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Abstract

This paper explores theoretical issues in constructing an adequate probabilistic semantics for
natural language. Two approaches are contrasted. The first extends Montague Semantics with a
probability distribution over models. It has nice theoretical properties, but does not account for the
ubiquitous nature of ambiguity; moreover inference is NP-hard. An alternative approach is described
in which a sequence of pairs of sentences and truth values is generated randomly. By sacrificing some
of the nice theoretical properties of the first approach it is possible to model ambiguity naturally;
moreover inference now has polynomial time complexity. Both approaches provide a compositional
semantics and account for the gradience of semantic judgements of belief and inference.1

1 Introduction

This paper explores theoretical issues in developing an expressive and computationally tractable, proba-
bilistic semantics for natural language. Our general approach is situated within the formal, compositional
semantics developed by Richard Montague, which is augmented to allow for probabilistic judgements
about truth and inference. The present work takes as a point of departure a number of key assumptions.
First, an adequate semantics should provide an account of both lexical and phrasal (i.e. compositional)
meaning. Second, it should provide for judgements about degrees of belief. That is, a semantics should
account for beliefs that statements are more or less likely to be true, or that one statement may entail
another to a certain degree. Third, an adequate computational semantics should support effective proce-
dures for learning semantic representations and for inference.

Vector space models of meaning have become a popular approach to computational semantics. Dis-
tributional models represent word meanings as vectors of corpus-based distributional contexts and have
been successfully applied to a wide variety of tasks, including, inter alia, word sense induction and
disambiguation (Khapra et al., 2010; Baskaya et al., 2013), textual entailment (Marelli et al., 2014), co-
reference resolution (Lee et al., 2012) and taxonomy induction (Fountain and Lapata, 2012). The success
of vector-space models is due to several factors. They support fine-grained judgements of similarity, al-
lowing us to account for semantic gradience, for example, that the lexeme pear is more similar to banana
than to, say, cat. Moreover, distributional vectors can be learnt in an unsupervised fashion from corpus
data, either by counting occurrences of distributional contexts for a word or phrase, or by performing
more sophisticated analysis on the data (Mikolov et al., 2013; Pennington et al., 2014).

Vector-based approaches differ in many regards from compositional, model-theoretic treatments of
meaning such as Montague semantics or Discourse Representation Theory (Kamp and Reyle, 1993). It
has proved challenging to extend vector space models to account for the way in which meanings may
be composed and to support inference. The problem of developing a fully compositional, distributional
semantics has recently become a very active area of research (Widdows, 2008; Mitchell and Lapata,
2008; Baroni and Zamparelli, 2010; Garrette et al., 2011; Grefenstette et al., 2011; Socher et al., 2012;

1The authors are grateful for the comments of a number of anonymous reviewers on earlier drafts. The work was funded as
part of EPSRC EP/I037458/1, A Unified Model of Compositional and Distributional Semantics: Theory and Applications.
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Lewis and Steedman, 2013) and efforts made to find a theoretical foundation (Clarke, 2012; Kartsaklis
et al., 2014). Researchers have also begun to address the problem of combining the strengths of both the
distributional and model-theoretic approaches (Clarke, 2007; Coecke et al., 2010; Garrette et al., 2011;
Lewis and Steedman, 2013).

This paper considers an alternative strategy for developing a computational semantics. Starting with
a compositional, model-theoretic semantics, this is augmented with ideas drawn from probabilistic se-
mantics (Gaifman, 1964; Nilsson, 1986; Sato, 1995). Probabilistic semantics provides a rich seam of
ideas that can be applied to the construction of a compositional semantics with desirable properties such
as gradience and learnability. Below, we explore two different ways in which this might be achieved.
Our objective is to map out some of the territory, to consider issues of representational adequacy and
computational complexity and to provide useful guidance for others venturing into this landscape.

