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Abstract

In this paper, we prose to build a repository of events and event references from clusters of
news articles. We present an automated approach that is based on the hypothesis that if two
sentences are a) found in the same cluster of news articles and b) contain temporal expressions
that reference the same point in time, they are likely to refer to the same event. This allows
us to group similar sentences together and apply open-domain Information Extraction (OpenIE)
methods to extract lists of textual references for each detected event. We outline our proposed
approach and present a preliminary evaluation in which we extract events and references from 20
clusters of online news. Our experiments indicate that for the largest part our hypothesis holds
true, pointing to a strong potential for applying our approach to building an event repository. We
illustrate cases in which our hypothesis fails and discuss ways for addressing sources or errors.

1 Introduction

We present ongoing work in the automatic creation of a repository of events and event references from
clusters of online news articles. In the context of this work, an event is something that happens at one
specific point in time that can be referenced in text with different text surface forms. An example of
this may be the acquisition of WhatsApp by Facebook, which has a specific timestamp (02-19-2014),
as well as a number of different textual references (such as “the acquisition of WhatsApp”, “Facebook’s
landmark deal” etc). Unlike previous work in event extraction (Aone and Ramos-Santacruz, 2000; Ji and
Grishman, 2008), we are less interested in filling slots in a fixed set of event templates. Rather, we aim
to identify an unrestricted set of events (Ritter et al., 2012) and all their possible event mentions. This
means that even noun phrases (“the much-discussed takeover”) and incomplete mentions (“Zuckerberg’s
19 billion bet”) are valid textual references we wish to capture.

We give examples of such events in Table 1. We believe that automatically distilling such events
from news text and hosting them in an event repository could provide a valuable resource to gain a
comprehensive overview of world events and also serve as a resource for event-linking efforts in future
Information Extraction (IE) research.

In this paper, we propose a method for automatically creating such an event repository. Our method
leverages computer-generated news sites that aggregate articles from news sources worldwide and group
similar stories into news clusters. Such news clusters represent an intriguing reservoir for event extrac-
tion: Each cluster typically represents one news item that is reported on by hundreds of different online
sources. Articles in a cluster will therefore describe similar information content - and reference the same
events - using different words. On these news articles, we apply temporal expression taggers to identify
and normalize textual references to specific points in time.

Our main hypothesis is that if two sentences are a) found in the same cluster of news articles and b)
contain temporal expressions that reference the same point in time, they are likely to refer to the same
event. This allows us to group similar sentences together and for each referenced point in time extract an
event with a list of different textual references.
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ID TIMESTAMP REPRESENTATIVE TEXTUAL REFERENCES

1 2014-02-19 Facebook buys WhatsApp Facebook buying WhatsApp
the landmark deal

Zuckerberg’s acquisition of the mobile messaging-service
2 2014-02-01 Rosetta transmits message Rosetta sends signal to Earth

the spacecraft’s first message
the message from the Rosetta spacecraft

3 2014-02-07 Sinabung volcano erupts Indonesian volcano unleashed a major eruption
the eruption of Mount Sinabung volcano

its biggest eruption yet

Table 1: Examples for events in the event repository. Each extracted event consists of an ID, a timestamp
which indicates on which date the event took place, a short human-readable event representation, and a
list of strings that may be used to reference this event.

In this paper, we present our event extraction system and conduct a preliminary evaluation in order to
determine in how far our hypothesis holds. We discuss the evaluation results and possible improvements
and give an outline of current and future work.

2 Event and Reference Extraction

2.1 Method Overview

Determine sentences likely to reference the same event. We begin the event extraction process by
crawling Google News1 to retrieve clusters of English language news articles and their publishing date.
Each news article is then boilerplated and segmented into sentences.
We then make use of temporal expression taggers (Strötgen and Gertz, 2010; Chang and Manning, 2012)
to recognize temporal expressions in text and normalize them into machine-readable timestamps. This
causes expressions such as “last Friday”, “winter of 2013”, and “Saturday morning” to be normalized
to the timestamps “2013-10-10”, “2013-WI”, and “2012-09-24TMO” respectively by using the article’s
publishing date as a reference point. We identify all sentences with temporal expressions and group
sentences together that a) contain the same timestamp and b) are found in the same cluster of documents.
Refer to Table 2 for examples of sentences grouped according to these criteria.
Determine Open-Domain Facts. Because sentences may refer to multiple events2, we use OpenIE
methods (Schmitz et al., 2012; Choi, 2012) to determine for each sentence a list of N-ary facts. Each
fact consist of a predicate and a number of arguments. We then discard all facts that do not contain
the temporal expression in order to keep only those facts expressed within each sentence to which the
temporal expression refers. This gives us a list of N-ary facts which we presume to refer to the same
event, together with its timestamp.
Determine Event Representative and Store. For human readability purposes, we then identify a rep-
resentative of the grouped N-ary facts by determining the most common predicate and head arguments.
We assign a global ID to each event and store it along with its timestamp, its representative and a list of
all textual references and their frequency counts in a database.

