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Abstract

Accurate parse ranking requires semantic information, since a sentence may have many candidate
parses involving common syntactic constructions. In this paper, we propose a probabilistic frame-
work for incorporating distributional semantic information into a maximum entropy parser. Further-
more, to better deal with sparse data, we use a modified version of Latent Dirichlet Allocation to
smooth the probability estimates. This LDA model generates pairs of lemmas, representing the two
arguments of a semantic relation, and can be trained, in an unsupervised manner, on a corpus anno-
tated with semantic dependencies. To evaluate our framework in isolation from the rest of a parser,
we consider the special case of prepositional phrase attachment ambiguity. The results show that
our semantically-motivated feature is effective in this case, and moreover, the LDA smoothing both
produces semantically interpretable topics, and also improves performance over raw co-occurrence
frequencies, demonstrating that it can successfully generalise patterns in the training data.

1 Introduction

Ambiguity is a ubiquitous feature of natural language, and presents a serious challenge for parsing. For
people, however, it does not present a problem in most situations, because only one interpretation will
be sensible. In examples (1) and (2), fluent speakers will not consciously consider a gun-wielding dog
or a moustache used as a biting tool. Both of these examples demonstrate syntactic ambiguity (the
final prepositional phrase (PP) could modify the preceding noun, or the main verb), rather than lexical
ambiguity (homophony or polysemy).

(1) The sheriff shot a dog with a rifle.

(2) The dog bit a sheriff with a moustache.

In many cases, parse ranking can be achieved by comparing syntactic structures, since some constructions
are more common. In the above examples, however, the same set of structures are available, but the best
parse differs: the PP should modify the verb “shot” in (1), but the noun “sheriff” in (2). Dealing with
such cases requires semantic information.

A promising approach to represent lexical semantics assumes the distributional hypothesis, which
was succinctly stated by Turney and Pantel (2010): “words that occur in similar contexts tend to have
similar meanings”. Our method uses corpus data to estimate the plausibility of semantic relations, which
could then be exploited as features in a maximum entropy parser. In section 3, we first describe the
general framework, then explain how it can be specialised to tackle PP-attachment.

To overcome data sparsity, we introduce a generative model based on Ó Séaghdha (2010)’s modified
version of Latent Dirichlet Allocation (LDA), where two lemmas are generated at a time, which we use to
represent the two arguments of a binary semantic relation. The probabilities produced by the LDA model
can then be incorporated into a discriminative parse selection model, using our general framework.
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This LDA model can be trained unsupervised using a semantically annotated corpus. To clarify
what this means, it is helpful to distinguish two notions of “labelled data”: linguistic annotations, and
desired outputs. Following Ghahramani (2004), supervised learning requires both a set of inputs and a
set of desired outputs, while unsupervised learning requires only inputs. Although we use a corpus with
linguistic annotations, these are not desired outputs, and learning is unsupervised in this sense. Since our
training data was automatically produced using a parser (as explained in section 4.2), our method can
also be seen as self-training, where a statistical parser can be improved using unlabelled corpus data.

Because of its central role in linguistic processing, parse ranking has been extensively studied, and
we review other efforts to incorporate semantic information in section 2. To evaluate our framework,
we consider the special case of PP-attachment ambiguity, comparing the model’s predictions with hand-
annotated data, as explained in section 4. Results are presented in section 5, which we discuss in section
6. Finally, we give suggestions for future work in section 7, and conclude in section 8.

2 Related Work

The mathematical framework described in section 3.3 follows the “Rooth-LDA” model described by
Ó Séaghdha (2010). However, he uses it to model verbs’ selectional preferences, not for parse ranking.
The main difference in this work is to train multiple such models and compare their probabilities.

The use of lexical information in parse ranking has been explored for some time. Collins (1996) used
bilexical dependencies derived from parse trees, estimating the probabiliity of a relation given a sentence.
We consider instead the plausibility of relations, which can be included in a more general ranking model.

Rei and Briscoe (2013) consider re-ranking the output of a parser which includes bilexical grammat-
ical relations. They use co-occurrence frequencies to produce confidence scores for each relation, and
combine these to produce a score for the entire parse. To smooth the scores, they use a semantic vector
space model to find similar lexical items, and average the scores for all such items. From this point of
view, our LDA model is an alternative smoothing method. Additionally, both our approach and theirs can
be seen as examples of self-training. However, their re-ranking approach must be applied on the output
of a parser, while we explain how such scores can be directly integrated as features in parse ranking.

