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Abstract

Arbitrary n-ary relations (n ≥ 1) can in principle be realized through binary relations obtained by
a reification process that introduces new individuals to which the additional arguments are linked
via accessor properties. Modern ontologies which employ standards such as RDF and OWL have
mostly obeyed this restriction, but have struggled with it nevertheless. Additional arguments for
representing, e.g., valid time, grading, uncertainty, negation, trust, sentiment, or additional verb roles
(for ditransitive verbs and adjuncts) are often better modeled in relation and information extraction
systems as direct arguments of the relation instance, instead of being hidden in deep structures.
In order to address non-binary relations directly, ontologies must be extended by Cartesian types,
ultimately leading to an extension of the standard entailment rules for RDFS and OWL. In order to
support ontology construction, ontology editors such as Protégé have to be adapted as well.

1 Decription Logics, OWL, and RDF

Relations in description logics (DLs) are either unary (so-called concepts or classes) or binary (roles or
properties) predicates (Baader et al., 2003). As the designers of OWL (Smith et al., 2004; Hitzler et al.,
2012) decided to be compatible with already existing standards, such as RDF (Cyganiak et al., 2014) and
RDFS (Brickley and Guha, 2014), as well as with the universal RDF data object, the triple,

subject predicate object

a unary relation such as C(a) (class membership) becomes a binary relation via the RDF type predicate:
a rdf:type C

For very good reasons (mostly for decidability), DLs usually restrict themselves to decidable function-
free two-variable subsets of first-order predicate logic. Nevertheless, people have argued for relations of
more than two arguments, some of them still retaining decidability and coming up with a better memory
footprint and a better complexity for the various inference tasks than their triple-based relatives (Krieger,
2012). This idea conservatively extends the standard triple-based model towards a more general tuple-
based approach (n+ 1 being the arity of the predicate):

subject predicate object1 . . . objectn
Using a standard relation-oriented notation, we often interchangeably write
p(s, o1, . . . , on)

Here is an example, dealing with diachronic relations (Sider, 2001), relation instances whose object val-
ues might change over time, but whose subject values coincide with each other. For example (quintuple
representation),
peter marriedTo liz 1997 1999 peter marriedTo lisa 2000 2010

or (relation notation)
marriedTo(peter, liz, 1997, 1999) marriedTo(peter, lisa, 2000, 2010)

which we interpret as the (time-dependent) statement that Peter was married to Liz from 1997 until 1999
and to Lisa from 2000–2010.



In a triple-based setting, semantically representing the same information requires a lot more effort. There
already exist several approaches to achieve this (Krieger, 2014), all coming up with at least one brand-
new individual (introduced by a hidden existential quantification), acting as an anchor to which the
object information (the range information of the relation) is bound through additional properties (a kind
of reification). For instance, the so-called N-ary relation encoding (Hayes and Welty, 2006), a W3C
best-practice recommendation, sticks to binary relations/triples and uses a container object to encode the
range information (ppt1 and ppt2 being the new individuals):

peter marriedTo ppt1 peter marriedTo ppt2
ppt1 rdf:type nary:PersonPlusTime ppt2 rdf:type nary:PersonPlusTime
ppt1 nary:value liz ppt2 nary:value lisa
ppt1 nary:starts "1997"ˆˆxsd:gYear ppt2 nary:starts "2000"ˆˆxsd:gYear
ppt1 nary:ends "1999"ˆˆxsd:gYear ppt2 nary:ends "2010"ˆˆxsd:gYear

As we see from this small example, a quintuple is represented by five triples. The relation name is
retained, however, the range of the relation changes from, say, Person to the type of the container object
which we call here PersonPlusTime.

Rewriting ontologies to the latter representation is clearly time consuming, as it requires further classes,
redefines property signatures, and rewrites relation instances, as shown by the marriedTo example. In
addition, reasoning and querying with such representations is extremely complex, expensive, and error-
prone. Unfortunately, the former tuple-based representation which argues for additional (temporal) ar-
guments is not supported by ontology editors today, as it would require to deal with general relations.

