14.3% by Abrol et al. (2012);

self-reported locations also tend to be unreliable be-
cause users can practically type anything they want,
such as In your backyard or Wonderland. When it
comes to per-tweet GPS tagging, only 1.2% of all
users use this functionality (Dredze et al., 2013).
In view of such extreme sparsity, researchers have
developed various ways of inferring users’ loca-
tions using information such as interactions between
users, locations declared by users in their social me-
dia profiles, users’ time zones, the text they generate,
etc. The relation between geographical location and
language has been studied since the 19th century as
a sub-field of sociolinguistics known as dialectology
(Petyt, 1980; Chambers, 1998).

In this work, our concern is how to estimate users’
locations from the textual data that they generate on
social media, and in particular to infer Twitter users’
location using the messages they post on their Twit-
ter accounts. For each user, we put together all the
tweets written by that user, in order to predict his/her
physical location. We focus on predicting users’ lo-
cations with a deep learning architecture built with
denoising auto-encoders proposed first by Vincent
et al. (2008), since this approach was not yet applied
to this task. The contribution of our work consists
in designing models for solving the task and in find-
ing the right parameter values to make the proposed
models achieve good results. The first model pre-
dicts the U.S. region where the user is located and
his/her U.S. state, while the second model predicts
the longitude and latitude of the user’s location.
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2 Related Work

2.1 Location Prediction Using Twitter Data
Many methods have been proposed to predict users’
locations based on social network structure (Back-
strom et al., 2010), (Jurgens, 2013), (Rout et al.,
2013). Here we focus on the methods that predict
users’ locations based on the social media texts they
generate. One of the very first is by Cheng et al.
(2010), who first learned the location distribution
for each word, then inferred the location of users at
U.S. city level according to the words in their tweets.
Specifically, they estimated the posterior probability
of a user being from a city c given his/her tweets t
by computing:

P(c|t) = ∏
w∈t

P(c|w)×P(w) (1)

where w is a word contained in this user’s tweets.
To improve the initial results, they also used sev-
eral smoothing techniques such as Laplace smooth-
ing and so-called data-driven geographic smooth-
ing and model-based smoothing. Their best model
managed to make accurate predictions (less than
100 miles away from the actual location) 51% of
the time, and the average error distance is 535.564
miles. It is worth noting that the size of the dataset
in their work is large, containing 4,124,960 tweets
from 130,689 users.

Eisenstein et al. (2010) adopted a topic model ap-
proach. They treated tweets as documents gener-
ated by two latent variables, i.e., topic and region,
and train a system they call geographic topic model,
which could predict authors’ locations based on text
alone. Like Cheng et al. (2010), their model also re-
lied on learning regional word distributions. The av-
erage distance from the model’s prediction to the ac-
tual location is 900 kilometres. By comparison, their
dataset is much smaller, containing 380,000 tweets
from 9,500 users. This dataset is made available and
has been used by a number of works.

Roller et al. (2012) used a variant of K-Nearest
Neighbours (kNN); they divided the geographic sur-
face of the Earth into grids and then constructed
a pseudo-document for each grid; a location for a
test document was chosen based on the most sim-
ilar pseudo-document. Another type of model is a
variant of Gaussian mixture models (GMMs) pro-
posed by Priedhorsky et al. (2014). Their approach

resembles that of Cheng et al. (2010) in constructing
location-sensitive n-grams; besides tweets, they also
used information such as users’ self-reported loca-
tions and time zones for prediction.

2.2 Deep Neural Networks

In this section, we present the artificial neural net-
work architectures that will appear in the subsequent
sections.

2.2.1 Feedforward Artificial Neural Networks
A feedforward neural network usually has an in-

put layer and an output layer. If the input layer is
directly connected to the output layer, such a model
is called a single-layer perceptron. A more pow-
erful model has several layers between the input
layer and the output layer; these intermediate lay-
ers are called hidden layers; this type of model is
known as a multi-layer perceptron (MLP). In a per-
ceptron, neurons are interconnected, i.e., each neu-
ron is connected to all neurons in the subsequent
layer. Neurons are also associated with activation
functions, which transform the output of each neu-
ron; the transformed outputs are the inputs of the
subsequent layer. Typical choices of activation func-
tions include the identity function, defined as y = x;
the hyperbolic tangent, defined as y = ex−e−x

ex+e−x and the
logistic sigmoid, defined as y = 1

1+e−x . To train a
MLP, the most commonly used technique is back-
propagation (Rumelhart et al., 1985). Specifically,
the errors in the output layer are back-propagated to
preceding layers and are used to update the weights
of each layer.