Hindle and Rooth (1993) motived the use of lexical information for disambiguating PP-attachment.
More recently, Zhao and Lin (2004) gave a state-of-the-art supervised algorithm for this problem. Given
a new construction, they use a semantic vector space to find the most similar examples in the training
data, and the most common attachment site among these is then assigned to the new example.

Unlike Zhao and Lin, and many other authors tackling this problem using the Penn Treebank, our
model is unsupervised and generative. The first fact makes more data available for training, since we
can learn from unambiguous cases, and the second plays an important role in building a framework that
can handle arbitrary types of ambiguity. This provides a significant advantage over many discriminative
approaches to PP-attachment: despite Zhao and Lin’s impressive results, it is unclear how their method
could be extended to cope with arbitrary ambiguity in a full sentence.

Clark et al. (2009) use lexical similarity measures in resolving coordination ambiguities. They pro-
pose two similarity systems, one based on WordNet, and the other on distributional information extracted
from Wikipedia using the C&C parser. Hogan (2007) also consider similarity, both of the head words
and also in terms of syntactic structure. However, while similarity might be appropriate for handing
coordination, since conjuncts are likely to be semantically similar, this does not generalise well to other
relations, where the lexical items involved may be semantically related, but not similar.

Bergsma et al. (2011) approach coordination ambiguity using annotated text, aligned bilingual text,
and plain monolingual text, building statistics of lexical association. However, this method works at the
string level, without semantic annotations, and there is no clear generalisation to other semantic relations.

Agirre et al. (2008) use lexical semantics in parsing, both in general and considering PP-attachment
in particular. They replace tokens with more general WordNet synsets, which reduces data sparsity for
standard lexicalised parsing techniques. Our LDA approach essentially provides an alternative method
to back-off to semantic classes, without having to deal with the problem of word sense disambiguation.
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3 Generative Model

3.1 Modelling an Arbitrary Relation

Despite the vast variety of syntactic frameworks, many parsers will produce semantic or syntactic re-
lations in some form. We might therefore rephrase parse ranking as follows: given a set of candidate
parses, choose the one with the most plausible relations.

Given a binary relation x r→ y between lexical items x and y, we can consider the joint probability
distribution P (r, x, y), which is the chance that, if we are given a random instance of any binary relation,
we observe it to be the relation r between items x and y. However, rare lexical items will have low prob-
abilities, even if they are a close semantic fit, so we should normalise by the words’ overall probability
of occurrence, P (x) and P (y), as shown in (3). The denominator can be interpreted as co-occurrence
of x and y under the null hypothesis that they are generated independently, according to their overall
frequency. We do not normalise by P (r), so that the frequency of the relation is still taken into account,
which is important, as we will see in section 3.2.

score (r, x, y) =
P (r, x, y)
P (x)P (y)

(3)

A Maximum Entropy parser (MaxEnt; Berger et al., 1996) relies on a set of features f1, . . . , fm with
corresponding weights λ1, . . . , λm. The probability of a parse t for a sentence s is given in (4), where
Z is a normalisation constant which can often be neglected. The values of the weights λi are chosen to
maximise the likelihood of training data, sometimes including a Gaussian prior for regularisation.

P (t|s) =
1
Z

exp
m∑
i=1

λifi (t) (4)

To incorporate the above scores into a MaxEnt parser, we could define a feature which sums the
scores of all relations in a parse. However, the scores in (3) are always positive, so this would bias us
towards parses with many relations. Instead, we can take the logarithm of the score, so that plausible
relations are rewarded, and implausible ones penalised.1 For a parse t containing k relations xi

ri→ yi, we
define f to be the sum of the log-scores, as shown in (5). Given a grammar and decoder that can generate
candidate parses, this feature allows us to exploit semantic information in parse ranking.

f (t) =
k∑
i=1

log (score (ri, xi, yi)) (5)

3.2 Application to PP-attachment

The effect of such a model on a wide-coverage parser will be complicated by interactions with other com-
ponents. To evaluate it independently, we restrict attention to PP-attachment in four-lemma sequences
w = (v, n1, p, n2), of the form (verb, noun, preposition, noun), where (p, n2) forms a PP which could
attach to either the verb v, or the verb’s direct object n1. Surrounding context is not considered. For
example, we could have the sequence (eat, pasta, with, fork).