2 What this Paper is (Not) About & Related Approaches

We would like to make clear that this paper is not about developing a theory for yet another new DL which
permits n-ary relations. The approach presented here suggests that the concepts of domain and range
of a relation are still useful when extending a binary relation with more arguments, instead of talking
about the arity of a relation in general. We furthermore suggest in Section 6 to introduce so-called extra
arguments which neither belong to the domain nor the range of a relation, and can be seen, as well,
should be used as a kind of relation instance annotation. In the course of the paper, we also indicate that
most of the entailment rules for RDFS (Hayes, 2004) and OWL Horst/OWL 2 RL (ter Horst, 2005; Motik
et al., 2012) can be extended by Cartesian types and n-ary relations, and present an incomplete set of
rules in Figure 1. Our approach takes a liberal stance in that it neither ask for the “nature” or “use” of the
arguments (e.g., whether they are time points), nor for a (sound, complete, terminating, . . .) set of tableau
or entailment rules. In fact, if we would take this into account, we would end up in a potentially infinite
number of different sets of rules, some of them requiring additional (lightweight) tests and actions, going
beyond simple symbol matching; see (Krieger, 2012) for such a set of rules that model valid time, turning
binary relations into quaternary ones. For various reasons, we propose a general restriction on the use of
Cartesian types in Section 5, viz., to avoid typing individuals with Cartesian types and to maintain still
singleton typing. The practical accomplishment of this paper lies in an extension of the Protégé editor for
Cartesian types and n-ary relations that should be complemented by application-independent, but also
domain-specific rules for a given application domain (e.g., to address valid time).

Since the early days of KL-ONE, DLs supporting relations with more than two arguments have been
discussed, e.g., NARY[KANDOR] (Schmolze, 1989), CIFR (De Giacomo and Lenzerini, 1994), DLR
(Calvanese et al., 1997), or GF1− (Lutz et al., 1999). Especially Schmolze (1989) argued that “the ad-
vantages for allowing direct representation of n-ary relations far outweigh the reasons for the restriction”
(i.e., restricting n ≤ 2). To the best of our knowledge and with the exception of NARY[KANDOR], these
DL languages have still remained theoretical work. In (Krieger, 2013), we presented an implemented
theory-agnostic forward chainer, called HFC , which is comparable to popular semantic repositories such
as Jena or OWLIM and which supports arbitrary n-tuples. The engine is able to run non-builtin en-
tailment rule sets à la OWL Horst/OWL 2 RL and comes with a conservative extension of these OWL



dialects for valid time (Krieger, 2012). Further rule regimes are possible as long as they are expressible in
HFC ’s rule language which permits standard symbol matching, additional LHS tests, and RHS actions.

3 Extending Ontologies through Cartesian Types

Modern ontologies make use of standards, defined and coordinated by the W3C, such as XSD, RDF,
RDFS, or OWL. OWL, as an instance of the description logic family, describes a domain in terms of
classes (concepts), binary properties (roles), and instances (individuals). Complex expressions, so-called
axioms, are defined via concept-forming operators (viz., subsumption and equivalence). The entirety
of all such axioms which can be separated into those dealing with terminological knowledge (TBox),
relational knowledge (RBox), and assertional knowledge (ABox), is usually called an ontology today.
Ontology editors which are geared towards RDF and OWL are thus not able to define n-ary relations
directly in the RBox, nor are they capable of stating arbitrary tuples (instances of n-ary relations) in the
ABox (together with Cartesian types in the TBox; see below). This would require an extension of the
triple data model, or equivalently, allowing for n-ary relations (n > 2).
Formally, the extension of a binary relation p, can be seen as a (potentially infinite) set of pairs (s, o),
coming from the Cartesian product of its domain D and range R: p ⊆ D × R. We then often say that a
relation p is defined on D, say, the marriedTo relation is defined on Person.
Now, in order to allow for more than two arguments, we decompose R, leading to p ⊆ D×R1×· · ·×Rn.
Note that we still make a distinction between domain D and range R = R1 × · · · ×Rn, and still say that
p is defined on D. Coming back to the previous section and the quaternary marriedTo relation, we can
say that