2.2.2 Deep Neural Network Architecture
An artificial neural network (ANN) with multiple

hidden layers, also called a Deep Neural Network
(DNN), try to mimic the deep architecture of the
brain and it is believed to perform better than shal-
low architectures such as logistic regression mod-
els and ANNs without hidden units. The effective
training of DNNs is, however, not achieved until the
work of Hinton et al. (2006) and Bengio and Lam-
blin (2007). In both cases, a procedure called un-
supervised pre-training is carried out before the fi-
nal supervised fine-tuning. The pre-training signif-
icantly decreases error rates of Deep Neural Net-
works on a number of ML tasks such as object
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recognition and speech recognition.
The details of DNN’s are beyond the scope of this

paper; interested readers can refer to the work of
Hinton et al. (2006), Bengio and Lamblin (2007),
Vincent et al. (2008) and the introduction by Bengio
et al. (2013).

2.3 Deep Neural Networks Applied to NLP
Data representation is important for machine learn-
ing (Domingos, 2012). Many statistical NLP tasks
use hand-crafted features to represent language units
such as words and documents; these features are
fed as the input to machine learning models. One
such example is emotion or sentiment classification
which uses external lexicons that contain words with
emotion or sentiment prior polarities (Ghazi et al.,
2014; Aman and Szpakowicz, 2008; Melville et al.,
2009; Li et al., 2009). Despite the usefulness of
these hand-crafted features, designing them is time-
consuming and requires expertise.

A number of researchers have implemented
DNNs in the NLP domain, achieving state-of-the-art
performance without having to manually design any
features. The most relevant to ours is the work of
Glorot et al. (2011), who developed a deep learning
architecture that consists of stacked denoising auto-
encoders (SDA) and apply it to sentiment classifi-
cation of Amazon reviews. Their stacked denois-
ing auto-encoders can capture meaningful represen-
tations from reviews and outperform state-of-the-
art methods; due to the unsupervised nature of the
pre-training step, this method also performs domain
adaptation well.

In the social media domain, Tang et al. (2013)
extracted representations from Microblog text data
with Deep Belief Networks (DBNs) and used the
learned representations for emotion classification,
outperforming representations based on Principal
Component Analysis and on Latent Dirichlet Allo-
cation.

Huang and Yates (2010) showed that representa-
tion learning also helps domain adaptation of part-
of-speech tagging, which is challenging because
POS taggers trained on one domain have a hard time
dealing with unseen words in another domain. They
first learned a representation for each word, then fed
the learned word-level representations to the POS
tagger; when applied to out-of-domain text, it can

reduce the error by 29%.

3 Methods

3.1 Datasets

In order to compare the performance of our sys-
tem with that of other systems, we choose a pub-
licly available dataset from Eisenstein et al. (2010)
1, which has been used by several other researchers.
It includes about 380,000 tweets from 9,500 users
from the contiguous United States (i.e., the U.S. ex-
cluding Hawaii, Alaska and all off-shore territories).
The dataset also provides geographical coordinates
of each user. A similar but much larger dataset
that we use is from Roller et al. (2012) 2; it con-
tains 38 million tweets from 449,694 users, all from
North America. We regard each user’s set of tweets
as a training example (labelled with location), i.e.,
(x(i),y(i)) where x(i) represent all the tweets from the
i-th user and y(i) is the location of the i-th user. Meta-
data like user’s profile and time zone will not be used
in our work.

3.2 Our Models

We define our work as follows: first, a classification
task puts each user into one geographical region (see
Section 4 for details); next, a regression task predicts
the most likely location of each user in terms of ge-
ographical coordinates, i.e., a pair of real numbers
for latitude and longitude. We present one model for
each task.

3.2.1 Model 1
The first model consists of three layers of de-

noising auto-encoders. Each code layer of denois-
ing auto-encoders also serves as a hidden layer of a
multiple-layer feedforward neural network. In addi-
tion, the top code layer works as the input layer of
a logistic regression model whose output layer is a
softmax layer.

