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Introduction

The ComAComA workshop is an interdisciplinary platform for researchers working on compound
processing in different languages, to present recent and ongoing work.

The workshop has several related aims. Firstly, it brings together researchers from different backgrounds
(e.g., computational linguistics, linguistics, neurolinguistics, psycholinguistics, language technology) to
discuss and evaluate compound processing each from their own point of view. Secondly, based on the
interaction between the participants, the workshop provides an overview of existing and desired resources
for future research in this area. Finally, we expect that the interdisciplinary approach of the workshop
will result in better methodologies to evaluate compound processing systems from different perspectives.

Given the high productivity of compounding in a wide range of languages, compound processing
is an interesting subject in linguistics, computational linguistics, and other applied disciplines. For
example, for many language technology applications, compound processing remains a challenge (both
morphologically and semantically), since novel compounds are created and interpreted on the fly. In
order to deal with this productivity, systems that can analyse new compound forms and their meanings
need to be developed. From an interdisciplinary perspective, we also need to better understand the
process of compounding (as a cognitive process), in order to model its complexity.
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Modelling Regular Subcategorization Changes in German Particle Verbs

Stefan Bott Sabine Schulte im Walde
Institut für Maschinelle Sprachverabeitung

Universität Stuttgart
Pfaffenwaldring 5b, 70569 Stuttgart, Germany

{stefan.bott,schulte}@ims.uni-stuttgart.de

Abstract

German particle verbs are a type of multi word expression which is often compositional with
respect to a base verb. If they are compositional they tend to express the same types of semantic
arguments, but they do not necessarily express them in the same syntactic subcategorization
frame: some arguments may be expressed by differing syntactic subcategorization slots and other
arguments may be only implicit in either the base or the particle verb. In this paper we present a
method which predicts syntactic slot correspondences between syntactic slots of base and particle
verb pairs. We can show that this method can predict subcategorization slot correspondences with
a fair degree of success.

1 Introduction

In German, particle verbs (PVs) are a very frequent and productive type of multi word expression. Parti-
cle verbs, such as anstarren (to stare at) in (1-a), are built from a base verb (BV) and a particle. Similar to
other multi word expressions, German PVs may show a varying degree of compositionality with respect
to the BV and to the particle. But German PVs also have another particularity: if they are compositional,
the mapping from semantic arguments to syntactic subcategorization frames may be different between
the PV and its corresponding BV.

(1) a. Die
The

Katze
cat-N-nom

starrt
stares

(den
(the

Vogel
bird-N-acc

|
|

die
the

Wohnungstür)
apartment door-N-acc)

an.
at-PRT.

The cat stares at the (bird | apartment door).
b. Die

The
Katze
cat-N-nom

starrt
stares

auf
at-P

den
the

Vogel.
bird-acc.

c. Die
The

Katze
cat-N-nom

starrt
stares

zur
at-P the

Wohnungstür.
apartment door-dat.

The events expressed with the PV anstarren in (1-a) can also be expressed with the BV starren in (1-b)
and (1-c). But while the argument Vogel or Wohnungstür is expressed as an accusative object in (1-a) it
is expressed as a PP in both (1-b) and (1-c), headed by the preposition auf and zu, respectively.

Related to this phenomenon, the change in the typical subcategorization frame from the BV to the
PV can also lead to an incorporation or an addition of syntactic complements (Stiebels, 1996; Lüdeling,
2001), as illustrated by (2). The BV bellen (to bark) is strictly intransitive, while the corresponding PV
anbellen (to bark at) is transitive and takes an obligatory accusative object which expresses the person
or entity being barked at. This is a case of argument extensions in the PV with respect to its BV. The
PV anschrauben (to screw onto) displays incorporation: it can nearly never select an argument which
expresses the location onto which something is screwed, while its BV schrauben (to screw) requires the
expression of the location with a PP.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer are
added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/
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(2) a. Der
The

Hund
dog-N-nom

bellt.
barks.

b. Der
The

Hund
dog-N-nom

bellt
barks

den
the

Postboten
postman-N-acc

an.
at-PRT.

c. Der
The

Mechaniker
mechanic-N-nom

schraubt
screws

die
the

Abdeckung
cover

auf
on

die
the

Öffnung.
opening-N-acc.

d. Der
The

Mechaniker
mechanic-N-nom

schraubt
screws

die
the

Abdeckung
cover

an.
on-PRT.

(3) a. Der
The

Metzger
butcher

bringt
brings

seiner
his

Frau
wife

Blumen.
flowers.

The butcher brings his wife flowers.
b. Der

The
Metzger
butcher

bringt
brings

das
the

Lämmchen
little lamb

um.
PRT.

The butcher assassinates the little lamb.

Finally, if the meaning of the PV is not compositional with respect to the BV, there are no se-
mantic correspondences between subcategorization slots of the PV and the BV. The problem of non-
compositionality is illustrated by (3) which uses the PV umbringen (to assassinate), which has a totally
different meaning from its BV bringen (to bring). A successful mapping between the subcategorization
slots of both can thus be expected to have a direct relation to the assessment of PV compositionality.

The problem we address here can be called the syntactic transfer problem: the subcategorization
frame of a BV can be mapped onto a subcategorization frame of the PV, where semantic arguments are
not necessarily realized with the same syntactic positions in both of the verbs. A good approximation
to this problem is potentially very useful in computational lexicography and other NLP tasks, such as
machine translation and information extraction. We also expect it to be helpful to assess other aspects of
German particle verbs, such as the prediction of compositionality levels.

In order to tackle the problem of argument slot matching we use a vector space model to represent dis-
tributional semantics. We expect that high distributional similarity between two given subcategorization
slots taken from a verb pair signals a correspondence of these slots in a pair of subcategorization frames.
On the contrary, we expect that low distributional similarity signals that no such correspondence can be
established. Further on, if for a given subcategorization slot, either from a BV or a PV, no matching
slot can be found in the complementary PV/BV automatically, this typically corresponds to a case of
argument incorporation or argument extension.

In short, in this paper we make the following contributions: We present a method of automatically
mapping syntactic subcategorization slots of BVs and PVs which is based on distributional semantics
and we show that this method can outperform a random baseline with a high level of success.

The rest of this paper is organized as follows: In section 2 we present related work. Section 3 describes
our experimental setup, including the method of correspondence prediction, the elicitation of human
judgements and the evaluation. Section 4 presents the results which are then discussed in section 5.
Section 6 concludes the paper with some final remarks and outlook on future work.

2 Related Work

Particle verbs have been studied from the theoretical perspective and, to a more limited extent, from the
aspect of the computational identifiability, predictability of the degree of semantic compositionality (the
transparency of their meaning with respect to the meaning of the base verb and the particle) and the
semantic classifiabilty of PVs.

For English, there is work on the automatic extraction of PVs from corpora (Baldwin and Villavicen-
cio, 2002; Baldwin, 2005; Villavicencio, 2005) and the determination of compositionality (McCarthy et
al., 2003; Baldwin et al., 2003; Bannard, 2005). To the best of our knowledge Aldinger (2004) is the
first work that studies German PVs from a corpus based perspective, with an emphasis on the syntactic
behavior and syntactic change. Schulte im Walde (2004; 2005; 2006) presents several preliminary distri-
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butional studies to explore salient features at the syntax-semantics interface that determine the semantic
nearest neighbours of German PVs. Relying on the insights of those studies, Schulte im Walde (2006)
and Hartmann (2008) present preliminary experiments on modelling the subcategorization transfer of
German PVs with respect to their BVs, in order to strengthen PV-BV distributional similarity. The main
goal for them is to use transfer information in order to predict the degree of semantic compositionality
of PVs. Kühner and Schulte im Walde (2010) use unsupervised clustering to determine the degree of
compositionality of German PVs, via common PV-BV cluster membership. They are, again, mainly
interested in the assessment of compositionality, which is done on the basis of lexical information. They
use syntactic information, but only as a filter and for lexical heads as cooccurrence features in order
to limit the selected argument slots to certain syntactic functions. They compare different feature con-
figurations and conclude that the best results can be obtained with information stemming from direct
objects and PP-objects. The incorporation of syntactic information in the form of dependency arc labels
(concatenated with the head nouns) does not yield satisfactory results, putting the syntactic transfer prob-
lem in evidence, the problem which we address here. They conclude that an incorporation of syntactic
transfer information between BVs and PVs could possibly improve the results. In Bott and Schulte im
Walde (2014a) we present a method to assess PV compositionality without recurring to any syntactic
features, but we assume that the results of this method could be improved if additional syntactic transfer
information was incorporated.

Based on a theoretical study (Springorum, 2011) which explains particle meanings in terms of Dis-
course Representation Theory (Kamp and Reyle, 1993), Springorum et al. (2012) show that four classes
of PVs with the particle an can be classified automatically. They take a supervised approach using de-
cision trees. The use of decision trees also allows them to manually inspect and analyze the decisions
made by the classifier. As predictive features they use the head nouns of objects, generalized classes of
these nouns and PP types. In Bott and Schulte im Walde (2014b) we present an experiment to classify
semantic classes of PVs, based on subcategorization information stemming from both the BV and the
BV of each BV-PV pair. In this work we use the same gold standard we use here. This experiment is also
related to the one presented here in that we assume that the syntactic transfer patterns are quite stable
within semantic classes.

3 Experimental Setup

In order to test our hypothesis we selected a set of 32 PVs listed in Fleischer and Barz (2012), including
14 PVs with the particle an and 18 with the particle auf.1 We concentrated on two particles here in order
to have a small and controlled test bed which allows us to study the syntactic transfers. We selected
verbs which we considered to be highly compositional in order to be able to study the correspondence of
subcategorization slots. The set contained verbs which have argument slots which are typically realized
as different syntactic subcategorizations. The set also contained PVs which show argument incorporation
or the introduction of an additional syntactic complement with respect to their BV. We excluded verbs
which we could clearly perceive as being polysemous. This set of verbs was processed automatically
and presented to human raters, as described below. The test set can be seen in table 1. This test set
was already used in Bott and Schulte im Walde (2014b), where it was used as a gold standard for the
automatic classification of semantic classes of particle verbs, based on syntactic transfer patterns. The
subcategorization patterns listed here are the ones we expected to find, so the second and the third row
together represent the expected syntactic transfer pattern. The values given in these two columns are
a lexicographic presentation of the transfer patterns we expected to find. The task of the system was
defined as to find matches between slots from both verbs automatically. The verbs were grouped together
in classes which are both semantically similar and also expected to have a similar syntactic behaviour.
The labels in the column for the semantic class are taken from Fleischer and Barz (2012), but broken
down into more detailed classes, such as verbs of trying, gaze or sound. The latter label extensions were

1Fleischer and Barz list more than 100 PVs for both an and auf, but they embed this listing in a descriptive text. Some of
the verbs listed are very rare or highly ambiguous. Since particle verbs in German are a highly productive paradigm and give
rise to many neologisms, compiling a complete list of PVs is nearly impossible.
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added by us. In the present work we are not interested in the semantic classes as such, but we assume
that the transfer patterns are similar in each semantic class.

3.1 Automatic Classification

Since we wanted to test the predictability of syntactic slot correspondences, we first had to identify
the typical elements of the subcategorization frames for both BVs and PVs. In order to do so, we
extracted all observable subcategorization patterns from a parsed corpus. Then we selected the 5 most
frequent subcategorization patterns for each verb (either BV or PV). These patterns were then broken
down into their individual elements. The simple transitive pattern, for example, contained a subject and
an accusative object. Since some subordinate structures miss overt subjects and in German all verbs have
a subject slot, we always included the subject in the representation of all verbs. The rationale behind this
method, which is based on the frequency of subcategorization patterns rather than the frequency of slots,
was that we were not interested in subcategorization slots per se, but in subcategorization patterns as a
typical representation structure in computational lexicography.

Then we built a vector space model for all possible combinations of BV-complements and PV-
complements of each BV-PV pair. The dimensions of the vector were instantiated by the head nouns
of the syntactic relation in question. The extension in each dimension is equal to the frequency of the
head noun in the relevant position. For this experiment no term weighting was applied. Table 2 shows
the strongest dimensions for the vectors corresponding to the PP-argument headed by the verbs heften (to
attach) and anheften (to attach to). The two verbs can be used in quite similar contexts with very similar
arguments. Accordingly, the two vectors are similar to each other. Although the two vectors correspond
to PP slots headed by the preposition an, it can be seen that there is a syntactic transfer from accusative to
dative case. Both vectors include head nouns expressing typical places to which things can be attached
to, such as a pin board (Pinnwand), a wall (Wand) or a board (Brett). The verb heften is frequently
found in the idiom sich an jemandes Ferse heften (to attach onseself to someone’s heels, which means
to follow someone closely), while this idiom cannot be formed with the PV anheften. For this reason the
dimension for Ferse is very strong. This example, especially the vector for anheften also shows that the
features are often sparsely represented, which presents a problem for our approach.

As a similarity measure we used the cosine distance between two vectors. A variable threshold was
applied on the cosine distance to, which serves to separate corresponding subcategorization slots from
non-corresponding ones. This is especially important for the detection of argument incorporation or
argument extension (cf. example (2)). If, for example, for a given BV slot no PV slot can be found
with a cosine value above the threshold, we interpret this as a case of argument extension. On the
other hand, a slot from a PV which cannot be match to a slot of its BV is taken to signal argument
incorporation. Among the vectors compared to each target subcategorization slot only the one with the
highest cosine value was considered as a possible correspondence. Finally, since we want to capture both
argument incorporation and argument extension, we computed correspondences for both BVs and PVs
separately. Even if this means that most slot pairs are computed twice, this allowed zero-correspondences
for slots from both verbs. It theoretically also allows for one-to-many and many-to-one matches, even
if we did not exploit them here. We excluded closed class dependencies of verbs, such as negations.
We also excluded clausal complements, because they could not be properly represented by our vector
extraction method. To get an idea of the lower bound of the outcome values, we used a select-1 baseline.
This baseline was obtained by calculating the expected precision and recall for the case that for each
subcategorization slot a matching slot from the corresponding other verb is assigned randomly.

As training data we used a lemmatized and tagged version of the SDeWaC corpus (Faaß and Eckart,
2013), a corpus of nearly 885 million words. The corpus was processed with the Mate dependency parser
(Bohnet, 2010). The output of this parser represents the syntactic complements of the verbs as labelled
arcs. In the case of nominal objects the nominal heads could be directly read of the dependent nodes and
the syntactic relation of the arc labels. In the case of PP-complements we read the nominal heads of the
nominal node which depends on the preposition which in turn depends on the verb. For the extraction of
features we could rely on the database compiled by (Scheible et al., 2013).
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Particle Typical frames Typical frames Semantic Verbs in Class
for the BV for the PV Class

an

NPnom
+NPacc
+PP-an

NPnom
+NPacc
+PP-an

locative/
relational
tying

an|binden to tie at
an|ketten to chain at

NPnom
+PP-zu/in/

nach/auf

NPnom
+NPacc

locative/
relational
gaze

an|blicken to glance at
an|gucken to look at
an|starren to stare at

NPnom
+NPacc
+PP-mit

NPnom
+NPacc
+PP-mit

ingressive
consump-
tion

an|brechen start to break
an|reißen start to tear
an|schneiden start to cut

NPnom NPnom
+NPacc

locative/
relational
sound

an|brüllen to roar at
an|fauchen to hiss at
an|meckern to bleat at

NPnom
+NPacc
+PP-an

NPnom
+NPacc

locative/
relational
fixation

an|heften to stick at
an|kleben to glue at
an|schrauben to screw at

auf

NPnom NPnom
locative
blaze-
bubble

auf|brodeln to bubble up
auf|flammen to light up
auf|lodern to blaze up
auf|spudeln to bubble up

NPnom
+PP-zu/in/

nach/auf
NPnom locative

gaze

auf|blicken to glance up
auf|schauen to look up
auf|sehen to look up

NPnom
+NPacc

NPnom
+NPacc

locative/
dimensional
instigate

auf|hetzen to instigate
auf|scheuchen to rouse

NPnom
+NPacc
+PP-auf

NPnom
+NPacc

locative/
relational
fixation

auf|heften to staple on
auf|kleben to glue on
auf|pressen to press on

NPnom NPnom ingressive
sound

auf|brüllen suddenly roar
auf|heulen suddenly howl
auf|klingen suddenly sound
auf|kreischen suddenly scream
auf|schluchzen suddenly sob
auf|stöhnen suddenly moan

Table 1: The gold standard classes for the experiments, with subcategorization patterns.

anheften-MO-an-dat count heften-MO-an-acc count
Oberfläche 3 Ferse 154
Gerichtstafel 3 Brust 48
Stelle 2 Revers 43
Schluss 2 Kreuz 32
Unterlage 1 Wand 30
Kirchentüre 1 Spur 12
Brett 1 Tafel 11
Pinnwand 1 Fahne 11
Körper 1 Tür 11
Wand 1 Pinnwand 9
Bauchdecke 1 Kleid 6
Baum 1 Brett 6
Schleimhautzelle 1 Mastbaum 6
Himmel 1 Körper 5
Spur 1 ihn 5
Sphäre 1 Kleidung 5
Wand 1 Oberfläche 5
Spur 1 Stelle 4
Engstelle 1 Baum 4
Pflanze 1 Jacke 4
Protein 1 Mantel 4
Unterseite 1 Teil 3
Zweig 1 Krebszelle 3
Pin-Wand 1 schwarz 3

Table 2: The strongest dimensions for two sample vectors representing subcategorization slots of the
verbs heften and anheften.
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3.2 Human rating elicitation

We asked human raters to rate the same examples which the system classified automatically. Each of the
pairs of subcategorization slots described in section 3.1 was rated individually. The pairs were always
presented in the order <BV-subcategorization-slot,PV-subcategorization-slot> and in visual blocks cor-
responding to BV subcategorization slots. So the raters could see the possible PV subcategorization slots
in direct comparison. The order of blocks was randomized. The raters were asked to judge every pair
and rate whether or not they could correspond to a single semantic argument. They were invited to invent
example sentences, but because of the length of the annotation session they were not asked to write them
down. They were told that, as a criterion for semantic correspondence, each of the verbs in a pair should
be usable to describe at least one event or situation they could think of. One annotation example, which
did not stem from the set to be rated, was given.

Four human raters were asked to rate examples. All annotators were experts with either a linguistic
or NLP background. They were all German native speakers and none of them was otherwise involved
in the work presented in this paper. Because of the large size of the data set to be annotated we had
to distribute the set over two annotation forms and each annotation form was annotated by two raters.
Before the annotation started, one of the authors carried out the same annotation in order to estimate the
time needed for each annotation and the level of success which could be expected from the system. Also
this annotation was done blindly, without knowledge of the system output, but with a precise knowledge
of the task.

The annotation turned out to be much more difficult that we had originally expected. The annotators
described the annotation as being hard to perform. This was also reflected by inter annotator agreement;
we could only observe a fair agreement, with a Fleiss’ Kappa score of 0.31. The agreement between the
annotator ratings and the rating by the author was somewhat higher with a Fleiss’ Kappa score of 0.44.
Some annotators gave detailed feedback, once they had completed the annotation.

4 Results

Table 3 shows the results we obtained. The columns show precision, recall and the harmonic F-score
obtained by comparing the system output to the human ratings. We used a precision/recall schema
because the task can be seen as the system selecting the most likely slot correspondences from a set of all
possible correspondences. So a true positive is obtained if the system selects the same slot that a human
rater would select. False positives correspond to a slot selected by the system, which was not chosen by
the annotator and a false negative instances are those which are marked by an annotator and not chosen
by the system.2 Since there was more than one annotators and the annotations differed, we took the sum
of true and falls positives and false negatives from all annotators and calculated the scores over this sum.
The last column shows the harmonic F-score values we obtained with the annotations produced by one of
the authors. The lines represent those threshold values for which the highest precision or F-score could
be obtained. The last line represents the baseline. Since a variable threshold was applied there is a trade-
off between precision and recall. This is represented in figure 1, which displays the same information as
table 3, but in a graphical way.

As expected, the precision improves with higher thresholds, but this comes at the cost of a lower re-
call. The F-score stays relatively constant. The baseline is quite low, especially the recall. This can be
explained because the human raters were free to assign zero-correspondences (i.e. argument incorpora-
tions or argument extensions, as exemplified by the examples in (2)) or more than one correspondence
per target slot.

5 Discussion

We could observe that the system can predict the correspondences between syntactic subcategorization
slots to a fair degree of success and that our method can clearly outperform the baseline. Our hypotheses

2Precision was calculated as {true positives}
{true positives}+{false positives} and recall as {true positives}

{true positives}+{false negatives} . The F-score
was calculated as (precision + recall)/2.
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Threshold Precision Recall F-score Author F-score
0.15 0.48 0.38 0.43 0.68
0.6 0.69 0.21 0.45 0.63
0.85 0.75 0.14 0.44 0.59
baseline 0.38 0.23 0.31 0.31

Table 3: Results of the evaluation in precision, recall and harmonic F-score. The last column represents
the pilot annotation carried out by one of the authors.

Figure 1: Trade-off between precision and recall. The F-Score remains relatively stable.

that correspondence between subcategorization slots can be predicted to a large degree by distributional
semantic similarity can thus be confirmed. On the other hand, the success was not as high as we initially
expected. It is surprising that the precision and recall values obtained with the annotations of the human
raters are much lower than the values obtained in the initial annotation produced by the author. The
author annotation has to be seen as overly optimistic, since it was done with a deeper understanding of the
computational task which was to be carried out by the system. Still, this annotation was done blindly. So
the big difference we observed is surprising. As already mentioned, the annotators all reported that they
found the annotation task difficult to carry out and we attribute the low agreement to this difficulty. The
fact that the agreement among different rather was also only fair (κ = 0.31) hints in the same direction. It
must be said that some annotators found the annotation task more difficult than others. Two of the raters
reported less annotation difficulty than the remaining. These two annotators were also the ones with
most annotation experience and they were both familiar with the topic of particle verbs from a theoretical
perspective. When the system output was compared to the ratings of best annotator, a maximum F-score
of 0.55 could be achieved, which is still lower than the values obtained in comparison to the author
annotation, but much higher than the average of all annotations.

Since some of the annotators gave detailed comments after the annotation was completed, we could
detect some problems, which made the annotation difficult, but also extends to the automatic matching.
For example, some base verbs have a resultative reading which do not express an agent and match the
patient with the nominal subject position. One such verb is kleben (to stick/glue) as exemplified in (4).
Accordingly among the strongest dimensions of the vector that represents the subject slot of kleben,
many nouns appear, which are typical things that stick, such as band aids (Pflaster), dough (Teig) and
blood (Blut). The closest vector to the vector for the accusative object vector of ankleben was also
the accusative object vector of kleben (cosine=0.64), but the subject vector was still relatively strong
(cosine=0.19).
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(4) a. Gerda
Gerda

klebt
sticks

den
the

Zettel
Note

an
on

die
the

Tür.
door.

b. Der
The

Zettel
Note

klebt
sticks-to

an
the

der
door.

Tür.

The particle verb ankleben can be used to describe the same state of affairs as in (4-a), but not as in (4-b).
This is evidently a problem which is hard to solve with our approach because the correspondence of slots
from BV and PV interferes with a slot correspondence among different uses of the BV.3

Finally, we found that many of the feature vectors were sparsely instantiated. This can be seen, for
example, in the vector that represents the dative PP modifier headed by an of the verb anheften shown
in table 2. The sparsity problem could be remedied by reducing the number of dimensions with the
application of some kind of abstraction over the head nouns. For example the concepts of Tür (door) and
Kirchentür (church door) are strongly related and could be represented in one dimension of the feature
vector. The same holds for the concepts of Pinnwand (pin board), Wand (wall) and Tafel (blackboard)
and other groups of concepts. With a certain level of abstraction over such concepts, the distance between
vectors would also be reduced in case they are sparse. This abstraction is, however, not a trivial problem
in itself. The application of lexical ontologies like WordNet (as used by e.g. Springorum et al. (2012)),
for example, has the danger of reducing the semantics of head nouns to level of abstraction which is too
high, since WordNet has only few top-level categories and few levels of conceptual inheritance.

6 Conclusion and Outlook

We started the work described in this paper out of an interest to approach the syntactic transfer problem
of German particle verbs from a computational perspective. We wanted to know in how far the subcat-
egorization slots of a particle verb can be associated with subcategorization slots of a base verbs from
which it is derived. The information we used for this matching is based on distributional semantics. We
could show that can be done with a good degree of success. From the elicitation of human judgements
we learned that the task is also not an easy one for human raters. This also sheds some light on the
difficulty of the problem as a computational task.

The work we present here is relevant for computational lexicography. Firstly it can help relate lexical
entries of such closely related lexical items as particle verbs and the base verbs they incorporate. The
findings we made here may be also applicable to other types of multi word expressions.

In future work we would like to remedy the problem sparse vector representation with the use of
abstraction over the head-nouns which will reduce the dimensionality of the feature vector. We also
plan to see in how far an automatic clustering of particle verbs into semantic groups can strengthen the
prediction of slot correspondences under the assumption that semantically similar verbs tend to undergo
the same syntactic transfer. Finally, the problem of syntactic transfer between two elements is also
related to the predictability of the degree of compositionality between BV-PV pairs. We are especially
interested in this last problem and in future work we plan to investigate in which way subcategorization
slot matching can be used as a predictor for compositionality levels.
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und Partikeln. Akademie Verlag, Berlin.

Aline Villavicencio. 2005. The Availability of Verb-Particle Constructions in Lexical Resources: How much is
enough? Computer Speech & Language, 19(4):415–432.

10



Proceedings of the First Workshop on Computational Approaches to Compound Analysis, pages 11–19,
Dublin, Ireland, August 24 2014.

Splitting of Compound Terms
in non-Prototypical Compounding Languages

Elizaveta Clouet and Béatrice Daille
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Abstract

Compounding is present in a large variety of languages in different proportions. Compound rate
in the text obviously depends on the language, but also on the genre and the domain. Scientific
and technical texts are especially conducive to compounding, even in the languages that are not
traditionally admitted as highly compounding ones. In this article we address compound splitting
of specialized terms. We propose a multi-lingual method of compound recognition and splitting,
which uses corpus frequencies, lexical data and optionally linguistic rules. This is a supervised
method which requires a small amount of segmented compounds as input. We evaluate the
method on two languages that rarely serve as a material for automatic splitting systems: English
and Russian. The results obtained are competitive with those of a state-of-the-art corpus-driven
approach.

1 Introduction

Compounding is a method of word formation consisting of a combination of two (or more) lexical ele-
ments that form a unit of meaning. In this work we only handle so called ”closed compounds” (Macherey
et al., 2011), i.e. those forming also a graphical unit. A great number of languages resort to this word
formation. In some of them such as German, Dutch (Germanic family), Estonian or Finnish (Uralic fam-
ily) compounding is very regular and well described. In other languages it is less productive (e.g. Slavic
family), or even marginal (most of Romance languages). This phenomenon is particularly productive in
specialized domains because of the necessity to denote the domain concepts in a very concise and precise
way. In addition, specialized texts contain many neoclassical compounds (Namer, 2009), i.e. compounds
with some elements of Greek or Latin etymological origin: hydro + logy = hydrology.

In this article we discuss processing of compound terms, and we carry out the experiments with
English and Russian, which are not prototypical compounding languages. As a matter of fact, com-
pounding in English is rather productive and widely investigated in linguistic studies. But this language
is rarely subject to experiments in automatic compound splitting. The first reason is that most of English
compounds are formed by simple concatenation (airfoil = air + foil, streamtube = stream + tube),
so their splitting is supposed to be straightforward. The second reason is that many compounds in
highly compounding languages should be translated into English as multi-word expressions. That is
why the works addressing automatic compound splitting in the context of machine translation often
admit that English contains only few closed compounds (Koehn and Knight, 2003; Macherey et al.,
2011). In these works, the use of English parallel texts helps to extract the multi-word equivalents of
compounds from the texts in highly compounding languages. We assume that English compound terms
are still worth splitting and analyzing. The first reason is that the assumption of independent occurring
of English compound elements fails when we consider neoclassical compounds. The second ground is
that distinguishing between compounds and non-compound out-of-dictionary words (named entities,
derivative forms, etc.) can be problematic.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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In the Russian language the elements of compounds do not often appear as independent words in texts,
for example:

водоснабжение ’water supply’
vodosnabzhenie1 = voda ’water’ + snabzhenie ’supply’

Here the inflection ”a” of the first component is omitted and the linking morpheme ”o” is inserted.
Compounding in Russian is less regular than, for instance, in German. Therefore most of NLP systems

for Russian, to our knowledge, store usual compound parts in the lexicon. For specialized vocabularies
this solution does not seem to be sufficient, since the new compounds terms constantly appear.

To handle compounds in typologically different languages, including languages with non-independent
components, we propose a corpus-driven splitting system using also string similarity and able to integrate
language-specific rules2.

The article has the following structure. Section 2 gives a review of some compound splitting methods
proposed in the literature. Section 3 presents our splitting method. In Section 4 the experiments and
data are described. We discuss the results and analyse the errors. We also compare our system to the
state-of-the-art corpus-based method of Koehn and Knight (2003). We conclude with Section 5.

2 Related Works

Compound splitting was addressed in many NLP works, as a standalone task or in the pipeline of another
application: machine translation (Koehn and Knight, 2003; Macherey et al., 2011; Stymne et al., 2013),
information retrieval (Braschler and Ripplinger, 2004; Chen and Gey, 2001), etc.

