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Abstract
Symbolic resources for text synthesis and 
text analysis are typically created and stored 
separately. In our case, we have a KPML-
resource (Nigel) and a CCG for English. In 
this paper, we argue that reversing efficient 
resources such as ours cannot in general be 
achieved.  For this reason, we propose a 
symbolic map that can be converted 
automatically into both synthesis- and 
analysis-oriented resources. We show that 
completeness of description can only be 
achieved by such a map while efficiency 
concerns can only be tackled by the directed 
rules of task-oriented resources not because 
of the current state of the art, but because 
reversing task-oriented symbolic resources is 
impossible in principle.

1 Introduction
Currently, symbolic resources guiding text 

analysis and text synthesis are created and stored 
separately. Several researchers have attempted 
to use the same resource for both tasks (Kasper, 
1988; Neumann, 1991; Neumann and van 
Noord, 1992; Strzalkowski, 1994; O’Donnell, 
1994; Pulman, 1995; Klarner, 2005) motivated 
by the fact  that this would not only be 
cognitively more plausible but also allow 
translation at a semantic level, integration of 
new words from analysis into synthesis, 
reduction of costs in engineering as well as 
making it easier to share information among 
research groups of different fields.

The resources we currently use in human-
robot interaction in English are also separate: a 
KPML-resource (Nigel) and a CCG. The 
specialty about Nigel and our CCG is that they 
share not only the same kind of semantics, but 
also the same mapping between symbolic and 
semantic structures. Here ‘symbolic structure’ is 
understood as KPML’s ‘structure’ and CCG’s 
‘sign’, and corresponds to ‘grammatical 
constructions’ of cognitive semantics (Lakoff, 
1987), to ‘linguistic mediation’ of truth-
reference semantics (Smith and Brogaard, 
2003), and to ‘wording’ of systemic functional 
linguistics (Matthiessen, 1995; Matthiessen and 
Halliday, 1999; Matthiessen and Halliday, 2004; 
Halliday and Matthiessen, 2014).

In this paper, we shall review the available 
directed rules that constitute the resources in 
KPML and OpenCCG and argue that they are 
useful in their respective tasks – either synthesis 
or analysis, – but are either unsuitable or not 
competitive for the inverse task.

Aiming not  at  reversibility but  at  reusability, 
we propose to create a map between symbolic 
and semantic structures that can be compiled 
into both synthesis-oriented and analysis-
oriented resources. With this approach, we aim 
at  separating concerns, so that efficiency can be 
tackled by the directed rules of task-oriented 
resources and completeness of description by a 
less efficient uncompiled shared symbolic map.

2 Irreversibility of Current Resources
In computational linguistics, approaches to 

text processing can be divided into statistical 
and categorial according to the usage of graded 
or binary relations between inputs and outputs of 
processing. Approaches can also be divided 
depending on whether the textual content is a 
representation of something else (symbolic) or 
whether it is a representation of the text  itself 
(non-symbolic). In this sense, approaches that 
have a semantic structure as input  or output are 
symbolic and those that make use of a syntactic 
tree whose composite-component relations do 
not match the ones of semantics are not. The 
present  work falls into the symbolic subset. 
Although our initial attempt  is categorial, the 
ideas presented here can be used in statistical 
approaches as well, provided that these 
approaches are symbolic in nature.

Looking from the perspective of the 
philosophy of language, in the last  50 years, 
computational efforts in categorial symbolic text 
processing have converged on one single notion 
of a symbolic map. In such a notion, both 
symbolic (lexical or grammatical) and semantic 
structures play an essential role in deciding 
which analytical and synthetic hypotheses are to 
be taken further or discarded. On the text 
synthesis front, systemic networks were used by 
both KOMET  and Penman engines as directed 
rules for text synthesis. Those engines were later 
unified into the KOMET-Penman Multilingual 
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Engine (KPML Engine) (Bateman, 1995a; 
Bateman, 1995b; Bateman, 1996; Bateman, 
1997). On the text analysis front, typed-feature 
unification was developed and implemented in 
engines for a family of highly lexicalised 
grammatical frameworks (HLG). Combinatory 
Categorial Grammars (CCG) (Steedman, 1987; 
Steedman, 1996; Steedman, 1998; Steedman and 
Baldridge, 2011) are a special type of HLG that 
reduce the task of text analysis to accepting or 
rejecting hypotheses of both symbolic and 
semantic composition during functional 
unification. KPML and OpenCCG are then only 
candidates for consideration because they allow 
the implementation of a shared symbolic map. 
In other words, a pair of engines that support 
such a map is a necessary and sufficient 
condition for the reusability scheme we propose.