Softmax Function The softmax function is de-
fined as:

so f tmaxi(z) =
ezi

∑J
j=1 ez j

(2)

1http://www.ark.cs.cmu.edu/GeoTwitter
2https://github.com/utcompling/

textgrounder/wiki/RollerEtAl_EMNLP2012
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where the numerator zi is the ith possible input to the
softmax function and the denominator is the sum-
mation over all possible inputs. The softmax func-
tion produces a normalized probability distribution
over all possible output labels. This property makes
it suitable for multiclass classification tasks. Con-
sequently, a softmax layer has the same number of
neurons as the number of possible output labels; the
value of each neuron can be interpreted as the prob-
ability the corresponding label given the input. Usu-
ally, the label with the highest probability is returned
as the prediction made by the model.

In our model, mathematically, the probability of a
label i given the input and the weights is:

P(Y = i|xN ,W (N+1),b(N+1))

= so f tmaxi(W (N+1)xN +b(N+1))

=
eW (N+1)

i xN+b(N+1)
i

∑ j eW (N+1)
j xN+b(N+1)

j

(3)

where W (N+1) is the weight matrix of the logistic
regression layer and b(N+1) are its biases. N is the
number of hidden layers, in our case N = 3. xN is
the output of the code layer of the denoising auto-
encoder on top. To calculate the output of i-th hid-
den layer (i = 1 . . . N), we have:

xi = s(W (i)xi−1 +b(i)) (4)

where s is the activation function, W (i) and b(i) corre-
spond to the weight matrix and biases of the i-th hid-
den layer. x0 is the raw input generated from text3,
as specified in section 4. We return the label that
maximizes Equation (3) as the prediction, i.e.:

ipredict = argmax
i

P(Y = i|xN ,W (N+1),b(N+1)) (5)

We denote this model as SDA-1.

3.2.2 Model 2
In the second model, a multivariate linear regres-

sion layer replaces a logistic regression layer on
top. This produces two real numbers as output,
which can be interpreted as geographical coordi-
nates. Therefore the output corresponds to locations

3Explained in Section 3.3
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Figure 1: Illustration of the two proposed models
SDA-1 and SDA-2.

on the surface of Earth. Specifically, the output of
model 2 is:

yi = W (N+1)
i xN +b(N+1)

i (6)

where i ∈ {1,2}, W (N+1) is the weight matrix of the
linear regression layer and b(N+1) are its biases, xN

is the output of the code layer of the denoising auto-
encoder on top. The output of i-th hidden layer (i =
1 . . . N) is computed using Equation (4), which is the
same as Model 1. The tuple (y1,y2) is then the pair
of geographical coordinates produced by the model.
We denote this model as SDA-2. Figure 1 shows the
architecture of both models. They have with three
hidden layers. The models differ only in the out-
put layers. The neurons are fully interconnected. A
layer and its reconstruction and the next layer to-
gether correspond to a denoising auto-encoder. For
simplicity, we do not include the corrupted layers in
the diagram. Note that models SDA-1 and SDA-2
are not trained simultaneously, nor do they share pa-
rameters.

3.3 Input Features

To learn better representations, a basic representa-
tion is required to start with. For text data, a rea-
sonable starting representation is achieved with the
Bag-of-N-grams features (Glorot et al., 2011; Ben-
gio et al., 2013).

The input text of Twitter messages is preprocessed
and transformed into a set of Bag-of-N-grams fre-
quency feature vectors. We did not use binary fea-
ture vectors because we believe the frequency of n-
grams is relevant to the task at hand. For example,
a user who tweets Senators 10 times is more likely
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to be from Ottawa than another user who tweets it
just once. (The latter is more likely to be someone
from Montreal who tweets Senators simply because
the Canadiens happen to be defeated by the Sena-
tors that time.) Due to computational limitations, we
consider only the 5000 most frequent unigrams, bi-
grams and trigrams4. We tokenized the tweets using
the Twokenizer tool from Owoputi et al. (2013).

3.4 Statistical Noises for Denoising
Auto-encoders

An essential component of a DA is its statistical
noise. Following Glorot et al. (2011), the statisti-
cal noise we incorporate for the first layer of DA
is the masking noise, i.e., each active element has
a probability to become inactive. For the remaining
layers, we apply Gaussian noise to each of them, i.e.,
a number independently sampled from the Gaussian
distribution N (0, σ2) is added to each element of
the input vector to get the corrupted input vector.
Note that the Gaussian distribution has a 0 mean.
The standard deviation of the Gaussian distribution
σ decides the degree of corruption; we also use the
term corruption level to refer to σ .

3.5 Loss Functions

3.5.1 Pre-training
In terms of training criteria for unsupervised pre-

training, we use the squared error loss function:

`(x,r) = ||x− r||2 (7)

where x is the original input, r is the reconstruction.
The squared error loss function is a convex func-
tion, so we are guaranteed to find the global opti-
mum once we find the local optimum.