marriedTo ⊆ Person× Person× Year × Year
For reasons that will become clear in a moment, not only the range but also the domain of a relation can,
in principle, be deconstructed: p ⊆ (D1 × · · · × Dm) × (R1 × · · · × Rn). When it is clear from the
context, we often omit the parentheses and simply write p ⊆ D1 × · · · ×Dm ×R1 × · · · ×Rn. We then
say that the domain of p is D1 × · · ·Dm and the range is R1 × · · · ×Rn, thus p becomes an (m+ n)-ary
relation. Again, we say that p is defined on D1 × · · ·Dm.
Graphically, such an extension is easy write down. Let us start, again, with binary relations and let
us picture the resulting graph for the following set {p(a, b), q(b, c), q(b, d), r(b, e)} of binary relation
instances by using directed labeled edges:

c
q↗

a
p−→ b

q−→ d
r↘

e
Ontology editors such as Protégé (Horridge, 2004) essentially use such a representation: properties are
defined on certain classes and ontology or ABox) population reduces to filling missing range arguments
for specific instances.
But how do we depict the following set of relation instances

{r((a, b, c), (d)), p((a, b, c), (a, x)), q((a, x), (y, z)}
of arity 4 and 5, resp? Quite easy, simply by replacing individuals (= singles) in domain and range
position through general tuples:

(d)
r←− (a, b, c)

p−→ (a, x)
q−→ (y, z)

The “problem” with this kind of graph representation is that we are still using a kind of container (denoted
by the parentheses) which groups both domain elements Di (1 ≤ i ≤ m) and range elements Rj (1 ≤
j ≤ n). But this is something we want to avoid as explicated before (recall the N-ary relation encoding
example from Section 1).
The answer to all this is already laying before us and has already been introduced, viz., Cartesian types
(remember the ×iDi and ×j Rj notation). This, however, will require to extend the descriptive expres-
siveness of the TBox, RBox, and ABox of an ontology.



4 Cartesian Types in TBox, RBox, and ABox

Protégé (and other ontology editors such as TopBraid) displays the class subsumption hierarchy using
indentation, e.g.,

O Entity

O Object

O Agent

. Group

O Person

. Man

. Woman

These concepts can be seen as singles (or singletons), representing a Cartesian product of only one
element. Thus the class Person can be seen as the tuple (Person), consisting of one tuple element.
Similarly, when considering the marriedTo relation, we might view the range type as the Cartesian type
(Person,Year,Year). Clearly, neither does (Person) subsume (Person,Year,Year), nor does
the opposite case hold—they are incompatible, for which we write

(Person) ./ (Person, Year, Year)

However, the following subsumption relations do hold, given the above type hierarchy:
(Man, Year, Year) v (Person, Year, Year)

(Woman, Year, Year) v (Person, Year, Year)
(Person, Year, Year) v (Agent, Year, Year)
(Group, Year, Year) v (Agent, Year, Year)

Now let C denote the set of concepts, R denote the set of all relations, and I denote the set of all
instances. Quite naturally, the subsumption relation for concepts v⊆ C × C can be easily extended to
Cartesian types:

×m
i=1Ci v ×n

j=1Di iff m = n and Ci v Di, for all i ∈ {1, . . . ,m}

Given such an extension, many of the standard entailment rules from (Hayes, 2004) and (ter Horst, 2005)
can be easily adjusted, but also two new rules, called (ctsub) and (ctequiv), need to be introduced which
propagate Cartesian type subsumption and equivalence down to their component classes (see Figure 1
for a representative, non-complete set of extended rules).