In the following, we shall review the 
grammatical notions embedded in the resources 
for KPML and OpenCCG in order to support  our 
argumentation that reversibility of such directed 
resources is not to be achieved.

2.1 Resources for KPML
According to the KPML documentation 

(Bateman, 1996) and our own inspection of 
Nigel, resources for KMPL may contain three 
kinds of realisation operations: structural (insert, 
conflate, expand), linear (partition, order, order-
at-front, order-at-end), and inter-rank (preselect, 
agreement, classify, outclassify, inflectify, 
lexify).

Below symbolic structure, textual tokens are 
produced by morphological realisation operators 
of two kinds: one for selecting token copies 
(preselect-substance, preselect-substance-as-
stem, preselect-substance-as-property), and one 
for modifying them (morphose).

These realisation operators are bundled in 
wording ‘patterns’ that  are linked to classes of 
wordings (grammatical features). The typology 
arising from these classes is used as a network 
of options (network of grammatical systems) 
among structure kinds. The selection of a 
structure kind of a system is done by a decision 
tree (chooser). Each decision in the decision tree 
is achieved by inspecting (inquiry) a semantic 
and lexical specification for a text. The decision 
tree contains not  only decisions (ask) but  also 
mappings from lexical/semantic constituents to 
functions of symbolic constituents (identify, 
copyhub, choose, pledge, termpledge). Values 
can be associated with a function (concept, 
modification-specification, terms, term).

Finally, there are four ways to produce a 
token in KPML. Three of them consist  of 

selecting a word and selecting its form with a 
form class. The actual token production is left  to 
a morphological component. Two word selection 
strategies are: selecting a word grammatically 
(lexify, classify, outclassify) and selecting a 
word associated with a particular conceptual 
value (term-resolve-id). A mapping between 
concepts and words is provided either by 
concept-word links (annotate-concept) or by 
embedding word specifications into what would 
otherwise be a pure semantic specification (lex). 
A distinct mapping function between the 
intersection of form classes and word pattern 
indexes is implemented in LISP for every 
linguistic resource. At the morphological level, a 
token is produced by selecting a token model 
and applying any necessary morphological 
modifications to it  (preselect-substance, 
preselect-substance-as-stem, preselect-
substance-as-property, morphose).

Therefore, as with any other categorial text 
synthesiser, KPML traverses a network of 
options among progressively finer types of 
structures and makes choices between different 
structure types depending on semantical and 
lexical restrictions. Its speciality comes not from 
the general approach, but from the amount and 
quality of detailed linguistic knowledge applied 
to the synthesis of text in Nigel, which makes 
Nigel a good option for our applications that 
demand natural utterances. This is also the main 
reason why so many attempts have been made to 
use Nigel for text analysis.

2.2 Resources for OpenCCG
OpenCCG, as for any other engine using 

chart  parsing, relies on the assumption that a 
hypothesised structure is only to be considered if 
it  is part  of a structure for the whole input text. 
This assumption of syntagmatic holism was first 
formulated by Frege (1884) and Wittgenstein 
(1921; 1922). Chart parsing with CCGs goes 
beyond: both syntagmatic and paradigmatic 
holisms are to be enforced, i.e. semantic fitting 
is used as a filter for analytical hypotheses as 
well. Such a paradigmatic holism was first 
formulated by Davidson (1967).

OpenCCG is an engine for analysing texts 
with CCGs (Steedman and Baldridge, 2011; 
Bozşahin et al., 2005). It classifies word forms 
into categories according to their affordances of 
combining with other word forms and structures 
in the process of building up larger structures 
and construing meaning. In this process, the 
empty slots of semantic frames, associated with 
a word, are filled up by the semantic values of 
the structures that  the word form combines with. 
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Only complete symbolic and semantic structures 
that represent  the whole text are kept by the text 
analyser (although incomplete structures may 
also be retrieved for online text processing).