2 Background

2.1 Montague Semantics

In the early 1970s, Richard Montague detailed a formal treatment of natural language semantics (Mon-
tague, 1970a,b, 1973). Montague’s conception of semantics was truth-conditional and model-theoretic.
He considered that a fundamental aim of any adequate theory of semantics was “to characterise the no-
tions of a true sentence (under a given interpretation) and of entailment” (Montague, 1970b). A central
methodological component of Montague’s approach was the Principle of Compositionality: the meaning
of an expression is a function of the meanings of its parts and the way they are combined syntactically.

Following Montague, we assume that natural language expressions are parsed by a categorial gram-
mar. Further, every word has an associated function with a type. Let T be the smallest set such that:

Basic types: e, t ∈ T
Complex types: if α, β ∈ T , then α/β ∈ T .

Note that type α/β is the type of a function from type β to type α.
The set B of basic expressions comprises symbols denoting meanings of words. Each b ∈ B has a

type τb. The set Λ of well-formed expressions, and the extension of τ to Λ are defined as follows. Let Λ
be the smallest set such that:

• B ⊆ Λ

• For every pair γ, δ ∈ Λ such that τγ = α/β and τδ = β, then γ(δ) ∈ Λ and τγ(δ) = α

Let Λτ denote the set of well-formed expressions of type τ . A sentence is a well-formed expression of
type t.

The set Dτ of possible denotations of type τ is defined by:

De = E

Dt = {⊥,>}
Dα/β = Dα

Dβ

where E is a set of entities. Thus the denotation of a complex type is a function between the denotations
for the types from which it is composed. An interpretation is a pair 〈E,F 〉 such that E is a non-empty
set and F is a function with domain B such that F (b) ∈ Dτb for all b ∈ B. A well-formed expression γ
has the value [[γ]] in the interpretation 〈E,F 〉, where:

• [[b]] = F (b) for b ∈ B
• [[γ(δ)]] = [[γ]]([[δ]]) for γ ∈ Λα/β and δ ∈ Λβ .
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subject verb object m1 m2 m3 m4

john likes john 1 1 1 1
john likes mary 0 1 1 1
mary likes john 1 0 0 1
mary likes mary 0 0 1 1
john loves john 1 1 1 1
john loves mary 1 0 1 1
mary loves john 1 1 1 1
mary loves mary 1 0 1 1

Table 1: Four possible models describing rela-
tionships between John and Mary.

John likes Mary
µ({m2,m3,m4}) == 0.9

Mary likes John or Mary
µ({m1,m3,m4}) == 0.8

John likes Mary given that he loves her
µ({m3,m4})/µ({m1,m3,m4}) = 0.7/0.8

Table 2: Statements and their probabilities
given the models in Table 1.

A sentence s is true in interpretation 〈E,F 〉 if [[s]] = >, otherwise it is false. A theory T is a set of pairs
(s, ŝ), where s is a sentence and ŝ ∈ {>,⊥} is a truth value. A model for a theory T is an interpretation
〈E,F 〉 such that [[s]] = ŝ for every sentence s ∈ T . In this case we say that the model satisfies T , and
write 〈E,F 〉 |= T .

2.2 Probabilistic Semantics

The idea of attaching probabilities to propositional truth is an old one and related to the foundation of
probability itself (Keynes, 1921; Łoś, 1955). Gaifman (1964) discusses probability measures for first
order calculus; the work of Sato (1995) concerns probability measures for logic programs. The idea we
adopt is to associate probability measures with the space of models. Our approach is closely related in
motivation to work by Cooper et al. (2014) and Goodman and Lassiter (2014).

In model-theoretic semantics, a way to view the meaning of a statement s is as the set of all interpre-
tationsMs for which s is true. Probabilistic semantics extends this idea by assuming that models occur
randomly. Formally, probabilities are defined in terms of a probability space 〈Ω, σ, µ〉, where Ω is the set
of all models, σ is a sigma algebra associated with theories and µ is a probability measure on σ. We can
then estimate the probability of a sentence s as the sum of the probabilities of all modelsMs, for s.