5 A Restriction on the Use of Cartesian Types

The extension introduced so far would even allow us to type individuals a ∈ I with any Cartesian type
×m

i=1Ci (m ≥ 1) for which we might then write ×m
i=1Ci(a). This would make it possible to naturally

extend, e.g., the universal instantiation schema (rdfs9) from Hayes (2004) with Cartesian types, viz.,
(rdfs9) ×m

i=1 Ci(a) ∧ ×m
i=1Ci v ×m

i=1Di → ×m
i=1Di(a)

Such an extension is attractive, but has severe drawbacks. It makes domain and range inference more
complex and would require a stronger descriptive apparatus, as it will become necessary to group and
access parts of the domain and/or range arguments in order to indicate the true number of arguments of
a relation, but also to indicate the proper argument types. This would become important when checking
relation instances against their relation signature.
Consider, for instance, a quaternary relation p ⊆ D × R1 × R2 × R3 that seems to come with three
range arguments. However, by typing individuals with Cartesian types, the above relation can be binary,
ternary (two possibilities), or quaternary, depending on how we interpret the range arguments:
• p ⊆ D× (R1 × R2 × R3) • p ⊆ D× R1 × R2 × R3

• p ⊆ D× (R1 × R2)× R3 • p ⊆ D× R1 × (R2 × R3)

And there are even further complex embeddings possible (remember type theory), such as
• p ⊆ D× (R1 × (R2 × R3)) • p ⊆ D× ((R1 × R2)× R3)



(ctsub) ×m
i=1 Ci v ×m

i=1Di →
∧m

i=1Ci v Di

(rdfs11) ×m
i=1 Ci v ×m

i=1Di ∧ ×m
i=1Di v ×m

i=1Ei → ×m
i=1Ci v ×m

i=1Ei

(ctequiv) ×m
i=1 Ci ≡ ×m

i=1Di →
∧m

i=1Ci ≡ Di

(rdfp12c) ×m
i=1 Ci v ×m

i=1Di ∧ ×m
i=1Di v ×m

i=1Ci → ×m
i=1Ci ≡ ×m

i=1Di

(rdfs2) ∀P−.×m
i=1 Ci ∧ P (×m

i=1ai,×n
j=1bj)→

∧m
i=1Ci(ai)

(rdfs3) ∀P.×n
j=1 Dj ∧ P (×m

i=1ai,×n
j=1bj)→

∧n
j=1Dj(bj)

(rdfs7x) P v Q ∧ P (×m
i=1ai,×n

j=1bj)→ Q(×m
i=1ai,×n

j=1bj)

(rdfp1) ≤1P ∧ P (×m
i=1ai,×n

j=1bj) ∧ P (×m
i=1ai,×n

j=1cj)→
∧n

j=1{bj} ≡ {cj}

(rdfp3) P ≡ P− ∧ P (×m
i=1ai,×m

i=1bi)→ P (×m
i=1bi,×m

i=1ai)

(rdfp4) P+ v P ∧ P (×m
i=1ai,×m

i=1bi) ∧ P (×m
i=1bi,×m

i=1ci)∧ → P (×m
i=1ai,×m

i=1ci)

Figure 1: Entailment rules using Cartesian types (Ci, Dj , Ek ∈ C; P,Q ∈ R; a·, b·, c· ∈ I). Note that the
notation P (×m

i=1ai,×n
j=1bj) in the above rules does not indicate that P is a binary relation, but instead is of

arity m + n and a1, . . . , am are the domain and b1, . . . , bn the range arguments for this specific relation instance
of P . The names for the extended rule schemata are taken from (Hayes, 2004) and (ter Horst, 2005). (ctsub)
and (ctequiv) are brand-new entailment rules for Cartesian types. The correctness of (rdfp4), addressing the
transitivity of P , depends on the interpretation of the application domain (for instance, whether certain arguments
are employed for expressing the validity of a fluent (the atemporal fact) over time; see also Section 6).