There are two kinds of combinatory 
categories: the complete (atomic) does not 
combine with any other structure; the 
incomplete (complex) has either a frame with 
empty slots or is missing word parts, so it 
combines with other structures for semantic or 
symbolic completion.

Incomplete categories of symbolic structures 
are turned into a complete category by the 
OpenCCG engine whenever a structure that is 
combinable with a preceding or following 
structure of a certain kind is preceded or 
followed by a structure of this kind. Slashes \, | 
and / indicate that a structure of a combinatory 
category is combinable with a structure that 
respectively precedes it, is adjacent  to it, or 
follows it. For instance, the structure of saw 
holding a two-slot  frame in the clause Mary saw 
John can be said to belong to the category 
Clause\Mention/Mention, because it  expects a 
complete mention (Mention) of the sensed thing 
after it and a complete mention (Mention) of the 
senser before it. The resulting structure after 
combination is a complete clause (Clause).

In addition, slashes come in four different 
generalities: they may allow no composition (⋆), 
only harmonic compositions (◇), only crossing 
compositions (×) or any composition (•).

The smallest  structures in OpenCCG are 
word forms. Word forms (morph entries) map a 
token pattern (word) to a word id (stem), a 
combinatory category tag (pos), the meaning of 
the word (class), and a list of form classes (fs-
macros) and slot fillers (lf-macros). This 
terminal mapping is equivalent  to the map from 
grammatical functions to lexical and semantical 
structures in KPML.

2.3 KPML-Analysis and CCG-Synthesis
Kay (1979; 1985) developed the Functional 

Unification Grammar (FUG) and Kasper (1988) 
used FUG for exploring text  analysis with Nigel. 
Analysing a clause took about 1 minute (cur-
rently approx. 500ms assuming 120-times faster 
processors) and analysing a complex clause took 
several minutes. Kasper concluded grammars 
needed to be “tuned” and augmented for the 
inverse task, but also that some information 
would be superfluous and counterproductive for 
either text  synthesis or text  analysis. Following 
Kasper, O’Donnell (1994) reduced the 
descriptive complexity of Nigel to create a text 
analyser. After this, Henschel (1995; 1997) 

attempted to analyse text with the full Nigel 
grammatical description again by abstracting an 
open-world typology from a systemic network 
and compiling the Nigel resource completely for 
the first time into a typed-feature-structure 
resource. However, the resource was unusable 
for practical text  analysis. When reviewing these 
previous attempts, Bateman (2008) pointed out 
that the conception of systemic-functional 
resources alone, as it is, cannot support effective 
automatic text analysis due to fundamental 
theoretical concerns. That  is, the paradigmatic 
organisation of the systemic-functional approach 
raises an enormous search space problem when 
used for text  analysis because the network does 
not have information about  which grammatical 
feature is relevant  for any given text token. If 
one uses such a network for analysing text, one 
needs to produce a complete set  of all possible 
intersections of grammatical features in order to 
predict all supported analyses, which is the 
solution provided by Kasper and by Henschel. 
Bateman shows that this is computationally 
intractable for the full version of Nigel’s noun 
group and Nigel’s clause.

On the CCG side, broad-coverage surface 
realisation has also been attempted (White et  al., 
2007; Rudnick, 2010). In order for a CCG to 
work for text  synthesis, it  was enriched with a 
customised semantics. The resulting search 
space was still too large and, for this reason, a 
search heuristic was applied using n-grams, pos-
tags, supertags, and semantic values for 
evaluation of paths. The realisation achieved 
promising scores with a time-limit  of 15 seconds 
when trained over the CCGBank – a derivation 
corpus with the same sentences as the Penn 
TreeBank – and tested over the same sentences.

However, the decision of synthesising a text 
with a search heuristic is a consequence of the 
fact that  the used resource does not hold all the 
information necessary for a guided search 
algorithm for text synthesis. The reason for this 
is also of a theoretical nature. Once structural 
information is embedded in word forms, 
combinatory categories and type changes, it is 
impossible to take this information back out of 
them and repack it in a network of options 
without  counting on two essential constructs for 
synthesis: on the one side, semantic composition 
and semantic paradigms and, on the other side, a 
paradigmatic organisation of classes of structure 
provided by disjunct  unions of structure classes 
(systems). CCGs do not  and could not, for 
efficiency reasons, rely on logical disjunctions, 
which are essential for text synthesis.