In general, the set of models will be infinite, but for purposes of exposition, consider a simple example
with a small number of models, as in Table 1. Each column defines a different model of the relation-
ship between John and Mary. We assume a probability distribution over models, with P (m1) = 0.1,
P (m2) = 0.2, P (m3) = 0.3, P (m4) = 0.4 (all other possible models have probability zero). We can
then deduce the probability of statements about John and Mary, as shown in Table 2.

3 A Probabilistic Montague Semantics

Let Ω be the set of all Montague-style interpretations, M(T ) the set of all models for the theory T and
σ0 the set of all sets of models that satisfy some theory: σ0 = {M(T ) : T is a theory}. In general, σ0

is not a sigma algebra, as it is not guaranteed for any two theories T1, T2 that M(T1) ∪M(T2) ∈ σ0.
For any Montague grammar containing a propositional fragment this would hold, but even if this is not
the case we can still define a probability space by considering the sigma algebra σ generated by σ0: the
smallest sigma algebra containing σ0. For µ a probability measure on σ, 〈Ω, σ, µ〉 is a probability space
describing the probability of theories. The probability of T is defined as µ(M(T )). For sentences s1 and
s2 such that µ(M({(s2,>)}) > 0, the conditional probability P (s1|s2) is interpreted as the degree to
which s2 entails s1 and defined as

P (s1|s2) =
µ(M({(s1,>), (s2,>)}))

µ(M({(s2,>)}))
Note too that for µ(M({(s2,>)})) > 0, if s2 logically entails s1, then P (s1|s2) = 1.
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3.1 Restricting the Space of Models

A key objective is to be able to learn semantics from corpus data. We describe one way this may be
achieved within our framework. The central idea is to limit the number of denotations under con-
sideration and define a probabilistic generative model for interpretations. Assume E is fixed. Let
φτ = {[[λ]] : λ ∈ Λτ} be the set of denotations occurring with type τ . Assume F is constrained s.t.
|φτ | = nτ , where nτ is a constant for each type satisfying nτ ≤ |Dτ |. Note that φτ ⊆ Dτ and φτ can
be a lot smaller than Dτ if the range of F restricted to Λτ does not cover all of Dτ . We also assume that
the occurring denotations are ordered, so we can write φτ = {dτ,1, dτ,2, . . . dτ,nτ }. The restriction in the
number of occurring denotations makes learning a distribution over models practicable, since the space
of exploration can be made small enough to handle in a reasonable amount of time.

We assume that denotations are generated with probabilities conditionally independent given a ran-
dom variable taking values from some set H . This gives us the following process to generate F :

• Generate a hidden value h ∈ H
• Generate F (b) ∈ φτb for each b ∈ B where P (dτb,i|b, h) = θb,i,h

• Generate dα/β,i(dα,j) ∈ φβ for each dα/β,i, dα,j , where P (dβ,k|dα/β,i, dα,j , h) = θβ,i,j,k,h

The parameters to be learnt are the probability distributions θb,i,h over possible values dτb,i, for each
basic expression b and hidden value h, and θβ,i,j,k,h over values dβ,k for each function dα/β,i, argument
dα,j and hidden value h.

3.2 Learning and Inference

For a theory T and parameters θ, we compute P (T |θ) as follows. For each hidden variable h:

• Iterate over models for T . This can be done bottom-up by first choosing the denotation for each
basic expression, then recursively for complex expressions. Choices must be remembered and if a
contradiction arises, the model is abandoned.

• The probability of each model given h can be found by multiplying the parameters associated with
each choice made in the previous step.

We can use Maximum Likelihood to estimate the parameters given a set of observed theories D =
{T1, T2, . . . TN}. We look for the parameters θ that maximize the likelihood

P (D|θ) =
N∏
n=1

P (Ti|θ)

This can be maximised using gradient ascent or expectation maximisation. We have verified that this can
be done for small examples with a simple Python implementation.