We consider two relations, both mediated by the preposition p: for nominal attachment, a relation
rp,N between n1 and n2; and for verbal attachment, a relation rp,V between v and n2.

Given a sequence w, we seek the probability of attachment to n1 or v, which we denote as P (N |w)
and P (V |w), respectively. Taking their ratio and applying Bayes rule yields (6). To use the scores
defined in (3), we first make two independence assumptions: if the PP is attached to n1, then v is
independent, and if the PP is attached to v, then n1 is independent. We then make the approximation that
the probabilities P (N |p) and P (V |p) for this particular ambiguity are proportional to the probabilities
of observing rp,N and rp,V in general.2 This precisely gives us a ratio of plausibility scores, shown in (9).

1The expected value of the log-score is equal to the mutual information of x and y, minus the conditional entropy of r given
x and y. A smaller bias would therefore remain, depending on which of these two quantities is larger.

2Technically, as we move from (7) to (8), we shift from considering a probability space over four-lemma sequences to a
probability space over binary relations. We abuse notation in using the same P to denote probabilities in both spaces.
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P (N |w)
P (V |w)

=
P (N |p)P (v, n1, n2|p,N)
P (V |p)P (v, n1, n2|p, V )

(6)

≈ P (N |p)P (n1, n2|p,N)P (v)
P (V |p)P (v, n2|p, V )P (n1)

(7)

≈ P (rp,N )P (n1, n2|rp,N )P (v)P (n2)
P (rp,V )P (v, n2|rp,V )P (n1)P (n2)

(8)

=
score (rp,N , n1, n2)
score (rp,V , v, n2)

(9)

In the context of a MaxEnt parser, suppose we have defined f , as in (5), with weight λ. For parses tN
and tV representing nominal and verbal attachment, whose features are identical except for f , the ratio
in their probabilities is shown in (10). This depends precisely on the ratio of plausbility scores, hence
using f is equivalent to making the above independence assumptions and approximations.

P (tN )
P (tV )

=

(
score (rp,N , n1, n2)
score (rp,V , v, n2)

)λ
(10)

In the following section, we describe a generative model to produce better estimates of the proba-
bilities P (n1, n2|rp,N ) and P (v, n2|rp,V ). Note that a discriminative model would have to consider all
three lemmas v, n1, and n2, which would both reduce the amount of training data (since unambiguous
cases only using two lemmas must be discarded), and increase the number of model parameters (since we
must account for three lemmas, not two). These two facts combined could strongly encourage overfitting.

3.3 Latent Dirichlet Allocation

In its original formulation, Latent Dirichlet Allocation (LDA; Blei et al., 2003) models the topics present
in a collection of documents. Ó Séaghdha (2010) adapted this framework to model verb-object colloca-
tions. Instead of considering a document and the words it contains, we consider a relation (such as the
verb-object relation) and all instances of that relation in some corpus (verbs paired with their objects).
The aim is to overcome data sparsity, generalising from specific corpus examples to unseen collocations.
This is achieved using latent variables, or “topics”.

Intuitively, each topic should correspond to two sets of lemmas, whose members have a strong se-
mantic connection via the given relation. For example, the sets {run, walk, stroll, gallop} and {road,
street, path, boulevard} are semantically related via a preposition like down. A rare combination such as
gallop and boulevard might not be observed in training, but should still be considered plausible.

Although LDA was first introduced as a clustering algorithm, we are interested in the probability of
generation, and the topic assignments themselves can be discarded.

3.3.1 Formal Description

A pair (v, n) is generated from a relation r in two stages. First, we generate a topic z from the relation,
and then independently generate v and n from the topic. To do this, we associate with each relation
a distribution θ(r) over topics, and with each topic a pair of distributions ϕ(z) and ψ(z) over words.
Symbolically, we can write this as in (12), where Cat denotes a categorical3 distribution, i.e. one where
each probability is defined separately.

To prevent overfitting, we define Bayesian priors, to specify the kinds of distribution for θ, ϕ and
ψ that we should expect. The most natural choice is a Dirichlet distribution, as it is the conjugate prior
of a categorical distribution, which simplifies calculations. We have three priors, as shown in (11), with
hyperparameters α, β and γ. The entire generative process is shown using plate notation in figure 1,
where R relations are generated, each with M instances, using T topics.