To deal with the non-independent compound elements in morphologically rich languages, different
solutions have been proposed. It is possible to store separately the compound stems and the linking
morphemes (the morphemes that are inserted at the component boundaries to form a compound), and to
have a grammar to combine them. This solution is realized in the morphological analyser for German
SMOR (Schmid et al., 2004). The construction of such a finite-state morphology for a new language is a
costly task in terms of time and efforts.

Another approach is to formalize the component modifications as a set of rules describing addition,
but also deletion and substitution of some character sequences on the component boundaries within a
compound. Thus, the compound splitter BananaSplit (Ott, 2005) uses a set of linguistic rules for German
to restore independent forms from compound forms, and validates the restored forms with the help of a
monolingual dictionary.

Other methods resort to the corpora to validate the analyses. A pioneering work using corpus statistics
for compound splitting was done by Koehn and Knight (2003). The algorithm generates all possible
segmentations for a given word (taking into account some linking morphemes), and gives a probability
for each segmentation, estimated from the geometric mean of the component frequencies in the corpus.
The segmentation with the highest score is classed as the best.

Probabilistic splitting methods using machine learning technologies have been proposed (Dyer, 2009;
Hewlett and Cohen, 2011; Macherey et al., 2011). Actually they are less precise than the language-
specific methods, but their advantage is the usability for any language. Statistical methods also tend to
integrate some linguistic knowledge (e.g. list of linking morphemes).

3 Compound Splitting Method

Our concern was to design a corpus-driven system that could be applied to different languages, but also
able to integrate linguistic knowledge. For a given word, the system makes the decision as to whether
it is a compound, and for compounds it gives one or several candidate analyses ranked by their scores
(in this work we use up to five candidates). Figure 1 illustrates the splitting mechanism, as well as the
system training needed to set up splitting parameters.

1Here and further for Russian examples transliteration is given.
2https://logiciels.lina.univ-nantes.fr/redmine/projects/compost
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Figure 1: Parameters setting and compound splitting

3.1 General Method Description
To split a candidate compound, we start generating all its possible two-part segmentations beginning
with the components of minimum permitted length: we used the minimum length of 3 characters, which
is a frequent choice for compound splitting systems (Koehn and Knight, 2003; Dyer, 2009).

RU ветротурбина ’wind turbine’
vetroturbina → vet + roturbina
vetroturbina → vetr + oturbina
vetroturbina → vetro + turbina

...
vetroturbina → vetroturb + ina

If we can provide rules for this language to restore independent lexemes from non-independent com-
ponents, we apply them to the component candidates. We will further refer to these rules as ”linguistic
rules” or simply ”rules”. For English only a few rules for correcting lemmatization were needed, for in-
stance ”ed”→ ”e”: health-based → health + base. For Russian we defined a set of 15 rules to transform
the left component and 14 rules to transform the right component. In the example above, the rule ”o”→
”” can be applied to the 3rd segmentation candidate: vetro → vetr.

If the rules are not available or not sufficient to cover all modifications, the potential lemmas are
proposed using a similarity measure. We use normalized Levenshtein distance (Frunza and Inkpen,
2009) as similarity measure. Thus, vetr is not an independent word, and some candidate lemmas were
found: veter ’wind’, veto ’veto’, and vetka ’branch’, all with the similarity value of 0.8.

For each candidate segmentation, the lemmas for both components are matched with a lexicon and
with a word list extracted from a specialized monolingual corpus. The lexicon contains a monolingual
dictionary filtered by POS and combined with a list of neoclassical roots and prefixes to process neoclas-
sical compounds. In this work, we kept only nouns, adjectives, verbs and adverbs in the lexicon to reduce
prospective errors, even if we are aware that compound components can belong to other POS (pronouns,
numerals), but in the languages that we investigated such formations are minor. Then, the segmentation
score is calculated (see below).
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After that we try to split the right side component further in a recursive manner, and so on up to a
certain level. This level is a parameter corresponding to the maximum expected number of components,
for instance:

EN kiloelectronvolt
kiloelectronvolt → kilo + electronvolt
electronvolt → electron + volt

Finally, the algorithm returns a top 5 of the best segmentations ordered by their score. For RU ветро-
турбина the output is:

veter turbina 0.81
veto turbina 0.8
vetka turbina 0.8

The correct split is veter ’wind’ + turbina ’turbine’, and indeed it has the best score given by the program.

3.2 Score Calculation

At each level of segmentation recurrence (at the first level the word is divided into 2 components, at the
second level into 3 components and so on), the segmentation score is calculated as follows:

Score(segm) =

{
Score(compA)+Score(compB)

2 if exact match
Score(compA)+Score(compB)

nbComp otherwise

where nbComp is the number of components in the word at this level of recurrence. ”Exact match”
means that all components are found ”as is” in the dictionary or corpus. We consider that two-part
segmentations are more frequent and more plausible than those containing three and more parts, that is
why we favor the splits into two components. For example for the RU ветроколеса vetrokolesa (plural
form of ’windwheel’):

Correct split is vetro.kolesa = veter ’wind’ + koleso ’wheel’

Score(vetro+ kolesa) =
Score(veter) + Score(koleso)

2

Incorrect split is vetro.ko.lesa = veter ’wind’ + ko ’co-, prefix’ + les ’wood’

Score(vetro+ ko+ lesa) =
Score(veter) + Score(ko)+Score(les)

2

3

An exception occurs for the splits in which the components exactly match the dictionary or corpus (e.g.
EN kiloelectronvolt). These splits are realistic and we do not penalize them dividing by nbComp.

Score(kilo+ electron+ volt) =
Score(kilo) + Score(electron)+Score(volt)

2

2

This way of calculating the segmentation score at each splitting level corresponds also to the theoreti-
cal principle defended by Benveniste (1974) and that we share: a compound word is always formed by
two components. Among these two components, one can be a compound itself, but even in this case only
two components take part in a compound formation. However, we have noticed in a separate experi-
ment that the score obtained in such a way is rather close to the arithmetic mean of the component scores.
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The score of a component is calculated by a linear interpolation:

Score(comp) = α sim(comp, lemma) + β inDico+ γ inCorpus+ δ DSpec (1)

where sim(comp,lemma) means similarity between the component and a candidate lemma (from 0 to 1),
inDico and inCorpus indicate the existence of the lemma in the lexicon and in the corpus (0 or 1), DSpec
means domain specificity value for this lemma (see below). The sum of coefficients α, β, γ and δ is 1.

If a lemma in the lexicon is neoclassical, which means it does not occur individually in the corpus, we
assign it the value inCorpus = 1, otherwise the score would be penalizing for all neoclassical compounds.
The coefficients α, β, γ and δ are parameters and should be learned for each language using a small
amount of training data (about a hundred of compounds per language).

3.3 Domain specificity

Since we are dealing with specialized vocabularies, we exploit the notion of domain specificity of a
lexical unit, or in other terms, the relevance of the lexical unit for a given domain. Our domain specificity
is based on Ahmad’s ”weirdness ratio” (Ahmad et al., 1992) which is calculated as the ratio between
the term frequency in a specialized corpus and the term frequency in a general corpus. As we use a
linear interpolation formula, each component of the sum should be between 0 and 1. So we normalize a
weirdness ratio of a lemma dividing it by the maximum weirdness ratio found for this specialized corpus.

Domain specificity helps to disambiguate splitting variants. So, for our Russian example ветротур-
бина vetroturbina, we would like to rank the analysis veter turbina better than veto turbina or vetka
turbina, and we rely on the fact that the word veter ’wind’ is more specific for the given wind energy
domain than the words veto ’veto’ and vetka ’branch’.

Our method can also be used to process general language compounds. In this case, one should exploit
a list of the words extracted from a general language corpus, with their relative frequency in this corpus
instead of the domain specificity list extracted from a specialized corpus.

3.4 Training phase

The training phase consists of two steps: optimizing the coefficients used for component scoring, and
defining a score threshold to recognize whether an out-of-dictionary word is a compound.

Firstly, for a given language we train our algorithm on a certain number of words annotated with their
segmentations (training dataset) in order to find the best coefficients α, β, γ and δ (see equation (1)).
We try all the possible coefficients from 0 to 1 with a step of 0.1 (the sum of all coefficients equals one)
and we retain the combination that results in the highest recall and precision. In this step, the parameters
giving the highest recall are generally the same as the ones giving the best precision.

Recall for Top N is calculated as the ratio between the number of words that have a correct split among
N segmentations ranked as the best ones by the algorithm and the total number of analysed compounds:

Recall =
nbSegmentedCorrectly

nbCompounds
(2)

Precision for Top N is calculated as the ratio between the number of words having a correct split
among N segmentations ranked as the best ones by the algorithm and the number of words split by the
algorithm:

Precision =
nbSegmentedCorrectly

nbSegmented
(3)

Note that the denominator here is the number of words which were split, and not the number of all
candidates produced.

Secondly, we apply again the same algorithm with the selected coefficients to a training dataset. The
current objective is to determine an optimal score threshold over which the given word is probably a
compound. To do that, we try all the thresholds from 0 to 1 with a step of 0.05 and calculate recall and

15



Language Specialized Corpus General Corpus Dictionary NCP-list
EN 314,549 5,001,609 145,542 437
RU 323,929 109,115,810 526,876 132

Table 1: Resources Statistics

precision for Top 1 and Top 5 of segmentations ranked as the best ones by the algorithm and with a score
higher than this threshold.

The user can therefore choose the threshold that he considers as optimal depending on the target
application. For instance, for lexicon acquisition task splitting precision will be more important than
recall, whereas for the supervised translation task splitting recall may turn out more important. In this
work, we optimize the threshold for a better precision. This allows us to compare the results to those of
a state-of-the-art method (Koehn and Knight, 2003) which privileges precision rather than recall.

4 Experiments and Results

We use a unified strategy for the two major types of compounds, native and neoclassical. We also con-
sider in our experiments some prefixed words. Standard prefixation is, of course, a subtype of derivation,
and not of compounding. However, in some boundary cases it is difficult to catch the difference between
prefixed formations and neoclassical or native compounds: compare prefix bi- to neoclassical root uni-
according to Béchade (1992). Moreover, from the operational point of view, some prefixed words can be
split in the same manner as compounds.

4.1 Data

Table 1 summarizes the size of the resources used in this work. Wind Energy corpora3 were crawled
from Web pages by means of Babouk (Groc, 2011), a tool dedicated to automatic compilation of domain-
specific corpora, with the use of a key-term list. To compute the domain specificity of a term, we needed
its frequency in the general language corpus. For the English language, we used a subpart of the New York
Times corpus 4. For Russian, we used a frequency list computed from The Russian National Corpus5.

Concerning the dictionaries, we exploited the monolingual parts of the following bilingual general
language dictionaries: FR-EN from the ELRA catalogue6 for the English part, RU-EN from English-
Russian full dictionary7 for the Russian part.

To obtain the lists of neoclassical roots and prefixes, we firstly took the English and Russian equiva-
lents of neoclassical elements enumerated in (Béchade, 1992). Secondly, we completed these lists with
some prefixes of Latin, Greek or another origin that have equivalent in numerous languages (co-, pre-,
post-, trans-, etc.). For English we consulted publicly available morpheme translation tables8. We will
refer to this source as NCP-list.

We extracted from the specialized corpus a lexicon which contains only the words that (1) are either
nouns or adjectives, because most compounds belong to these two categories (about 80% according to
cross-language study reported in (Scalise and Fabregas, 2010)); (2) have frequencies greater than 2; (3)
are 6 characters and more long; and (4) do not appear in the general language dictionary used. We applied
these criteria to eliminate the words that are not compounds in order not to split them. For POS filtering,
TreeTagger 9 was used.

The lexicons were randomly sorted and manually annotated until we obtained between 200 and 300
compounds. Each compound word was annotated with the correct segmentation(s), other words were
marked as non-compounds. The annotated lexicons were then divided into two parts: a training dataset

3http://www.lina.univ-nantes.fr/?Ressources-linguistiques-du-projet.html
4http://catalog.ldc.upenn.edu/LDC2008T19.
5http://corpus.leeds.ac.uk/serge/frqlist/rnc-modern-lpos.num.html
6http://catalog.elra.info/product_info.php?products_id=667
7http://dicto.org.ru/xdxf.html
8http://www.lina.univ-nantes.fr/?Linguistic-resources-from-the,1676.html
9http://www.cis.uni-muenchen.de/˜schmid/tools/TreeTagger/
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Language No. of lemmas No. of compounds Compound rate
Training dataset

EN 404 106 27%
RU 485 116 24%

Test dataset
EN 401 100 25%
RU 700 170 24%

Table 2: Extracted Lexicon Size and Compound Rate

used to train our system and a test dataset used to evaluate the splitting quality. Table 2 shows the lexicon
sizes for each language, as well as the number of compounds found.

4.2 Experiments
The application of our method to the training data allowed us to obtain the parameters required for
splitting algorithm (see Table 3). The selected coefficients were then used to analyse a test dataset for
each language. The evaluation in terms of recall, precision, and F-measure is presented in Table 4.

The results vary according to the language. For Russian the precision turns out to be higher than for
English: 81% for Top 1 and 82% for Top 5 for Russian against 74% for Top 1 and 78% for Top 5 for
English. However, the recall is much higher for English than for Russian: 87% for Top 1 and 91% for
Top 5 against 52% for Russian. It can be explained by the abundance of component modifications in the
latter and by the lack of correct lemmatization for many terms. We can also notice that for Russian the
gain obtained in the Top 5 of segmentation candidates is very small compared to the Top 1, which means
that for this language if the correct candidate was found, it was almost always ranked as the best one.

4.3 Error Analysis
Pre-processing is very important for proper splitting and recognition of compounds and non-compounds.
In our experiments lemmatization was performed by a probabilistic tool, trained on general language
data, so some compound and highly specialized non-compound terms were not lemmatized correctly.
The rules that we have introduced in order to deal with such cases help to properly split non-lemmatized
compounds, but they do not help to recognize non-compounds. Correction of lemmatization should be
done before dictionary filtering, it will enable the identification of some words as in-dictionary ones, and
enable them to be kept unsplit. This will decrease the number of false segmentations and consequently
improve precision.

Some false positive segmentations were due to the splitting of named entities: EN Cambridge split
into cam + bridge. Named entity recognition would decrease the number of erroneous segmentations.

Among the errors intrinsic to our method, we can state those related to the use of string similarity, so
certain affixes or combinations of affixes may be confused with the independent words, e.g.,

RU керосиновый ’kerosene ADJ’, non-compound word
Erroneous segmentation: kerosinovyj = kerosin ’kerosene N’ + novyj ’new’

To avoid this problem, a large set of morphemes for each morphologically rich language is needed.

4.4 Comparison to a State-of-the-art Method
We compared our method to the corpus-driven approach proposed by Koehn and Knight (2003) that
became a state-of-the-art method of compound splitting. We applied it to our experimental data with the

Language Coefficients (α β γ δ) Score threshold
EN 0.7 0.1 0.1 0.1 0.85
RU 0.3 0.1 0.4 0.2 0.8

Table 3: Parameters Learned on the Training Dataset
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Language Top 1 Top 5
R P F R P F

EN 87 74 80 91 78 84
RU 52 81 63 52 82 64

Table 4: Splitting quality evaluation in terms of R(ecall), P(precision) and F(-measure).
Highlighting corresponds to the experiments in which our method outperforms (Koehn and Knight 2003).

Language Top 1 Top 5
R P F R P F

EN 71 87 78 74 83 78
RU 48 69 57 62 68 65

Table 5: Splitting quality by (Koehn and Knight 2003) method.

usage of the same rules, stop lists and NCP-lists as we have used in our method. For the elements from
the NCP-list, a corpus frequency of 1 was artificially assigned, otherwise they had no chance of being
split correctly by this corpus-based method because they never independently occur in the texts. The
results are presented in Table 5.

We should notice that this method can produce several segmentation candidates, including the orig-
inal word kept unsplit. The unsplit word can be ranked as first, second and so on, unlike our method
which first of all takes the decision whether a word is a compound or not. If for a given compound the
algorithm returned the unsplit word as the first candidate, but a correct segmentation was among the first
5 candidates (e.g. monopile → 1) monopile 2) mono pile), we evaluated this analysis as correct for the
Top 5, otherwise the evaluation would be penalizing for this method. But according to the same logic,
if for a non-compound the first candidate was unsplit, and the second was split (e.g. district → 1) dis-
trict 2) di strict), we evaluated it as correct for Top 1 and incorrect for Top 5. The consequence of such
an evaluation is that the precision can be lower for the Top 5 experiments than for the Top 1 experiments,
as we actually stated.

The method we proposed was more precise than Koehn and Knight’s one for Russian (up to 14 points),
but less precise for English (up to 13 points). Our method segmented a larger number of compounds in
all experiments, except for the Top 5 for Russian. F-measure was also higher with our method (from 2
to 6 points) except for the Top 5 for Russian (1 point difference).

Koehn and Knight’s method is based on corpus frequency, and it is possible to integrate linguistic rules
too. Our method, besides the corpus evidence and linguistic rules, takes into account the evidence from
a monolingual dictionary and the string similarity between compound elements and their lemmas.

The fact that Koehn and Knight’s method does not exploit string similarity guards it against producing
implausible segmentations and allows achieving, when combined with linguistic rules, a high precision,
especially for the English language. However, the use of string similarity allows our method to detect
some components not appearing as independent words in the texts/dictionaries even if the rules used do
not cover their transformation into lemmas, cf. RU example vetroturbina, which was not split by Koehn
and Knight’s method.

Koehn and Knight’s method is also known to keep some compounds unsplit if they occur more often
in the corpus than their components, like the example of EN monopile. The neoclassical compounds also
tend to remain unsplit with this method.

5 Conclusion

In this article, we have investigated the compound splitting of lexical units from specialized domains. We
proposed a method for compound recognition and splitting that exploits language-independent features
(corpus frequency, string similarity), lexical data (monolingual dictionary, list of neoclassical elements
and prefixes) and linguistic rules. We tested this method on two languages that are not traditionally
considered as highly compounding ones, but as we have seen, the specialized texts in these languages
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contain many compounds.
Our method turns out to be competitive with the state-of-the-art corpus-driven approach of Koehn and

Knight (2003). The advantage of our method is its domain-orientation, which enables to boost correct
segmentations containing specialized words into the Top 1. The use of string similarity may introduce
some false positive splitting, but at the same time, it allows detection of additional components not cov-
ered by the rules. This point is particularly important to handle compounds in morphologically rich
languages in which retrieval of the independent forms from compound elements is not straightforward,
such as Russian. The results of both methods tested are lower for Russian than for English. This con-
firms that processing of Russian compounds is actually challenging for NLP systems and worth further
investigating.
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Emile Benveniste. 1974. Problèmes de linguistique générale. Gallimard, Paris.

M. Braschler and B. Ripplinger. 2004. How effective is stemming and decompounding for german text retrieval.
In Information Retrieval, pages 291–316.

A. Chen and F.C. Gey. 2001. Translation term weighting and combining translation resources in cross-language
retrieval. In Proceedings of TREC Conference.

Chris Dyer. 2009. Using a maximum entropy model to build segmentation lattices for mt. In Proceedings of
HLT-NAACL 2009.

0. Frunza and D. Inkpen. 2009. Identification and disambiguation of cognates, false friends, and partial cognates
using machine learning techniques. In International Journal of Linguistics.

Clément De Groc. 2011. Babouk : Focused Web Crawling for Corpus Compilation and Automatic Terminol-
ogy Extraction. In The IEEEWICACM International Conferences on Web Intelligence, pages 497–498, Lyon,
France.

D. Hewlett and P. Cohen. 2011. Fully unsupervised word segmentation with BVE and MDL. In Proceedings of
ACL 2011, pages 540–545, Portland, Oregon.

P. Koehn and K. Knight. 2003. Empirical methods for compound splitting. In Proceedings of EAC 2003, Budapest,
Hungary.

K. Macherey, A.M. Dai, D. Talbot, A.C. Popat, and F. Och. 2011. Language-independent compound splitting with
morphological operations. In Proceedings of ACL 2011, pages 1395–1404, Portland, Oregon.

Fiammetta Namer. 2009. Morphologie, lexique et traitement automatique des langues. Lavoisier, Paris.

N Ott. 2005. Measuring semantic relatedness of German compounds using GermaNet.

Sergio Scalise and Antonio Fabregas. 2010. Why compounding? In Sergio Scalise and Irene Vogel, editors,
Cross-disciplinary issues in compounding, volume 311 of Current issues in linguistic theory, pages 1–18. John
Benjamins Publishing Company, Amsterdam/Philadelphia.

Helmut Schmid, Arne Fitschen, and Ulrich Heid. 2004. SMOR: A german computational morphology covering
derivation, composition, and inflection. In Proceedings of LREC 2004, pages 1263–1266, Lisbon, Portugal.

Sara Stymne, Nicola Cancedda, and Lars Ahrenberg. 2013. Generation of compound words in statistical machine
translation into compounding languages. Computational Linguistics, 39(4):1067–1108.

19



Proceedings of the First Workshop on Computational Approaches to Compound Analysis, pages 20–30,
Dublin, Ireland, August 24 2014.

Automatic Compound Processing: Compound Splitting and Semantic
Analysis for Afrikaans and Dutch

Ben Verhoeven
CLiPS - Computational Linguistics

University of Antwerp
Antwerp, Belgium

ben.verhoeven@uantwerp.be

Walter Daelemans
CLiPS - Computational Linguistics

University of Antwerp
Antwerp, Belgium

walter.daelemans@uantwerp.be

Menno van Zaanen
TiCC, School of Humanities

Tilburg University
Tilburg, the Netherlands
mvzaanen@uvt.nl

Gerhard van Huyssteen
Centre for Text Technology (CTexT)

North-West University
Potchefstroom, South Africa

gerhard.vanhuyssteen@nwu.ac.za

Abstract

Compounding, the process of combining several simplex words into a complex whole, is a pro-
ductive process in a wide range of languages. In particular, concatenative compounding, in
which the components are “glued” together, leads to problems, for instance, in computational
tools that rely on a predefined lexicon. Here we present the AuCoPro project, which focuses
on compounding in the closely related languages Afrikaans and Dutch. The project consists of
subprojects focusing on compound splitting (identifying the boundaries of the components) and
compound semantics (identifying semantic relations between the components). We describe the
developed datasets as well as results showing the effectiveness of the developed datasets.

1 Introduction

In many human language technology applications (e.g. machine translators and spelling checkers), many
concatenatively written compounds are processed incorrectly. One of the reasons for this is that these
applications rely on a predefined lexicon and the productive nature of the process of compound formation
automatically results in incomplete lexicons. For example, consider the novel Afrikaans (Afr.) compound
ministerskatkis ‘treasury of a minister’ that should be segmented as minister+skatkis minister+treasury.
Should it be incorrectly segmented as minister s+kat+kis minister LINK+cat+coffin1 (where LINK
refers to a linking morpheme), one would get the (possible but improbable) interpretation ‘coffin of a
minister’s cat’. From a technological perspective, deficiencies related to automatic compound splitting
(also known as compound segmentation) are particularly problematic, since many other technologies
(such as morphological analyzers, or semantic parsers) might rely on highly accurate compound splitting.

For more advanced natural language processing applications like information extraction, question an-
swering and machine translation systems, proper semantic analysis of compounds might also be required.
With semantic analysis of compounds we refer to the task of determining that the Dutch (Du.) compound
keuken+tafel kitchen+table construes ‘table in kitchen’, while Du. baby+tafel baby+table means ‘table
for a baby’ (and not, fatally so, *‘table in a baby’). Internationally, research on automatic compound
analysis has focused almost exclusively on English; very little work in this regard has been done for
other languages (see section 4.1).

Concatenative compounding is a highly productive process in many languages of the world, such as
West-Germanic languages (Afrikaans, Dutch, Frisian, German, and to a far lesser extent English), Nordic

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1Note that compound boundaries are marked using a “+” sign and the start of a linking morpheme is indicated by an “ ”
sign.
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languages (Danish, Icelandic, Norwegian, and Swedish) and Modern Greek; our focus in this research
is only on Afrikaans and Dutch. Next to derivation, the process of right-headed, recursive compounding
is the most productive word-formation process in these two languages. While almost all parts-of-speech
categories can be found as components of compounds, noun+noun compounds are by far the most fre-
quent type, while noun+verb compounding is generally considered to be non-productive in Germanic
languages (Don, 2009, p. 378). Components of a compound sometimes need to be “glued” together
using linking morphemes. The occurrence of linking morphemes in Afrikaans and Dutch compounds is
well-known (Neijt et al., 2010), like Afr. besigheid s+besluit business LINK+decision ‘business deci-
sion’.

Besides regular compounding, one also finds, amongst others, phrasal compounds (e.g. Afr.
help-my-fris-lyk-hemp help-me-strong-look-shirt ‘gym vest’), (neo)classical compounds (e.g. Afr.
neuro+wetenskap neuro+science ‘neuroscience’, or Du. bio+logie bio+logy ‘biology’), separable ver-
bal compounds (e.g. Du. op+bellen up+call ‘to phone’), reduplicative compounds (e.g. Afr. speel -
+speel play LINK+play ‘easily’), and compounding compounds (i.e. where the two left constituents
are normally a phrase, but joined in a compound through the right-most constituent, e.g. Du. on-
der+water+camera under+water+camera ‘under-water camera’). Except for the latter, none of these
marginal types of compounds were considered as data for any of the systems developed in this research
project.

In section 2 we provide an overview of the automatic compound processing (AuCoPro) project, which
forms the background of this research. Sections 3 and 4 provide details of each of the subprojects relating
to compound splitting and semantic analysis, with details about related research, the development of
datasets, and our experiments. We conclude with a discussion of results and future work in section 5.

2 Overview: The AuCoPro Project

Running from 2012 to 2013, the AuCoPro project was funded by the Dutch Language Union and the
Department of Arts and Culture of the South African Government in a programme to support collab-
orative research in human language technology between Belgium, The Netherlands and South Africa.
Additional funding was provided by the South African National Research Foundation, and the European
Network on Word Structure (NetWordS). The partners involved in the project were the University of
Antwerp (Belgium), Tilburg University (The Netherlands), and North-West University (South Africa).

The primary aim of the project was to develop resources (including annotation protocols, and training
and testing data) for the development of robust compound splitters (subproject 1), and first-generation
compound analyzers (subproject 2) for Afrikaans and Dutch, through a combination of cross-language
transfer (allowing technology recycling), data pooling, and various machine learning approaches. In a
subpart of subproject 2 we also aimed to gain insight in compound semantics by unifying perspectives
from computational semantics (Ó Séaghdha, 2008), typological studies (Scalise and Bisetto, 2009), and
construction-based approaches to word-formation (specifically cognitive grammar (Langacker, 2008)
and construction morphology (Booij, 2010)); the results of which can be found in Van Huyssteen (2014)
and Van Huyssteen and Verhoeven (2014).

Deliverables included eight peer-reviewed publications, a technical report on annotation guidelines
for compound processing, and six datasets. All deliverables are available in the open-source domain at
https://sourceforge.net/projects/aucopro, while more information about the project
is available at http://tinyurl.com/aucopro.

3 Compound Splitting

The aim of subproject 1 was to develop datasets that can be used to build robust compound splitters
for Afrikaans and Dutch, or for a cross-lingual analysis of the use of compounds in the closely related
languages Afrikaans and Dutch. Based on existing datasets containing words that are morphologically
analyzed, we extracted (potential) compounds, removed unwanted morphological information, and re-
analysed and corrected them.
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In the AuCoPro datasets, compounds are analyzed in a shallow manner: no deep hierarchical ordering
of components is performed. Compounds consisting of more than two elements are annotated by indicat-
ing the location of the boundaries, so for instance, Du. bloem+boll en+veld flower+bulb LINK+field
‘bulb field’ consists of four components, viz. bloem, boll-, -en-, and veld, without any indication of
their syntagmatic relations. The parts bloem, boll- and veld are all simplex words, which we will call
constituents. Constituents are the meaningful parts of a compound. These constituents are prototyp-
ically independent words, but in some cases affixoids (i.e. forms that are somewhere between a word
and an affix in its development) can also occur in compounds (e.g. boer in Du. krant en+boer newspa-
per LINK+farmer ‘newspaper seller’ does not have the literal meaning of farmer; see Booij (2010)).
In some cases a word may undergo morphophonological changes in the context of a compound. For
instance, in the bloembollenveld example, boll- is an allomorph (or allograph) of bol ‘bulb’.

As mentioned above, some compounds require linking morphemes (indicated by LINK in the exam-
ples above) to “glue” components together. Besides ordinary linking morphemes like -e-, -en-, and -s- (in
both languages), we also defined hyphens as linking morphemes. In the orthographies of Afrikaans and
Dutch in general a hyphen is used in cases of vowel collision, i.e. between compound constituents when
the left-hand constituent ends on a vowel, and the right-hand constituent begins with the same vowel, for
example Afr. see -+eend sea LINK+duck ‘seaduck’.

We also mentioned above that marginal compound types such as phrasal compounds, reduplicative
compounds, separable verbal compounds, etc. were not considered as part of the datasets. Similarly, we
excluded synthetic compounds from the datasets when the right-hand element of a synthetic compound
is a non-word (e.g. in Du. blauw+ogig blue+eye-ADJR2 ‘blue-eyed’, *ogig is not a valid independent
word in Dutch). However, for this subproject we accepted and annotated compounding compounds,
since they can generally be split quite easily (e.g. Afr. drie+vlak+regering three+level+government
‘three-level government’).