The pre-training is done by layers, i.e., we first
minimize the loss function for the first layer of de-
noising auto-encoder, then the second, then the third.
We define the decoder weight matrix as the transpo-
sition of the encoder weight matrix.

3.5.2 Fine-tuning
In the fine-tuning phase, the training criteria differ

for model 1 and model 2. It is a common practice

4Not all of these 5000 n-grams are necessarily good loca-
tion indicators, we don’t manually distinguish them; a machine
learning model after training should be able to do so.

to use the negative log-likelihood as the loss func-
tion of models that produce a probability distribu-
tion, which is the case for model 1. The equation for
the negative log-likelihood function is:

`(θ = {W,b},(x,y))
=− log(P(Y = y|x,W,b)) (8)

where θ = {W,b} are the parameters of the model,
x is the input and y is the ground truth label. To min-
imize the loss in Equation (8), the conditional prob-
ability P(Y = y|x,W,b) must be maximized, which
means the model must learn to make the correct pre-
diction with the highest confidence possible. Train-
ing a supervised classifier using the negative log-
likelihood loss function can be therefore interpreted
as maximizing the likelihood of the probability dis-
tribution of labels in the training set.

On the other hand, model 2 produces for ev-
ery input a location ŷ( ˆlat, ˆlon), which is associated
with the actual location of this user, denoted by
y(lat, lon). Given latitudes and longitudes of two lo-
cations, their great-circle distance can be computed
by first calculating an intermediate value ∆σ with
the Haversine formula (Sinnott, 1984):

∆σ = arctan
√

(cosφ2 sin∆λ )2 +(cosφ1 sinφ2− sinφ1 cosφ2 cos∆λ )2

sinφ1 sinφ2 + cosφ1 cosφ2 cos∆λ


(9)

Next, calculate the actual distance:

d((φ1,λ1),(φ2,λ2)) = r∆σ (10)

where φ1, λ1 and φ2, λ2 are latitudes and longitudes
of two locations, ∆λ = λ1 − λ2, r is the radius of
the Earth. Because d is a continuously differentiable
function with respect to φ1 and λ1 (if we consider
(φ1, λ1) as the predicted location, then (φ2, λ2) is the
actual location), and minimizing d is exactly what
model 2 is designed to do, we define the loss func-
tion of model 2 as the great-circle distance between
the estimated location and the actual location:

`(θ = {W,b},(x,y))
= d(Wx+b,y) (11)

where θ = {W,b} are the parameters of the model,
x is the input and y is the actual location. 5

5Alternatively, we also tried the loss function defined as the
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Now that we have defined the loss functions
for both models, we can train them with back-
propagation (Rumelhart et al., 1985) and Stochastic
Gradient Descent (SGD).

4 Experiment

4.1 Metrics

We train the stacked denoising auto-encoders to pre-
dict the locations of users based on the tweets they
post. To evaluate SDA-1, we follow Eisenstein et al.
(2010) and define a classification task where each
user is classified as from one of the 48 contiguous
U.S. states or Washington D.C. The process of re-
trieving a human-readable address including street,
city, state and country from a pair of latitude and
longitude is known as reverse geocoding. We use
MapQuest API 6 to reverse geocode coordinates for
each user. We also define a task with only four
classes, the West, Midwest, Northeast and South re-
gions, as per the U.S. Census Bureau.7 The metric
for comparison is the classification accuracy defined
as the proportion of test examples that are correctly
classified. We also implement two baseline models,
namely a Naive Bayes classifier and an SVM clas-
sifier (with the RBF kernel); both of them take ex-
actly the same input as the stacked denoising auto-
encoders.

To evaluate SDA-2, the metric is simply the mean
error distance in kilometres from the actual location
to the predicted location. Note that this is the dis-
tance on the surface of the Earth, also known as the
great-circle distance. See Equations (9)-(10) for its
computation. In Section 5.2, we applied two addi-
tional metrics, which are the median error distance
and the percentage of predictions less than 100 miles
away from the true locations, to comply with previ-
ous work. Similarly, we implement a baseline model
which is simply a multivariate linear regression layer
on top of the input layer. This baseline model is
equivalent to SDA-2 without hidden layers. We de-
note this model as baseline-MLR. After we have ob-

average squared error of output numbers, which is equivalent to
the average Euclidean distance between the estimated location
and the true location; this alternative model did not perform
well.