3Sometimes known as multinomial or unigram.
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θ ∼ Dir (α) , ϕ ∼ Dir (β) , ψ ∼ Dir (γ) (11)

z ∼ Cat
(
θ(r)

)
, v ∼ Cat

(
ϕ(z)

)
, n ∼ Cat

(
ψ(z)

)
(12)

We apply this framework to PP-attachment by replacing the pair (v, n) with either: (n1, n2) for
nominal attachment, or (v, n2) for verbal attachment. Each preposition is therefore associated with two
LDA models, which yield probabilities P (v, n2|rp,V ) and P (n1, n2|rp,N ) for use in equation (8).

Figure 1: The modified LDA model

3.3.2 Inference

Defining the LDA model requires fixing four hyperparameters: the number of latent topics T , and the
three Dirichlet priors α, β, and γ. Given these, and some training data, we can infer latent topic as-
signments z, and categorical distributions θ, ϕ, and ψ. However, for new instances, the distributions are
semantically informative, while the topic assignments are not. Hence, we would like to sum over all topic
assignments to obtain the marginal posterior distributions for θ, ϕ, and ψ. Calculating this is intractable,
but we can approximate it using Gibbs sampling, applied to LDA by Griffiths and Steyvers (2004). This
assigns a topic to each token (each pair of lemmas), and iteratively changes one topic assignment, con-
ditioning on all others. Given a sample set of topic assignments, we can estimate the distributions θ, ϕ,
and ψ, as shown in (13). Finally, we estimate the marginal probability of generating a pair (x, y), as
shown in (14). The formulae also make clear the effect of the Dirichlet priors - compared to a maximum
likelihood estimate, they smooth the probabilities by adding virtual samples to each f·· term.

θ̂z =
fzr + αz

f·r +
∑
z′ αz′

, ϕ̂(z)
x =

fzx + β

fz· + V β
, ψ̂(z)

y =
fzy + γ

fz· + V γ
(13)

P̂ (x, y) =
∑
z

θ̂zϕ̂
(z)
x ψ̂(z)

y (14)

A single Gibbs sample will not be representative of the overall distribution, so we must average the
probabilities from several samples. However, the topics themselves are labelled arbitrarily, so we cannot
average the statistics θ̂, ϕ̂, and ψ̂. Nonetheless, the statistic P̂ is invariant under re-ordering of topics and
can therefore be meaningfully averaged. This gives us a better approximation of the true value, and the
standard deviation provides an error estimate, which we explore in section 5.3.

3.3.3 Model Selection

Training requires fixing the hyperparameters T , α, β and γ in advance. Griffiths and Steyvers (2004)
recommend setting parameters to maximise the training data’s log-likelihood L. However, this could
result in overfitting, if more parameters are used than necessary; intuitively, some topics may end up
matching random noise. One alternative is the Akaike Information Criterion (AIC; Akaike, 1974), which
penalises the dimensionality k of the parameter space, and is defined as 2k−2 log (L). Bruce and Wiebe
(1999) demonstrate that such a criterion in natural language processing can avoid overfitting.

We have T − 1 independent parameters from θ, and T (V − 1) from each of ϕ and ψ, where V is the
vocabulary size.4 Neglecting lower order terms, this gives k = 2TV . However, rare lemmas appear in
few topics, giving sparse frequency counts, so k is effectively much lower. We are not aware of a method
to deal with such sparse values. However, a simple work-around is to pretend V is smaller, for example
V = 1000, effectively ignoring parameters for rare lexical items.

4Reordering topics only represents a finite number T ! of symmetries, and therefore does not reduce the dimensionality.
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4 Experimental Setup

4.1 Choice of Prepositions

We trained models for the following prepositions: as, at, by, for, from, in, on, to, with. They were chosen
for their high frequency of both attachment sites. Rare prepositions (such as betwixt) were discarded
because of limited data. Prepositions with a strong preference of attachment site (such as of ) were
discarded because choosing the more common site already provides high performance.