To demonstrate the effectiveness of the developed datasets, we started building and evaluating com-
pound splitters for both Dutch and Afrikaans based on the data only. A compound splitter takes a word
as input, and provides as output the input string divided into valid compound components. Note that
these results are only to illustrate that these datasets can be used successfully as training data for such
systems. The actual results can potentially be improved, as the systems are not optimized.

3.1 Related Research

In general, the problem of splitting compounds is found in a wide range of languages. Some of these
languages show non-concatenative compound formation (i.e. compounds are written with whitespaces
between constituents), such as English. Compounds in these languages fall under the umbrella term
multiword expressions (MWEs), which also includes idioms and collocations. Ramisch et al. (2013)
show that this is a quite active research field.

Focusing on concatenative compounding (i.e. where constituents are written conjunctively so that a
compound is always written as a single string without any whitespaces), previous work on Afrikaans has
been performed in the context of the development of spelling checkers (Van Zaanen and Van Huyssteen,
2002; Van Huyssteen and Van Zaanen, 2004). Van Huyssteen and Van Zaanen (2004) describe a com-
pound splitter for Afrikaans. To our knowledge, no stand-alone compound splitter for Dutch is available.
Research done in this field is over ten years old (e.g. Pohlmann and Kraaij (1996)), uses expensive re-
sources (e.g. Ordelman et al. (2003)), does complete morphological analysis (e.g. De Pauw et al. (2004)),
and/or has not been released for re-use in the open-source domain.

3.2 Dataset Development

The datasets developed during this subproject are based on compounds taken from existing (morpho-
logically annotated) datasets. For Dutch, a few morphologically annotated datasets exist, although none
focus on compounds specifically. The development of the Dutch dataset is based on the e-Lex dataset.3

2Adjectiviser.
3This dataset was extended with a compound dataset extracted from CELEX by Lieve Macken (LT3, UGent).
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The e-Lex dataset contains words annotated with more morphological information than required for
our dataset, but it also contains morphologically annotated non-compound words. After removing non-
compound words (and removing duplicates), 71,274 potential Dutch compounds remained.

For Afrikaans, the situation is more difficult. No dataset containing compound boundary and linking
morpheme boundary information is freely available. The Afrikaans AuCoPro dataset is based on the
PUK-Protea corpus as well as the CTexT Afrikaans spelling checking lexicon (CTexT, 2005; Pilon et al.,
2008). Both corpora do not describe any morphological information. To identify potential compounds,
a longest string matching algorithm (Van Huyssteen and Van Zaanen, 2004) is applied. This algorithm
identifies compounds by searching for known (simplex) words from the left and right ends of the potential
compound, taking the possibility of the occurrence of linking morphemes into account. This algorithm
seems to identify most compounds as well as some non-compounds, which resulted in a list of 77,651
potential Afrikaans compounds.

After this automatic collection and cleanup (for Dutch) and automatic identification and annotation (for
Afrikaans), annotators checked each compound for correct linking morpheme and compound boundaries.
For Afrikaans, seven annotators together checked 25,266 compounds. For Dutch, two annotators checked
26,000 potential compounds. In the end, this resulted in 18,497 and 21,997 true compounds for Afrikaans
and Dutch respectively.

To be able to calculate inter-annotator agreement, subsets of approximately 1,000 words were an-
notated by pairs of annotators. For Dutch in total 6,000 words were used to calculate inter-annotator
agreement and for Afrikaans 12,818 words. This leads to an average Cohen’s Kappa of 98.6 and 97.6 for
Afrikaans and Dutch respectively.

The annotators had access to an annotation manual (Verhoeven et al., 2014), which was developed
specifically for this project. The manual is based on the annotation guidelines that were developed
during the CKarma project (CTexT, 2005; Pilon et al., 2008). These initial guidelines only apply to
Afrikaans, and was hence extended to handle Dutch compounds as well as more complicated cases
not foreseen in the original CKarma guidelines. During the annotation process, regular discussions
between the annotators took place, which resulted in changes in the data and (minor) modifications to
the annotation guidelines.

3.3 Experiments

One of the reasons for creating the compound splitting datasets is to show their usefulness in the de-
velopment of automatic compound splitting systems. These systems search for compound boundaries,
effectively identifying the simplex words in compounds. This information is essential, for instance, when
developing spelling correction systems or machine translation systems for languages that have productive
compound formation processes.

As a classifier, we used the algorithm developed by Liang (1983). This system, which is used as
the hyphenation method in the LATEX typesetting system, identifies letter combinations that either allow
or disallow boundary breaks. Even though the task of compound boundary detection is different from
hyphenation (or syllabification), the tasks are similar enough to use the same method. Since the system
is trainable, instead of hyphenation breaks, compound boundaries are provided.

Since no separate annotated gold standard test set is available, we performed leave-one-out evaluation
(using all but one instance for training and the remaining instance for testing; all instances are evaluated
once) using the full dataset. This approach is preferred over, for instance, 10-fold cross validation, which
each time removes 10% of the training data for testing. Additionally, it does not depend on a “lucky”
selection of test data from the training data, as all compounds are tested.

Evaluating the datasets using this system (which does not have any additional tuning parameters)
results in classification accuracies of 88.28% and 91.48% on the word level for Afrikaans and Dutch
respectively. We assume that further improvements are possible with alternative systems and parameter
optimization.
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4 Compound Semantics

The automatic processing of the semantics of compounds (or other complex nominals) is a topic in
computational linguistics that, although it has been studied regularly in the past, cannot be considered
a solved problem. Although previous research was often promising, it also had an almost exclusive
focus on English noun-noun (NN) compounds. In recent years, more languages have been studied (e.g.
German (Hinrichs et al., 2013) and Italian (Celli and Nissim, 2009)), and this project added Dutch and
Afrikaans to the list.

It is worth noting that a number of different operationalizations of compound interpretation have been
studied. The most notable are semantic classification of the constituent relation according to a limited
set of semantic categories (e.g. Ó Séaghdha (2008)), and the generation of possible paraphrases for
the compound that express its meaning more explicitly (Hendrickx et al., 2013). Our study adopts the
classification model, in which the set of semantic relations to be predicted (the classification scheme) is
crucial.

4.1 Related Research

Several attempts have been made in the past to postulate appropriate classification schemes for noun-
noun compound semantics. These schemes are mainly inventory-based in that they present a limited list
of predefined possible classes of semantic relations a compound can manifest.

In some cases, proposed classes are abstractly represented by a paraphrasing preposition (Lauer, 1995;
Girju et al., 2005; Lapata and Keller, 2004). For example, all compounds that can be paraphrased by
putting the preposition “of” between the constituents belong to the class OF, e.g. a car door is the
‘door of a car’. Another possibility is using predicate-based classes where the relations between the
constituents are not merely described by a preposition, but by definitions or paraphrasing predicates for
each class. The class AGENT would contain compounds that could be paraphrased as ‘X is performed
by Y’ (Kim and Baldwin, 2005), e.g. enemy activity can be paraphrased as ‘activity is performed by
the enemy’. Different schemes vary from 9 to 43 classes with Cohen’s Kappa scores for inter-annotator
agreement ranging from 52% to 62% (Barker and Szpakowicz, 1998; Girju et al., 2005; Moldovan et al.,
2004; Nakov, 2008; Ó Séaghdha, 2008).

With regard to the information used by the classifier to assign the classes to the compounds (the fea-
tures of a compound to be analyzed), two main approaches are available, viz. taxonomy-based methods,
or corpus-based methods.

Taxonomy-based methods (also called semantic network similarity (Ó Séaghdha, 2009)) base their fea-
tures on a word’s location in a taxonomy or hierarchy of terms. Most of the taxonomy-based techniques
use WordNet (Miller, 1995) for these purposes; especially the hyponym information in the hierarchy
is used. A bag of words is created of all hyponyms and the instance vector contains binary values for
each feature (the feature being whether the considered word from the bag of words is a hyponym of the
constituent or not). Kim and Baldwin (2005) reached an accuracy of 53.3% using only WordNet. Other
research was based on Wikipedia as a semantic network (Strube and Ponzetto, 2006).

Corpus-based methods use co-occurrence information of the constituents of the selected compounds
in a corpus. The underlying idea (the distributional hypothesis) is that the set of contexts in which a
word occurs, is an implicit representation of the semantics of this word (Harris, 1968). The lexical sim-
ilarity measure assumes that compounds have a similar semantic interpretation when their respective
constituents are semantically similar. Two compounds, for example flour can and corn bag will be con-
sidered similar if they have similar modifying constituents (flour and corn) and similar head constituents
(can and bag). The co-occurrences of both constituents will be combined to calculate a measure of sim-
ilarity for the entire compound. This approach implicitly uses the lexical semantic knowledge also used
in taxonomy-based methods but without the need for a taxonomy. Performances of up to 64% F-score
have been reached (Ó Séaghdha and Copestake, 2013).

Corpus-based and taxonomy-based methods have also been combined by several researchers. Accu-
racies of 58.35% (Ó Séaghdha, 2007), 73.9% (Tratz and Hovy, 2010) and even 82.47% (Nastase et al.,
2006) were reported.
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4.2 Dataset Development
For this project, we developed datasets of semantically annotated compounds for Afrikaans and Dutch.
This section describes these new resources.

The annotation scheme and guidelines that we used as basis, were developed by Ó Séaghdha (2008)
for semantic annotation of English NN compounds. For purposes of our project, some adaptations were
in order, while Dutch and Afrikaans examples were added (Verhoeven et al., 2014). Ó Séaghdha (2008)
describes eleven classes of compounds; six of these classes are semantically specific (see Table 1).

Class Definition Example

BE
The compound can be rewritten as ‘N2 which is (like) (a) N1’ with N1
and N2 being the two constituents nouns.

woman doctor

HAVE
The compound denotes some sort of possession. Part-whole com-
pounds, typical one-to-many possession, compounds expressing condi-
tions or properties and meronymic compounds belong here.

car door

IN The compound denotes a location in time or place. garden party

ACTOR
The compound denotes a characteristic event or situation and one of the
constituents is a salient entity.

enemy activity

INST
The compound denotes a characteristic event and there is no salient en-
tity present.

cheese knife

ABOUT The compound describes a topical relation between its constituents. film character

Table 1: Overview of semantically specific categories in the semantics annotation scheme.

The other five categories are less specific. The MISTAG and NONCOMPOUND categories serve
to classify compounds that do not belong in the dataset. The REL class describes compounds with a
clear meaning that does not belong to any of the other classes, but of which the relation between the
constituents seems productive (e.g. sodium chloride). The LEX category is almost the same as REL,
but the relation does not seem to be productive (e.g. monkey business). The UNKNOWN category is for
correct NN compounds of which the meaning is not clear enough to annotate.

As a subpart of this subproject, we also developed an annotation protocol for nominal compounds that
do not have a noun as first constituent (XN) (Verhoeven and Van Huyssteen, 2013). Such XN compounds
had thus far mostly been neglected, despite the fact that they are fairly productive in some Germanic
languages (although far less frequent than NN compounds). Our annotation guidelines followed the
general approach of Ó Séaghdha (2008).

In the course of the project, several datasets were developed. For both Dutch and Afrikaans there were
two annotation rounds for NN compounds and one smaller annotation experiment for XN compounds.
An overview of the semantics data can be found in Table 2, including the average Cohen’s Kappa scores.

The Dutch NN compounds were taken from the same raw compound list of 71,274 compounds de-
scribed in section 3.2 above. Subsequent annotations were performed by students in linguistics at the
University of Antwerp, all native speakers of Dutch. The first dataset was annotated by one student, and
a subset of 500 compounds by one of the authors in order to calculate inter-annotator agreement. The
second round of data was annotated by three students, with the data divided between them in such a way
that we had two annotations for each compound. For the XN compound dataset, only 600 compounds
were annotated.

The NN compounds for the Afrikaans dataset were taken from the CKarma list of split compounds
(see section 3.2 above). The complete Afrikaans dataset was annotated by three undergraduate linguistics
students, all native speakers of Afrikaans. This resulted in three annotations for each compound. With
regard to the XN compound subpart, a large dataset of 4,553 compounds was annotated.

4.3 Experiments
The data from the first annotation rounds were used for semantic classification experiments that were
based on those conducted by Ó Séaghdha (2008). We used the annotations made by the main annotator
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language annotation type # items # annotators avg. Kappa score
Afrikaans NN-Round1 1,449 3 53.4
Afrikaans NN-Round2 2,328 3 37.6
Afrikaans XN 4,553 3 33.5
Dutch NN-Round1 1,766 2 60.0
Dutch NN-Round2 2,000 3 51.0
Dutch XN 600 2 48.6

Table 2: Overview of semantics data.

for each language in order to maintain his or her consistency of annotation. What follows is a description
of our own experimental setup. In our classification experiment, classifiers trained by machine learning
methods use feature vectors arising from a combination of the distributional hypothesis (as proposed
above) with the idea of analogical reasoning. It is assumed that the semantic category of a compound
can be predicted by comparing compounds with similar meanings (Ó Séaghdha, 2008).

4.3.1 Vector Creation

For every compound constituent, the co-occurrence context was calculated. For this purpose, for each
instance of the constituents in the corpus, the surrounding n words (that belong to the 10,000 most
frequent words of the corpus) were held in memory. The relative frequencies of these context words (the
number of times the word appeared in the context of the constituent, divided by the frequency of the
constituent in the corpus) for each constituent were stored.

For Dutch, the Twente News Corpus (Ordelman et al., 2007) was used. This is a 340 million word
corpus of newspaper articles. For Afrikaans, we used the Taalkommissie corpus (Taalkommissie, 2011),
a 60 million word corpus that consists of a variety of text genres.

A concatenation of the constituent data was used to create the instance vector. This is a new but very
simple technique of composition whereby each instance vector thus contains the relative frequencies for
the 1,000 most frequent words for each constituent (hence 2,000 per compound). Compounds of which
one or both of the constituents did not appear in the corpus were excluded from the data.

The classification experiment dealt with those compounds that were annotated with a semantically
specific category. This means that only compounds with the category tags BE, HAVE, IN, INST, AC-
TOR and ABOUT were used for the experiments. The final vector set for Afrikaans contained 1,439
compounds, while the final vector set for Dutch had 1,447 compounds.

4.3.2 Results

As machine learning method, we used the SMO algorithm, which is WEKA’s (Witten et al., 2011)
support vector machines (SVM) implementation, in a 10-fold cross-validation setup.

Since this was the first research on both Dutch and Afrikaans (Verhoeven et al., 2012), we assumed
a majority baseline which represents the accuracy that can be obtained by always guessing the most
frequent class as the output class. For Dutch, this baseline is 29.5% (428 instances of class IN on a total
of 1,447 compounds) (Verhoeven, 2012). For Afrikaans, this baseline is 28.2% (407 instances of class
ABOUT on a total of 1,439 instances).

The outcome of these experiments showed that the semantic relation between compound constituents
in Dutch and Afrikaans can be learned using our simple new composition method of concatenating
the constituent vectors into a compound vector. F-scores of 47.8 (Dutch) and 51.1 (Afrikaans) were
achieved using the counts of three context words left and right of the constituent for computing their
semantic representation. The approach turned out to be robust for varying sizes of context (different
numbers of context words), as well as for the way corpus counts were done: on either lemmas or word
forms (Verhoeven, 2012; Verhoeven and Daelemans, 2013). Our results are a good improvement of our
baselines, and provide a baseline for future research.
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4.3.3 WordNet-based method for Afrikaans
In another subpart of this subproject, we experimented with an alternative approach, namely to use the
Afrikaans WordNet (CTexT, 2011) to infer compound semantics of Afrikaans compounds (Botha et al.,
2013). We followed the same approach as Kim and Baldwin (2005), and achieved precision results
similar to the general approach described above. i.e. 50.49% using the Afrikaans WordNet, vs. 50.80%
reported by Verhoeven et al. (2012). However, recall was much worse: 29.27% in this approach, vs.
51.60% using the other approach. This poor recall can be attributed to the small size of the Afrikaans
WordNet, which only contains 10,045 synsets, compared to 115,424 synsets in the Princeton WordNet
(Miller, 1995). We therefore conclude that a WordNet-approach holds much promise, on the premise
that the WordNet is large enough to ensure good coverage.

5 Discussion

We described machine learning approaches to the segmentation and semantic interpretation of com-
pounds in Dutch and Afrikaans, two related languages where concatenative compounding is a highly
productive morphological process. Success of machine learning approaches to any natural language pro-
cessing task is based on the presence of sufficient high quality training data and relevant information
sources allowing the classification problem to be solved.

For compound splitting, high annotator agreement in the annotation of the training data and high
generalization accuracy could be obtained for both languages using a statistical pattern induction method
working on the orthography of the input compounds, without need for other information sources. Further
improvement can be achieved here with more and richer training data. Other methods for sequence
learning could lead to further improvements as well, although Liang’s method (1983) turns out to be a
strong algorithm for this task.

The task of compound interpretation is much more difficult, both for people (who reached relatively
low annotation agreement for both languages) and for machine learners, suggesting that crucial infor-
mation is missing in the semantic representations we used for our compound constituents. Nevertheless,
also for this task, we were able to set a standard, well above baseline, for future work in compound in-
terpretation for Dutch and Afrikaans. Further improvement can potentially be found in many directions:
more fine-grained and more learnable semantic relation types, more consistently annotated training data
(and much more of it from different domains), and better semantic representations for the constituents,
for example using deep learning (Mikolov et al., 2013).
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Diarmuid Ó Séaghdha. 2009. Semantic classification with WordNet kernels. In Computational Linguistics,
NAACL-Short ’09, pages 237–240. Association for Computational Linguistics.

Sulene Pilon, Martin Puttkammer, and Gerhard Van Huyssteen. 2008. Die ontwikkeling van ’n woordafbreker en
kompositumanaliseerder vir Afrikaans. Literator, 29(1):21–41.

Renee Pohlmann and Wesley Kraaij. 1996. Improving the precision of a text retrieval system with compound
analysis. In Proceedings of the 7th Computational Linguistics in the Netherlands (CLIN 1996), pages 115–129,
Eindhoven, The Netherlands.

Carlos Ramisch, Aline Villavicencio, and Valia Kordoni. 2013. Introduction to the special issue on multiword
expressions: From theory to practice and use. ACM Transactions on Speech and Language Processing, 10(2):1–
10.

Sergio Scalise and Antonietta Bisetto. 2009. The classification of compounds. In Rochelle Lieber and Pavol
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Abstract 

The linguistic categorisation of compounds dates back to some of the earliest work in 
linguistics. The cross-linguistic compound taxonomy of Bisetto and Scalise (2005), later 
refined in Scalise and Bisetto (2009), is well-known in linguistics for understanding the 
grammatical relations in compounds. Although this taxonomy has not been used 
extensively in the field of computational linguistics, it has the potential to influence 
choices with regard to compound annotation and understanding in natural language 
processing. For example, their 2005 taxonomy formed the basis for the large-scale, 
multilingual database of compounds, called CompoNet. The aim of this paper is to 
examine their latest taxonomy critically, especially with a view on rigorous 
implementation in computational environments (e.g. for the morphological annotation of 
compounds). We propose a number of general improvements of their taxonomy, as well 
as some language-specific refinements.  

1 Introduction 

The CompoNet database1 is a large database of compounds from 27 different languages, which was 
developed at the Department of Foreign Languages of the University of Bologna, in collaboration with 
native speaker linguists. The database can be used to study compounding of a given language, of a 
given family (e.g. Germanic, Slavic, etc.), and compounding in general from a typological perspective. 
Fields in the database include, inter alia, the compound and its part-of-speech (POS) category; the 
components in the compound and their respective POS categories; the structure of the compound (e.g. 
[N+N]); whether it is endocentric or exocentric, and an indication of the position of the categorial and 
semantic head; some inflectional information (plural and gender); glosses; and the classification 
category of the compound.  

With regard to the latter, the well-known classification taxonomy of Bisetto and Scalise (2005) is 
used (see Figure 1). This classification scheme is based on the view that the grammatical relations 
between the components of a compound are similar to those in syntactic constructions, viz. 
subordinate, attributive, and coordinate relations. In addition, each of these types can be endocentric or 
exocentric, depending of the presence (endocentric) or absence (exocentric) of a head constituent. 

In a project on automatic compound processing (the AuCoPro project; see 
http://tinyurl.com/aucopro), we investigated various aspects related to the computational processing of 
compounds (Verhoeven et al., 2014). In a specific subpart of this project, we aimed to gain more 
insight in compound semantics in general by drawing from perspectives from computational semantics 
(i.e. Ó Séaghdha, 2008), typological studies (e.g. Lieber, 2009a; Scalise & Bisetto, 2009), and 
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construction-based approaches to word-formation (i.e. cognitive grammar (Langacker, 2008) and 
construction morphology (Booij, 2010)). In addition, we specifically wanted to add Afrikaans 
compounds to the CompoNet database (as Afrikaans was not included in the original CompoNet 
project), as well as revise the existing Dutch compounds in CompoNet (based on the insights of the 
AuCoPro project). As a first phase, we made 56 changes to the Dutch database (mostly correcting 
minor spelling and classification errors, as well as adding a few additional, prototypical examples), 
and added 144 Afrikaans compounds to the database (compared to a total of 188 Dutch compounds; 
the 144 Afrikaans compounds were representative of all part-of-speech categories that can be found in 
Afrikaans compounds). 

However, soon after the project commenced, we encountered some limitations with the original 
CompoNet annotation guidelines, specifically with regard to the classification of compounds. In 
Section 2 we give an overview of these problems, and discuss some recent literature on the 
classification of compounds. In Section 3 we describe our solution to these limitations by postulating a 
classification scheme that would be suitable for rigorous implementation in computational 
environments (e.g. for the morphological annotation of compounds). We conclude this paper with a 
discussion of future research. 

2 Previous work 

In a publication of this nature, it is impossible to discuss all previous research, or even the details of 
some of the literature influencing our own taxonomy for Afrikaans and Dutch (see Section 3); suffice 
to point to the overview and summary provided by Scalise and Bisetto (2009), as well as applications 
of their framework by Lieber (2009a, 2009b). In the remainder of this section we therefore only focus 
on those aspects that influenced our own taxonomy. 

During the initial phase of the project, we encountered a number of stumbling-blocks with regard to 
the annotation guidelines. As indicated above, compound classification in the CompoNet database is 
based on Bisetto and Scalise (2005) (see Figure 1). However, since then, Scalise and Bisetto (2009) 
have revised their original taxonomy (see Figure 2), and the dilemma was therefore that we could not 
take cognisance of these new insights (e.g. the distinction between root and verbal-nexus compounds, 
or between attributives and appositives), since we had to stay as close as possible to the original 
annotation guidelines for purposes of cross-lingual compatibility. Table 1 provides a summary of some 
of the most important notions in Scalise and Bisetto’s (2009) taxonomy, some additional remarks by 
Lieber (2009a, 2009b), and examples provided by them. Other summaries of their framework include 
Arcodia et al. (2009); Arnaud and Renner (2014); Vercellotti and Mortensen (2012). 

 
compounds

subordinate attributive coordinate

endo exo endo exo endo exo  
 

Figure 1. Compound taxonomy of Bisetto and Scalise (2005) 
 

 
SUB ATAP COORD

ground verbal-nexus attributive appositive

endo exo endo exo endo exo endo exo endo exo  
 

Figure 2. Compound taxonomy of Scalise and Bisetto (2009) 
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Concept Key definitional aspects Examples 
Subordinate • Components share a head-complement relation (subordination) 

• Argumental relation between components (Lieber, 2009a: 93) 
• At least one of the features of the head constituent is to match the 

encyclopaedic features that characterise the non-head 
• Includes synthetic compounds (Lieber, 2009b: 359), and 

neoclassical compounds 
• Among the most widely attested of compound types (specifically 

endocentric; Lieber, 2009a: 93) 

See below under “Ground 
subordinate” and “Verbal-nexus 
subordinate” 

Ground 
subordinate 

• Corresponds to root/primary compounds 
• Lexemes can be both simple and complex 
• When complex and includes a verb, it is incapable of influencing 

the interpretation of the compound [no examples provided] 
• Semantic relation between constituents is influenced by semantico-

encyclopaedic information 
• NN compounds with an ‘of’ relation (Lieber, 2009a: 88), but also 

if they have a (quasi-)argumental relation (e.g. cookbook author) 
(Lieber, 2009b: 359) 

windmill (endocentric) 
mushroom soup (endocentric) 
love story (endocentric) 
steam boat (endocentric) 
coffee cup (endocentric) 
 

Verbal-nexus 
subordinate 

• Corresponds to secondary/syntactic compounds 
• Presence of verb (or any other deverbal constituent) as head 
• Verbs select the non-head semantically, be it an argument 

(bookseller) or a complement/adjunct (street seller) 
• Quintessential example is synthetic compound (Lieber, 2009a: 88) 

truck driver (endocentric) 
cost containment (endocentric) 
city employee (endocentric) 
pickpocket (exocentric) 
killjoy (exocentric) 
cut-throat (exocentric) 

Attributive • Non-head (often an adjective) expresses a quality of the head 
[often a noun] (i.e. head is modified by a non-head expressing a 
‘property’ of the head) 

• The non-head fulfils at least one of the encyclopaedic features of 
the head; it has an ‘adjectival’ function 

• Clear argumental relationship between constituents lacks (Lieber, 
2009b: 359) 

• Default semantic type (Lieber, 2009a: 97) 
• Most frequently attested in the languages of the world (Lieber, 

2009a: 97) 

high-school (endocentric) 
blue-eyed (endocentric) 
blue cheese (endocentric) 
atomic bomb (endocentric) 
redskin (exocentric) 
greenhouse (exocentric) 
freelance (exocentric) 

Appositive • Non-head expresses a property of the head by means of a noun 
acting as an attribute 

• Noun plays an attributive role and is often interpreted 
metaphorically 

• Non-head can also be a verb [when the head is an adjective] 
• NN compounds cannot be paraphrased with ‘of’ (Lieber, 2009a: 

88) 

snail mail (endocentric) 
swordfish (endocentric) 
mushroom cloud (endocentric) 
Du. druipnat (endocentric) 

Coordinate • Constituents with an ‘and’ relation 
• Two semantic heads, but only one act as categorial head 
• Could be additive (Baden-Württemberg), or redundant (palm tree) 
• Coordinates could be, inter alia, reduplicates (It. lecca-lecca 

‘lolly-pop’) 

bittersweet (endocentric) 
poet-doctor (endocentric) 
woman doctor (endocentric) 
Austria-Hungary (exocentric) 
mother-child (exocentric) 
north-east (exocentric) 

Table 1. Verbatim summary of Scalise and Bisetto (2009) with additional remarks by Lieber 
(2009a, 2009b), and our remarks in square brackets 

 
There are two significant differences between these two taxonomies: the label ATAP (ATtributive-
APpositive) is introduced in the 2009 version; and a new categorisation level is introduced in the 2009 
version to make a distinction between root and verbal-nexus compounds. With the introduction of the 
“artificial” ATAP label (placed on the same hierarchical level as subordinate and coordinate 
compounds) as a superordinate category for attributive and appositive compounds, Scalise and Bisetto 
(2009) lost some “correctness”. In the new taxonomy attributives and appositives are therefore on the 
same categorisation level as verbal-nexus and ground compounds, which, in our opinion, is incorrect. 
(Fábregas and Scalise (2012) later replace attributive compounds to its original hierarchical level, and 
then distinguish between two types of attributive compounds, viz. true attributives, and appositives. 
Also see Arnaud and Renner (2014), and Vercellotti and Mortensen (2012: 572) for a critique of the 
categorisation levels used by Scalise and Bisetto (2009).) 
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The only annotation protocol available for CompoNet is the article by Bisetto and Scalise (2005), 
as well as some notes for some of the languages on the CompoNet website (only available to 
registered users). In our experience, these guidelines were not always explicit or elaborate enough (see 
also Vercellotti and Mortensen, 2012: 547), and in addition, were sometimes difficult to interpret 
given other discussions in the literature (notably Fábregas and Scalise, 2012; Lieber, 2009a, 2009b; 
Scalise and Bisetto, 2009). Two examples suffice. Firstly, in Table 1 we indicated that Scalise and 
Bisetto (2009: 48-49) distinguish between subordinate and attributive compounds by the manner in 
which the head selects the non-head: in subordinate compounds “at least one of the features of the 
head constituent is to match the encyclopaedic features that characterise the non-head” (with apple 
cake as an example), while in attributive compounds “the non-head fulfils at least one of the 
encyclopaedic features of the head” (with snail mail as an example). In our opinion, this should be the 
other way round: in SNAIL and MAIL the property SLOW provides the match between the two 
constituents, whereas APPLE fulfils the INGREDIENT part of the concept CAKE.  

A second example that confuses, comes from Lieber (2009a): on p. 98, with regard to dog bed as 
an example of an attributive compound, she states that “there is no verbal element here, so a 
subordinate interpretation is ruled out”. However, on p. 93 she lists table leg as one of the first 
examples of endocentric subordinate compounds, despite the fact that there is also no verbal element 
in table leg. Similarly, Vercellotti and Mortensen (2012: 549) interprets Scalise and Bisetto’s (2009) 
differentiation between verbal-nexus and ground compounds on the basis that the former have verb-
argument/adjunct relations, while the latter have no verbs. However, Scalise and Bisetto (2009: 51) 
says about ground compounds containing complex lexemes: “when they include a verb, this is 
incapable of influencing the interpretation of the compound” (our emphasis). Although examples like 
these might be trivial (and does not take away anything from the overall insight in the categorisation 
of compounds), they do cause some confusion for the annotator who is provided with these 
publications as annotation guidelines. 