4 Stochastic Semantics

Our formulation of Probabilistic Montague Semantics does not adequately account for ambiguity in natu-
ral language. Although we have a probability distribution over interpretations, in any given interpretation
each occurrence of a word must have the same denotation. This is unsatisfactory, as a word may exhibit
different senses across a theory. For example, consider two sentences, each containing an occurrence of
the word bank, but with different senses. In our current formulation both occurrences of bank are forced
to have the same denotation. To allow a word’s meaning to vary across a theory, one possibility is to
represent different occurrences of a word by different predicates. For example, we might perform word
sense disambiguation on each sentence and decide that the two occurrences of bank are unrelated. In this
case, the first occurrence might be represented by the predicate bank1 and the second by bank2.
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% Hidden variable
values(hidden, [h0, h1]).

% Types
values(word(noun, Word, Hidden), [n0, n1]).
values(word(verb, Word, Hidden), [v0, v1]).
values(word(det, Word, Hidden), [d0, d1]).
values(function(s, Value1, Value2, Hidden), [t0, t1]).
values(function(np, Value1, Value2, Hidden), [np0, np1]).
values(function(vp, Value1, Value2, Hidden), [vp0, vp1]).

evaluate(w(Word, Type), Hidden, Result) :-
msw(word(Type, Word, Hidden), Result).

evaluate(f(Type, X, Y), Hidden, Result) :-
evaluate(X, Hidden, XResult),
evaluate(Y, Hidden, YResult),
msw(function(Type, XResult, YResult, Hidden), Result).

theory([], _).
theory([truth(Sentence, Result)|Tail], Hidden) :-

evaluate(Sentence, Hidden, Result),
theory(Tail, Hidden).

theory(T) :-
msw(hidden, Hidden),
theory(T, Hidden).

Figure 1: A PRISM program describing probability distributions over natural language models used for
our examples.

We consider an alternative which incorporates degrees of ambiguity into the representation of a
word’s meaning. This is consistent with many distributional frameworks, where a word is often rep-
resented as a vector of all of its contexts of occurrence, regardless of sense. We drop the requirement that
in any given interpretation, each occurrence of a word must have the same denotation. Generalising this
idea to denotations for all types results in an entirely different semantic model. It turns out that this model
can be formulated in a straightforward way within the framework due to Sato and Kameya (1997). We
call our new framework Stochastic Semantics. We no longer associate a set of models with a sentence,
but instead assume that pairs of sentences and truth values are randomly generated in sequence. The
probability of each pair being generated is conditionally independent of previous pairs given the hidden
variable.

An illustrative implementation of Stochastic Semantics is shown in Figure 1. The code is written in
PRISM (Sato and Kameya, 1997), a probabilistic extension of the Prolog logic-progamming language
that incorporates probabilistic predicates and declarations. In particular, PRISM allows random switches.
In the code, the predicate values is used to declare a named switch and associate with it a number of
possible outcomes. The probabilistic predicate msw allows a random choice to made amongst these
outcomes at execution time. To simplify the code, complex types of the grammar are referred to by their
corresponding natural language categories: type t is represented by s, type (t/e) by vp and type t/(e/t)
by np.

The program defines how sentences are randomly assigned truth values. For example, the switch
values(word(noun,Word,Hidden),[n0,n1]) introduces a switch for nouns having two pos-
sible outcomes, n0 and n1. The outcomes are conditioned on the particular choice of noun (Word) and
on the choice of hidden variable (Hidden). Similarly, switches are associated with complex types. For
example the values associated with a sentence (s) switch are conditioned on the choices of its component
parts and a hidden variable, and so on.