6http://www.mapquest.com
7http://www.census.gov/geo/maps-data/

maps/pdfs/reference/us_regdiv.pdf

tained the performance of our models, they will be
compared against several existing models from pre-
vious work.

4.2 Early Stopping

We define our loss functions without regularizing the
weights; to prevent overfitting, we adopt the early-
stopping technique (Yao et al., 2007); i.e., training
stops when the model’s performance on the valida-
tion set no longer improves. Specifically, we adopt
the patience approach (Bengio, 2012), which is il-
lustrated in pseudocode:

initialization
patience=20, iteration=1;
while iteration <patience do

update parameters;
if the performance improves then

patience := max(patience, iteration*2);
end
iteration +=1

end
Algorithm 1: Early stopping.

4.3 Splitting the Data

To make the comparisons fair, we split the Eisen-
stein dataset in the same way as Eisenstein et al.
(2010) did, i.e., 60% for training, 20% for validation
and 20% for testing. The Roller dataset was pro-
vided split, i.e., 429,694 users for training, 10,000
users for validation and the rest 10,000 users for test-
ing; this is the split we adopted.

4.4 Tuning Hyper-parameters

One of the drawbacks of DNNs is a large number
of hyper-parameters to specify (Bengio, 2012). The
activation function we adopt is the sigmoid func-
tion y = 1

1+e−x , which is a typical choice as the non-
linear activation function. For the size (the number
of neurons) of each hidden layer, usually a larger
size indicates better performance but higher com-
putational cost. Since we do not have access to
extensive computational power, we set this hyper-
parameter to 5000, which is equal to the size of the
input layer. As for the corruption level, the mask-
ing noise probability for the first layer is 0.3; the
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Gaussian noise standard deviation for other layers
is 0.25. These two values are chosen because they
appear to work well in our experiments based on
the validation dataset. The Mini-batch size chosen
for stochastic gradient descent is 32, which is a rea-
sonable default suggested by Bengio (2012). For
the learning rates, we explore different configura-
tions in the set {0.00001, 0.0001, 0.001, 0.01, 0.1}
for both pre-learning learning rate and fine-tuning
learning rate. Lastly, the pre-training stops after 25
epochs, which usually guarantees the convergence.
Fine-tuning stops after 1000 epochs; because of the
early stopping technique described in Section 4.2,
this number is rarely reached.

4.5 Implementation
Theano (Bergstra et al., 2010) is a scientific com-
puting library written in Python. It is mainly de-
signed for numerical computation. A main feature
of Theano is its symbolic representation of mathe-
matical formulas, which allows it to automatically
differentiate functions. We train our model with
stochastic gradient descent which requires the com-
putation of gradients, either manually or automati-
cally. Since Theano does automatic differentiation,
we no longer have to manually differentiate com-
plex functions like Equation (9). We implemented
SDA-1, SDA-28 and the baseline multivariate linear
regression model with Theano.

Scikit-learn (Pedregosa et al., 2011) is a machine
learning package written in Python. It includes most
standard machine learning algorithms. The two
baseline models compared against SDA-1 (Naive
Bayes and SVM) are implemented using the Scikit-
learn package.

5 Results

5.1 Evaluation on the Eisenstein Dataset
The SDA-1 model yields an accuracy of 61.1% and
34.8%, for region classification and state classifi-
cation, respectively. The results of all models are
shown in Table 1. Among all previous works that
use the same dataset, only Eisenstein et al. (2010)
report the classification accuracy of their models;
to present a comprehensive comparison, all mod-
els from their work, not just the best one, are listed.

8Our code is available at https://github.com/rex911/usrloc

Student’s t-tests suggest that the differences between
SDA-1 and the baseline models are statistically sig-
nificant at a 99% level of confidence9.

It can be seen that our SDA-1 model performs best
in both classification tasks. It is surprising to find
that the shallow architectures that we implemented,
namely SVM and Naive Bayes, perform reasonably
well. They both outperform all models in (Eisen-
stein et al., 2010) in terms of state-wise classifica-
tion. A possible explanation is that the features we
use (frequencies of n-grams with n = 1, 2, 3) are
more indicative than theirs (unigram term frequen-
cies).