Lastly, one of the problems we had with the original taxonomy was that it was not rich enough to 
allow for all compound types in Afrikaans and Dutch to be categorised, or at least not powerful 
enough to distinguish between various kinds of compounds. For example, in the original database a 
separable complex verb (SCV) like the Dutch (Du.) neer+gooien down+throw ‘to throw down’ was 
categorised as an attributive compound, while it should in reality rather be categorised as “Other” 
(OTH), a category in CompoNet reserved for examples that do not fit any of the other categories. 
Other examples include the difference between synthetic compounds (like the Afrikaans (Afr.) 
gras+sny-er grass+cut-extN ‘lawn mower’2) and parasynthetic compounds (Afr. glad+maak-ing 
smooth+make-extN ‘smoothing’), compounding compounds (Du. oude+mannen+huis 
old+men+house ‘retirement home for men’), and reduplications (Afr. speel_-+speel 
play_LINK+play ‘easily’). This illustrates that any taxonomy should at least provide for a slot for 
language-specific or other marginal phenomena – an aspect we will introduce in Section 3.    

3 New proposal 

In motivating why they came up with a revised taxonomy, Scalise and Bisetto (2009: 49) state that, 
given “the evolution of science, the need has arisen to add further levels of analysis to the 
classification”. They also invite further amendments to their newly proposed taxonomy, but warn that 
“anyone wanting to follow up on this issue will necessarily have to come to grips … with the diverse 
compound formations that populate the languages of the world” (Scalise and Bisetto, 2009: 53). In as 
such, our new proposal wants to suggest some refinements to the general taxonomy of Scalise and 
Bisetto (2009) on the one hand, and on the other hand wants to make some language-specific changes 
pertaining to Afrikaans and Dutch (with the possibility that it could also be applicable to other 
(Germanic) languages). Furthermore, it should be kept in mind that our taxonomy also has a secondary 
aim, namely to serve as a structure for annotation of compounds in a database like CompoNet. 

Our proposed taxonomy is presented in Figure 3, while Table 2 (as an Appendix) explicates this 
taxonomy with construction schemas for prototypical endocentric compounds, as well as an Afrikaans 
example for each instance. Although only Afrikaans examples are listed, we do claim that the 
                                                             
2 Following the conventions in CompoNet, we use the following abbreviations: extN=nominaliser; extV=verbaliser; 
extAdj=adjectiviser; extAdv=adverbialiser; Sw=semi-word. 
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taxonomy holds true for Dutch: all categorial patterns listed by De Haas & Trommelen (1993) have 
been accounted for in some or other way in the taxonomy. In the remainder of this section, we explain 
and motivate only those aspects of our taxonomy that differ from Scalise and Bisetto (2009). 
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Figure 3. Taxonomy for Afrikaans and Dutch compounds (adapted from Van Huyssteen, 2014) 
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One of the important aspects of any taxonomy, is that taxa of the same type should be placed on the 
same taxonomic level/rank (e.g. dog and cat are on the same taxonomic rank), and that criteria for 
such ranks should be made explicit. In our taxonomy, we show that compounding, derivation, 
reduplication, etc., are all word-formation processes. We explicitly include reduplication here, in order 
to clarify that we do not consider examples like Afr. dokter-dokter doctor-doctor ‘play doctor’, or Du. 
snel+snel quick+quick ‘very quick’ to be compounds, as some authors like Kempen (1969) believe, 
but rather consider it a separate word-formation process (following Fábregas and Scalise, 2012, and 
Van Huyssteen, 2004). Note also the dotted line that links derivation with parasynthetic compounds, 
because parasynthetic compounds are formed through a derivational process: compounding by means 
of derivation (Booij and Van Santen, 1998: 178; see discussion below).  

With regard to compounding specifically, we maintain the three taxonomic ranks of Scalise and 
Bisetto (2009) (unlike Vercellotti and Mortensen (2012) who added another level). On the 
semosyntactic level, the grammatical relations between constituents in compounds are used as 
classification criterion, and four types of relations are distinguished: subordinate, attributive, 
appositive, and coordinate. These four taxa operate on the same level of categorisation, and not like in 
the 2009-version of the Scalise and Bisetto taxonomy, where attributive and appositive were 
positioned on the same level as verbal-nexus and ground compounds. Following Vercellotti and 
Mortensen’s (2012) insight that subordinate, attributive and appositive compounds are more similar to 
each other than to coordinate compounds (i.e. the latter is not hierarchical), we lump them together 
with a dotted line in an area marked “hierarchical” (indicating their shared characteristic).  

Note also that Vercellotti and Mortensen (2012) discard the notion of appositive compounds, since: 
(1) it “is unclear how many languages would need this category, given the difficulty distinguishing the 
category”; and (2) “‘appositive’ is already in the literature as a type of coordinate compound” (2012: 
574). We have to agree to some degree with them on both accounts, but nonetheless maintain 
appositive as a useful label. Compare an appositive compound like Du. sleutel+woord key+word 
‘keyword’ with a coordinate compound like Du. dichter-zanger poet-singer ‘idem’. A sleutelwoord is 
a word that is like a key, but nonetheless still a word; it is not a key that is also a word. In contrast, a 
dichter-zanger is a singer that happens to be a poet as well, but could just as well be paraphrased as a 
poet that happens to be a singer. Hence, we maintain that there is a difference between appositives and 
coordinates, with the former being right-headed, and the latter (at least semantically) dual-headed. 
Similarly, an appositive is subtly different from an attributive compound (and it is therefore often 
difficult to distinguish the two from each other; see also Arcodia et al. (2009), and Arnaud and Renner 
(2014)). A sleutelwoord is not a kind of word of the same order as a Du. taboe+woord taboo+word 
‘taboo word’, or a Du. mode+woord fashion+word ‘trendy word’: a sleutelwoord is a word that is 
like a key, while a taboewoord is not like a taboo – the word is a taboo; a modewoord is not like the 
fashion, it is fashion. We maintain that appositives most often have an ‘is like’ metaphorical 
interpretation, while attributives have a literal ‘(that/which) is’ relation. 

On the semosyntactic level, we can now formulate high-level construction schemas (Booij, 2010) 
for each of the four major endocentric compound types, as the bold parts in (1) to (4). To illustrate, 
read (1) as follows: on the phonological pole, a word [a]Xi (table) can combine with another word [b]Xk 
(leg) to form a new word [ab]Xk (table leg), which as a whole (k) should be interpreted on the semantic 
pole as [LEGj of TABLEi]k; note that i, j and k are indices that mark the identity of constituents on the 
phonological and semantic poles (i.e. on the left and right of the double-arrow respectively). 

(1) Subordinate compounds: [[a]Xi [b]Xj]Xk !   [SEMj of SEMi]k  
where the X of [a]=N/V/Adj/Adv/Num/P/Phrase/Sw; the X of [b]=N/Adj/V/V-extN/ 
V-extAdj/Sw3 

(2) Attributive compounds: [[a]Xi [b]Xj]Xk !   [SEMj is SEMi]k  
where the X of [a]=Adj/Adv/AP/Num/Phrase; the X of [b]=N/Adj 

(3) Appositive compounds: [[a]Xi [b]Xj]Xk !   [SEMj like SEMi]k  
where the X of [a]=N/V/P/Phrase; the X of [b]=N/Adj 

(4) Coordinate compounds: [[a]Xi [b]Xj]Xk !   [SEMi and/or SEMj]k  
where X=N/V/Adj/Adv/P 

                                                             
3 In Afrikaans, a pronoun can also act as head, as in the construction Afr. ma-hulle mother-they ‘mother and 
them’. 
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On the second taxonomic rank, the morphosyntactic level, compounds are distinguished in terms of 
the morphosyntactic (categorial) nature of the constituents, i.e. whether it is a lexical word, a phrase, 
or semi-word; in (1) to (4) these constituents are indicated in italics. All four types of compounds can 
be formed by means of ground words (i.e. uninflected words), which could be either simplex (e.g. 
gebruik in Afr. gebruik+sfeer usage+sphere ‘usage sphere’), or complex (e.g. Afr. gebruik-er use-
extN ‘user’ in gebruiker+vriendelik user+friendly ‘user friendly’). All the major word categories can 
function as constituents in compounds, including N, V, Adj, Adv, Num, and P.  

All except coordinate compounds can take phrasal elements as non-heads; these could range from 
full sentences (Afr. Sannie-gaan-weeshuis-toe-rokkie Sannie-goes-orphanage-to-dress ‘worn-out 
dress’), phrases (NP, VP, AP, PP), or phrase-like phrases (Lieber, 2009b: 363) as in some 
parasynthetic compounds. Only subordinate compounds can have deverbal constituents as heads 
where the verb selects the non-head semantically as argument or as complement/adjunct (resulting in 
synthetic compounds). Lastly, it seems thus far as if only subordinate compounds can have semi-
words as constituents, resulting in (neo-)classical compounds. 

The third taxonomic rank pertains to headedness, defined on the morphosemantic level. Without 
being ignorant about the ongoing debate on headedness in morphology circles, we simply maintain 
Scalise and Bisetto’s (2009) definition and interpretation of the head as the semantic head of the 
compound (see also Booij, 1992). Whereas they indicate that all three major compound types can be 
both endocentric or exocentric (universally speaking), we claim that all compound types in Afrikaans 
and Dutch can be endocentric, but only the following can be exocentric:4 

(5) Subordinate, ground: [[a]V [b]N]V (Du. knip+oog snip+eye ‘to wink’), or [[a]V [b]N]N (Afr. 
suip+lap booze+cloth ‘drunkard’) 

(6) Attributive, ground: [[a]Adj [b]N]N (Afr. rooi+kop red+head ‘ginger (derogatory)’), or [[a]N 
[b]N]N (Du. spleet+oog slit-eye ‘Asian person (derogatory)’5) 

Finally, another important addition to our taxonomy is the grouping of language specific/marginal 
cases (on the right-hand side of Figure 3). This choice should be understood in terms of the 
computational needs of this project, where one often needs a category for instances that do not fit the 
other main categories well. Such a category is currently called “Other” in CompoNet, and is used as a 
“dustbin” for anything that cannot be categorised as “Subordinate”, “Attributive”, “Appositive” or 
“Coordinate”. However, instead of having a very vague “Other” category, we try to be precise and 
explicit about these language specific categories. With regard to Afrikaans and Dutch, we identify 
three categories, viz. compounding compounds (Afr. samestellende samestellings), parasynthetic 
compounds (Afr. samestellende afleidings), and separable complex verbs (Afr. samekoppelings).  

Compounding compounds are compounds that are formed with a noun as head, and either a NP 
(Adj+N, or Num+N) or PP (P+N) as non-head. Note that this is a specific kind of construction, and 
should as such not be confused with recursiveness in compounding. Unlike in subordinate, attributive 
and appositive phrasal compounds, the NP or PP in compounding compounds can only have two 
constituents. Also, a binary, left-branching interpretation of the compound as a recursive compound is 
impossible. Compare for instance a jocular example like Du. gescheurde+broek+hersteller 
ripped+pants+repairer ‘repairer of ripped pants’. If we would assume that hersteller first combined 
with broek to form broekhersteller, then a gescheurde broekhersteller would have been a ‘pants 
repairer who was ripped’. In other words, in compounding compounds, the compound as a whole is 
formed by means of the usual process of compounding (Booij and Van Santen, 1998: 179). In contrast, 

                                                             
4 Note that an example like Afr. wag-ŉ-bietjie wait-a-bit ‘Buffalo Thorn (tree type)’ should not be analysed as 
exocentric, since it is actually a back-formation of wag-ŉ-bietjie-boom wait-a-bit-tree ‘Buffalo Thorn’. There is 
a handful of highly lexicalised phrases (written concatenatively with hyphens, indicating their word status) that 
are exocentric, e.g. Afr. een-twee-drie one-two-three ‘quickly’, or Du. vergeet-me-niet-je forget-me-not-DIM 
‘idem’. Most of these cases are names of plants, birds, food, etc., and in our opinion, are not productive in 
Afrikaans and Dutch. However, this will need to be established through future research. 
Other problematic examples include highly lexicalised (metaphoric) compounds (like Du. pad(den)+stoel 
frog+chair ‘mushroom’), or simplexes that were diachronically speaking endocentric compounds (like Afr. 
hard+loop fast+walk ‘run’, which is still today considered an endocentric attributive compound in Dutch). For 
our purposes we consider both these cases as simplexes, but it could also be a theme for future research. 
5 The compound spleetoog can also refer to a squinted eye, in which case it is endocentric. 
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in parasynthetic compounds, the compound is formed by means of derivation; compare for instance 
Du. vijf+jaar-s five+year-extAdv ‘five-yearly’, or Afr. besluit+ne(e)m-ing decision+take-extN 
‘decision making’.  

Lastly, we also include separable complex verbs in our taxonomy as a language specific category, 
and specifically as endocentric ground compounds. There is a vast literature on whether examples like 
Du. op+zoeken up+look ‘look up/search for’, and Afr. af+sny off+cut ‘cut off’ should be seen as 
compounds or not. Suffice to point the interested reader to Booij’s (2010) recent summary and 
discussion of the topic, and to state that we consider separable complex verbs as language specific 
compounds, based on the fact that they follow the same stress pattern as other compounds in Afrikaans 
and Dutch (i.e. main stress on the left-hand constituent). 

4 Conclusion 

In this paper, we have evaluated Bisetto and Scalise’s (2005) and Scalise and Bisetto’s (2009) 
compound taxonomies for purposes of revising the Dutch part of CompoNet, and to extend CompoNet 
by adding Afrikaans as a new language. Similar to Vercellotti and Mortensen’s (2012) critique of 
these taxonomies, we also suggested some changes, which might actually be more of interest to 
linguists. However, in our case we had a very practical aim as well, namely to explicate various 
aspects of the framework for practical analysis and annotation of Afrikaans and Dutch data in the 
CompoNet database. As is illustrated by Table 2 (in the appendix), we were able to comprehensively 
formalise the various patterns of compounding in Afrikaans and Dutch, and in the next phase of the 
project we will revise the original Afrikaans and Dutch data based on our taxonomy, in order to 
develop two supplementary databases (not part of the official CompoNet, but still using all their fields 
and conventions). Such databases could in future be used for comparative research, not only between 
Afrikaans and Dutch, but also with other languages in the CompoNet database. 

Specific topics that need to be investigated in future include phrasal compounds (e.g. if we perhaps 
missed some patterns, what kind of phrases occur in which kinds of compounds?), exocentric 
compounds (i.e. do they only occur as ground compounds, or was our data skewed?; do we really need 
to include exocentricity in a compounding taxonomy for Afrikaans and Dutch), and (neo-)classical 
compounds (i.e. are (neo-)classical compounds always subordinate compounds?). Another topic 
pertains to the productivity of verbal compounds. Booij (2007: 92) states that Germanic languages do 
not have processes of verbal compounding, but that in Frisian occasionally new NV compounds do 
occur; we suspect that the same might be true for Afrikaans. Other topics of comparative research on 
compounding in Afrikaans and Dutch include whether (and why) Afrikaans has more A+N 
compounds than Dutch, the controversial topic of left-headed constructions in Dutch (e.g. Du. kabinet-
Zuma cabinet-Zuma vs. Afr. Zuma-kabinet Zuma-cabinet ‘cabinet of (president) Zuma’), the 
difference of spreading of interfixes (linking morphemes), and differing stress patterns in 
compounding compounds in these two languages. 
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Appendix 
Su

bo
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in
at
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V
er

bN
ex

 [[a]N [[b]V extAdj]Adj]Adj hand+vervaardig-de hand+produce-extAdj hand-made 
[[a]N [[b]V extN]N]N gras+sny-er grass+cut-extN lawn mower 
[[a]V [[b]V extN]N]N eet+sta(a)k-ing eat+strike-extN hunger strike 
[[a]Adj [[b]V extN]N]N kaal+nael-er naked+run-extN streaker 
[[a]Adv [[b]V extAdj]Adj]Adj dig+bebos-te thick+afforest-extAdj thickly wooded 

G
 

[[a]N [b]N]N tafel+poot table+leg table leg 
[[a]N [b]Adj]Adj kleur+blind colour+blind colour blind 
[[a]P [b]N]N buite+kamer outside+room outside room 
[[a]Num [b]N]N twee+klank two+sound diphthong 
[[a]V [b]N]N stryk+plank iron+board ironing board 
[[a]N [b]V]V raad+pleeg advice+commit consult 

Ph
 [[a]VP [b]N]N skop-skiet-en-donder-film kick-shoot-and-hit-movie action movie 

[[a]NP [b]N]N kaas-en-wyn-onthaal cheese-and-wine-party cheese and wine party 

N
eo

C
 [[a]Sw [b]Sw]N hidro+logie hydro+logy hydrology 

[[a]Sw [b]N]N bio+brandstof bio+fuel biofuel 
[[a]N [b]Sw]N Japan(n)+(o)logie Japan+ology Japanese studies 

A
tt

ri
bu

tiv
e G

 

[[a]Adj [b]N]N blou+draad blue+wire galvanised wire 
[[a]Num [b]N]N tien+kamp ten+camp decathlon 
[[a]Adv [b]N]N terug+weg back+way the way back 
[[a]Adv [b]Adj]Adj donker+blond dark+blonde dark blonde 
[[a]Num [b]Adj]Adj twee+maandeliks two+monthly bimonthly 

Ph
 [[a]AP [b]N]N los-en-vas-praatjies loose-and-set-talks random chatting 

[[a]NP [b]N]N kop-aan-kop-botsing head-on-head-collision head-on collision 
[[a]PP [b]N]N in-die-lug-vraag in-the-air-question rhetorical question 

A
pp

os
iti

ve
 

G
 

[[a]N [b]N]N treffer+liedjie hit+song hit song 
[[a]N [b]Adj]Adj yster+sterk iron+strong strong as iron 
[[a]V [b]Adj]Adj spring+lewendig jump+lively alive and well 
[[a]P [b]Adj]Adj deur+nat through+wet soaked 

Ph
 [[a]VP [b]Adj]Adj kielie-my-maag-lekker tickle-my-stomach-nice idem 

[[a]NP [b]Adj]Adj sonsak-in-Ibiza-mooi sunset-in-Ibiza-pretty idem 

C
oo

rd
 

G
 

[[a]N [b]N]N skrywer-boer writer-farmer writer-farmer 
[[a]Adj [b]Adj]Adj stom+verbaas mute+surprised very surprised 
[[a]V [b]V]V sit+lê sit-lie sit and lie 
[[a]P [b]P]P voor+op before+above first 

C
C

 

Ph
 [[[a]Adj [b]N]NP [c]N]N sosiale+sekerheid(s)+reg social+security+law social security law 

[[[a]Num [b]N]NP [c]N]N twee+sitplek+motor two+seat+car two-seater 
[[[a]P [b]N]PP [c]N]N buite+boord+motor out+board+motor outboard motor 

SC
V

 

G
 [[a]P [b]V]V in+gooi in+throw throw in 

[[a]Adv [b]V]V neer+gooi down+throw throw down 
[[a]N [b]V]V vleis+braai meat+roast barbeque 

Pa
ra

 S
yn

th
 

Ph
 [[a]PP extN]N ter+aarde+bestel(l)-ing to+earth+deliver-extN burial 

[[a]NP extN]N groot+skaal-s large+scale-extAdj large-scale 
[[a]vP extN]N alleen+lo(o)p-er alone+walk-extN loner 

G
 [[a]Adj [b]N extAdj]Adj blou+kleur-ig blue+colour-extAdj blue-coloured 

[[a]Num [b]N extAdj]Adj een+bla(a)r-ig one+leaf-extAdj monopetalous 
 

Table 2. Prototypical endocentric compounds in Afrikaans and Dutch (with Afrikaans examples)6 
 

 

                                                             
6 Abbreviations: VerbNex=verbal-nexus; G=ground; Ph=phrasal; NeoC=(neo-)classical; Coord=coordinate; 
CC=compounding compound; SCV=separable complex verb; ParaSynt=parasynthetic 
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Abstract

We report on an experimental study of the processing of noun-noun compounds by native and
non-native speakers of English, based on Event-Related Potentials recorded during a mask-
primed lexical decision task. Analysis was by generalised linear mixed-effect modelling and
generalised additive mixed modelling. Non-native processing is found to display headedness
effects induced by the mothertongue. The frequency of the constituent nouns and of the in-
tended compounds are also shown to have an effect on processing.

1 Introduction

This study examines the processing of noun-noun compounds by native and non-native speakers of
English. Compounds have been extensively studied in the past 40 years from a myriad of viewpoints
(Libben and Jarema, 2006; Lieber and Štekauer, 2009). A key concern has been whether the pro-
cessing of compounds consists in retrieving entities listed in the mind (Butterworth, 1983) or requires
decomposition into constituents listed separately (Semenza et al., 1997; Libben, 1998). Dual-routes
theories contend that the two processes exist side by side (Sandra, 1990). It is now widely accepted
that both constituents are activated during processing, at least in non-lexicalised compounds (Jarema,
2006; Zhang et al., 2012). Noun-noun compounds have also been shown to be processed differently
to non-compounds of similar morphological complexity and length, with compounds yielding longer
reaction times and different electrophysiological correlates (El Yagoubi et al., 2008).
Endocentric compounds contain a head element (dust in (1)) whose lexical category and interpretive
features are inherited by the compound and contribute the core of its meaning (e.g. a kind of dust).
The other element acts as a modifier of that head.

(1) moon dust (‘dust from the moon /dust made of moon /dust with moon-like properties’)

Here we focus on endocentric noun-noun compounds (henceforth NNCs), which have been argued to
embody an underlying structure (Libben, 2006) that is hierarchical, involving the (possibly recursive)
subordination of a modifier to a grammatical head (or a modifier-head compound, as in (2)), with head-
directionality that mirrors that of other noun-complement structures in the same language (Zipser,
2013).

(2) [child [amateur [puppet theatre]]]

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/
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Headedness plays a specific role in the processing of NNCs, as demonstrated by research on Italian
(which crucially features the two word orders in NNCs). Based on a lexical decision task, El Yagoubi
et al. (2008) found priming effects induced by the head, independently of its position in the NNC.
Headedeness effects are not distinguishable from position-in-the-string effects in languages such as
English. For instance, Jarema et al. (1999) observed no difference in the priming of NNCs by the head
or the modifier. Here we take this line of research further, by investigating whether headedness in the
mothertongue affects the processing of transparent, irreversible NNCs in highly advanced second
language learners of English.
Event-related potentials (ERPs) can provide insight into the neural activity associated with the pro-
cessing of compounds. Functional interpretations can be inferred from the temporal and spatial char-
acteristics of electromagnetic activity, and ERP components can sometimes reveal the engagement of
the cognitive processes involved. Our approach is this paper is exploratory (Otten and Rugg, 2005)
and will focus on identifying differences in the amplitude of the EEG signal that can be traced back
to properties of the participants (such as their language background) and properties of the compounds
(such as their frequency of occurrence, and the frequencies of occurrence of their constituents). Infer-
ences based on previously identified ERP components will be drawn in the discussion as appropriate.
Our research questions are: (i) Does non-native processing of NNCs result in different ERP signatures
to native processing? (ii) Is non-native processing of NNCs affected by headedness effects from the
mothertongue?

2 Materials and methods

We registered the electrophysiological response of the brain to visual stimuli presented in the context
of a (masked) primed lexical decision task. Stimuli were irreversible NNCs presented in licit (3-a)
and reversed order (3-b).

(3) a. coal dust
b. #dust coal

The participant groups differed in mothertongue: English (control group), Spanish or German (exper-
imental groups). Like English, German features productive compounding, with a head-last structure.
Whereas in Spanish, compounds are essentially head-first, and not productive.

2.1 Participants

Ten native British English speakers (4 female, mean age 22;11 years; STD 3;3 years), ten native
German learners of English (7 female, mean age 26;5 years; STD 5;7 years) and ten native Spanish
learners of English (3 female, mean age 26;11 years; STD 5;3 years) took part in the study. Partic-
ipants all had initial second-language exposure after 8 years of age, and all scored above 60% on a
cloze test from the Cambridge Certificate in Advanced English. All were right-handed based on the
Briggs and Nebes inventory (Briggs and Nebes, 1975), had no speech or language difficulties and had
normal or corrected-to normal vision.

2.2 Stimuli

Experimental stimuli consisted of prime-target pairs, presented in 4 experimental conditions in a 3
(Group) x 2 (Prime Condition) x 2 (Word Order) design. The prime was either the head (e.g. dust in
(3)) or the modifier (e.g. coal in (3)) of the intended compound.
The Word Order factor had 2 levels: licit (modifier - head, as in (3-a)) or reversed (head - modifier,
as in (3-b)). All the NNCs were endocentric and featured a transparent, modification relationship. All
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items were tested for irreversibility on an independent group of 30 native speakers. The frequency
of the licit compounds and their constituent nouns was estimated from the post-1990 data in Google
N-grams. To avoid lexicalisation effects, only compounds with very low frequencies were included
(i.e. below 3,300 — mean = 359.5, compared with a mean of 279,300 for the constituent nouns).

There was a total of 480 test items (based on 120 compounds), of which 240 are included in the
present study (as we focus on the Head Prime condition only). The items were pseudo-randomised
into 8 different orders (assigned randomly to participants) and presented in 4 blocks, with a rest in
between.

2.3 Procedure

Participants were tested individually in a single session lasting approximately 1.5 hours. Stimuli
were presented visually in light grey text on a black background. Each trial began with the visual
presentation of a series of exclamation marks (!!!) for 1000 ms, which was a signal for the participant
to rest their eyes and blink After a delay of 100 ms a fixation point (+) was presented for 250 ms to
signal that the trial was about to begin. After a 100 ms mask (#######), the prime was presented for
100 ms followed by a second mask (for 50 ms) and the target (for 1000 ms). After a delay of 500 ms a
question mark (?) appeared for 2000 ms during which time participants had to make a lexical decision
about the target (as acceptable or not) by pressing (with their right hand) one of two buttons on a
hand-held button box (counterbalanced across participants). Participants were instructed to respond
as accurately as possible; accuracy and reaction times (in ms from the onset of the “?") were recorded.
After the response (or at the end of 2000 ms if the participant did not respond), there was a delay
of 100 ms before the next trial started. The experimental session was preceded by a practice session
comprising 20 trials, which was repeated until participants could perform the task and procedure with
no errors (usually one or two practice sessions sufficed).

The EEG was recorded (Neuroscan Synamps2) from 60 Ag/AgCl electrodes embedded in a cap based
on the extended version of the International 10-20 positioning system (Sharbrough et al., 1991). Ad-
ditional electrodes were placed on the left and right mastoids. Data were recorded using a central
reference electrode placed between Cz and CPz. The ground electrode was positioned between Fz
and Fpz. To capture noise articfacts in the EEG signal due to eye movements, electro-oculograms
(EOGs) were recorded using electrodes positioned at either side of the eyes, and above and below the
left eye. At the beginning of the experiment electrode impedances were below 10 k⌦. The analogue
EEG and EOG recordings were amplified (band pass filter 0.1 to 100Hz), and continuously digitised
(32-bit) at a sampling frequency of 500 Hz. Data were processed offline using Neuroscan Edit 4.3
software (Compumedics Neuroscan) and filtered (0.1-40Hz, 96 dB/Oct, Butterworth zero phase filter).
The effect of eye-blink artifacts was minimised by estimating and correcting their contribution to the
EEG using a regression procedure which involves calculating an average blink from 32 blinks for each
participant, and removing the contribution of the blink from all other channels on a point-by-point ba-
sis. Data were epoched between -100 and 1100 ms relative to the onset of the experimental targets
and baseline-corrected by subtracting the mean amplitude over the pre-stimulus interval. Epochs were
rejected if participants did not make a response within the allocated time (during presentation of the
“?"), or if they made an incorrect response. Subsequently the data was downsampled to 125 Hz. Trial
rejection was not done a priori but based on the residuals of the modelling, resulting in only 0.7% of
discarded data.
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3 Results

3.1 Accuracy analysis

The responses on the lexical decision task were analysed with a generalised linear mixed-effect model
with a binomial link function, using the lme4 package, version 1.0-4 (Bates et al., 2013) with the
‘bobyqa’ optimizer. Only those predictors that contributed to the model fit were retained, as shown in
Table 1. The covariate ‘Compound Frequency’ did not reach significance. The model provided a sub-
stantially improved fit compared to the null-hypothesis model with random intercepts for participant
and item only.

Coefficient Std. Error Z p
Intercept -0.7565 1.7174 -0.4405 0.6596
Word Order: Licit -0.0828 0.1644 -0.5035 0.6146
L1: German -0.6339 0.3123 -2.0299 0.0424
L1: Spanish -0.7670 0.4135 -1.8549 0.0636
Proficiency 3.7191 1.7052 2.1811 0.0292
Word Order: Licit by L1: German 0.8710 0.1474 5.9074 0.0000
Word Order: Licit by L1: Spanish 0.9322 0.1410 6.6101 0.0000

Table 1: Coefficients of a logistic mixed-effects regression model fitted to the accuracy data. The
reference level for Word Order is Reversed, and for L1: English

Table 1 indicates that for English speakers, accuracy did not differ for the licit and reversed word order
conditions. For non-native speakers, accuracy was higher in the Licit Word Order condition, compared
with the Reversed Word Order condition. Across groups, greater proficiency afforded higher accuracy.
Figure 1 visualizes this pattern of results.
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Figure 1: Partial effects of the predictors in the logistic model for response accuracy.