2.2 Granularity of Timestamps

One question at the onset of this work was which granularity of temporal expressions would be required.
We manually inspected a sample of news clusters and noted that news articles rarely provide time in-
formation that is accurate to the minute. Rather, most temporal expressions refer to specific dates in
past, present or future. We therefore choose the unit “day” as granularity for the temporal expressions in
this work. We dismiss all expressions that refer to larger and more vague periods of time (“last winter”,

1http://news.google.com/
2An example of this is the sentence: “When asked, he said that WhatApp accepted Facebook’s offer last Sunday”. Here, the

temporal expression “last Sunday” refers only the “WhatApp accepted Facebook’s offer” part of the sentence, not the date the
person was asked.
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TIMESTAMP SENTENCES

2014-02-20 Facebook inked a deal late Wednesday to buy popular texting service WhatsApp.
Yesterday , Facebook Chief Executive Officer Mark Zuckerberg bought their five-year-old company.

Thursday , 20 February 2014 Facebook Inc will buy fast-growing mobile-messaging startup WhatsApp.
Facebook Inc. agreed to buy mobile messaging-service WhatsApp today for as much as 19 billion.

2014-02-01 The European Space Agency received the all-clear message from its Rosetta spacecraft at 7:18 p.m.
[..] a comet-chasing spacecraft sent its first signal back to Earth on Monday

ESA received the all-clear message Hello World from its Rosetta spacecraft [..] away shortly after 7 pm.
Yesterday’s message from the Rosetta spacecraft was celebrated by scientists [..]

2014-02-07 Indonesia’s Mount Sinabung volcano erupted and killed at least 11 people [..] on Saturday
But a day later , Sinabung spewed hot rocks and ash up to 2km in the air.

A giant cloud of hot volcanic ash clouds engulfs villages [..] in Sumatra island on February 1, 2014.
An Indonesian volcano that has been rumbling for months unleashed a major eruption Saturday.

Table 2: Examples of sentences grouped by cluster and timestamp. The temporal expression taggers
enable us to group sentences that refer to the same point of time in very different ways (highlighted
bold). As can be seen in the examples, sentences grouped according to these criteria generally refer to
the same event, albeit in sometimes widely varying words.

“throughout the year”) and generalize all temporal information that refer to the time of day (“later today”,
“at 7:18 p.m.”).

2.3 Improving Event Quality

Upon manual inspection of identified events we find that our hypothesis fails in some cases: A news
item may often summarize a number of smaller events that happened within the same day. An example
of this are news items that deal with unrest in war-torn countries that may reference several bombings,
terrorist attacks and other violence that happened across the country on the day the article was published.
Another example are sports articles that refer to several sport matches that take place during the same
day. This is problematic, as in such cases we erroneously link non-synonymous textual references to the
same event. We experiment with two methods for reducing this error:

Time Window Filter As indicated above, we note that our hypothesis most often fails for events that
occur within 2 days of the publishing date of the articles in the news cluster. Accordingly, we
experiment with filtering out such events, leaving only events to be extracted that lie in the more
distant past or future (such as past or upcoming election days, significant events that impact the
current news story). However, since the largest part of events that are reported on in online news
take place within this 2-day time window, we risk significant recall-loss by discarding too many
events.

Word Alignment Condition For this reason, we investigate requirements for facts to be grouped to-
gether in addition to the requirement of sharing the same timestamp. We experiment with mono-
lingual word-alignment tools (Yao et al., 2013) to determine the “similarity” of two facts as the
number of aligned content words. We then require at least one content word to be shared by two
facts in order for them to be grouped together into an event.