Classif. Acc. (%)
Model Region State

(4-way) (49-way)
Geo topic model 58 24

Eisenstein Mixture of unigrams 53 19
et al. Supervised LDA 39 4
(2010) Text regression 41 4

kNN 37 2

Our models
SDA-1 61.1 34.8
Baseline-Naive Bayes 54.8 30.1
Baseline-SVM 56.4 27.5

Table 1: Classification accuracy for SDA-1 and
other models

Table 2 shows the mean error distance for various
models trained on the same dataset. The difference
between SDA-2 and the baseline model is statisti-
cally significant at a level of confidence of 99.9% 10.
Our model has the second best results and performs
better than four models from previous work. In ad-
dition, the fact that SDA-2 outperforms the baseline
model by a large margin shows the advantages of a
deep architecture and its ability to capture meaning-
ful and useful abstractions from input data.

5.2 Evaluation on the Roller Dataset
Table 3 compares the results from various models on
the Roller dataset. The model by Han et al. (2014),
which included extensive feature engineering, out-
performed other models. In addition it achieves the

9We are unable to conduct t-tests on the Eisenstein models,
because of the unavailability of the details of the results pro-
duced by these models.

10We are unable to conduct t-tests on the other models, be-
cause of the unavailability of the details of the results produced
by these models.
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Model Mean Error Distance(km)
Eisenstein et al. (2011) 845

SDA-2 855.9
Priedhorsky et al. (2014) 870

Roller et al. (2012) 897
Eisenstein et al. (2010) 900

Wing and Baldridge (2011) 967
Baseline-MLR 1268

Table 2: Mean error distance of predictions for
SDA-2 and models from previous work.

best results by utilizing about 90% of all 214,000
features; when using the top 3% (6420) features, the
Accuracy was 10% 11. The SDA-2 model, despite
the computational limitation, achieved better results
than that of Roller et al. (2012) using just 5,000 fea-
tures.

Model Mean Median Acc.
error (km) error (km) %

Roller et al. (2012) 860 463 34.6
Han et al. (2014) NA 260 45
Han et al. (2014)

using top 3%
features (6420) NA NA 10

SDA-2 733 377 24.2

Table 3: Results from SDA-2 and the best models
of previous work; NA indicates Not Available

6 Conclusion and Future Work

The experimental results show that our SDA-1
model outperformed other empirical models; our
SDA-2 model’s performance is reasonable. We
demonstrate that a DNN is capable of learning rep-
resentations from raw input data that helps the in-
ference of location of users without having to de-
sign any hand-engineered features. The results also
show that deep learning models have the potential
of being applied to solve real business problems that
require location detection, in addition to their re-
cent success in natural language processing tasks
and to their well-established success in computer vi-
sion and speech recognition.

We should point out the comparisons in Section
5 are approximate because our models use unigram,

11Only this metric was reported by the author in the top 3%
features configuration

bigram and trigrams, while some of the models with
compared with use only unigram; instead, our mod-
els use a smaller number of features, especially com-
pared to the model of Han et al. (2014).

We believe a better model can yet be built. For
example, our exploration for hyper-parameters is by
no means exhaustive, especially for the mini-batch
size and the corruption levels, due to the very high
running time required. It would be interesting to find
out the optimal set of hyper-parameters. More com-
putational capacity also allows the construction of a
more powerful DNN. For example, in our models,
the hidden layers have a size of 5000, which is equal
to the size of input layer; however, a hidden layer
larger than the input layer learns better representa-
tions (Bengio et al., 2013).

The datasets we use does not have a balanced dis-
tribution. Users are densely distributed in the West
Coast and most part of the East, whereas very few
are located in the middle. Such label imbalance has
a negative effect on statistical classifiers, and ad-
versely affects regression models because many tar-
get values will never be sampled.

In future work, we plan to collect a dataset uni-
formly distributed geographically, and the locations
do not have to be limited to the contiguous United
States. Alternatively, one may notice that the distri-
bution of users is similar to that of the U.S. popula-
tion, therefore it is possible to use the U.S. census
data to offset such a skewed distribution of users. It
could also benefit to choose the 5000 features more
carefully, instead of simply selecting the most fre-
quent ones. In addition, the input of our system
consists only of tweets, because we are mostly in-
terested in recovering users’ location from the lan-
guage they produce; however, real applications re-
quire a higher accuracy. To achieve this, we could
also incorporate information such as users’ profiles,
self-declared locations, time zones and interactions
with other users. Another type of stacked denoising
auto-encoder is one that only does unsupervised pre-
training, then the output of the code layer is regarded
as input into other classifiers such as SVM (Glorot
et al., 2011). It would be interesting to compare the
performance of this architecture and that of an SDA
with supervised fine-tuning, with respect to our task.
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