The probability of a theory is derived by evaluating the truth conditions of its component sentences.
For example, a query returning the probability of the sentence the cat likes the dog would be expressed
as a theory {(likes(the(dog))(the(cat)),>)}, which can be translated into a Prolog expression in a
straightforward manner.
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5 Complexity

We focus on determining the probability of a sentence, as this is needed for both learning and inference.

5.1 Complexity of Probabilistic Montague Semantics

We first consider the problem of Probabilistic Montague Semantics satisfiability (PM-SAT) and then
show that the problem of computing the probability of a sentence must be at least as hard.

Definition (PM-SAT). Given a restricted set of denotations φτ for each type τ and probability distribu-
tions defined by θ, determine whether the probability of a given sentence taking the value > is non-zero.

Theorem. PM-SAT is NP-complete with respect to the length of the input sentence.

Proof. We first show NP-hardness by reduction from SAT. Construct a special language for propositional
logic with symbols Pi of type t, ∧ and ∨ of type (t/t)/t and ¬ of type t/t. For example ∨(P1)(¬(P2))
is a sentence of this language. Using a more familiar and suggestive notation it might be written as
P1 ∨ ¬P2. We fix a generative model for interpretations of the language as follows. Hidden values are
not needed, so assume H has a single element. Further assume distributions defined by θ such that the
Pi take values in {>,⊥} with equal probability, while the symbols ∧, ∨ and ¬ simply reproduce the
familiar logical truth functions for conjunction, disjunction and negation respectively, with probability 1.
Note for example that there is an interpretation for which ∨(P1)(¬(P2)) has value>. On the other hand,
the sentence ∧(P1)(¬(P1)) will have value ⊥ for all interpretations.

It follows from the construction above that a sentence has truth value > with non-zero probability
if and only if it is satisfiable. Hence we can solve SAT if we can solve PM-SAT, and so PM-SAT is
NP-hard. Finally, to show NP-completeness we note that PM-SAT can be solved by a non-deterministic
machine in time linear in sentence length. This is achieved by choosing a value from H , assigning every
possible value to all basic expressions and then recursively to complex expressions. Any assignment that
gives a non-zero probability for the sentence taking the value > will return true. So PM-SAT is in NP
and is thus NP-complete.

Let us call the problem of computing the probability of a sentence in Probabilistic Montague Seman-
tics PM-PROB. Clearly PM-PROB is at least as hard as PM-SAT, since if we knew the probability of a
sentence we would know whether it was non-zero. It follows that PM-PROB is NP-hard.

5.2 Complexity of Stochastic Semantics

Let us call the problem of computing the probability of a sentence for Stochastic Semantics, SS-PROB.
We show that SS-PROB is computationally easier than PM-PROB. Note that for Stochastic Semantics
there is no dependency between different parts of a sentence. Dynamic programming can then be used to
store the probability distribution over possible denotations associated with each expression, so that they
are computed once for each hidden value. Let L be the number of expressions in a sentence and n the
maximum number of denotations for all types, i.e. the greatest value of nτ for all types τ . The algorithm
to compute the probability of a sentence is as follows. For each h ∈ H:

• For each basic expression of type τ , compute the probability distribution over φτ ; this can be
computed in maximum O(n) time.

• Recursively for each complex expression of type τ , compute the probability distribution over φτ ,
this requires maximum O(n2) time since we need to iterate over possible values of the expression
and the type it acts on.

For a given hidden value in H , computing the probability of a sentence requires L computations each of
complexity at most n2. The total worst-case time complexity for SS-PROB is thus O(|H|Ln2). This is
linear in the number of expressions L and so linear in the length of the sentence.
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Text Hypothesis Ent.
some cats like all dogs some animals like all dogs Yes
no animals like all dogs no cats like all dogs Yes
some dogs like all dogs some animals like all dogs Yes
no animals like all dogs no dogs like all dogs Yes
some men like all dogs some people like all dogs Yes
no people like all dogs no men like all dogs Yes
no men like all dogs no people like all dogs No

Table 3: Example Text and Hypothesis sentences, and whether
entailment holds. Both our systems are able to learn from the
data above the line that the determiner “no” reverses the direction
of entailment.