3 Preliminary Evaluation

We conduct a preliminary evaluation to determine to which extend our hypothesis holds. To this end,
we use our method to extract events from a sample of 20 news clusters with an average size of 200
news articles. We evaluate our method in four setups: 1) The baseline setup in which we apply only the
“same cluster + same timestamp = same event” hypothesis (“BASE”). 2) The baseline setup plus the
time window filter (“TIME”). 3) The baseline setup plus the word alignment condition (“ALIGN”). 4)
The baseline setup plus both the time window filter and the word alignment condition (“ALL”).

We manually evaluate each event found with our method by checking whether all references indeed
refer to the same event. We calculate a purity value that indicates the proportion of the biggest group
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METHOD TOTAL EVENT REFERENCES CORRECT EVENT REFERENCES PRECISION PURITY

BASE 609 511 0.839 0.698
TIME 109 88 0.807 0.699

ALIGN 609 526 0.864 0.793
ALL 109 89 0.817 0.728

Table 3: The results of our manual evaluation of extracted events and their event references. The main
hypothesis that events mentioned with the same date in one cluster delivers quite promising results with
84% precision. The time window filter does not seem to contribute significant gains, while the ALIGN
filter does boost both precision and purity.

of references that refer to the same event over all references in an event cluster. This means that if all
references indeed refer to the same event, its purity is 1.0. Table 3 lists the average purity over all events.

When a reference accurately represents both the content and the date contained in the original news
sentence and the real world event mentioned actually occurred on this date, we labeled it as a “correct”
event reference. The precision listed in Table 3 reflects the proportion of correct events references vs. all
extracted event reference in the evaluation data set. This measure indicates how well the extraction itself
performs, apart from the clustering of event references.
Hypothesis produces promising results with a precision of 0.84. In general, we find our underlying
assumption to indeed be a good basis for event extraction. Our baseline approach based on only this
hypothesis produces promising results with a precision of 0.84, albeit at somewhat low overall purity.
Wrong resolution of relative time references biggest source of error. When inspecting sources of er-
rors more closely, we note that the approach fails most often because of erroneous resolution of relative
time references such as ”yesterday”, ”past Saturday” or ”this Sunday”. This may happen because the
wrong publishing date is assigned to a crawled news article, causing temporal taggers to use a wrong
reference point for relative time expressions. With relative references to weekdays, the taggers are often
unsure whether the past or present week is referenced. Consider the expression “on Saturday” in the
sentence “John Kerry will meet with opposition leaders on Saturday“. Although the coming Saturday is
meant in this context, the temporal expression tagger normalizes the date to the last Saturday before the
publishing date. We believe that such systematic errors can be addressed in future work through assign-
ing higher confidence to explicit temporal expressions mentions and resolving ambiguities in relative
expressions using this information.
Time Window Filter provides no significant contribution. Contrary to initial assumption filtering out
events within a 2-day time window does not actually boost precision, but rather greatly reduces the total
number of extracted events at slightly lower precision and purity. The likely reason for this behavior is
the above noted most common error source is not addressed by this filter.
Word Alignment Condition boosts both precision and purity significantly. The word alignment
condition on the other hand greatly increases both precision and purity. While the increase in purity is
to be expected as different events occurring on the same date are indeed split into separate clusters, the
increase in precision comes as somewhat of a surprise. Closer inspection of the results revealed that
the word alignment approach aggressively groups similar event mentions, considering also synonyms as
matches, therefore not resulting in redundant event detections as initially feared. Based on these results,
we believe that experimentation with word alignment conditions may further increase event detection
quality.

4 Conclusion

In this paper, we have proposed to create a repository of events and their textural references and presented
an approach to accomplish this automatically by leveraging news clusters and temporal expressions. Our
approach is based on the hypothesis that sentences that are found in the same news cluster and refer to
the same point in time also refer to the same events. We described the implementation of a prototype
system and conducted a preliminary manual evaluation on 20 news clusters to investigate our hypothesis.

Our findings generally point to a strong potential of automatically mining events and references from
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news clusters. While our hypothesis fails in some cases, our analysis indicates that incorporating mono-
lingual word-alignment techniques can greatly improve extraction quality and appears to be a powerful
tool to disambiguate events that share both timestamp and news cluster.

Present work focuses on further exploring the potential of word alignment as well as the use of cluster-
wide statistics to correct labeling mistakes such as the ones observed for temporal tagging. We aim to
use the system on very large amounts of news clusters crawled from the Web to generate - and make
publicly available - the resource that we have proposed in this paper.
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