To make the consequences of this limitation 
more clear, let  us take an example of how 
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combinatory operators are declared in resources 
for OpenCCG  (abbreviations: C = Clause, M = 
Mention, f = Figure, e = Element):
– danced (I danced)
– stopped dancing (I stopped dancing)
– started dancing (I started dancing)
(C[mode-2]:f\M:e0) => (C[mode-ø]:f\M:e0)
 @f<hasTense>e1:Past
– am here (I am here)
(C[mode-1]:f\M:e0) => (C[mode-ø]:f\M:e0)
 @f:State(<hasTense>e1:Present)
– am (I am dancing)
am := (C[mode-ø]:f\M:e0)/(C[mode-6]:f\M:e0)
 @f:Change(<hasTense>e1:Present)
– will (I will dance)
will := (C[mode-ø]:f\M:e0)/(C[mode-4]:f\M:e0)
 @f<hasTense>e1:Future
– stopped (I stopped dancing)
stopped := (C[mode-2]:f\M:e0)/(C[mode-6]:f\M:e0)
 @f<hasPhase>e1:Stop
– started (I started dancing)
started := (C[mode-2]:f\M:e0)/(C[mode-6]:f\M:e0)
 @f<hasPhase>e1:Start
Simplified extract of our CCG-resource

The above combinatory categories and type-
changes cover different semantic contributions, 
which are not  automatically organisable into 
systems of symbolic and semantic classes. First, 
the resource for OpenCCG does not  have the 
information that  Past, Present, and Future 
constitute a semantic disjunction of TENSE and 
that Start  and Stop belong to a distinct  semantic 
disjunction of PHASE. Moreover, the resource 
does not  have the information that  finite clauses 
have tense and that  non-finite clauses do not, so 
that it  could decide which system to traverse for 
each kind of clause. And, finally, we cannot 
guarantee that  an inspection of the figure type 
happens before the selection of 1) the present 
auxiliary am  in I am  dancing  representing a 
change in the present and 2) the present  form am 
of the process of Being in I am  here (instead I 
am  being here) representing a present state. This 
incapability of grouping contrasting options and 
of conditioning and ordering systems within a 
network demands a search algorithm with 
backtracking. Because of the computational 
costs of backtracking, it also demands a search 
heuristic as engineering solution.

3 Symbolic Map
We acknowledge the unsuitability of task-

oriented resources for the inverse tasks of 
synthesis and analysis and shall tackle the issues 
of bridging a paradigmatic text  synthesis and a 
syntagmatic text analysis at a theoretical level. 

We propose to describe a symbolic-semantic 
map that  can be compiled into task-oriented 
resources for separate engines (concretely here: 
KPML and OpenCCG): a scheme that falls into 
the Reusability Scheme A (reversibility type) of 
Klarner (2005) (see Figure 1). In our case, this 
reusability scheme applies to both grammar and 
lexicon.

Figure 1. Reusability Scheme

In our argumentation, we shall propose a 
reformulation of Nigel as a description in OWL 
of a symbolic map that  supports the proposed 
compilation. Moving from specific to general, 
we shall point  out which mapping strategies can 
be used and show that every descriptive region 
of Nigel is representable in such a map.

3.1 Sketch
Bateman (2008) has sketched how an 

automatic text analysis with systemic-functional 
theory ('systemic parse') needs to look. It  needs 
a functional description for sequences of text 
tokens, including the necessary information both 
for assigning grammatical features to structures 
and for identifying composites on a sequence of 
constituents. Such a symbolic map, we shall see, 
needs to account  for the systemic-functional 
trinocular view of symbolic systems: from 
above, from below and from around. Moreover, 
it  also needs to account for two different 
affordances required for a classification of 
structures: one that  organises disjoint  classes as 
a system of grammatical features for text 
synthesis and another that  organises the same 
disjunctions as restrictions for the combination 
of incomplete structures in text  analysis. The 
former organisation moves all information of 
structure into the grammatical network, whereas 
the latter organisation moves it into word forms.