Noun Hidden n0 n1
animals h0 0.00 1.00
animals h1 0.67 0.33
cats h0 1.00 0.00
cats h1 0.47 0.53
dogs h0 0.70 0.30
dogs h1 0.55 0.45
men h0 1.00 0.00
men h1 0.60 0.40
people h0 0.00 1.00
people h1 0.53 0.47

Table 4: Learnt probabilities ob-
tained using the Stochastic Se-
mantics implementation.

6 Discussion

A learning system such as those we have described can be adapted to the task of recognising textual
entailment (Dagan et al., 2005). This task is to determine whether one natural language sentence (the
“text”) entails another (the “hypothesis”) and thus generalizes some important natural language prob-
lems, including question answering, summarisation and information extraction. For example, a pair for
which entailment holds could be translated to the following set of theories:

{(sT ,>), (sH ,>)}, {(sT ,⊥), (sH ,>)}, {(sT ,⊥), (sH ,⊥)}

where sT is the sentence associated with the text and sH the sentence associated with the hypothesis.
We verified that our two systems were able to learn some simple logical features of natural language

semantics on toy textual entailment examples. In particular, determiners such as “no” reverse the di-
rection of entailment, so that while “some cats” entails “some animals”, “no animals” entails “no cats”
(see Table 3). As an aside, we note that while our formalism does not employ explicit representations of
lexical semantics, such representations can be recovered from the learnt models. The representation of
a word is a tensor rather than a vector, because there is a distinct probability distribution over possible
values for each hidden value. Table 4 shows the learnt values for the nouns obtained using the Stochastic
Semantics implementation. If we want to compare words we can consider the matrix entries as a flat
vector and use any of the standard similarity measures (e.g. cosine).

The flexibility granted by Stochastic Semantics results in the loss of certain nice properties. A nec-
essary consequence of incorporating stochastic ambiguity into the formalism is the failure of logical en-
tailment. If we do not disambiguate, then a sentence may not entail itself to degree 1 since it may mean
different things in different contexts. We argue that it makes sense to sacrifice some properties which are
expected when handling logical expressions in order to account for ambiguity as as an inherent property
of language.

It is notable that the approach that accounts for ambiguity has lower complexity. Intuitively, this is
because we do not have to keep track of the interpretation previously assigned to an expression: we are
free to assign a new one. This also means that the expressive power of Probabilistic Montague Semantics
is greater than that of Stochastic Semantics. In the latter, the meaning of a sentence can be viewed
as simply a distribution over hidden variables, whereas in the former, the meaning also includes, for
example, a record of all the words contained in the sentence. It is possible that Probabilistic Montague
Semantics can be made more computationally efficient by placing further restrictions on the nature of
distributions over models. For example, if we have no hidden variables, then the distribution can be
described efficiently using Markov Logic Networks. Again, this restriction comes at the expense of
expressive power.
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7 Related Work

van Eijck and Lappin (2012) presents a framework for probabilistic semantics that is motivated by the
need to account for gradience effects as an intrinsic part of a model of linguistic competence. They
outline a compositional semantics for a propositional language in which the probability of the truth of a
sentence is defined in terms of a probability distribution over possible states of affairs (worlds). Whilst
the importance of providing a computationally adequate explanation of semantic learning is emphasised,
issues of the tractability of inference are not addressed.

In a computational setting, an important objection to the appeal to possible worlds is that they are
not tractably representable. Cooper et al. (2014) proposes a rich type system with records in which the
judgment about whether a given situation is of a given type is probabilistic. Unlike worlds, situation
types (Barwise and Perry, 1983) are not maximal consistent sets of propositions, but may be as small
or as large as necessary. A schematic theory of semantic learning is outlined, based on an individual’s
observations of situations and their types, modelled probabilistically. This account of meaning provides
the basis for a compositional semantics employing a probabilistic interpretation function.