3.2 ERP analysis

We analysed the electrophysiological response elicited by the presentation of compound words with
the generalized additive mixed model (GAMM, (Wood, 2006; Tremblay and Baayen, 2010; Baayen, to
appear; Baayen et al., in preparation; Kryuchkova et al., 2012)). Generalized additive mixed models
extend the generalized linear mixed model with tools (thin plate regression splines, tensor product
smooths) for modeling non-linear functional relations between one or more predictors and a response
variable. GAMMs, as implemented in the mgcv package 1.7-28, offer three important advantages for
the analysis of EEG data compared to standard linear models and analysis of variance. First, GAMMs
are optimized for dealing with non-linear functional relations between a response (here, the amplitude)
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and one or more numerical predictors (resulting in wiggly curves, wiggly surfaces, or, in the case of
more than two predictors, wiggly hypersurfaces). Second, GAMMs decompose the EEG amplitude
into a sequence of additive components, thereby affording the analyst a toolkit for separating out
partial effects due to different kinds of predictors (e.g., language group, time, compound frequency,
constituent frequency). Third, GAMMs can capture AR1 autocorrelative processes in the signal, and
therefore protect against anti-conservative p-values and mistakingly taking noise for complex EPR
signatures (as has been shown to occur by Tanner et al., 2013).
We include for analysis only trials that elicited a correct response. The time window analysed was
limited to 0–800 ms, time-locked to the onset of stimulus presentation. Autocorrelations in the resid-
ual error were removed by including in the GAMM an autocorrelation parameter ⇢ = 0.9 for AR1
error for each basic time series in the data (the time series amplitudes for each unique combination of
subject and item). Inclusion of ⇢ was essential for removing most of the autocorrelational structure
from the model’s residuals.

A. parametric coefficients Estimate Std. Error t-value p-value
Intercept (English Reversed) -0.6815 1.8695 -0.3645 0.7155
Compound Frequency (English Reversed) 0.0659 0.0756 0.8711 0.3837
English:Licit 1.0720 0.1845 5.8103 < 0.0001
German:Reversed 0.6172 2.5967 0.2377 0.8121
German:Licit 0.8199 2.5977 0.3156 0.7523
Spanish:Reversed 0.0311 2.5986 0.0120 0.9905
Spanish:Licit -3.6624 2.6002 -1.4085 0.1590
Comp. Frequency:English Licit -0.2747 0.0392 -7.0097 < 0.0001
Comp. Frequency:German Reversed -0.0577 0.0405 -1.4254 0.1540
Comp. Frequency:German Licit -0.0826 0.0397 -2.0837 0.0372
Comp. Frequency:Spanish Reversed -0.1139 0.0414 -2.7536 0.0059
Comp. Frequency:Spanish Licit 0.2361 0.0404 5.8473 < 0.0001
B. smooth terms edf Ref.df F-value p-value
smooth in Time English:Licit 8.5809 8.7860 11.5648 < 0.0001
diff. curve Time: German:Licit 1.0111 1.0212 0.1285 0.7255
diff. curve Time: Spanish:Licit 6.7504 7.8925 4.4964 < 0.0001
diff. curve Time: English:Reversed 1.9025 2.3906 1.0696 0.3436
diff. curve Time: German:Reversed 1.0074 1.0141 0.4174 0.5210
diff. curve Time: Spanish:Reversed 1.0069 1.0095 1.6952 0.1925
tensor product surface F1 and F2 (English, Licit) 3.0189 3.0349 2.1154 0.0951
diff. surface German:Licit 11.2569 12.3579 7.2697 < 0.0001
diff. surface Spanish:Licit 12.9312 13.6137 60.1585 < 0.0001
diff. surface English:Reversed 3.9839 4.0083 17.6082 < 0.0001
diff. surface German:Reversed 9.0655 10.4566 5.5875 < 0.0001
diff. surface Spanish:Reversed 14.7736 14.9639 28.2189 < 0.0001
random intercepts Compound 107.6142 111.0000 34.7869 < 0.0001
by-subject random wiggly curves Trial 163.4484 267.0000 43.8796 < 0.0001
by-subject random wiggly curves Time 170.5793 267.0000 2.4442 < 0.0001

Table 2: Generalized additive mixed model fitted to the amplitude of the electrophysiological response
of the brain to English compounds at channel C1.

In what follows, we focus on channel C1, which revealed a pattern of results typical for surrounding
channels. The amplitude of the EEG signal was modeled (without any prior averaging) as an additive
function of Word order (Licit vs. Reversed), Compound Frequency, the Constituent Frequency of
Modifier and of Head, and Participant Group (English, German, Spanish). Proficiency did not reach
significance and did not improve the model fit significantly, so we did not include this predictor in the
final model.
GAMMs currently can only accomodate interactions of smooths with a single factor. In order to
study the interaction of speaker group and word order, we therefore created a new factor GO with
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as levels English:Licit, English:Reversed, German:Licit, German:Reversed, Spanish:Licit, and Span-
ish:Reversed, using treatment contrasts with as reference level English:Reversed. In the parametric
part of the model (the upper half of Table 2), the coefficients for the main effect of GO and its inter-
action with compound frequency are to be interpreted in the familiar way, with the interaction terms
specifying differences in the slope of compound frequency for the non-reference levels of GO.
GO also interacted with the constituent frequencies. For this three-way interaction, we recoded GO
as an ordered factor, which is how the bam function of the MGCV package is instructed to construct
a reference surface (in our implementation, for English:Licit) and difference surfaces for the other
factor levels with respect to the standard compound forms as read by English native speakers.
Table 2 summarizes the GAMM fitted to the amplitude of the EEG signal at channel C1. First consider
the parametric part of the model, presented in the upper half of the table, which concerns the main
effect of GO and its interaction with log-transformed compound frequency. This interaction is sum-
marized in Figure 2. Black lines denote the Licit Word Order condition, grey lines the Reversed Word
Order condition. Compound frequency did not have much of an effect in the Reversed conditions.
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Figure 2: The three-way interaction of Participant Group, Grammaticality, and Compound Frequency.

For English (solid lines), a compound frequency is present in the licit condition, with greater com-
pound frequencies inducing more negative amplitudes. For German (dashed lines), the slope was
close to zero in both conditions, indicating the absence of a frequency effect. The Spanish speakers
(dotted lines) revealed a regression line with an opposite slope to that for the English speakers in the
Licit condition, and with a much lower intercept. This reversal of the slope, as compared to English,
may be a consequence of the fact that in Spanish, translation equivalents would be expressed with the
opposite constituent order.
The non-parametric part of the model, reported in the lower half of Table 2, handles non-linear effects
in the model, using thin plate regression splines for wiggly curves and tensor product smooths for wig-
gly surfaces. The first row of the non-parametric subtable summarizes a smooth in time for English
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licit compounds. This smooth is visualized in the left panel of Figure 3, together with its 95% confi-
dence interval. The model required 8.78 effective degrees of freedom (edf) to capture a (significant)
positive inflection around 300 ms post stimulus onset. (Higher edfs indicate greater wiggliness.) The
next 5 rows in Table 2 describe the difference curves for the remaining levels of GO. The only level
for which this difference curve is significant is Spanish:Licit. The second panel of Figure 3 presents
this difference curve, which required 7.89 effective degrees of freedom. As the difference curve is
significantly above the X-axis around 300 ms post stimulus onset, and significantly below the X-axis
after 600 ms, we conclude that the Spanish speakers reading licit compounds had a higher positivity
around 300 ms compared to the English speakers reading the same compound, combined with more
negative amplitudes after 600 ms post stimulus.
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Figure 3: The interaction of participant Group, Grammaticality, and Time. The left panel shows the
smooth for English in the Licit Word Order condition; the right panel shows the difference curve with
respect to the left panel for the Spanish participants.

EEG amplitudes were also modulated by an interaction of the constituent frequencies by GO, which
we modeled with a tensor surface for English:Licit and difference tensor surfaces for the other levels
of GO. The second set of 6 rows in Table 2 present the summary statistics, and Figure 3 the smoothed
surfaces. The upper left panel presents the reference smooth for English native speakers reading com-
pounds in their licit order. For channel C1, this surface is not well-supported statistically (p = 0.095),
but at neighboring channels (e.g., Cz, FC1) higher-frequency constituents elicited significantly higher
amplitudes. Interestingly, when the constituents are reversed, significantly more negative amplitudes
for compounds with high constituent frequencies are observed for native English speakers, as shown
in the lower left panel. German speakers show a similar pattern with more negative amplitudes for
both licit and reversed compounds (center panels). The strongest negativities are present for Spanish
speakers in the licit condition (upper right). In the reversed condition, Spanish speakers show a pat-
tern of somewhat increased negativity (lower right) that, however, does not vary much with constituent
frequency.
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Figure 4: The interaction of left and right constituent frequency by grammaticality and language
group. The upper left panel presents the smooth surface for English:Licit, the remaining panels present
difference surfaces with respect to the English:Licit condition. Darker shades of gray indicate more
negative amplitudes. Contour lines are 0.5 units apart in panels 1, 2, 5, and 6; they are 2 units apart in
panel 3, and 1 unit apart in panel 4.

The final three rows of Table 2 specify the random-effects structure of the model. Random intercepts
for compound were included in order to allow for differences in baseline amplitude across compounds.
For subjects, two random wiggly curves were included. The first models changes in amplitude as
subjects go through the experiment. The second models subject-specific changes over within-trial
time. The random wiggly curves are the nonlinear equivalent of what in the context of a linear mixed-
effects model would be ‘random straight lines’ obtained by combining random intercepts with random
slopes. For EEG data, where amplitude changes non-linearly with time, the flexibility of penalized
and shrunk regression splines is essential.

4 Discussion

The non-native participants performed the lexical decision task with a high level of accuracy. For
the licit compounds, accuracy was comparable to that of native speakers. For reversed compounds,
accuracy dropped slightly, from around 94% to around 88%. From this, we conclude, first, that all
subjects have acquired NNC structures in English, and second, that non-native speakers are more
likely to accept novel noun combinations as English compounds.
Knowledge of whether a two-word combination is in fact licit in English can arise from two sources.
On the one hand, speakers may be familiar with the compound, as evidenced by an effect of compound
frequency. For the native English speakers resonding to licit compounds, an effect of compound fre-
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quency was indeed present in the EEG amplitudes. On the other hand, speakers may infer the intended
meaning from the constituents (e.g., English beach ball indexing German Wasserball, ‘water ball’).
Constituent effects were well attested in the EEG amplitudes. Interestingly, for English speakers, con-
stituent frequency effects gave rise to more positive amplitudes in the licit condition (significantly at
neighboring channels) whereas in the reversed condition, amplitudes were more negative for higher-
frequency constituents. In other words, when English speakers are confronted with reversed com-
pounds, which for them are actually novel compounds, the compound frequency effect disappears,
and a constituent frequency effect emerges that is opposite in sign to that for normal compounds.
Of the non-native speakers of English, only the Spanish speakers revealed a compound frequency
effect, with a slope opposite in sign to that for the English speakers. If higher amplitude in the signal
indicates increased processing effort, the effect of the frequency of the intended compound could be
interpreted as facilitating in the Licit Word Order condition in the native speakers but inhibiting in the
Spanish group (and without much effect in the German group). We hypothesize that Spanish speakers
find licit English compounds more difficult precisely because in their native language, the order of
the constituents would have been reversed. It is only these speakers that have a word order conflict to
resolve.
All speakers (non-native as well as English) responding to reversed (i.e., for them, novel) compounds,
show more negative amplitudes for compounds with higher constituent frequencies. We interpret this
as evidence for constituent-driven, decompositional processing. The especially pronounced negativi-
ties for Spanish speakers in the Licit Word Order context (which go hand in hand with a positive slope
for compound frequency) suggest that for these speakers increased processing resources are called
upon to resolve the conflict between English and Spanish constituent order, in spite of native-like
performance in the evaluation of compounds in that condition.
A positive peak around 300 ms post-stimulus was found in all groups in both conditions, and exac-
erbated in the Spanish group in the Licit Word Order condition. This peak could be interpreted as a
P300, indexing attentional resources. El Yagoubi et al. (2008) found that right-headed NNCs in Ital-
ian yielded a greater P300 and interpreted this as evidence that processing this marked (but in Italian
equally grammatical) word order required increased attentional resources. If the P300 observed here
reflects a peak of attentional engagement, we expect its amplitude to predict scores on an Attention
Network Task (Fan et al., 2005) — something we will investigate in the next phase of this study.
With respect to the absence of a significant N400 effect between the Word Order conditions, we first
note that the N400 may vanish due to familiarization, and also to masked priming (Coulson et al.,
2005; Brown and Hagoort, 1993). However, and perhaps more importantly, reversed compounds are
not semantically anomalous. To the contrary, they invite interpretation and, as we have documented,
give rise to constituent-driven processes of interpretation. From this perspective, an N400 would then
characterize the processing of semantic anomalies that cannot be resolved through morphological
processing.

5 Concluding remarks

This study set out to investigate (i) whether non-native processing of NNCs results in different ERP
signatures compared to native processing, and (ii) whether non-native processing of NNCs is affected
by constituent order in the mothertongue. Analysis of the EEG amplitudes revealed that English
native speakers read licit compounds using both whole-word information (as indexed by compound
frequency) in congruence with constituent information (as indexed by constituent frequency with
a positive effect) whereas non-native speakers and English speakers reading novel (reversed) com-
pounds resort to decompositional interpretation indexed by a negative effect on amplitudes. Further-
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more, Spanish readers undergo interference from the different constituent order possibilities in their
own language, leading to a reversed compound frequency effect and strongly enhanced constituent
frequency effects (with a negative sign) when reading English licit compounds.
This pattern of results is, for native speakers, consistent with the early effects of compound frequency
observed using eye-tracking by, e.g., Kuperman et al. (2008, 2009) and Miwa et al. (2014) for English,
Finnish, and Japanese respectively. The importance of constituent-driven processing for non-native
speakers is reminiscent of the decompositional eye-movement patterns of less-proficient readers re-
ported by Kuperman & Van Dyke (2011).
We conclude with noting that the insights gleaned from the EEG amplitudes would not have been
possible without generalized additive mixed models. At the same time, we believe we are only seeing
the tip of the iceberg. For instance, the model can be improved by allowing the interaction of the con-
stituent frequencies by group and constituent order to vary with time, using a five-way tensor product
smooth. Two considerations have withheld us from following up on this considerably more com-
plex model. First, without specific hypotheses as a guide, interpretation becomes extremely difficult.
Second, we are concerned that with a relative small number of compounds (120), overfitting might
become an issue. For future research specifically addressing the development over time of constituent
(and whole-word) frequency effects, we recommend designs with larger numbers of compounds.
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Abstract 

This paper presents a comparative study of different methods for the identification of multiword 
expressions, applied to a Brazilian Portuguese corpus. First, we selected the candidates based on the 
frequency of bigrams. Second, we used the linguistic information based on the grammatical classes of 
the words forming the bigrams, together with the frequency information in order to compare the 
performance of different classification algorithms. The focus of this study is related to different 
classification techniques such as support-vector machines (SVM), multi-layer perceptron, naïve 
Bayesian nets, decision trees and random forest. Third, we evaluated three different multi-layer 
perceptron training functions in the task of classifying different patterns of multiword expressions. 
Finally, our study compared two different tools, MWEtoolkit and Text-NSP, for the extraction of 
multiword expression candidates using different association measures.  

1 Introduction 

The identification of multiword expressions (MWEs) and their appropriate handling is necessary in 
constructing professional tools for language manipulation (Hurskainen, 2008). MWEs are considered 
as a very challenging problem for various natural language processing (NLP) applications, such as 
machine translation.  

There are several definitions of MWE in the scientific literature. Smadja (1993) defines MWE as 
an arbitrary and recurrent word combination; while Choueka (1988) defines them as a syntactic and 
semantic unit whose exact meaning or connotation cannot be derived directly and unambiguously 
from the meaning or connotation of its components.  Moreover, Sag et al. (2002) defines MWE as an 
idiosyncratic interpretation that exceeds the limit of the word (or spaces). 

We adopt in this paper a definition similar to the one given by Sag et al. (2002): a MWE is an 
expression formed by two or more words, whose meaning can vary from totally dependent to 
completely independent of the meaning of its constituent words. Examples of MWEs: “take care”, 
“Bill Gates”, “coffee break” and “by the way”. 

This study treats only two-word MWEs. We are not considering some common Portuguese MWEs, 
such as “tempo de espera” (waiting time, lit.: time of waiting), “dar um tempo” (to have a break, lit.: to 
give a time) or “começar tudo de novo” (restart, lit. start everything of new). However, our experience 
and some related work show that we are already covering the majority of MWEs. For their data, for 
example, Piao et al. (2003, Section 5) found that 81.88% of the recognized MWEs were bigrams. 
Moreover, our focus is in MWE formed by nouns, adjectives, verbs and adverbs. As a consequence, 
two-word MWEs formed by prepositions were not considered, such as “de novo” (again, lit. of new), 
“à toa” (for nothing), “apesar de” (despite of) or “desde ontem” (since yesterday). In resume, we 
evaluated the performance of different classification algorithms and tools for the recognition of two-
word MWEs formed by nouns, adjectives, verbs and adverbs. We intend, in the future, to extend this 
study to MWEs formed by words belonging to any grammatical class and having any number of words. 

 
 
_______________ 
This work is licensed under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer 
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/ 
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The correct identification of MWEs is important for different NLP applications, such as machine 
translation, information retrieval and the semantic web, to which the principle of syntactic or semantic 
unit is important (Watrin and François, 2011). 

Methods for identifying MWEs rely on statistical measures, especially association measures, such 
as mutual information (Church and Hanks, 1990), log-likelihood or Dice’s coefficient (Smadja, 1996). 

The basic idea behind such measures can be summarized as follows: the higher the association 
among the words that appear together in a text, the higher the probability that they constitute a single 
semantic unit.   

There are other methods, which use linguistic information or hybrid approaches that combine 
statistical measures with the linguistic information, such as the grammatical class of each word, the 
sense of the composite expression or the syntactic regularities. 

2 Related Work 

Dias and Lopes (2005) present a method for the extraction of MWEs based only on statistics with an 
application on the Portuguese language. This method consists of a new association measure called 
“mutual expectation”. Their method can be applied to extract MWEs formed by two or more words, 
contiguous or not. The mutual expectation method is based on the LocalMaxs (Silva and Lopes, 1999) 
algorithm. This algorithm deduces that a n-gram is a MWE if the degree of attraction between its 
words is greater or equal to the degree of attraction of all its subsets of n-1 words (i.e. all groups of n-1 
words contained by the n-gram) and if it is strictly greater than the degree of attraction of all of its 
super groups of n+1 words (i.e. all groups of n+1 words containing the n-gram). When the n-gram is a 
bigram (n = 2), only the degree of attraction of its super groups of n+1 words is calculated. 

Ramisch et al. (2008) analyze the extraction of MWEs based only on statistical information, 
comparing three association measures: the mutual information, chi-squared and permutation entropy. 
Then they introduce a method called entropy of permutation and insertion (a hybrid approach), that 
takes into account linguistic information of the MWE type. Following some patterns, they modify each 
original MWE candidate by inserting some types of words in some positions and they test if the new 
MWE are still MWE and they try to identify which kind of modification an MWE type accepts or 
refuses in a particular language. The new measure is calculated using a formula that combines the 
probability of occurrence of the original and of the generated MWE. 

Agarwal et al. (2004) present an approach for extracting MWEs in languages with few resources 
based on a morphological analyser and a moderate size untagged text corpus. First, they divide the 
MWEs in categories. For example, Category-2 is formed by noun-noun, adjective-noun and verb-verb 
bigrams. Then they apply a set of rules to identify or eliminate candidates as MWE. Those rules take 
into consideration the precedent and/or the next word in the pair and the possible inflections of the 
words. After this step, association measures are computed. 

Piao et al. (2003) use, what they call, a semantic field annotator. They use a semantic tagger for the 
English language called USAS, developed in Lancaster University. This tagger labels words and 
expressions in a text using 21 categories. For example, Category-A is used for “general and abstract 
terms”, Category-B is used for “the body and the individual”, Category-E is used for “emotion”, etc. A 
text labeled with those categories is used to extract the MWE candidates. The differential of this 
approach is that the candidates are selected not based only on statistical measures. The problem with 
this is that most of the MWEs, about 68% in the work of Piao et al., appear in the text with a low 
frequency. As a consequence, most of the methods for extracting MWEs give good precision, but low 
recall. 

3 The Data 

The current study used the corpus CETENFolha (Corpus de Extractos de Textos Eletrónicos 
NILC/Folha de São Paulo), available on the website Linguateca Portuguesa (CETENFolha, 2008).  
This corpus is composed by excerpts from Brazilian newspaper "Folha de São Paulo", and contains 
over 24 million words. It is part of a project on the automatic processing of the Portuguese (Kinoshita 
et al., 2006). As the current stage, we used a small fraction of the corpus, composed by 3,409 excerpts 
of text (about 250,000 words). Each excerpt corresponds to individual news, which covers different 
areas.  
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4 Comparison of different classification algorithms 

4.1 Pre-processing the data 

Before the indexation, some pre-processing methods on the corpus were completed, such as 
lemmatization and elimination of stop words (articles, prepositions, conjunctions). In this study, we 
are mostly interested in analyzing MWEs formed by nouns, adjectives, adverbs and verbs. And since 
those stop words are very common in Portuguese, their elimination reduces considerably the number 
of MWE candidates that would not be relevant to this study.  

We created two indexes: one formed only of bigrams and the other only by unigrams. Our results 
show 49,589 bigrams, with 1,170 having a frequency higher than 3. We selected those 1,170 bigrams 
as our MWE candidates. By hand, from the 1,170 candidates, we recognized 447 as being Portuguese 
MWEs.  

The main criterion used to consider a bigram as a MWE was that the bigram had a sense on its own. 
For example: proper names, like “Adelson Barbosa”, “George Bush” and “Belo Horizonte”; support 
verb constructions: “tomar cuidado” (to take care), “fazer sentido” (to make sense); expressions 
having some idiomatic sense: “abrir mão” (to give up, lit. to open hand), “fazer questão” (to insist, to 
require [that something be done in a specific way], lit. to make question); fixed expressions: “bens 
duráveis” (durable goods), “senso comum” (common sense), “curto prazo” (short term). Example of 
bigrams not considered as MWE: “Brasil foi” (Brazil was), “apenas dois” (only two), “bomba matou” 
(bomb killed), etc. 

For each bigram, we found the frequency of its constituent words in the unigram index. Then, we 
classified by hand each of the words by their grammatical class: 1 for nouns, 2 for adjectives, 3 for 
verbs, 4 for other classes (mostly adverbs and pronouns) and 5 for proper names. This gave us 25 
patterns of bigrams: N-N, N-ADJ, N-V, V-N, PN-PN, etc. We decided not to use a POS-tagger, to 
ensure that each word would have its grammatical class assigned correctly, creating the most correct 
possible training and testing data sets for the classification algorithms. 

We then created a matrix of 1,170 lines and five columns. For each line, the first column represents 
the frequency of a bigram in the excerpt of text, the second column represents the frequency of the 
first bigram’s word, the third column represents the frequency of the second bigram’s word, the fourth 
column represents the grammatical class of the first bigram’s word and the fifth column represents the 
grammatical class of the second bigram’s word. This matrix was used to evaluate the precision and 
recall of different classification algorithms.  

4.2 Evaluation  

We applied nine different classification algorithms to our data set. The parameters used with each 
algorithm are listed below. 

Decision tree: C4.5 algorithm (Quinlan, 1993) with confidence factor = 0.25. 
Random Forest (Breiman, 2001): number of trees = 10; max depth = 0; seed = 1. 
Ada Boost (Freund and Schapire, 1996): classifier = decision stamp; weight threshold = 100; 

iterations = 10; seed = 1. 
Bagging (Breiman, 1996): classifier = fast decision tree learner (min. number = 2; min. variance = 

0.001; number of folds = 3; seed = 1; max. depth = -1); bag size percent = 100; seed = 1; number of 
execution slots = 1; iterations = 10. 

KNN (Aha and Kibler, 1991): K = 3; window size = 0; search algorithm = linear NN search 
(distance function = Euclidian distance). 

SVM (Chang and Lin, 2001): cache size = 40; cost = 1; degree = 3; eps = 0.001; loss = 0.1; kernel 
type = radial basis function; nu = 0.5; seed = 1. 

Multilayer perceptron: learning rate = 0.3; momentum = 0.2; training time = 500; validation 
threshold = 500; seed = 0;  

Bayesian net: search algorithm = k2 (Cooper and Herskovits, 1992); estimator = simple estimator 
(alpha = 0.5). 

As we can see in Table 1, the values of precision are very similar for all the algorithms, varying 
between 0.830 (random forest) and 0.857 (bagging), with the exception of SVM, which gave a 
precision of 0.738. The recall values were between 0.831 and 0.857 (0.655 for SVM). 
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We obtained good precision and recall.  However, we must consider that the values of recall are 
based only on the MWEs present in our reference list, and not in the entire corpus, since we could not 
count all the MWEs present in the corpus. 

 
Algorithm TP Rate FP Rate Precision Recall 

Decision tree 0.853 0.158 0.854 0.853 
Random forest 0.831 0.194 0.830 0.831 
Ada boost 0.837 0.196 0.836 0.837 
Bagging 0.857 0.163 0.857 0.857 
KNN – k = 3 0.846 0.171 0.846 0.846 
SVM 0.655 0.553 0.738 0.655 
M. perceptron 0.852 0.174 0.851 0.852 
Naïve B. net 0.836 0.170 0.839 0.836 
Bayesian net 0.842 0.170 0.843 0.842 

 
Table 1: True-positive rate, false-positive rate, precision and recall for nine classification algorithms. 

5 Bigrams patterns classification 

We chose one of the algorithms with the best performance (multi-layer perceptron) and we evaluated 
it using three different training functions, bayesian regulation back propagation (br), Levenberg-
Marquardt (lm) and scaled conjugate gradient (scg), and compared their performance in the 
classification of different patterns of bigrams as MWE. For this comparison we used the patterns that 
gave 10 or more samples of MWEs. We had eight patterns that together represent 59% of the 
candidate bigrams (689/1,170) and 94% of the MWEs that appear three or more times in the corpus 
(420/447). The tables 2.a, 2.b and 2.c show the results. “N” stands for “Noun”, “A” for adjective, “O” 
for other classes (mostly adverbs and pronouns) and “PN” for “proper names”.  

Analyzing the three tables, we see that we had best results with the patterns N-A (e.g. “agencias 
internacionais”, “ajuste fiscal”, “America Latina”) and PN-PN (“Adelson Barbosa”, “Ayrton Senna”, 
“Bill Clinton”). The function lm gave the best value for the F1 measure (0.912) for the pattern N-A, 
and the function scg gave the best value for the pattern PN-PN (0.931). 

In general, we obtained the weakest results with the patterns O-N (e.g. ex-presidente, primeiro 
mundo) and A-PN (São Paulo, Nova York). Using the training functions “lm” and “scg”, none of the 
10 MWEs belonging to the pattern O-O (apesar disso, além disso) was recognized, and none of the 46 
MWEs belonging to the pattern O-N was recognized, when using the training function “scg”. 

The last line of each table show the total values for the eight patterns, for the three learning 
functions. We had the best precision and recall using the “lm” function. 

 
Pattern Bigrams MWE TP FP TN FN Prec. Recall F1 
N-A 229 193 176 27 9 17 0.867 0.912 0.889 
O-N 164 46 14 23 95 32 0.378 0.304 0.337 
PN-PN 117 101 94 15 1 7 0.862 0.931 0.895 
A-N 53 21 13 3 29 8 0.813 0.619 0.703 
O-O 46 10 5 9 27 5 0.357 0.500 0.417 
N-PN 34 16 7 9 9 9 0.438 0.438 0.438 
N-N 31 20 11 6 5 9 0.647 0.550 0.595 
A-PN 15 13 3 1 1 10 0.750 0.231 0.353 
All Pat. 689 420 323 93 176 97 0.776 0.769 0.773 

 
Table 2a: Multi-layer perceptron using Bayesian regulation back-propagation as training function: 

precision, recall and F-measure in the classification of the most common bigram’s patterns. 
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Pattern Bigrams MWE TP FP TN FN Prec. Recall F1 
N-A 229 193 191 35 1 2 0.845 0.990 0.912 
O-N 164 46 11 6 112 35 0.647 0.239 0.349 
PN-PN 117 101 101 16 0 0 0.863 1.000 0.927 
A-N 53 21 17 4 28 4 0.810 0.810 0.810 
O-O 46 10 0 2 34 10 0.000 0.000 0.000 
N-PN 34 16 11 5 13 5 0.688 0.688 0.688 
N-N 31 20 16 7 4 4 0.696 0.800 0.744 
A-PN 15 13 2 2 0 11 0.500 0.154 0.235 
All Pat. 689 420 349 77 192 71 0.819 0.831 0.825 

 
Table 2b: Multi-layer perceptron using Levenberg-Marquardt as training function: precision, recall 

and F-measure in the classification of the most common bigram’s patterns. 
 