In the reusability scheme of our new 
resource, we keep the structural information out 
of the systemic network and out of the word 
forms. It is stored in a symbolic map that  allows 
us to pack it  into the two task-oriented 
resources, i.e. into the systemic network for text 
synthesis and into word forms/type changes for 
text analysis. We have chosen to represent this 
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information in Description Logic (OWL-DL) 
since both the typology embedded in a systemic 
network for KPML and the typology of features 
in the types file for OpenCCG can be derived 
from such descriptions.

3.2 Trinocular View
When classifying symbolic units, we not 

only conceive of them as patterns for 
recognition and for expression (from below), but 
also as bricks for building up a whole with given 
parts and for selecting parts for a planned whole 
(from around), and also as devices for 
construing meaning and for realising it  (from 
above). Therefore, all classes of symbols in our 
symbolic map will be defined based on their 
affordances as patterns, bricks, and devices. So 
our approach is different  from that of Henschel 
(1995; 1997) not only in the fact  that  we will not 
extract  a typology in description logic from a 
systemic network (in fact, we will do the 
opposite), but also in the fact that each structure 
will be specified in our description as three 
particulars: one classified from above, one from 
around, and one from below. The classification 
from above is convertible into KPML-inquiries, 
the classification from around is convertible to 
preselectable grammatical features in KPML, 
and the classification from below is related to 
groups of realisation statements in KPML. The 
definitions of brick classes and of pattern classes 
are responsible for their functions as meaning-
making devices (see Figure 2). In the following, 
w e d i s c u s s h o w t h e s e c o n c e p t s a r e 
operationalised for CCG.

Figure 2. Description of Clause in Protégé

3.3 Word vs Form vs Copy
Moving bottom up in the creation of a 

descriptive theory, we define a token as a 
segment  of text that matches a continuous 
pattern (of phonemes or graphemes) suitable for 
both recognition or expression.

Looking from above, a choice of tokens in a 
token sequence such as helped…out in he helped 
me out represents one single semantic value and 
is here understood as corresponding to a single 
word, namely HelpOut.

Looking from around, a word form – that  of 
which a text token is a copy – is defined as 

composing a particular word and belonging to a 
particular form class. For the word HelpOut, 
there are two tokens and therefore two forms, 
one of them being that of helped  and the other 
one being that of out in he helped me out.

3.4 Pattern vs Brick vs Device
At the leaves of the semantic dependency 

structure are the semantic values of words and at 
the corresponding leaves of the symbolic 
structure are not  words, but  the forms of words. 
In this sense, a particular word form is related to 
three notions: 1) a particular pattern that is used 
for recognising and producing tokens (copy), 2) 
a device for realising and construing meaning 
(word), and 3) a brick for construing larger 
symbolic structures (form). At this point, we 
have a triplicity of composition. While a brick is 
part of a larger symbolic structure, its semantic 
value is part  of a larger semantic structure and 
its physical pattern is recognisable or 
produceable in a larger text. In KPML, a 
semantic structure is specified externally and the 
correspondence between symbolic and semantic 
compositionality is guaranteed by the restriction 
of attaching either the same semantic structure 
or parts of it to the parts of its corresponding 
symbolic structure. In OpenCCG, the same 
compositionality is guaranteed by applying the 
λ-function of an incomplete constituent to the 
values of complete constituents (category 
application) or by composing the λ-functions of 
two cha ined incomple te cons t i tuen t s 
(combinatory rules).

Moreover, symbolic compositionality is 
linear in nature. As reflected in both KPML and 
OpenCCG, the position of symbolic constituents 
may be fixed in relation to other constituents 
while the semantic constituents cannot. For 
instance, the position of nice in relation to day in 
have a nice day is typically realised with the 
operation “order Epithet:nice Classifier:day” in 
KPML while it is embedded in the word 
categories “nice:Classifier/Classifier” and 
“day:Classifier” in OpenCCG.

4 Target: Nigel coverage
We shall propose a map for every structure 

class covered by Nigel by tackling the 
theoretical issues.

4.1 Terms
In Nigel, form classes are used for selecting 

particular forms of a word while in a CCG they 
are used for limiting the applicability of the 
category of a matched token. Usually the form 
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selection and its applicability are related to 
either role or agreement restrictions.