In contrast to (Cooper et al., 2014), the present work assumes a generative process over interpreting
structures. In particular, this means that interpretation with respect to a given model is categorical, while
meaning is defined in terms of the probability distribution over all models. By restricting the space of
possible models we show that semantic learning is possible, where the primary data for learning are pairs
of sentences and truth values (rather than probabilistic type judgments). A result of our learning is the
ability to determine degrees of entailment between pairs of sentences.

The present work shares motivation with Goodman and Lassiter (2014), who argue for the role of
uncertainty in cognition and language understanding whilst preserving a compositional, truth condi-
tional semantics. They show how probability may be used to formalise uncertainty and the gradience
of judgements about belief and inference. The approach introduces a stochastic λ-calculus to provide
compositional tools for probabilistic modelling, but has not yet addressed the problem of learning.

Coecke et al. (Coecke et al., 2010) propose a framework based on category-theoretic similarities be-
tween vector spaces and pregroup grammars. Their approach is closely related to ours since it is also
founded in Montague semantics: words are treated as linear functions between vector spaces. It was
recently demonstrated that this approach can be extended to allow the simulation of predicate calculus
using tensors (Grefenstette, 2013). Garrette et al. (2011) describe an approach to combining logical se-
mantics with distributional semantics using Markov Logic Networks (Richardson and Domingos, 2006).
Sentences are parsed into logical form using Boxer (Bos et al., 2004) and probabilistic rules are added
using the distributional model of Erk and Padó (2010). Lewis and Steedman (2013) take a standard
logical approach to semantics except that the relational constants used are derived from distributional
clustering.

8 Conclusion

This paper has explored theoretical properties of models of meaning. The reader may question the value
of a paper whose contributions are mainly theoretical in nature. Whilst we fully intend to further explore
our ideas in an experimental setting, we believe that readers interested in probabilistic approaches to
natural language semantics will benefit from the theoretical ideas presented here. In particular:

• We take a standard approach to natural language semantics (Montague semantics) and augment it
using a standard approach (probabilistic semantics). We are thus in an area that seems natural to
explore.

• We are able to demonstrate deficiencies of this approach, both in representational adequacy and
computational complexity, that may provide useful guidance for others considering venturing into
this landscape.
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• We identify an alternative area for exploration that alleviates the difficulties associated with the
first approach.

We have shown that:

1. It is possible to learn probability distributions over models directly from data by restricting the set
of models, whilst retaining many of the desirable properties of full Montague semantics.

2. The problem of computing the probability that a sentence is true in this framework is NP-hard.

3. Taking account of lexical ambiguity suggests a new approach in which pairs of sentences and truth
values are generated randomly. The probability that a sentence is true can then be computed in
polynomial time.

4. Both models are able to learn from a few examples that quantifiers such as “no” reverse the direc-
tion of entailment.

In future work, we plan to apply our ideas to the general task of recognising textual entailment.
This would involve learning from much larger datasets and provide a more stringent test of the practical
application of the approach. We also plan to further investigate the relationship between our models and
vector space representations of meaning. This, together with a development of the theory, may lead to
interesting new ways to describe probabilistic semantics that combine logical aspects of meaning with
those which are better represented distributionally.

We have so far restricted ourselves to Montague semantics, and we are thus constrained by the
well-known limitations of this formalism with respect to expressing aspects of discourse. It would be
interesting to investigate how well our ideas could be incorporated into a formalism such as Discourse
Representation Theory.

Finally, the examples presented here deal with a very small fragment of natural language. There are
many complex natural language phenomena that have been dealt with successfully within the framework
of Montague semantics. This suggests that it should be possible to apply probabilistic semantics to learn
about a wide range of phenomena such as quantifier scope ambiguity, intensional contexts, time and
tense and indexicals, amongst others.
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