Pattern Bigrams MWE TP FP TN FN Prec. Recall F1 
N-A 229 193 187 33 3 6 0.850 0.969 0.906 
O-N 164 46 0 0 118 46 0.720 0.000 0.000 
PN-PN 117 101 101 15 1 0 0.871 1.000 0.931 
A-N 53 21 17 10 22 4 0.630 0.810 0.708 
O-O 46 10 0 0 36 10 0.783 0.000 0.000 
N-PN 34 16 2 7 11 14 0.222 0.125 0.160 
N-N 31 20 18 8 3 2 0.692 0.900 0.783 
A-PN 15 13 2 1 1 11 0.667 0.154 0.250 
All Pat. 689 420 327 74 195 93 0.815 0.779 0.797 

 
Table 2c: Multi-layer perceptron using scaled conjugate gradient as training function: precision, recall 

and F-measure in the classification of the most common bigram’s patterns. 

6 Evaluation of two different tools 

Using the same excerpts of our corpus, we proceeded to the evaluation of two different tools for 
extracting MWEs from text: MWEtoolkit1 (Ramisch, 2012) and Text-NSP2 (Banerjee and Pedersen, 
2003). 

6.1 MWEtoolkit 

Before using this tool, we POS-tagged the corpus using TreeTagger3 (Schmid, 1994), with a 
Portuguese parameter file. Then we transformed the tagged corpus to the xml format used by 
MWEtoolkit using MWEtoolkit script treetagger2xml. 

After generating the index, we defined the patterns file using the following bigrams patterns: N-N, 
N-ADJ, N-V, ADJ-ADJ, ADJ-N, ADJ-V, V-V, V-N and V-ADJ. There is not a PN tag for proper 
name in TreeTagger, so the proper names were treated as nouns (N). And we decided not to use the 
other grammatical classes (adverbs, pronouns, etc.), labeled as “O” in the previous section, because 
the only patterns that gave more than 10 MWEs with frequency higher than 3 using those classes were 
O-N and O-O, and we did not obtain good values for their classification using the multi-layer 
perceptron classification algorithms. 

We used those patterns to generate all the bigrams and we obtained 28,738 candidates, with their 
frequencies and the frequencies of each word composing the bigram. Then we calculated five different 
association measures for each candidate: maximum likelihood estimator (mle), pointwise mutual 
information (pmi), Student's t-test (t), Dice's coefficient (dice), and log-likelihood (ll).  
 
 
 
_________________________________ 
1 http://mwetoolkit.sourceforge.net/PHITE.php?sitesig=MWE 
2 http://search.cpan.org/~tpederse/Text-NSP/ 
3 http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/ 
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Then we created candidates files ordered by each of these five association measures and we ranked 

the n best candidates, n = 50, 100, 500, 1000 and 5000. Finally, we used MWEtoolkit’s automatic 
evaluation script to evaluate each of these ranked candidates against our reference file. 

The reference file was created with the 447 MWEs selected according to the method described in 
Section 4, i. e., all the bigrams that appear three or more times in our corpus and that we manually 
considered as a MWE. It is important to note that our reference file does not contain all the MWEs 
with two words in the corpus, since we generated more than 49,000 bigrams and we could not evaluate 
all of them by hand. Furthermore, the corpus is formed by newspaper texts, treating different subjects, 
thus it is more difficult to create a closed set of all possible two-word MWEs. Therefore, our 
evaluation is a comparison of how many of the most frequent two-word MWEs in our corpus are 
ranked as the n best candidates by each of the association measures. 

Table 3 and Figure 1 show the result of our evaluation using the MWEtoolkit. Each number in the 
table represents how many of the MWEs in our reference list were found among the n best ranked 
candidates. For example, for the “ll” measure, among the 50 best ranked candidates 27 are MWEs that 
appear in our reference list. 

 
  dice ll mle pmi t 

50 0 27 5 0 11 
100 12 55 10 0 31 
500 34 152 49 1 105 

1000 59 170 87 9 169 
5000 161 187 179 94 186 

 
Table 3: MWEtoolkit:  number of MWEs among the first n-best candidates, ranked by five association 

measures. 
 

 
 

Figure 1: MWEtoolkit: five association measures performance comparison. 
 

ll TP Prec. Recall F1 
50 27 0.54 0.06 0.11 

100 55 0.55 0.12 0.20 
500 152 0.30 0.34 0.32 

1000 170 0.17 0.38 0.23 
5000 187 0.04 0.41 0.07 

 
Table 4: MWEtoolkit: precision, recall and F-measure for the log-likelihood measure. 

 
Analyzing the results, we notice that with log-likelihood measure we could find the highest number 

of MWEs present in our reference list, for all values of n. Since our reference list is formed by the 
most frequent MWEs in the corpus (frequency higher than three), this is an evidence of how suitable 
this measure is when the task is to find the most frequent two-word MWEs. 

Table 4 presents the results of precision, recall and F-measure for the ll-measure for different 
values of n candidates. However, it should be kept in mind that precision and recall here are based on 
our reference list, which does not contain all the two-word MWEs in the corpus. 
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6.2 Text-NSP 

Before applying this tool, the only pre-processing performed was to remove the XML tags. The next 
step was to define a stop words list file, since we are interested in finding MWEs following the 
patterns N-N, N-ADJ, N-V, like in Sections 4 and 5. 

We ran the program using the script “count.pl”, giving as parameter the stop words file and the 
corpus file, and 2 as n-gram value, meaning that we wanted to generate only bigrams. 

The exit file is a list of all bigrams in the corpus, and each line contains a bigram, the frequency of 
the bigram, and the frequency of each of the two words forming the bigram. 

Using the exit file and the script “statistics.pl” we generated the candidates’ files ranked by four 
different association measures: Dice's coefficient (dice), log-likelihood (ll), pointwise mutual 
information (pmi) and Student's t-test (t). Maximum likelihood estimator is not implemented by Text-
NSP. Then we transformed each of the candidates files to the XML format used by the MWEtoolkit 
and we used the MWEtoolkit scripts to create files with the n best candidates (n = 50, 100, 500, 1000 
and 5000) and to evaluate each of the files against our reference file. Table 5 and Figure 2 show the 
results of those evaluations. 

 
  dice ll pmi t 

50 7 31 0 23 
100 7 64 0 39 
500 8 241 1 180 

1000 11 314 4 331 
5000 73 382 15 406 

 
Table 5: Text-NSP:  number of MWEs among the first n-best candidates, ranked by four association 

measures. 
 

 
 

Figure 2: Text-NSP: four association measures performance comparison. 
 

ll TP Prec. Recall F1 
50 31 0.62 0.07 0.12 

100 64 0.64 0.14 0.23 
500 241 0.48 0.54 0.51 

1000 314 0.31 0.70 0.43 
5000 382 0.08 0.85 0.14 

 
Table 6: Text-NSP: precision, recall and F-measure for the log-likelihood measure. 

 
The results show that for values of n = 50,100, and 500 we obtained the best results using the log-

likelihood measure and for n = 1000 and 5000, Student’s t-test gave the best results.  
Comparing with MWEtoolkit, we had better results with Text-NSP for the log-likelihood and the 

Student’s t-test measures, and weaker results for the dice and pmi measures.  
Table 6 shows the precision, recall and F-measure that we obtained for the log-likelihood measure. 

We had very good precision values using the Text-NSP with the log-likelihood measure. For example, 
from the 50 best ranked candidates by this measure, 31 were MWEs present in our reference list.  
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6.3 Comparison between MWEtoolkit and Text-NSP  

Using the 500 best candidates generated by MWEtoolkit and Text-NSP, ranked by Student’s t-test, we 
analyzed by hand those 500 candidates to decide which ones are Brazilian Portuguese MWEs. Table 7 
shows the precision given by each of the tools for the first n candidates, n = 50, 100, 150…500. 

Text-NSP showed higher precision than MWEtoolkit for all values of n candidates, especially for 
the smaller values of n. With MWEtoolkit, the precision was around 40%, while with Text-NSP it 
starts with 62% for the first best 50 candidates and decreases to 48% for the first best 500 candidates. 

We can suppose that for an application interested in a small number of Brazilian Portuguese MWE 
candidates, Text-NSP would be a better choice, and as the number of candidates increases, the 
programs tend to have similar performance.  

Checking the best ranked candidates generated by MWEtoolkit, we noted that it ranked well some 
bigrams formed by a noun + the preposition “a” (the/fem.), a pattern that is common in a Brazilian 
Portuguese corpus, but that usually does not form MWEs. This happened, despite not having any 
pattern that includes preposition in our patterns’ list, because the POS-tagger used (TreeTagger) 
wrongly labelled those “a” prepositions as nouns. The same is true for the pronoun “seu/sua” (his/her), 
which was labelled as adjective. This can explain the difference in performance between the tools, 
when comparing the implementation of the same association measures. 

As in the tests performed in Section 5, the most common patterns of MWE found by both programs 
were noun-adjective (e.g. Casa Branca, plano real, Estados Unidos) and proper name-proper name (e.g. 
Fernando Henrique, Ayrton Senna, Paulo Maluf). 

 
n first cand. MWEtoolkit Text-NSP 

50 0.34 0.62 
100 0.47 0.57 
150 0.43 0.55 
200 0.41 0.53 
250 0.40 0.54 
300 0.41 0.53 
350 0.37 0.53 
400 0.41 0.50 
450 0.42 0.52 
500 0.40 0.48 

 
Table 7: MWEtoolkit and Text-NSP precision for the first n best candidates, using Student’s t-test 

association measure. 

7 Conclusions and future work 

We obtained very similar results using different algorithms for the classification of MWEs, with 
bagging, decision trees and multi-layer perceptron having a slightly better performance. 

Using multi-layer perceptron with three different training functions, we identified the bigram’s 
patterns that are better classified as MWE. With the function Levenberg-Marquardt we had better 
results in classifying the pattern noun-adjective (the most common in our corpus) and the function 
Scaled Conjugate Gradient was the most successful in classifying MWEs following the pattern proper 
name-proper name. 

The comparison between two programs for automatic extraction of MWEs showed that Text-NSP 
had a better precision than MWEtoolkit, especially for smaller number of candidates. As the number 
of candidates increases, the difference in performance between the two programs decreases.  

It is important to note that MWEtoolkit is more complete, in the sense it implements more 
statistical measures, makes the comparison between the output candidates file and a reference list file 
and generates a list of candidates having more complete information, including all the statistical 
measures of each candidate in the same file, and in a XML format more easily consumable by other 
programs. 
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As a future work, we intend to perform a similar comparison of tools and classification algorithms 
for the extraction of Brazilian Portuguese MWEs, not limiting our candidates to bigrams, but studying 
n-grams in general, also allowing noncontiguous n-grams. 
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Abstract 

In this paper we present a cross-linguistic evaluation of a lexicon-based decomposition method 

for decompounding, augmented with a “guesser” for unknown components. Using a gold 

standard test set, for which the correct decompositions are known, we optimize the method’s 

parameters and show correlations between each parameter and the resulting scores. The results 

show that even with optimal parameter settings, the performance on compounds with unknown 

elements is low in terms of matching the expected lemma components, but much higher in 

terms of correct string segmentation. 

1 Introduction 

Compounding is a productive process that creates new words by combining existing words together in 

a single string. It is predominant in Germanic and Scandinavian languages, but is also present in other 

languages, e.g. Finnish, Korean, or Farsi. Many languages that are not usually thought of as 

“compounding” nevertheless display marginal presence of compounds, restricted, for instance, to 

numerical expressions (e.g. Polish czterogodzinny ‘four-hour’). Depending on a language, 

compounding can be a very frequent and productive process, in effect making it impossible to list all 

the compound words in the dictionary. This creates serious challenges for Natural Language 

Processing in many areas, including search, Machine Translation, information retrieval and related 

disciplines that rely on matching multiple occurrences of words to the same underlying representation.  

In this paper, we present a cross-linguistic evaluation of a lexicon-based decomposition method 

augmented with a “guesser” for handling unknown components. We use existing lexicons developed 

at Oracle Language Technology in combination with a string scanner parametrized with language-

specific input/output settings. Our focus is on the evaluation that tries to tease apart string 

segmentation (i.e. finding boundaries between components) and morphological analysis (i.e. matching 

component parts to known lemmas). 

The paper is organized as follows: Section 2 gives an overview of related research; Section 3 

describes the compound analyzer used in our experiments; Section 4 presents experimental results; 

Section 5 contains error analysis and discussion. Section 6 concludes and suggests future research. 

2 Related research 

Current research on compound splitting is predominantly lexicon-based, with a range of selection 

methods to choose the most likely decomposition. The lexicons used to identify components are 

usually collected from large monolingual corpora (Larson et al., 2000; Monz and de Rijke, 2001; 

Alfonseca et al, 2008; Holz and Biemann, 2008; von Huyssteen and von Zaanen, 2004).  

The problem with pure lexicon-based approach without any constraints is that it will produce many 

spurious decompositions, matching small substrings that happen to be legitimate words in the 

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer 

are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/ 
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language. Therefore, some approaches introduce maximizing component length (or, conversely, 

minimizing the number of components) as one of the selection factors (von Huyssteen and von 

Zaanen, 2004; Holz and Biemann, 2008; Macherey et al., 2011; Larson et al., 2000); others use part of 

speech to eliminate short components which tend to be function words (Koehn and Knight, 2003; 

Monz and de Rijke, 2001). In other cases, Named Entity Recognition is used to filter out proper names 

that should not be decomposed but that can contain frequent short components like “-berg” or “-dorf” 

(Alfonseca et al., 2008).  

Even after removing unlikely small component candidates, there is enough ambiguity in 

decomposition to warrant further filtering methods. And so, approaches related to Machine Translation 

use bilingual parallel corpora to find the most likely components by checking whether their 

translations match elements of the whole compound translation (Koehn and Knight, 2003; Macherey 

et al., 2011). Other filtering methods are based on combined frequency of the components (Koehn and 

Knight, 2003; Holz and Biemann, 2008), point-wise mutual information of components, or occurrence 

of components in related locations, such as anchor text (Alfonseca et al., 2008). A very interesting 

lexicon-free approach is presented in Aussems et al. (2013), which uses point-wise mutual information 

to detect likely boundaries between characters that would identify a compound. 

A major issue with the current research is the absence of common training and testing data, 

particularly across multiple languages, which then translates into limited evaluations of presented 

methods. Using pre-annotated frequency lists, we create gold standard test sets for 10 languages: 

Norwegian, Danish, Dutch, Estonian, Finnish, German, Hungarian, Korean, Farsi, Swedish, which 

range from around 600 to 15,000 compounds. This allows a more thorough comparison of the analyser 

performance across different languages.  

3 Lexicon-based analyzer 

Our approach follows the main line of research in that it uses lexicons to identify potential components 

in a compound; however, our lexicons contain lemmas rather than word forms, in contrast to lexicons 

harvested from monolingual corpora. However, the lexicons we use contain as well as partial lemmas 

whose occurrences are restricted to compounds (e.g. German verb forms without the final –en; for 

example schließ-). In addition, we use morphological rules to map recognized inflected forms to base 

(lexicon) lemmas. Both the lexicons and the morphological rules have been previously created by 

computational linguists and native speakers for use in a variety of NLP applications at Oracle 

Language Technology.   

On the most basic level, a compound can be explicitly added to the lexicon, with a specific 

decomposition and appropriate part of speech and grammatical features; this option is used when the 

decomposition is irregular or non-obvious, for instance when the component appears in a form that is 

not directly analyzable to its lemma, as in the example below, which shows irregular plurals and 

deletion of consonant: 

 

(1) a. Danish: barn ‘child’ plural: børn 

børnebog barn+e+bog [child-connector-book] ‘children’s book’ 

b. Norwegian Bokmål: deletion of repeated consonant 

musikkorps musikk+korps [music-band] ‘music band’ 

 

Lexicalized compounds are treated like any other words, and their inflected forms will be 

recognized. Explicitly adding the compound to the lexicon is also useful when the compound can have 

multiple decompositions, and we want to restrict the output only to the semantically correct analysis. 

In Dutch, for instance, the compound part stem can refer to the noun stem ‘voice’ or to the root of the 

verb stemmen ‘vote’. These readings are distinguished in the lexicon by listing explicit decompositions 

for compounds that contain the part:  

 

(2) Dutch stem N vs. V 

a. stemband stem#band  [voice-cord]  ‘vocal cord’ (N-N)  

b. stembureau stemmen#bureau [vote-station] ‘polling station (V-N) 

 

64



However, adding all compounds to the lexicon is simply unfeasible for many languages where the 

compounding process is highly productive. For this reason, we also use a compound analyser to 

identify components in a dynamic manner, based on available component lemmas in the lexicon. 

Components are found by removing any recognizable inflections from the candidate string, scanning it 

left-to-right, and looking for all matching lemmas, subject to constraints based on part of speech, 

length, number of components, and available features. For speed reasons, we apply greedy matching, 

and prefer decompositions with the longest prefix and the smallest number of components. 

Since our goal is developing language processing systems that are as universal as possible, leaving 

context-dependent decisions to higher-level applications, we are not particularly concerned with 

always selecting the single best decomposition for a compound, since in many cases is will be 

dependent on the domain and application. However, it is useful to filter out decompositions that would 

be highly unlikely in any context, for instance those containing small function words mentioned in 

previous section. For this purpose, we apply constraints described below. 

3.1 Rules for compound sequences 

For each language, we list the possible part of speech sequences that can appear in compounds. These 

rules serve not only to prevent the decompositions that would not appear in the language (for instance, 

noun-verb-particle), but also to restrict sequences that are fairly infrequent, but that would lead to 

considerable over-generation if they were added. For example, in German, there are relatively few 

compounds that end with a verb, unless it is a combination of movable prefix particle (aus, an, ab, ein, 

etc.) and the verb (aus+gehen, auf+stehen, um+steigen, etc.). These verbs are functionally analyzed as 

compounds, i.e. a concatenation of two lemmas. However, since sequences noun/adjective/verb + verb 

are much less productive (spazieren+gehen, auto+fahren), it is more efficient to restrict the verb-final 

compounds to particle-verb only, and add the exceptions to the lexicon. A few examples of compound 

part of speech sequences for different languages are shown in (3). 

 

(3) a. Dutch:  

 cardinal_number + verb e.g., vier+en+delen ‘quarter’ 

b. Estonian:  

noun+adjective  e.g. silmi+pimestav ‘eye-dazzling’ 

c. German:  

ordinal_number + adjective e.g. zweit+größt ‘second largest’ 

d. Swedish:  

noun + noun   e.g citron+saft ‘lemon juice’ 

 

Another issue is compounds of cardinal or ordinal numbers, which can also occur in some 

languages like Italian (cinquecento+sessanta+nove ‘five hundred sixty nine’) or Greek (οκτακόσιοι, 

οκτώ + ακόσιοι ‘eight hundred’). These number compounds can be very productive and are also 

included in the lists of allowed compound sequences.   

3.2 Connectors 

In many compounding languages, the subparts of a compound can be connected with extra material, a 

connector (or linking element). These are semantically empty elements that have a mainly 

phonological role in connecting the compound parts (Bauer, 2009). In many Germanic languages 

connectors are derived from plural or genitive morphemes (such as –er or –s in German), but do not 

have this role any more, as evidenced, among others, by the fact that in certain cases the connector is 

optional and compounds with and without a connector co-exist (4a) or by the fact that there are cases 

where two different connectors co-occur (4b) (Krott et al., 2007): 
 

(4) a. Norwegian Bokmål: 

rettssak rett + s + sak ‘court case’ 

rettsak rett + Ø + sak 

b. Dutch: 

paddestoel pad + e + stoel ‘toadstool’ 

paddenstoel pad + en + stoel 
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For each language, we create a set of allowed connectors, a few examples of which can be seen in 

(5).
1
 Note that it might be useful to restrict certain connectors to appear only in certain sequences (e.g. 

between noun and noun, but not adjective and verb); we plan to implement this restriction in future 

work. 

 

(5) Connector examples 

a. Dutch  s e.g. water+s+nood ‘flood’ 

b. German  zu e.g. to match auf+stehen and auf+zu+stehen ‘stand up’ 

c. Swedish o e.g. veck+o+slut ‘weekend’ 

3.3 Decompounding settings 

Another factor in successful dynamic decompounding is restrictions on possible number of 

components, and on length of candidate strings and candidate components. Choosing to allow fewer 

components of longer length helps to prevent spurious over-analysis, where several short words can 

accidentally match the string which is being analyzed. However, setting the limits too high might also 

prevent legitimate decomposition, so this trade-off needs to be carefully balanced. There are four basic 

length settings, as shown in Table 1 below; the values are dependent on language. 

Maximum number of elements: Limits the number of components in a compound. Low values help 

prevent spurious decompositions into many small elements. 

Minimum length of compound: The minimum length of string that should be subject to 

decompounding; short strings are unlikely to be compounds, so for efficiency reasons, they are not 

decompounded. 

Minimum length of component: Specifies the minimum length of potential compound elements; 

shorter substrings are excluded to avoid accidental matching of very short words. 

Minimum length of component with connector: A version of the above setting, it specifies the 

minimum length of potential element when this element is next to a connector; to avoid spurious 

matches of the short word + connector combination (e.g. Dutch paspoort should be decomposed as 

pas+poort, not pa+s+poort).    
 

setting  value 

maximum number of elements 2-4 

minimum length of compound 4-11 

minimum length of component 2-4 

minimum length of component with connector 2-4 

 

Table 1. Length settings for dynamic decompounding. 
 

The values for these settings are established manually and separately for each language, based on 

review of top N most frequent compounds in the lexicon and the general knowledge of that language’s 

grammar and patterns. 

4 Experimental results 

Despite all the constraints and settings described above, decompounding is still an imperfect process: 

there can be multiple competing (i.e. overlapping) decompositions, and many decompositions that are 

technically possible are incorrect due to semantic reasons. This problem becomes even more 

challenging when some of the components are not present in the lexicon. Since lexicons are limited, 

and real world text can contain misspellings, proper names, or obscure words, we need to address the 

issue of decompounding with unknown elements. Therefore, we set out to evaluate the performance of 

our lexicon-based method on a gold standard set of known compounds, and compare it to an 

augmented version that also tries to construct potential components from unknown substrings. 

                                                           
1 Note that for our purposes, particle zu in German is also treated as a connector, to match the movable particle verbs that can 

appear with and without zu: auf + zu + stehen and auf + stehen ‘get up’. 
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4.1 Test set  

For our experiments, we collected compounds from the top 90% frequency lists based on large 

news and Wikipedia corpora. Each compound was annotated with the correct decomposition(s) by a 

linguist who was also a native speaker of the target language according to simple instructions: if the 

meaning of the word is compositional (i.e. can be fully described by the component elements), treat it 

as a compound and provide component lemmas.  

Approximate sizes of source corpora per language are given in Table 2; column “compounds” 

shows the count of compounds; column “lexical” shows how many of these are lexicalized compounds 

(i.e. compounds that have been added to the lexicon for reasons of irregularity). While two-part 

compounds are by far the most frequent in all the languages we examined, there is also some 

percentage of compounds with more than two parts; the distribution is shown in the last four columns. 

 

language 

news 

corpus 

MB 

wiki 

corpus 

MB 

compounds lexical 2-part 3-part 4-part 5-part 

Danish 335 154 1,982 1,326 1,856 122 4 0 

Dutch 512 103 3,439 1,909 3,186 245 8 0 

Estonian 204 41 2,343 562 2,166 169 8 0 

Farsi 512 244 648 340 635 13 0 0 

Finnish 512 78 1,868 1,665 1,703 154 11 0 

German 520 227 15,490 5,087 14,544 915 31 0 

Hungarian 512 257 1,841 1,537 1,794 45 2 0 

Korean 826 190 11,398 4,774 10,919 425 39 5 

Norwegian 512 88 3,582 1,106 3,405 175 2 0 

Swedish 512 204 9,677 5,608 8,901 744 31 5 

 

Table 2. Size of corpora per language, count of compounds, distribution of parts. 

 

4.2 Dynamic decompounding with available lemmas 

As mentioned before, it is not feasible to add all (or even the majority) of possible compounds, so we 

need to examine our performance using only dynamic decompounding. For this purpose, we removed 

all lexicalized compounds from the lexicon, and then ran the analyzer on the compound test set 

described above. This means that all the compound analysis was done dynamically, using only the 

available simple lemmas and compound rules and length restrictions. Table 3 shows the results. The 

scores for lexicalized + dynamic decompounding are given only for reference; they are high but less 

interesting, since they reflect the fact that the lexicalized compounds were largely collected from the 

same corpora (among other sources). Our focus is on the dynamic scores, which show performance on 

unknown compounds assuming a nearly “perfect” lexicon that contains almost all the component 

lemmas. As such, these scores will serve as the upper bound for our next experiment, in which we 

remove at least one of the component lemmas from the lexicon and test the resulting performance.   

As can be seen in Table 3, for most languages recall decreases considerably – this suggests that 

lexicalized compounds are of the kind that are not covered by the decompounding rules or whose 

correct analysis is blocked by another decomposition.  

4.3 Dynamic decompounding with missing lemmas 

While dynamic decompounding can handle the productive nature of compounds, it is still limited to 

finding components that are already present in the lexicon. However, in the real world compounds will 

contain elements unknown to a lexicon-based analyzer, whether it is because they are domain-specific 

vocabulary, proper names, foreign borrowings, or misspellings. In those cases, it is still useful to 

attempt analysis and return the known parts, with the option of returning the unknown substring as the 

missing lemma. 
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  lexicalized + dynamic dynamic only 

  prec rec f-score prec rec f-score 

Danish 98.18 99.6 98.88 87.99 66.9 76.01 

Dutch 98.84 100 99.42 84.46 80.49 82.43 

Estonian 98.25 99.83 99.03 95.69 90.27 92.9 

Farsi 92.9 100 96.32 65.75 72.84 69.11 

Finnish 98.74 100 99.37 84.55 68.63 75.76 

German 96.11 99.98 98.01 88.01 89.03 88.52 

Hungarian 90.44 99.84 94.91 77.42 72.19 74.71 

Korean 99.72 100 99.86 95.23 59.49 73.23 

Norwegian 99.6 100 99.8 93.25 86.32 89.65 

Swedish 96.35 99.88 98.08 86.67 75.75 80.84 

 

Table 3. Precision, recall, and f-measure for dynamic decompounding. 

 

To evaluate the performance of our analyzer in case where some component lemmas are unknown, 

we applied a “compound guesser” function that tries to find known elements of unknown compounds, 

even if a complete decomposition to only known elements is impossible. The guesser has its own 

constraints, independent of the main compound analyzer, which are shown in Table 4. 

 

 

setting  value 

maximum number of elements 2-20 

minimum length of compound 3-20 

minimum length of component 2-5 

minimum length of unknown element 1-5 

minimum percent of string covered 0-100% 

 

Table 4. Settings for dynamic decompounding with unknown elements. 

 

The first three settings are parallel to the settings for regular dynamic decompounding; however, we 

also add restrictions on length for unknown elements (minimum length of unknown element) and total 

string coverage (minimum percent of string covered). Restriction on length of unknown element mean 

that any unknown string shorter than the minimum length will be treated as a potential 

connector/suffix/prefix and will not be returned as a lemma: 

 

(6) German: assuming freundlicher ‘friendlier’ is unknown: 

umweltfreundlicher -> umwelt + freundlich (! + er) [environment + friendly]  

 

The last setting allows a more fine-grained control over the proportion of known to unknown parts; 

however, since any value less than 100% will restrict the number of produced candidate 

decompositions, resulting in no output if the unknown substring is too long, we do not test the impact 

of this setting.  

For this experiment, we collected all component lemmas from the test compounds, and removed 

from lexicon at least one component lemma per compound. This renders the whole string 

unanalyzable by regular means. Then we ran the compound guesser with each combination of settings 

from Table 4, to find the optimal set of values.  

Table 5 shows results obtained with the optimal guesser settings per language, compared to scores 

from Table 3: a fully functional decomposition that has access to both dynamic decomposition and 

lexicalized compounds, and dynamic decomposition with near-perfect component lexicon. It is clear 
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that even with optimal settings, the guesser performance falls well below the level of full functionality, 

even when we compare to a system that has no access to lexicalized compounds. The highest score 

achieved by the guesser is 34 for the Hungarian test set, which includes mostly simple two-part 

compounds, and where the lexicon does not provide too many spurious sub-matches.  

 

language lexical + dynamic 
dynamic 

only 

dynamic 

guesser 

dynamic guesser - 

string segmentation 

Danish 98.88 76.01 25.93 51.25 

Dutch 99.42 82.43 27.13 64.01 

Estonian 99.03 92.9 9.56 53.89 

Farsi 96.32 69.11 27.16 78.68 

Finnish 99.37 75.76 19.49 51.6 

German 98.01 88.52 25.1 52.29 

Hungarian 94.91 74.71 34 53.5 

Korean 99.86 73.23 16.81 76.54 

Norwegian 99.8 89.65 22.56 49.74 

Swedish 98.08 80.84 25.56 54.18 

Table 5. Dynamic decomposition with missing lemmas, optimal settings; string segmentation shows 

accuracy score; remaining values are harmonic f-score of precision and recall. 