Mainly for this reason, we enforce that atomic individuals from I can only be typed to single concepts
(singletons), and thus the relation signature

p ⊆ D1 × · · · × Dm × R1 × · · · × Rn

is intended to mean that p takes exactly m domain arguments and exactly n range arguments, such that
D1, . . . ,Dm,R1, . . . ,Rn ∈ C must be the case.

6 Extra Arguments

This section deals with what we call extra arguments, arguments that neither belong to the domain nor
the range of an (m + n)-ary relation, but can be seen as a kind of additional annotation, belonging to
specific relation instances.1

Let us start with a binary relation (m,n = 1) and consider, again, the non-temporal version of marriedTo
which is a true symmetric relation, expressed by the following instantiated entailment rule:

marriedTo(i, j)→ marriedTo(j, i)

Now, if we add time (b = begin; e = end), it becomes a quaternary relation as indicated before (for better
readability, we separate the domain and range arguments from one another by using parentheses):

� marriedTo(i, (j, b, e))→ marriedTo(j, (i, b, e))

In this sense, the temporal interval [b, e] specifies the valid time in which the fluent (the atemporal state-
ment) marriedTo(i, j) is true. By applying the extended rule (rdfp3) from Figure 1 for symmetry, we see
that something clearly goes wrong:

� marriedTo(i, (j, b, e))→ marriedTo((j, b, e), i)

1This is like having annotation properties for relation instances, but OWL unfortunately offers this service only for classes,
properties, and individuals.



as symmetric relations assume the same number of arguments in domain and range position! Our exam-
ple above thus needs to be modified. One solution would be to reduplicate the starting and ending points,
so we would end up in a sexternary relation:

marriedTo((i, b, e), (j, b, e))→ marriedTo((j, b, e), (i, b, e))

This is not an appealing solution as the structures become larger, and rules and queries are harder to
formulate, read, debug, and process. We thus like to extend relations p ⊆ D1×· · ·×Dm×R1×· · ·×Rn

by further arguments A1 × · · · × Ao, so that p becomes
p ⊆ D1 × · · · × Dm × R1 × · · · × Rn × A1 × · · · × Ao

or simply write p ⊆ D×R×A. For the marriedTo example, we might choose Person from the ontology
above and the XSD type gYear: D = Person, R = Person, A = gYear × gYear.
Thus by having these extra arguments, we can keep the entailment rules from Figure 1, extended, of
course, by the additional annotations.2 Besides having extra arguments for valid time, other areas are
conceivable here, viz., transaction time, space, sentiment, uncertainty, negation, vagueness, or graded
information.

7 Extensions to Protégé

In order to make Cartesian types available in Protégé, we will extend the OWL Classes, Properties, and
Individuals tabs.

TBox: OWL Classes Tab
• subclass explorer pane (left column)

extension of the subclass hierarchy towards Cartesian types.

• class editor pane (right column)
depicting the right properties defined on a Cartesian type (domain); depicting the right Cartesian
range types for the defined properties.

RBox: Properties Tab
• property browser pane (left column)

extension of the property hierarchy towards Cartesian types.

• property editor pane (right column)
extension of the domain and range boxes towards Cartesian types.

• new: extra arguments (part of the property editor pane)
further definition box for the extra arguments.

ABox: Individuals Tab
• class browser pane (left column)

extension of the subclass hierarchy towards Cartesian types.

• instance browser pane (middle column)
possibility to generate sequence instances defined on Cartesian types (= sequences of instances of
singleton types).

• property editor pane (right column)
depicting the right properties defined on a sequence instance; allowing to choose or construct the
range arguments; allowing to choose or construct the extra arguments.

Not only the graphical user interface needs to be extended, but also the internal representation (repre-
sentation of tuples instead of triples), together with a modification of the input and output routines. We
plan to have finished a first version of the extensions to Protégé in Spring 2015 and to present it at the
workshop.

2Depending on the application domain, these annotations might find their way as (potentially aggregated) extra arguments
in the relation instances of the consequence of a rule, e.g., in (rdfp4). We will look into this in more detail at the workshop.
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