Instances Proportion N
as 1,119,000 20.3 %
at 1,238,000 37.4 %
by 612,000 29.3 %
for 2,236,000 55.7 %
from 1,056,000 43.6 %

Instances Proportion N
in 5,288,000 37.6 %
on 1,628,000 49.7 %
to 1,411,000 46.1 %
with 1,638,000 37.4 %

Table 1: Number of training instances, with proportion of nominal attachment

4.2 Training Data

We trained the model using the WikiWoods corpus (Flickinger et al., 2010), which is both large, and also
has rich syntactic and semantic annotations. It was produced from the full English Wikipedia using the
PET parser (Callmeier, 2000; Toutanova et al., 2005) trained on the gold-standard subcorpus WeScience
(Ytrestøl et al, 2009), and using the English Resource Grammar (ERG; Flickinger, 2000). Of particular
note is that the ERG incorporates Minimal Recursion Semantics (MRS; Copestake et al., 2005), which
can be expressed using dependency graphs (Copestake, 2009).

The relations mentioned in section 3.2 are not explicit in the ERG, since prepositions are represented
as nodes, with edges to mark their arguments. To produce a set of training data, we searched for all
preposition nodes5 in the corpus, which either had both arguments ARG1 and ARG2 saturated, or, if
no ARG1 was present, was the ARG1 of another node. We split the data based on nominal or verbal
attachment, discarding PPs attached to other parts of speech. Each training instance was then a tuple of
the form (v, p, n) or (n1, p, n2), for verbal or nominal attachment, respectively. We used lemmas rather
than wordforms, to reduce data sparsity. The WeScience subcorpus was withheld from training, since it
was used for evaluation (see section 4.3). In total, 16m instances were used, with a breakdown in table 1.

4.3 Evaluation Data

Two datasets were used in evaluation. We produced the first from WeScience, the manually treebanked
portion of the Wikipedia data used to produce WikiWoods. This dataset allows evaluation in the same
domain and with the same annotation conventions as the training data. We extracted all potentially
ambiguous PPs from the DMRS structures: for PPs attached to a noun, the noun must be the object of
a verb, and for PPs attached to a verb, the verb must have an object. Duplicates were removed, since
this would unfairly weight those examples: some repeated cases, such as (store metadata in format), are
limited in their domain. If the same tuple occurred with different attachment sites, the most common site
was used, which happened twice, or if neither was more common, it was discarded, which happened four
times. This produced 3485 unique sequences, of which 2157 contained one of the nine prepositions under
consideration. The data is available on https://github.com/guyemerson/WeSciencePP.

The second data set was extracted from the Penn Treebank by Ratnaparkhi et al. (1994). This dataset
has been widely used, allowing a comparison with other approaches. We extracted tuples with one of

5The ERG includes some prepositions in the “sense” field of a verb, rather than as a separate node. This is done for
semantically opaque constructions, such as rely on a friend, where the meaning cannot be described in terms of rely and on a
friend. We may wish to ignore such cases for two reasons: firstly, the preposition often appears either immediately following
the verb or sentence-finally, which makes ambiguous sentences less common; secondly, the semantics is often idiosyncratic
and hence less amenable to generalisations across lemmas. We discuss these cases further in section 6.1.
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the relevant prepositions, lemmatised all words, and removed out of vocabulary items. This gave 1240
instances from the evaluation section of the corpus. We note that the data is noisy: it contains ‘nouns’
such as the (98 times), all (10 times), and ’s (10 times), which are impossible under the annotation
conventions of WikiWoods. We discuss limitations of evaluating against this dataset in section 6.1.

4.4 Baselines

We give results compared to two baselines. The low baseline chooses the most common attachment site
for each preposition, as seen in the training data, regardless of the other lexical items. The high baseline
is the maximum likelihood estimate, using Laplace smoothing with parameter 0.01. Comparing to the
low baseline shows the effect of our framework using the feature defined in (5), while comparing to the
high baseline shows the effect of the LDA smoothing. Additionally, we can consider an LDA model with
a single topic, which is equivalent to the simpler smoothing method of backing off to bigram frequencies.

5 Results

5.1 Model Selection

We varied T to find the effect on the log-likelihood and the AIC (taking V = 1000), either fixing
α = 50/T , and β = γ = 0.01, which follows the recommendations of Steyvers and Griffiths (2007), or
using hyperparameter optimisation, which allows asymmetric α. The results are shown in figure 2. For
unoptimised models, using the log-likelihood suggests T ≈ 70, and the AIC suggests T ≈ 35. For the
optimised model, theAIC suggests T ≈ 40; however, the log-likelihood has not yet found its maximum,
suggesting a much larger value, exactly what AIC is designed to avoid.