 

However, a major problem with this evaluation is that output of the regular decompounding process 

produces lemmas in their dictionary form, without inflection, whereas the guesser can only return 

surface strings for the unknown elements which might carry grammatical inflection or stem 

alternations. Therefore, it would be more fair to compare the guesser to dynamic decompounding in 

terms of pure string segmentation – whether it finds the same boundaries between components, 

without concern for the form of the returned component. This lets us tease apart the impact of finding 

component elements from the impact of morphology. The last column in Table 5 shows accuracy of 

guesser string segmentation as compared to string segmentation performed by regular dynamic 

decompounding; in this respect the guesser’s performance is indeed much better. These results are 

encouraging, showing that we can recover correct components in up to 79% of cases, which is a very 

useful improvement for the purposes of information retrieval and search. While some recall is lost by 

returning strings instead of lemmas, we are planning to add a second step that would employ a lemma 

“guesser”, in order to produce the most likely dictionary form from the recovered unknown string. 

 

language 
max 

elements 

corr. 

with 

score 

min 

length of 

compound 

corr. 

with 

score 

min 

length 

of 

element 

corr. 

with 

score 

min 

length of 

unknown 

element 

corr. 

with 

score 

Danish 2 -0.19 3-7 -0.46 4 0.43 3 -0.09 

Dutch 2 -0.21 8 -0.47 5 0.51 3 -0.06 

Estonian 2 -0.15 3-7 -0.57 4 0.33 3 -0.08 

Farsi 2 -0.17 3-5 -0.51 3 0.11 2 -0.24 

Finnish 2-10 -0.07 3-8 -0.49 5 0.41 3 0 

German 2 -0.26 8 -0.43 5 0.5 3 -0.06 

Hungarian 2-16 0 1-6 -0.58 4 0.39 2 -0.33 

Korean 2-10 -0.07 3 -0.14 2 -0.07 1 -0.11 

Norwegian 2-10 -0.18 3-8 -0.61 5 0.56 3 0.01 

Swedish 2 -0.23 7 -0.45 4 0.49 3 -0.04 

Average   -0.15   -0.47   0.37   -0.1 

Table 6. Optimal guesser settings and their correlations of settings with the guesser score. 
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Finally, Table 6 shows the correlation (Pearson’s r) of guesser settings (or their ranges) and the 

resulting scores. As can be seen, the strongest correlation holds for the minimum length of compound 

(average -0.47) and minimum length of element (0.37). In the former case, the correlation is inverse, 

which means the higher the value, the lower the final score; this is caused by the fact that our test set 

contains only compounds, so returning the whole unsplit string will never be the right result. The 

second correlation reflects the fact that it is safer to exclude very short elements from appearing as 

components, a finding that confirms earlier research.  

5 Error analysis 

A considerable percentage of mismatch errors when guessing the unknown components of 

compounds is caused by the connectors. Our current guesser settings return the whole unknown string, 

without attempting to identify any potential connectors on its edges. This seems like an obvious area 

for improvement, as it would let us return more correct decompositions for cases shown in Table 7 

(unknown strings are enclosed in square brackets and are currently returned whole).  
 

language token dynamic guesser translation 

Norwegian kjærlighetsbrev kjærlighet#brev kjærlighet#[s + brev] love letter 

Danish ungdomshus ungdom#hus ungdom#[s + hus] youth 

German sklavenmoral sklave#moral sklave#[n + moral] slave morality 

Swedish kvinnoförbund kvinna#förbund kvinn#[o + förbund] women's alliance 

Table 7. Examples of connector mismatches between dynamic decompounding and the guesser. 
 

As could be expected, most errors are nevertheless caused by the guesser splitting unknown strings 

into smaller known chunks; several typical examples are shown in Table 8. 

 

language token dynamic guesser translation 

Danish populærkulturen populær#kultur populær#kult#uren popular culture 

Dutch kunstschilders kunst#schilder kunst#schil#ders painters 

Finnish rockmuusikot rock#muusiko rock#muusi#kot rock music 

Swedish radioversion radio#version radio#vers#ion radio  version 

Table 8. Examples of incorrect splitting of unknown strings. 

 

6 Conclusion and future work 

In this paper, we have shown a dictionary-based compound analyzer, augmented with the function to 

handle unknown substrings. A cross-linguistic evaluation against the gold standard containing 

component lemmas shows that the correct handling of unknown compound elements is a difficult issue 

especially if we try to match dictionary lemmas; however, a more detailed evaluation of the string 

segmentation and boundary detection shows fairly good results. Being able to decompose unknown 

compounds and match the components to known lemmas to increase recall is crucial to many NLP 

applications, such as information retrieval or Machine Translation. A correct segmentation is of 

fundamental importance, but the question remains how we can match the unknown, possibly inflected, 

substring to known lemmas. In the future, we plan to address this question by (1) adding the option to 

separate out connectors from unknown strings, and (2) build a lemma “guesser” that would try to 

construct a probable dictionary representation for the unknown string, in effect building a pipeline that 

would more fully mirror the process of regular dynamic decompounding. 
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Abstract

This research suggests two contributions in relation to the multiword noun compound bracketing
problem: first, demonstrate the usefulness of Wikipedia for the task, and second, present a novel
bracketing method relying on a word association model. The intent of the association model
is to represent combined evidence about the possibly lexical, relational or coordinate nature of
links between all pairs of words within a compound. As for Wikipedia, it is promoted for its
encyclopedic nature, meaning it describes terms and named entities, as well as for its size, large
enough for corpus-based statistical analysis. Both types of information will be used in measuring
evidence about lexical units, noun relations and noun coordinates in order to feed the associa-
tion model in the bracketing algorithm. Using a gold standard of around 4800 multiword noun
compounds, we show performances of 73% in a strict match evaluation, comparing favourably
to results reported in the literature using unsupervised approaches.

1 Introduction

The noun compound bracketing task consists in determining related subgroups of nouns within a larger
compound. For example (from Lauer (1995)), (woman (aid worker)) requires a right-bracketing inter-
pretation, contrarily to ((copper alloy) rod) requiring a left-bracketing interpretation. When only three
words are used, n1 n2 n3, bracketing is defined as a binary decision between grouping (n1,n2) or group-
ing (n2,n3). Two models, described in early work by Lauer (1995), are commonly used to inform such
decision: the adjacency model and the dependency model. The former compares probabilities (or more
loosely, strength of association) of two alternative adjacent noun compounds, that of n1 n2 and of n2 n3.
The latter compares probabilities of two alternative dependencies, either between n1 and n3 or between
n2 and n3.

Most compound bracketing research has focused on three-noun compounds as described above. Some
recent work (Pitler et al. (2010), Vadas and Curran (2007b)) looks at larger compounds, experimenting
with a dataset created by Vadas and Curran (2007a) which we also use in our research. For larger
noun compounds, the adjacency model alone will not allow longer range dependencies to be taken into
account. This had been noted much earlier in Barker (1998) using examples such as (wooden (((French
(onion soup)) bowl) handle)) to show a long-range dependency between wooden and handle.

To allow for such long-range dependencies, our bracketing algorithm looks at all possible word as-
sociations within the full expression to make its decisions. The word associations are captured within
an association model which goes beyond the adjacency and dependency models. The association model
represents combined evidence about the possibly lexical, relational or coordinate nature of the links be-
tween all word pairs. In its current implementation, our association model relies on Wikipedia as a
resource for obtaining all three types of evidence. Wikipedia is used in two forms: first as a list of terms
and named entities (Wikipedia page titles), and second, as a large corpus obtained from the merging of
all its pages. The resulting corpus is large enough to be used for statistical measures. The most current
version contains 14,466,099 pages in English for an uncompressed file size of 47 gigabytes (including

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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some metadata). To the best of our knowledge, no previous research has used Wikipedia for the noun
bracketing task, and this research will explore its usefulness.

The reminder of this article will unfold as follows. Section 2 presents a brief literature review. Sec-
tion 3 describes the dataset used in our experiments. Section 4 presents the bracketing algorithm, and
Section 5 the implementation of a word association model using Wikipedia. Section 6 describes our
evaluation approach, while results are presented and analysed in Section 7. Section 8 concludes and
suggests future work.

2 Related work

Noun compound bracketing has not received as much attention as many other Natural Language Pro-
cessing (NLP) tasks. Nakov and Hearst (2005) call it an understudied language analysis problem. Early
work by Lauer (1995) took inspiration in even earlier linguistic work by Levi (1978). Lauer (1995) hav-
ing devised a small dataset of 3-word noun compounds, his dataset was reused by various researchers
(Lapata et al. (2004), Girju et al. (2005), Nakov and Hearst (2005)) who promoted the use of corpus-
based empirical methods for the task.

To address the noun compound bracketing task, different authors use different datasets, different views
on the problem (adjacency, dependency), different methods of resolution (supervised, unsupervised)
and different constraints on the problem (compound seen in isolation or in context). Independently
of such differences, all researchers have an interest in evaluating word-pair associations. Most recent
research uses the Web for providing word pair association scores to their bracketing algorithm. The work
of Lapata et al. (2004) shows usefulness of web counts for different tasks, including noun compound
bracketing. The work of Pitler et al. (2010) intensively uses web-scale ngrams in a supervised task for
large NP bracketing, showing that coverage impacts on accuracy. Beyond bigram counts on the web,
varied and clever searches (Nakov and Hearst, 2005) have been suggested such as the use of paraphrases
(n1 causes n2) or simpler possessive markers (n1’s n2) or even the presence of an hyphen between words
(n1-n2). All variations are to provide better word association estimates and improve bracketing. The use
of web counts is sometimes complemented by the use of more structured resources, such as in Vadas and
Curran (2007b) who combines web counts with features from Wordnet.

In our research, instead of web counts, we rely on a community-based encyclopedic resource,
Wikipedia, for corpus-based evidence. We rely on the same resource to access a list of terms and entities.
Although not much of the structure of Wikipedia is used in our current implementation, such as its cate-
gories or page links, we can envisage to use it in future work. Similarly to other researchers mentioned
above, our goal is to gather evidence for word-pair association, although an important contribution of
our work is to refine this notion of word-pair association into three subtypes of association: lexical, re-
lational and coordinate. We suggest that a better characterization of the possible links among word pairs
in a large compound will better inform the bracketing algorithm.

3 Dataset

Vadas and Curran (2007a) manually went through the Penn Treebank (Marcus et al., 1994) to further
annotate large NPs. They openly published a diff file of the Penn Treebank to show their annotations
which differ from the original. From this available file, we constructed our gold-standard dataset by
extracting large NPs (three or more words) which only include relevant items (common and proper
nouns, adverbs and adjectives), removing determiners, numbers, punctuations and conjunctions. The
expressions were then verified for completeness, so that the opening bracket should be closed within the
length of text defined in the differential file. Finally, tags and single words enclosing parentheses were
removed to produce simplified versions of the bracketed expressions (e.g (NML (NNP Nesbitt) (NNP
Thomson) (NNP Deacon) ) becomes (Nesbitt (Thomson Deacon)) ).

Vadas and Curran (2007a) used a Named Entity annotator to suggest bracketing to the human anno-
tators (who could accept or reject them). The entity types used were the ones defined by Weischedel
and Ada Brunstein (2005) (e.g. Person, Facility, Organization, Nationality, Product, Event, etc). Named
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entities could be kept as-is by the annotators or could be bracketed if deemed compositional. Annotators
were also instructed to use a default right-bracketing (implicit in Penn Treebank) for difficult decision.

In our dataset, we transformed the ones left as-is into right-bracketed in order to have all expressions
fully bracketed. This process might seem controversial, as it assumes compositionality of all named
entities, which for sure, is a wrong hypothesis. The alternative, though, would require the bracketing al-
gorithm to recognize named entities, which we consider outside the scope of this research. Furthermore,
it would also be wrong to assume all named entities are non-compositional. For example New York Stock
Exchange is clearly compositional, and a Named Entity Tagger based on Wikipedia would easily iden-
tify it as a named entity (although the use of Wikipedia as a source of named entities is also debatable).
Clearly, no solution is satisfying. We opted for the approximation which provided a fully bracketed gold
standard to which our results could be compared. We are aware that this will have a negative impact, in
some cases, on our results.

The extraction produced a total 6,600 examples from which we removed duplicate expressions, yield-
ing a corpus of 4,749 unique expressions. Among those unique expressions, 2,889 (60.95%) were three
words long (e.g. Mary Washington College), 1,270 (26.79%) had four words (e.g. standardized achieve-
ment tests scores), 413 (8.71%) with five words (e.g. annual gross domestic product growth) and the
remaining longer expressions (up to nine words) covered around 3.5% of the dataset1.

4 Bracketing method

As in the work of Pitler et al. (2010), our bracketing algorithm takes into account all possible word
pairs within the noun compound. This differs from Barker’s algorithm Barker (1998) used in Vadas
and Curran (2007b) which only uses local information, three-words at a time, in a right-to-left moving
window. We briefly present our algorithm below and refer the reader to Ménard and Barrière (2014) for
a more detailed explanation.

First, a list (L1) is created to contain every word pair that can be generated, in order, from an ex-
pression. For example, a list L1 {(A,B), (A,C), (A,D), (B,C), (B,D), (C,D)} would be created from
expression ”A B C D”. Second, a dependency score needs to be assigned to each pair. Our bracketing
algorithm actually builds a dependency tree and requires these dependency scores. We make the assump-
tion that dependencies are implicitly directed left-to-right. This is an oversimplification, as there are a
few cases, such as Vitamin C or Cafe Vienna, pointed in (Nakov, 2013), where the direction is reversed.
Furthermore, this hypothesis is valid only for English and renders our algorithm less applicable to other
languages. Although fair for English, this hypothesis should be revisited in future work.

The next step is building a final list of dependencies (L2) to represent the full dependency tree. To do
so, the algorithm repeatedly selects from L1 the word pair with the maximum score and adds it to L2
only if both (a) the modifier has not already been used, and (b) the new pair does not create a crossing
of modifier/head pairs in the expression. For example, if L2 already contains (AB)(C(DE)), then (BD)
would create an invalid crossing and is not accepted. The selection of pairs from L1 ends when all words
from the expression, except for the right-most one, are used as modifiers in L2.

Our algorithm is greedy and considers only the best score at every step. We have experimented with
randomized greedy algorithms as well, choosing randomly between top N scores at each step, but since
results did not improve, we do not report on them in the current article. The bracketing algorithm favours
high dependency scores without consideration for the actual distance between word pairs in the source
expression. This helps linking far reaching dependencies in noun compounds, but might also force some
strong association between two distant words without regard to the soundness of using nearer words.

5 Implementing an association model using Wikipedia

Our association model contains three types of association: lexical, relational and coordinate. Each one
will be measured using Wikipedia through different approximation strategies. The challenge is the inte-
gration of the association model with the bracketing algorithm. We mainly explore a solution of score

1We describe our dataset in more details in Ménard and Barrière (2014), and our extraction method is published as part of
the LREC resources sharing effort.
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modulation which does not require the bracketing algorithm to be modified but rather use the three asso-
ciation scores to modulate the dependency score required by the bracketing algorithm. We present below
a basic dependency score, and then different strategies to transform the three types of association into
modulation factors on that dependency score.

Basic dependency association: Based simply on the co-occurrence of two words in a corpus, this basic
association will be influenced by the actual corpus (domain and size), and the association measure used.
In our current experiment, Wikipedia pages are merged into a large corpus (47 Gigabytes) covering
multiple domains. As for the association measure, we compare Dice and Point-Wise Mutual
Information (PMI), although many more exist in the literature. Co-occurrence is not a direct measure of
dependency, it is an approximation. A true dependency measure would require a syntactic analysis
(using a link parser) of the whole corpus. We will explore this idea in future work.

Relational association: The relational association is a refinement to the dependency association. In
semantic analysis of noun compounds, an important goal is to characterize the nature of the dependence
between its words, such as cause, purpose, location, etc (see work by Girju et al. (2005), Nakov and
Hearst (2005), Nastase et al. (2013) among many). Here, we do not require the identity relations, but
rather search for indications of the relational status of a word pair. In our current implementation,
relational association is naı̈vely determined by the presence of a preposition between two nouns. We
use the prepositions: about, at, by, for, from, in, of, on, to, with. We search in the corpus for patterns
such as ”N1 at N2” and ”N1 for N2”, etc. The frequency of these will be used to boost the basic
dependency association scores.

Coordinate association: Proximity sometimes refers implicitly to coordination, as for example the
words cotton and polyester in the expression cotton polyester shirt. Explicit external evidence that these
words often co-occur in a coordination relation could lower their dependency association in expressions
such as cotton polyester shirt. To gather such evidence, we measure the frequency of explicit
coordination between word pairs in Wikipedia. The common conjunctions: or, and, nor are used. We
search in the corpus for patterns such as ”N1 or N2” and ”N1 and N2”, etc. Contrarily to relational
associations boosting the basic dependency association scores, coordinate associations should attenuate
the dependency scores.

Lexical association: Based on the idea that many compounds, even named entities, are compositional,
we want to determine the likeliness that a subexpression in a compound forms itself a lexical unit with a
meaning of its own. To do so, we use a first approach requiring a set of corpus-based statistical
approximations and a second approach requiring Wikipedia page titles.

• Statistical approximation: The presence of determiners (a, an, the) and plural forms are used as
statistical evidence of lexical association. For example, starting with expression cotton polyester
shirt, corpus analysis shows that the cotton shirts is frequent, which can be used to boost the depen-
dency score between cotton and shirt. On the other hand, the cotton polyesters will be much less
frequent. The presence of indicators (determiners and plurals) can be used independently, search-
ing for patterns such as ”the N1 N2” and ”N1 plural(N2)”, or together for patterns such as ”a N1
plural(N2)”.

• Presence in Wikipedia: A second strong indicator of lexical association for a word pair is its pres-
ence in an encyclopedic resource (Wikipedia). In fact, not only word pairs, but for any subcompound
of two or more words are considered for look-up as Wikipedia entries. Since we now have lexical
units of any length, rather than word pairs, our score modulation is not as straight forward. We
thought of two different strategies.

The first strategy, in line with score modulation, uses all word pairs found in the lexical units to
boost dependency scores. For example, assuming the compound ABCDE, with [BCD] found as
a lexical unit in Wikipedia. Then, the association scores of pairs [BC],[CD],[BD] are boosted
equally (uniform boost). This will not help for any internal bracketing of [BCD], but will reinforce
the fact that [BCD] should stay together within the larger compound. A variant to uniform boost
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Gold Evaluated Gold elements Strict Lenient
Subexpression Binary tree Subexpression Binary tree

(a b) c (a b) c (a b) a-b, b-c 100% 100% 100%
(a b) c a (b c) (a b) a-b, b-c 0% 0% 50%
(a b) (c d) (a b) (c d) (a b), (c d) a-b, c-d, b-d 100% 100% 100%
(a b) (c d) a (b (c d)) (a b), (c d) a-b, b-d, c-d 0% 50% 66.6%
(((a b) c) d) (e f) a (b (c (d (e f)))) (a b), (a b c), (a b

c d), (e f)
a-b, b-c, c-d, d-f, e-f 0% 25% 40%

Average: 40% 55% 71.3%

Table 1: Applied examples of evaluation metrics.

is a right-attachment boost to mimic the default right bracketing in the gold standard for the longer
units.

The second strategy is one of compound segmentation, in which lexical units found become seg-
mentation constraints on the bracketing algorithm. Association scores are them measured between
pairs of lexical units instead of between words pairs. We also try to minimize the number of en-
tities within the compound. For example, assuming again we wish to bracket compound ABCDE,
and find the possible three segmentations into lexical units using Wikipedia: (1)[AB][CDE], (2)
[AB][CD][E], (3) [ABC][DE]. Only segmentations (1) and (3) are kept since they have two lexical
units and not three. The association scores must then be calculated between pairs of lexical units,
and within each lexical unit containing three words or more (to perform full bracketing). Bracketing
within a lexical unit will be performed using the same bracketing methods described above. Brack-
eting between lexical units requires association scores between these units. For doing so, using the
example above, we will search in corpus for cooccurrences of [AB] with [CDE] for segmentation
(1), and [ABC] with [DE] for segmentation (3). Since statistics on longer units will be sparse in the
corpus, we will also measure association scores between heads of the lexical units. For example, in
segmentation (1) the association between heads [B] and [E] would be measured.

6 Evaluation metrics

Three methods are used to evaluate performances: strict, lenient binary tree and lenient sub-expression.
The strict evaluation verifies that all bracketed groups of the gold-standard expression are exactly the
same as those found in the evaluated expression, providing a score of 1 or 0. The two lenient evaluations
compute the ratio between the number of matching groups from a gold expression with those found in
the evaluated expression. In other words, lenient is the recall score based on the gold elements.

In lenient binary tree, each fully bracketed expression is parsed as a binary tree. From that tree, each
modifier/head pair becomes a basic evaluation element. For example, in (A (B C)), two elements A-C and
B-C are used for the evaluation process. This method boosts the performance level on most expressions,
but especially those composed of three words, for which a minimum 50% is always obtained.

In lenient sub-expression, evaluation elements are rather sub-expressions to provide a more balanced
score. The method extracts each bracketed group except the top-level group and removes all internal
parentheses from each one. Thus, from the expression (((A B) C) D), the method extracts (A B) and (A B
C). The two resulting sub-expressions become gold elements for comparison with those obtained from
the evaluated expression. Table 1 shows five examples illustrating score variations using the different
methods on expressions of different length.

7 Results

In section 5, we described various approaches to capture, using Wikipedia, the different types of asso-
ciation proposed in our model: lexical, relational and coordinate. We also presented two solutions for
combining this more complex model with the bracketing algorithm of section 4 which expects a single
type of association, that of dependency. Below, using a dataset of 4749 compound nouns, presented in
section 3, we report on some interesting results.
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Resource Algorithm Strict Lenient

Wikipedia
Dice 55.00% 67.63%
PMI 56.25% 68.98%

Google Web Ngram
Dice 51.80% 63.90%
PMI 60.41% 72.47%

Table 2: Comparing basic association scores in Wikipedia and Google Web.

7.1 Baseline

To measure the impact of combining different types of associations, we first establish our baseline as
the bracketing results obtained solely with the basic dependency association scores, as measured on
Wikipedia. To further validate our baseline, we wish to compare it to the literature. The closest research
providing comparable results on large compounds are Vadas and Curran (2007b) and Pitler et al. (2010),
although both focus on supervised approaches, and furthermore, Vadas and Curran (2007b) use con-
textual features, assuming the noun compounds are to be bracketed in context. Still, Vadas and Curran
(2007b) give some baseline results for an unsupervised approach (the supervised approach was promoted
in their article) to which we compare our baseline. Far from an ideal comparison (which would be with
the exact same dataset and setting), it still provides some indication of the performance of our baseline.
They report exact match for complex NPs to be 54.66% for default right branching, 32.66% chi-square
dependency and 35.86% chi-square adjacency. As we obtain around 55% for strict matches (see Table 2,
first row), we seem above the unsupervised approach they used, which combined their association scores
within an implementation of Barker’s algorithm.

To confirm that merged Wikipedia pages form a large enough corpus in comparison to most recent
work on noun bracketing using web counts (see section 2), we use the English Google Web Ngrams (Lin
et al., 2010) (GWN), a 1T corpus contains n-gram counts collected from 1 trillion words of web text, and
performed our bracketing algorithm with Wikipedia basic dependency scores, and GWN bigram scores.
As shown in Table 2, results are comparable, slightly higher for Dice (55.0% compared to 51.8%) and
slightly lower for PMI (56.25% compared to 60.41%).

Throughout our experiments, we have continued using both association measures (Dice and PMI),
as well as performing both Barker’s algorithm and our bracketing algorithm, but since our algorithm
with Dice always gave better results (contrarily to the baseline in which PMI performed better), we only
present those results in the following sections.

7.2 Corpus-based improvements

In Section 5, we described how the use of stop words (conjunctions, prepositions, determiners) com-
bined with word pairs of interest could respectively modulate the basic dependency association scores to
emphasize coordinate, relational, or lexical association.

For lexical association, word pairs preceded by determiners were searched for in the corpus. We tried
different ways of combining association scores between the form with the determiner (”the N1 N2”) and
the word pair only (N1 N2), such as adding scores, keeping the maximum or minimum score. As well,
we tried different ways of combining the scores obtained with the different determiners (a, the, an), again
adding, keeping the maximum or the minimum score. Unfortunately, none of these variations helped.
We also experimented with searching for plural forms in corpus to emphasize lexical association, which
provided a small increase to the baseline as shown in Table 3.

For relational association, we searched for noun pairs with prepositions. The same merging strategies
given above for the use of determiners we tried. The best configuration uses a relational boosting strategy
of adding scores and a preposition merging strategy of using the minimum score among all prepositions.
Even with the best combination, overall, the improvement is marginal as shown in Table 3.

For coordinate association, we searched for noun pairs with conjunctions. Similarly to determiners
and prepositions, we tried different merging strategies. Since we are interested in an attenuation of the
dependency score with the coordinate score, our merging strategies were of subtracting scores or using
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Option Strict Lenient Binary
Baseline 0.5500 0.6763 0.8132
Only including lexical association 0.5842 0.7106 0.8321
Only including relational association 0.5854 0.7093 0.8314
Only including coordinate association 0.5867 0.7110 0.8325

Table 3: Impact of corpus-based statistics (lexical, relational, coordinate association)

Option Strict Lenient Binary
Baseline 0.5500 0.6763 0.8132
Using entity-based refinement (uniform distribution) 0.6020 0.7257 0.8408
Using entity-based compound segmentation 0.7316 0.8213 0.8940

Table 4: Use of entities

the minimum. Again, unfortunately, improvement is marginal, as shown in Table 3.

7.3 Entity-based improvements
Our second approach to promote the lexical unit association score is to find which sub-expressions of
the compound are Wikipedia page titles. In Section 5, we suggested two strategies of using these entries,
either score modulation or compound segmentation.

In score modulation, we tried uniform boosting and right boosting as explained in Section 5, with
different boosting factors arbitrarily set between 10 and 100. The best result, obtained using a uniform
boost with a factor of 50 is presented in Table 4. There is a small improvement using this method. The
second strategy of compound segmentation is the one providing the most significant gain. An increase of
13% is obtained for the strict evaluation as shown in the last row of Table 4. For the sake of completeness,
we reran all the different variations and parameters which are used for performing the within and between
lexical units bracketing. The best configuration required that (1) basic dependency scores were actually
replaced by scores obtained by finding plural forms in the corpus (lexical association), (2) determiners
were not used, (3) the negative modulation from conjunctions (coordinate association) is obtained by
subtracting their frequency from the basic scores, (4) the positive modulation of prepositions (relational
association) is obtained by adding their frequency to the basic scores, (5) as different prepositions are
searched in corpus, the one with minimum frequency should be taken to alter basic scores, same for
conjunctions (6) the head of lexical units is used to measure the ”between units” association scores.

7.4 Result analysis
We first note some aspects of the gold standard that would affect the adequacy of our algorithm, and our
results.

• Noun compound status: A few examples in the dataset contain very generic adjectives, such as:
(certain ((natural resource) assets)), (such ((gas management) contracts)),(most (structural engi-
neers)), or ((too much) attention). These are not problematic in themselves, but our statistical
approximations for lexical, relational and coordinate associations are not adequate for these cases.

• Abbreviations: Some examples in the gold standard contain abbreviations, for example, (republican
(u.s. sen.)), ((american president) cos.) or (((el dorado) investment) co.). Again, these are not
problematic in themselves, but we have not yet implemented anything in our algorithm to manage
such cases.

• Ambiguity: Some examples found in the gold standard, such as ((sun ((life assurance) society)) plc)
or ((magnetic (resonance imaging)) equipment) are not obvious to us as being correct.

• Compositional examples: On the positive side, the dataset certainly contains many interesting ex-
amples, such as ((new england) ((medical center) hospitals)), ((northern california) (home prices)),
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(world-wide ((advanced materials) operations)), (((lone star) spokesman) (michael london)), or
((magnetic (resonance imaging)) equipment). These examples are interesting because they show a
variety of right and left bracketing needed and a variety of named entities and terms of different
compositional nature. Research on compound bracketing is required for those examples, as they
will probably never end-up in even the most extensive lists of terms and named entities.

To better understand this dataset and the adequacy of our algorithm to its content, we intend, in future
work, to perform a manual sampling to determine the types of compounds, and the possible ambiguities.

As for Wikipedia as a resource, it is very valuable and contains many named entities (places, corpora-
tions, persons, etc), but it can never contain all entities. For example, we will find tadeusz mazowiecki to
help in bracketing (polish (prime minister)) (tadeusz mazowiecki), but we will not find bruno lucisano,
and wrongly bracket (((rome (film producer)) bruno) lucisano).

Independently of the gold standard and the resource used, our method has multiple limitations and
peculiarities. We believe that the general approach presented in this research is quite valid: a proposal
for the refinement of generic association scores into three subtypes of associations: lexical, relational
and coordinate associations. Nevertheless, the statistical approximations used for evaluating the different
association types should be revisited and refined.

8 Conclusion

Although bracketing of three-word expressions has been performed quite successfully using unsuper-
vised approaches with web-corpus resources ((Nakov and Hearst, 2005), (Vadas and Curran, 2007b)),
compound bracketing of large expressions remains a challenge.

One research direction, taken by Vadas and Curran (2007b) and Pitler et al. (2010) is to investigate
supervised learning approaches which will be able to build on the redundancy within the dataset. We
take a different direction, that of developing a more complex association model and exploring Wikipedia
in an unsupervised manner. Our research presents a noun compound bracketing algorithm which goes
beyond the adjacency / dependency models presented so far in the literature. We suggest a method that
takes into account different meaning of the proximity of two words, that of being part of the same lexical
unit, or being coordinates, or being in a relation.

Our current implementation of our association model certainly provides improvement on the basic
association scores, but it does not give a clear view of whether our corpus-based approximations are
correct or not. This deserves future investigation into how to best approximate with statistical measures
the notions of relational, coordinate and lexical associations. On the other hand, the use of Wikipedia
as an encyclopedic resource to help determine lexical units certainly provides the most gain and the best
results. On the dataset of 4749 compounds, our best results are 73.16% strict, 82.13% lenient and 89.40%
binary tree evaluation. Further use of the structure of Wikipedia can be investigated to help characterize
the different types of associations.

An important future goal is to refine the association model, and better anchor it in both linguistic and
computational linguistic traditions of noun compound analysis. The model deserves to be studied in its
own, regardless of its implementation, which here was performed using Wikipedia. A better understand-
ing of the model and its impact on noun compound bracketing might direct us to better choices for the
implementation of the association measures.

Lastly, similarly to other researchers who look at noun compound bracketing as the first step of se-
mantic analysis of NPs to elicit semantic relations (purpose, cause, location, etc) between subgroups of
words (Girju et al. (2005), Nastase et al. (2013)), we want to pursue our work into a more fine-grained un-
derstanding of noun compounds (Nakov, 2013), combining bracketing with the identification of specific
noun relations.
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Abstract

The paper presents an approach to morphological compound splitting that takes the degree of
compositionality into account. We apply our approach to German noun compounds and particle
verbs within a German–English SMT system, and study the effect of only splitting compositional
compounds as opposed to an aggressive splitting. A qualitative study explores the translational
behaviour of non-compositional compounds.

1 Introduction

In German, as in many other languages, two (or more) simplex words can be combined to form a com-
pound. This is a productive process, leading to a potentially infinite number of sound German com-
pounds. As a consequence, many NLP applications suffer from coverage issues for compounds which
do not appear or appear only infrequently in language resources. However, while many compounds are
not covered, their component words are often found in lexical resources or training data. Compound
processing allows access to these component words and thus can overcome these sparsity issues.

We use Statistical Machine Translation (SMT) as an example application for compound processing.
Our SMT system translates from German to English, where compounds are usually split in the German
source language prior to training and decoding. The benefits are obvious: vocabulary size is reduced
and the languages are adjusted in terms of granularity, as exemplified by the compound Holzzaun. This

fence

wooden
Holzzaun

Holz

Zaun

wooden

fence

1:1 alignment1:n alignment

results in better alignment quality and model estimation.
Compound splitting also enables the translation of com-
pounds not occurring in the parallel data, if the parts have

been seen and can thus be translated individually. However, these assumptions only hold for compo-
sitional compounds like Holzzaun (’wooden fence’), whose meanings can be derived from the mean-
ings of their constituents, namely Holz (’wood’) and Zaun (’fence’). In contrast, the splitting of non-
compositional compounds may lead to translation errors: e.g. the meaning of Jägerzaun (’lattice fence’)
cannot be represented by the meanings of its constituents Jäger (’hunter’) and Zaun (’fence’). Here, an
erroneous splitting of the compound can lead to wrong generalizations or translation pairs, such as Jäger
→ lattice, in the absence of other evidence about how to translate Jäger. When splitting compounds
for SMT, two important factors should thus be considered: (1) whether a compound is compositional
and should be split, and if so (2) how the compound should be split. Most previous approaches mainly
focused on the second task, how to split a compound, e.g. using frequency statistics (Koehn and Knight,
2003) or a rule-based morphology (Fritzinger and Fraser, 2010), and all of them showed improved SMT
quality for compound splitting. The decision about whether the compound is compositional and should
be split at all has not received much attention in the past.

In this work, we examine the effect of only splitting compositional compounds, in contrast to splitting
all compounds. To this end, we combine (A) an approach relying on the distributional similarity be-
tween compounds and their constituents, to predict the degree of compositionality and thus to determine
whether to split the compound with (B) a combination of morphological and frequency-based features

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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to determine how to split a compound. We experiment with this novel semantically-informed compound
splitting on the source-side data of a German-English SMT system. As far as we know, we are the first
to study the impact of compositionality-aware compound splitting in SMT. We evaluate our systems on
a standard and on a specifically created test set, both for noun compounds and particle verbs. Our re-
sults show that phrase-based SMT is generally robust with regard to over-splitting non-compositional
compounds, with the exception of low-frequency words. This is in line with corresponding assumptions
from previous work. Furthermore, we present a small-scale study about the translational behaviour of
non-compositional compounds, which can surprisingly often be translated component-wise.

2 Related Work

We combine morphology-based compound splitting with distributional semantics to improve phrase-
based SMT. Here, we discuss relevant work of compound splitting in SMT and distributional semantics.

2.1 Compound Splitting in SMT

Compound splitting in SMT is a well-studied task. There is a wide range of previous work, including
purely string- and frequency-based approaches, but also linguistically-informed approaches. All lines
of research improved translation performance due to compound splitting. In Koehn and Knight (2003),
compounds are split through the identification of substrings from a corpus. The splitting is performed
without linguistic knowledge (except for the insertion of the filler letters “(e)s”), which necessarily leads
to many erroneous splittings. Multiple possible splitting options are disambiguated using the frequencies
of the substrings. Starting from Koehn and Knight (2003), Stymne (2008) covers more morphological
transformations and imposes POS constraints on the subwords. Nießen and Ney (2000) and Fritzinger
and Fraser (2010) perform compound splitting by relying on morphological analysers to identify suitable
split points. This has the advantage of returning only linguistically motivated splitting options, but the
analyses are often ambiguous and require disambiguation: Nießen and Ney (2000) use a parser for
context-sensitive disambiguation, and Fritzinger and Fraser (2010) use corpus frequencies to find the best
split for each compound. Other approaches use a two-step word alignment process: first, word alignment
is performed on a split representation of the compounding language. Then, all former compound parts
for which there is no aligned counterpart in the non-compounding language are merged back to the
compound again. Finally, word alignment is re-run on this representation. See Koehn and Knight (2003)
for experiments on German, DeNeefe et al. (2008) for Arabic and Bai et al. (2008) for Chinese. This
blocks non-compositional compounds from being split if they are translated as one simplex English word
in the training data (e.g. Heckenschütze, lit. ’hedge|shooter’; ’sniper’) and aligned correctly. However,
cases like Jägerzaun, ’lattice fence’ are not covered.

In the present work, we identify compounds with a morphological analyser, disambiguated with corpus
frequencies. Moreover, we restrict splitting to compositional compounds using distributional semantics.
We are not aware of any previous work that takes semantics into account for compound splitting in SMT.

2.2 Distributional Semantics and Compounding

Distributional information has been a steadily increasing, integral part of lexical semantic research over
the past 20 years. Based on the distributional hypothesis (Firth, 1957; Harris, 1968) that ”you shall know
a word by the company it keeps”, distributional semantics exploits the co-occurrence of words in corpora
to explore the meanings and the similarities of the words, phrases, sentences, etc. of interest.

Among many other tasks, distributional semantic information has been utilised to determine the degree
of compositionality (or: semantic transparency) of various types of compounds, most notably regarding
noun compounds (e.g., Zinsmeister and Heid (2004), Reddy et al. (2011), Schulte im Walde et al. (2013),
Salehi et al. (2014)) and particle verbs (e.g., McCarthy et al. (2003), Bannard (2005), Cook and Stevenson
(2006), Kühner and Schulte im Walde (2010), Bott and Schulte im Walde (2014), Salehi et al. (2014)).
Typically, these approaches rely on co-occurrence information from a corpus (either referring to bags-
of-words, or focusing on target-specific types of features), and compare the distributional features of
the compounds with those of the constituents, in order to predict the degree of compositionality of the
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Figure 1: Semantically-informed compound processing in SMT.

compound. The underlying assumption is that a compound which is similar in meaning to a constituent
(as in Holzzaun–Zaun (‘wooden fence’–‘fence’) but not in Löwenzahn–Zahn (‘lion|tooth (dandelion)’–
‘tooth’)) is also similar to the constituent with regard to co-occurrence information.

Most related to this work on noun compounds, Reddy et al. (2011) relied on window-based distribu-
tional models to predict the compositionality of English noun compounds, and Schulte im Walde et al.
(2013) compared window-based against syntax-based distributional models to predict the composition-
ality of German noun compounds. Zinsmeister and Heid (2004) used subcategorising verbs to predict
compound–head similarities of German noun compounds. Most recently, Salehi et al. (2014) extended
the previous approaches to take multi-lingual co-occurrence information into account, regarding English
and German noun compounds, and English particle verbs.

3 Methodology

We integrate our semantically-informed compound splitting as a pre-processing step to the German
source language of an SMT system. See Figure 1 for an illustration of our compound processing pipeline.

3.1 Target Compounds
German compounds are combinations of two (or more) simplex words. In some cases, a morphological
transformation is required: for example, when combining the two nouns Ausflug (‘excursion’) and Ziel
(‘destination’) → Ausflugsziel (‘excursion destination’), a filler letter (here: “s”) needs to be inserted.
Other such transformations include more filler letters or the deletion/substitution of letters.
Noun compounds are formed of a head noun and a modifier, which can consist of nouns, verbs, adjec-
tives or proper nouns.
Particle verbs are productive compositions of a base verb and a prefix particle, whose part-of-speech
varies between open-class nouns, adjectives, and verbs, and closed-class prepositions and adverbs. In
comparison to noun compounds, the constituents of German particle verbs exhibit a much higher degree
of ambiguity: Verbs in general are more ambiguous than nouns, and the largest sub-class of particles
(those with a preposition particle) is highly ambiguous by itself (e.g. Lechler and Roßdeutscher (2009)
and Springorum (2011)). For example, in anknabbern (‘to nibble partially’), the particle an expresses a
partitive meaning , whereas in ankleben (‘to glue onto sth.’) an has a topological meaning (to glue sth.
onto an implicit background). In addition, particle verb senses may be transparent or opaque with respect
to their base verbs. For example, abholen ‘fetch’ is rather transparent with respect to its base verb holen
‘fetch’, whereas anfangen ‘begin’ is more opaque with respect to fangen ‘catch’. In contrast, einsetzen
has both transparent (e.g. ‘insert’) and opaque (e.g. ‘begin’) verb senses with respect to setzen ‘put/sit
(down)’. The high degree of ambiguity makes particle verbs a challenge for NLP. Moreover, particle
and base verb can occur separately (er fängt an: ‘he begins’) or in one word (dass er anfängt: ‘that he
begins’), depending on the clausal type. This makes consistent treatment of particle verbs difficult.

3.2 Identification of Component Parts
We use the rule-based morphological analyser SMOR (Schmid et al., 2004) to identify compounds and
their constituents in our parallel training data (cf. Section 4). It relies on a large lexicon of word lemmas
and feature rules for productive morphological processes in German, i.e., compounding, derivation and
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inflection. In this paper, we will not consider splitting into derivational affixes (as needed for, e.g., Arabic
and Turkish), but instead identify simplex words that may also occur independently. Moreover, we only
keep noun compounds and particle verbs consisting of two constituents. The resulting set consists of
93,299 noun compound types and 3,689 particle verb types.

3.3 Predicting Compositionality based on Distributional Similarity
Starting from this set of compounds as derived from our parallel training data, we collected distributional
co-occurrence information from two large German web corpora and the machine translation training data:
(i) the German COW corpus (Schäfer and Bildhauer (2012), ∼9 billion words), (ii) the SdeWaC (Faaß
and Eckart (2013), ∼880 million words), (iii) our MT parallel corpus (∼40 million words) and (iv) MT
language model training data (∼146 million words). We relied on earlier work and used the 20,000 most
frequent nouns from the SdeWaC as co-occurrence features, looking into a window of 20 words to the left
and to the right of our target compounds and their constituents. We thus obtained a co-occurrence matrix
of all compounds and their constituents with the 20,000 selected nouns. As co-occurrence strength (i.e.,
how strong is a co-occurrence between a target word and a co-occurring noun), we collected frequencies
and transformed them into local mutual information (LMI) values, cf. Evert (2005). Finally, we calcu-
lated the distributional similarity between the compounds and their constituents, relying on the standard
measure cosine. The cosine value is then used to predict the degree of compositionality between the
respective compound–constituent pairs. For example, the cosine value of the pair Baumschule–Baum1 is
0.38, while the cosine value of the pair Baumschule–Schule is only 0.01.

3.4 Semantically-Informed Compound Splitting
In the two preceding sections, we described how we identified component words and calculated distribu-
tional compositionality scores for all of the compounds found in our training data. Here, we give details
on how we include the semantic information into the compound splitting process. Recall that we only
want to split compositional compounds and keep non-compositional compounds together.

The splitting decision (to split/not split a compound) is based on the compositionality score of the
compound that takes into account either one or both of the compound–constituent cosine values: if the
predicted degree of compositionality is high, the compound is split. We consider and combine four dif-
ferent criteria: i) only the compound–modifier similarity (mod); (ii) only the compound–head similarity
(head); a combination of the compound–modifier and the compound–head similarities, relying on (iii) the
geometric mean (geom) or (iv) on the arithmetic mean (arith). We used different thresholds for each of
these criteria throughout our experiments, with a specific focus on distinguishing the contributions of the
modifiers vs. the heads in the splitting decision, following insights from recent work in psycholinguistic
studies (Gagné and Spalding, 2009; Gagné and Spalding, 2011) as well as in computational approaches
on noun compounding (Reddy et al., 2011; Schulte im Walde et al., 2013). Furthermore, we compare
the effects of splitting with regard to two types of compounds, noun compounds and particle verbs: Both
types are very productive and can generate a potentially infinite number of new forms.

4 Experimental Setting

This section gives an overview on the technical details of the SMT system and our data sets. Compound
splitting is applied to all source-language data, i.e. the parallel data used to train the model, as well as
the input for parameter tuning and testing.2

Translation Model Moses is a state-of-the-art toolkit for phrase-based SMT systems (Koehn et al.,
2007). We use it with default settings to train a translation model and we do so separately for each of the
different compound splittings. Word alignment is performed using GIZA++ (Och and Ney, 2003). Fea-
ture weights are tuned using Batch-Mira (Cherry and Foster, 2012) with ’-safe-hope’ until convergence.
Training Data Our parallel training data contains the Europarl corpus (version 4, cf. Koehn (2005))
and also newspaper texts, overall ca. 1.5 million sentences3 (roughly 44 million words). In addition, we

1Baum|schule: ‘tree|school’ (tree nursery)
2Compounds not contained in the parallel data are always split, as they cannot be translated otherwise.
3Data from the shared task of the EACL 2009 workshop on statistical machine translation: www.statmt.org/wmt09

84



use an English corpus of roughly 227 million words (including the English part of the parallel data) to
build a target-side 5-gram language model with SRILM (Stolcke, 2002) in combination with KENLM
(Heafield, 2011). For parameter tuning, we use 1,025 sentences of news data.
Standard Test set 1,026 sentences of news data (test set from the 2009 WMT Shared Task): this set is
to measure the translation quality on a standard SMT test and make it comparable to other work.
Noun/Verb Test set As our main focus lies on sentences containing compounds, we created a second
test set which is rich in compounds. From the combined 2008-2013 Shared Task test sets, we extracted
all sentences containing at least one noun compound for which we have compound-constituent similarity
scores. Moreover, we excluded sentences containing nouns that are not in the parallel training data: such
compounds can only be translated when split which allows to translate their components. The final test
set consists of 2,574 sentences. Similarly, we also created a set rich in particle verbs (855 sentences).
Opaque Test set As the two first test sets mainly contain compositional compounds, we use a third test
set consisting of sentences with only non-compositional compounds. The underlying compounds were
chosen based on a list containing noun compounds and human ratings for compositionality (von der
Heide and Borgwaldt (2009)). As before, the compounds must have occurred in the parallel data. The
result is a list of 14 compounds, of which 11 have a low modifier-compound similarity and 3 have a low
head-compound similarity. We then extracted sentences containing these compounds (5 per compound =
70 in total) from German newspaper data4. In contrast to the other sets, we use this test set in a qualitative
study, to approximate the translation quality by counting the number of correctly translated compounds.

5 SMT Results

In this section, we present and discuss the results of our machine translation experiments. We first report
results for two test sets in terms of a standard evaluation metric (BLEU) and then continue with a small-
scale qualitative study on the translational behaviour of non-compositional compounds.

5.1 Compound Splitting within a Standard SMT Task
BLEU (Papineni et al., 2002) is a common metric to automatically measure the quality of SMT output
by comparing n-gram matches of the SMT output with a human reference translation. Table 1 lists the
results for our SMT-systems: we report on different compound-constituent scores and thresholds, for
noun compounds and particle verbs respectively. Note that BLEU scores are not comparable across dif-

nouns particle verbs
stand. noun stand. verb

baseline 21.00 21.08 21.00 20.29

ag
gr DIST 22.00 22.02 21.02 20.11

FREQ 22.04 21.88 21.11 20.21

0.
05

head 21.77 21.58 – –
mod. 22.01 21.74 – –
geom. 21.99 21.71 – –
arith. 21.95 21.95 – –

0.
1

head 21.91 21.69 21.11 20.24
mod. 22.01 21.63 20.98 20.43
geom. 22.06 21.90 21.12 20.55
arith. 22.05 21.73 21.08 20.34

0.
15

head 21.80 21.67 21.10 20.09
mod. 21.71 21.77 21.00 20.25
geom. 21.78 21.64 20.84 20.30
arith. 22.00 21.77 21.24 20.40

0.
2

head 21.78 21.51 – –
mod. 21.78 21.45 – –
geom. 21.76 21.54 – –
arith. 22.02 21.79 – –

Table 1: BLEU scores for all compound-
constituent variations.

ferent test sets, but only illustrate system differences
within one test set. We compare our systems to the
scores of a baseline system (without compound process-
ing) and an aggressive split system in which all noun
compounds and particle verbs are split. The labels DIST
and FREQ indicate how several possible splittings were
disambiguated: DIST means we chose the splitting option
having the higher geometric mean of the two compound-
constituent scores, assuming that the variant expressing a
higher compositionality score leads to the more probable
splitting analysis. For FREQ, the decision is based on the
geometric mean of corpus frequencies of the respective
components of the compound, as is common practise for
the disambiguation of multiple splitting options in SMT
(Koehn and Knight, 2003; Fritzinger and Fraser, 2010).
In terms of BLEU, there is little difference for these two
variants. For further experiments, we thus decided to al-
ways use FREQ for disambiguation, assuming that com-
ponents chosen by frequency are potentially better repre-

4www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/hgc.html
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rating compound gloss mod. head translation
HIGHLY Staats|bankrott nation|bankruptcy 0.4779 0.6527 national bankruptcy
COMP. Staats|gebilde nation|structure 0.6955 0.3431 national structure

MEDIUM Industrie|staat industry|nation 0.0258 0.1488 industrial nation
COMP. Staats|kasse nation|cash box 0.0718 0.2757 public purse, treasury
LOW Staats|spitze nation|top 0.0024 0.0040 top/head of state

COMP. Staats|monotheismus nation|monotheism 0.0071 0.0071 national monotheism

Table 2: Examples for different compound-constitutent score ranges: HIGH: highly compositional,
MEDIUM: cases of doubt, LOW: highly non-compositional, according to their scores.

sented in the training data. Thus, we first use frequencies to determine the best split option in the case
of several possibilities, and then we apply distributional semantics to determine whether to split at all.
The remainder of Table 1 reports on different variants of the semantically-informed splitting criteria we
used. The notation head/mod/geom/arith indicates which (combination of) compound-constituent scores
were applied as criterion, with the threshold indicated by the vertical number. We performed the first
set of experiments with different thresholds for noun compounds, and then applied the medium-range
thresholds to the particle verbs. Generally, there are no considerable differences between the systems
with semantically restricted splitting and the aggressive split systems, even though there seems to be a
slightly positive effect for particle verbs. Having a closer look, we find that for noun compounds on the
standard test set, the best results (threshold: 0.1) are at the same level as the aggressive split systems;
with some small losses in BLEU on some of the other settings.

5.2 Discussion

All settings clearly outperform the baseline system (without compound processing). This indicates that
phrase-based SMT is rather robust with regard to non-semantic splitting as it is can often recover from
over-splitting by translating the word sequence as a phrase. This is in line with previous observations
of Koehn and Knight (2003). The results for the noun test set, which is biased towards containing more
nominal compounds, even suggests that less splitting might harm the system, as the BLEU scores tend
to drop when increasing the threshold. For particle verbs,5 the picture is slightly different: first, splitting
only particle verbs does not lead to a considerable improvement over the baseline, as in the case of noun
compounds. For the verb test set, it even leads to a drop in BLEU. However, a more restricted splitting
leads to improved BLEU scores, even though not significantly better than the un-split baseline system.
Even though the handling of particle verbs needs to be refined in terms of dealing with their structural
behaviour (split vs. unsplit depending on the sentence structure) or ambiguities of the particle verb,
we consider this an encouraging result indicating that particle verbs can benefit from a semantically-
informed splitting process.
There are several possible reasons why a more restricted splitting might not lead to an improvement,
even though the idea of splitting only compositional compounds is intuitive and straightforward.

Inconsistent Splitting Compositionality is a continuum rather than a binary decision, with the scores of
many (compositional) compounds being in the medium range. Thus, it happens that some compounds
containing a certain constituent are split, whereas others are not: such inconsistent splittings do not
contribute to the generalization compound splitting aims for. Table 2 gives examples for compounds
with different degrees of compositionality, which illustrate this issue: for Industriestaat (’industrial
nation’) and Staatskasse (’public purse’) in the middle part of the table, a splitting decision based on
the head scores for thresholds of 0.15 or 0.2 leads to inconsistent splitting. Only compounds with high
scores, as the examples at the top of Table 2 are always split. The bottom part gives examples with
comparatively low compound-constituent scores that would benefit from splitting, but which will not be
split in any of our systems.

5Note that there are considerably less particle verbs than noun compounds in the standard test set and the parallel data.
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compound gloss translation unsplit f split f
Seehunde sea|dogs seals seals 5 seals 5
Flohmarkt flea|market flea market flea market 5 flea market 5
Kopfsalat head|salad lettuce lettuce 5 lettuce 5
Handtuch hand|cloth towel towel 5 towel 5
Kronleuchter crown|candelabra chandelier chandelier 5 crown leuchter 5
Gürteltiere belt|animal armadillo armadillos 5 belt animals 5

Wasserhahn water|rooster tap water tap 2tap 5 water supply 3
Meerschweinchen sea|piglet guinea pig guinea pig 4guinea pig 5 sea pig 1

Taschenbuch pocket|book paperback paper back 3paperback 5 pocket book 2
Kronkorken crown|cork crown cap *kronkorken 5 crown corks 5

Taschenlampe pocket|lamp flashlight pocket lamp 4*taschenlampe 5 bag lamp 1
Fleischwolf meat|wolf meat grinder *fleischwolf 5 meat wolf 5
Marienkäfer Mary|bug ladybug *marienkäfer 5 *marie käfer 5

Blockflöten block|flute recorder block might 4*blockflöten 5 bloc might 1

Table 3: correct vs. wrong – Translation of non-compositional compounds (opaque test set) without
being split (unsplit) vs. being split prior to translation. ’*’ highlights untranslated compounds.

Coverage of Opaque Compounds Another relevant factor concerns the frequency ranges of compounds
that are most interesting for this approach. High/mid frequency compounds are usually well-covered by
the training data of an SMT system, and in most cases they are translated correctly even if they have
been split erroneously. This is due to the fact that split compounds can be learned and translated as a
phrase if there were enough instances for the system to learn a valid translation. In the case of low-
frequency compounds, the system is less likely to learn a correct translation from the parallel data.
However, low-frequency compounds are not well covered by the system and splitting should thus be
highly beneficial. Newly created, i.e. highly compositional compounds, tend to be of low frequency, as
is illustrated by the example of Staatsmonotheismus (freq=1 in the parallel data) in Table 2. However,
a wrong splitting decision for a non-compositional compound of low frequency is likely to lead to an
incorrect translation as the SMT system has better statistics for the individual parts than for the sequence
of the compounds constituents. We assume that for low-frequency compounds the distributional similar-
ity scores are generally less reliable, even though using LMI helps to minimize this. To a certain extent,
we expect non-compositional compounds –which are typically considered as lexicalized– to occur with
higher frequencies than novel compositional compounds.6 Furthermore, there are considerably more
compositional than non-compositional compounds in standard text. Thus, being in favor of splitting in
the case of low-frequency words should be reasonable in most contexts.

6 A Closer Look at Translating Opaque Compounds

In this section, we compare the translations of non-compositional compounds when they are unsplit
and when they are split. We use a small test set containing 70 sentences, 5 for each of the 14 non-
compositional compounds (see Section 4). Then we conduct a small-scale qualitative analysis focusing
on the correct translation of opaque compounds.

Table 3 reports on correct translations for the non-compositional compounds for an experiment where
they have been split or not split (unsplit) prior to translation. Even though all compounds occurred in
the parallel data, five (which are marked with ’*’) cannot be translated by the unsplit system due to not
being aligned correctly. The other compounds are translated correctly (marked with “+” in Table 3).
In the course of our study, we found that many of the correct translations remain the same (seals, flea
market, lettuce, towel). In the case of guinea pig, paperback and tap there are mixed results of correct and
incorrect translations. Only in the cases of chandelier (“crown leuchter”) and armadillo (“belt animal”),

6It has to be noted, though, that the model is influenced by the somewhat different domain of the parallel data (European
Parliament proceedings, a standard data set for SMT).
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compound gloss translation compound gloss translation
Bärlauch bear|leek bear leek Handtasche hand|bag handbag
Baumschule tree|school tree nursery Hirschkäfer stag|beetle stag beetle
Löwenanteil lion|share lion’s share Hüttenkäse cottage|cheese cottage cheese
Fliegenpilz fly|mushroom fly agaric Kronkorken crown|cork crown cap
Flohmarkt flea|market flea market Teelicht tea|light tea candle

Table 4: Examples for (near) literal translation of non-compositional compounds.

which were translated correctly with the unsplit system, all translations obtained with the split system are
wrong. Somewhat surprisingly, in some cases there even is a benefit from splitting the non-compositional
compounds: Kronkorken, previously not translated at all, is correctly generated as crown cork. For other
previously untranslated words, Fleischwolf and Taschenlampe, literal translations of the constituents
are given: while meat wolf (instead of meat grinder) is probably not understandable, the translation of
Taschenlampe as pocket lamp is certainly preferable to the untranslated compound.

Due to the observed unexpected translational behaviour of 2 of the 14 non-compositional compounds
(Flohmarkt and Kronkorken), which can be translated literally and thus –in theory– benefit from splitting,
we present a small study illustrating that this phenomenon is not as rare as one would intuitively expect.
This study is not meant to be comprehensive, but rather to point out that the translational behaviour of
non-compositional compounds can correspond to that of compositional compounds; Table 4 lists a few
such examples. We assume that this behaviour is due to the fact that English and German are similar
languages with a similar background. Thus, the “images” used in non-compositional words often tend to
be similar. For some of the compounds (e.g. Flohmarkt) this is even true for some Romance languages,
too (IT: mercato delle pulci, FR: marché aux puces) .

Generally, the SMT system should even be able to handle cases where the translation of one part is
not strictly literal (e.g. cap–cork or agaric–mushroom). In comparison to a dictionary, which only lists
few translations, the translation model offers a large choice of translation options that are not always
strictly synonymous, but can cover a large range of related meanings. In combination with the target-
side language model, this could allow to “guess” good translations of such compounds. However, the
component-wise translation of non-compositional compounds only works if the source- and target lan-
guage compounds contain the same number of constituents. For example, consider translating the word
Faultier (lazy|animal: “sloth”): even if the SMT system offers the translation faul–sloth, it would also
need to produce a translation for the constituent tier, probably resulting in something like sloth animal.

In conclusion, while phrase-based SMT is often able to recover from over-splitting by translating
a word sequence as a phrase, this is not always necessary for opaque compounds as they can have a
literal or near-literal translation. Thus, for explicitly handling non-compositional compounds in SMT, a
monolingual estimation of compositionality is not the only relevant factor. The translational behaviour
of compounds should also be taken into account.

7 Conclusion and Future Work

We studied the impact of compositionality in German-English SMT by restricting compound splitting to
compositional compounds. The decision about compositionality is based on the distributional similarity
between a compound and its constituents. We experimented with different threshold/score combinations
on a standard and a specifically created test set. Our results indicate that phrase-based SMT is very robust
with regard to over-splitting non-compositional noun compounds, with the exception of low-frequency
compounds. Furthermore, we studied the translational behaviour of non-compositional compounds with
a special focus on the fact that non-compositional compounds can in some cases be translated component-
wise, leading to the conclusion that a monolingual estimation of compositionality is not sufficient for an
optimal explicit handling of compounds in SMT applications.

The relatively low impact of distinguishing the degree of compositionality might also be due to the fact
that the task of translating noun compounds can be considered “easy”, as the split components always
occur adjacently. In contrast, handling other types of non-compositional structures (e.g. noun-verb or
preposition-noun-verb combinations which are non-compositional) is a challenging task for future work.
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