Figure 2: Model selection for LDA

5.2 Evaluation

Overall accuracy in choosing the correct attachment site is given in table 2. The large gap between
the high and low baselines shows the importance of lexical information. The high baseline and the 1-
topic model (i.e. backing off to bigrams) show similar performance. The best performing LDA models
achieve 3 and 7 percentage point increases for WeScience and the Penn Treebank, demonstrating the
effectiveness of this smoothing method. The higher gain for the Penn Treebank suggests that smoothing
is more important when evaluating across domains.

The choices of hyperparameters suggested by the log-likelihood and AIC closely agree with the
best performing model. The results also suggest that the LDA smoothing is robust to choosing too high
a value for T . As we can see in table 2, there is only a small drop in performance with larger values of
T . This result agrees with Wallach et al. (2009), who show that LDA, as applied to topic modelling, is
reasonably robust to large choices of T , and that it is generally better to set T too high than too low.

Surprisingly, hyperparameter optimisation (allowing α to be asymmetric) did not provide a signifi-
cant change in performance, even though we might expect some topics to be more common.
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Accuracy
T Samp. Optim.? WeSci PTB
1 - - 0.708 0.659
35 10 no 0.744 0.701
50 10 no 0.745 0.697
50 30 no 0.747 0.698
50 10 yes 0.741 0.695
70 10 no 0.736 0.694
70 30 no 0.738 0.696
70 10 yes 0.741 0.700
100 10 no 0.735 0.700
300 10 no 0.738 0.680

High baseline 0.718 0.629
Low baseline 0.609 0.571

Table 2: Performance of our model, varying number of topics T , number of Gibbs samples, and hyper-
parameter optimisation. The highest scores for each dataset are shown in bold.

Figure 3: Coverage against precision (left WeScience, right Penn Treebank)

Since the model is probabilistic, we can interpret it conservatively, and only predict attachment if the
log-odds are above a threshold. This reduces coverage, but could increase precision. We can be more
confident when Gibbs samples produce similar probabilities, so we make the threshold a function of the
estimated error, as in (15).6 Here, εN and εV denote the standard error in log-probability for the nominal
and verbal models - for k samples with standard deviation s, the standard error in the mean is ε = 1√

k
s.

When summing independent errors, the total error is the square root of the sum of their squares.

|logP (N |w)− logP (V |w)| > λ

(
1 +

√
ε2N + ε2V

)
(15)

Graphs of coverage against precision are given in figure 3, for both datasets. As the threshold in-
creases, the curve moves down (lower coverage) and to the right (higher precision). The increase in
precision shows that the estimated probability does indeed correlate with the probability of being cor-
rect. The difference between the two solid curves shows the effect of the LDA smoothing.

5.3 Variability of Gibbs Samples

To explore how stable the probability estimates are, we evaluated the individual Gibbs samples of the
T = 50 model. If the standard deviation s is larger than the difference in log-probability ∆, then the

6More complicated functions did not appear to offer any advantages; we omit results for brevity.
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attachment site predicted by a single sample is not reliable - this was true for 18% of the WeScience data.
If the standard error ε = 1√

30
s is larger than ∆, then the attachment site predicted by the averaged model

is not reliable - this was true for 3% of the WeScience data. Furthermore, the average accuracy of a
single T = 50 sample on the WeScience dataset was 0.734 (standard deviation 0.0035) Hence, averaging
over 30 samples reduces the number of unreliable cases by a factor of six, and increases accuracy by 1.3
percentage points.

5.4 Semantic Content of Topics

Figure 4 shows that genuine semantic information is inferred. We could characterise the first topic as
describing a BUILDING in an AREA. However, the second topic reminds us that, since the topics are
unsupervised, there may not always be a neat characterisation: the n2 lemmas are all war-related, except
for election. There is still a plausible connection between election and most of the n1 lemmas, but we
leave the reader to decide if elections are indeed like wars.

For large T , many topics are completely unused (with no tokens assigned to the topic), agreeing with
the above conclusions that the optimal value of T is around 50.

n1 school, building, station, house, church, home, street, center, office, college
n2 area, city, town, district, country, village, state, neighborhood, center, county

n1 preparation, plan, time, way, force, date, support, responsibility, point, base
n2 invasion, war, attack, operation, battle, campaign, deployment, election, landing, assault

Figure 4: Most likely lemmas in two inferred topics (from T = 50 samples). Top: in. Bottom: for.

6 Discussion

6.1 Comparison with Other Approaches to PP-attachment

Our reported accuracy on the Penn Treebank data appears lower than state-of-the-art approaches, such
as Zhao and Lin (2004)’s nearest-neighbour algorithm (described in section 2), which achieves 86.5%
accuracy. However, the figures cannot be directly compared, for three main reasons.

Firstly, there will be a performance drop due to the change of domain - for instance, the PTB has
more financial content. To quantify the domain difference, we can find the probability of generating the
test data. For the T = 50 model, the average probability of a tuple is 8.9 times lower for the PTB than
for WeScience, indicating it would be unlikely to find the PTB instances in the WikiWoods domain.

Secondly, we considered only nine prepositions, which cover just 40% of the test data. Many other
prepositions are easier to deal with; for example, of constitutes nearly a third of all instances (926 out
of 3097), but 99.1% are attached to the noun. If we simply choose the most frequent attachment site for
prepositions not in our model, we achieve 79.0% accuracy, which is 7.5% lower than state-of-the-art, but
this difference is well within the cross-domain drops in performance reported by McClosky et al. (2010),
which vary from 5.2% to 32.0%, and by MacKinlay et al. (2011), which vary from 5.4% to 15.8%.

Thirdly, there are annotation differences between WikiWoods and the PTB, which would cause a
drop in performance even if the domain were the same. As a striking example, to is the best performing
preposition in WeScience (94% accuracy, over a baseline of 74%), but has mediocre performance on the
PTB (70% accuracy, over a baseline of 61%). Much of this drop can be explained by the fact that to is
often subcategorised for, both by verbs (give to, pay to, provide to), and by nouns (exception to, damage
to). For such cases, the ERG includes to in the verb or noun’s lexical entry, and there is no preposition in
the semantics, so they do not appear in the WikiWoods training data. As a result, these cases in the PTB
are often misclassified.

Finally, it may appear that performance on WeScience is also lower than state-of-the-art, but this
dataset may in fact be more difficult than the PTB dataset. To quantify how useful each slot of the 4-
tuple is for predicting the attachment site, we can use the conditional entropy of the attachment site given
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a slot.7 A value of 0 would imply it is perfectly predictive. For the verb slot, and both of the noun slots,
the WeScience data has higher conditional entropy than the PTB8 (1% higher for v, 17% higher for n1,
and 11% higher for n2), suggesting that predicting attachment in the PTB data is an easier task.

6.2 Quality of Training Data

Flickinger et al. (2010) estimate the quality of the automatic WikiWoods annotations by sampling 1000
sentences and inspecting them manually to find errors. They judge “misattachment of a modifying
prepositional phrase” to be a minor error, which is particularly of note considering such errors provide
us with inaccurate training data. In their sample, 65.7% of sentences contained no minor errors. They do
not give a breakdown of error types, so it is not possible to determine the accuracy for PP-attachment,
but it is clear that a significant number of such errors were present. The results therefore indicate that our
model enjoys some robustness to errors in its training data.

7 Future Work

PP-attachment ambiguities represent a fraction of all syntactic ambiguities. The most important future
step is therefore to confirm the effectiveness of our framework in a wide-coverage parser, as explained
in section 3.1. Additionally, the LDA smoothing could be integrated with other approaches, such as Rei
and Briscoe (2013)’s reranking method, described in section 2.

The LDA model could be trained on multiple relations simultaneously, to account for cases where
more than one preposition is possible, as shown in (16). This could reduce data sparsity and hence
improve performance, particularly for rare prepositions. This requires no change to the mathematical
formalism, simply involving multiple samples from the same Dirichlet distribution α.

(16) They walked {along, across, down} the road.

To simplify model selection, we could use a Hierarchical Dirichlet Process (Teh et al., 2006), which
modifies LDA to allow an arbitrary number of topics.

8 Conclusion

We have described a novel framework for incorporating distributional semantic information in a max-
imum entropy parser. Within this framework, we used a generative model based on Latent Dirichlet
Allocation, in order to overcome data sparsity. We evaluated this approach on the specific task of resolv-
ing PP-attachment ambiguity, explaining how this problem relates to the general case. The LDA model
successfully extracted semantic information from corpus data, and outperformed a maximum likelihood
baseline. Furthermore, we demonstrated that training the model is robust to various hyperparameter set-
tings, which suggests that this method should be easy to apply to new settings. These results indicate
that this is a promising approach to integrating distributional semantics with parse ranking.
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