In the Nigel grammar, some word classes are 
defined for automatically creating tokens from 
the stem of a word such as the verb classes “es-
ed” for verbs such as wish (wishes, wished). For 
indicating the existence of irregular patterns, 
there are word classes such as “irr”. There are 
also word classes which are used for controlling 
the selection of a token index based on a set of 
form classes (or inflectional features) such as 
“inflectable”, “noun”, and “verb”. All of these 
word classes together belong to morphology 
because they are meant to guide the selection of 
token models and their modifications into the 
patterns to print out or recognise. With such 
classes, Nigel is able to reduce the description of 
a word to a short code such as the following:
<Word id=“Arrive”>
  <Class name=“Process” />
  <Class name=“EndingWith-e-es-ed-ing” />
  <SampleMap>
    <Sample name=“stem” value=“arrive” />
  </SampleMap>
</Word>

Sample 1. Word Arrive

We store the classes of copies, forms, and 
words in a lexical ontology together with their 
relations. In this way, we are able to generate the 
same systemic network for the rank of word in 
KPML and, at the same time, all word forms and 
word form classes for OpenCCG.

In addition, there are word classes used as 
criteria for selecting words in Nigel. These are 
the grammatical – or closed-class – words. For 
them, there is a number of different selecting 
criteria which are better explained at the ranks 
where these selections are made (clause, phrase, 
or group).

In CCG, the morphological entries are not 
words, but forms. As in KPML, forms have a 
word identifier (stem), inflectional/agreement 
classes (macros), they have an attribute for form 
applicability (pos) and may have an additional 
semantic value in case of lexical words (class). 
Therefore, the word exemplified in Sample 1, 
can be compiled via ontological reasoning into 
the following structure:
<entry word=“arrive”   stem=“Arrive” class=“Arrive”
     macros=“@mode-1 @mention-1 @base @Arrive” />
<entry word=“arrives”  stem=“Arrive” class=“Arrive”
     macros=“@mode-1 @mention-2 @base @Arrive” />
<entry word=“arrive”   stem=“Arrive” class=“Arrive”
     macros=“@mode-1 @mention-3 @base @Arrive” />
<entry word=“arrived”  stem=“Arrive” class=“Arrive”
     macros=“@mode-2 @mention-1 @base @Arrive” />
[…]

Sample 2. Forms of Word Arrive in CCG

A sample word ontology and the java code 
for generating resources can be found at https://
github.com/DanielCoutoVale/SymbolicMap.

4.2 Composites
In the beginning of every traversal of the 

systemic network, a symbolic structure is 
classified either as a clause, a group or phrase, a 
word or a morpheme. By listing all preselectable 
classes, we came to the conclusion that  there is a 
fine-grained rank region that includes not only 
clauses, phrases, groups, and words, but 
subtypes of these. Clauses are either complexes 
or simplexes, either dependent or independent. 
Phrases and groups can be either a nominal 
group, a quantity group, a quality group, an 
adverbial group or a prepositional phrase. These 
subtypes can have further specifications that we 
shall call here, for simplification, clause mode 
and noun group case. At  this point, below the 
preselectable classes, it is possible to propose a 
composite structure whose further specification 
is exclusively semantical and lexical in nature 
and whose fitting is governed exclusively by the 
compositionality of the semantic structure. This 
possibility was also noticed by Henschel in her 
final remarks (Henschel, 1997).

At this point  of the traversal, for each 
particular class of structure, there is a semantic 
correspondent. Sequences are realised by clause 
complexes, Figures by clause simplexes, 
Elements by phrases and groups. Subtypes of 
Elements are realised by subtypes of phrases and 
groups: Circumstances by prepositional phrases 
and adverbial groups, Things by noun groups, 
Qualities by adjectival groups, Quantities by 
quantity groups. Finally, Elements have two 
other subtypes: Processes and Modalities, which 
occupy respectively the heads of clauses and 
phrases (see Figure 3).

Figure 3. OntoGraf of Clause in Protégé

Since we need to allow changing the type of 
complete structures into combinable constituents 
of larger structures during text  analysis, a 
description of symbolic systems must  store more 
information than Nigel at  this point. How these 
type-changes are achieved shall be explained in 
the following.

4.3 Adjuncts
Type changing in OpenCCG provides a way 

to implement  the separation between pattern, 
brick, and device. For instance, this operator 
allows us to create simple rules for very 

88



(Qualification/Qualifier) and nice (Qualifier) to 
result in the complete structure of very nice 
(Qualification). Then, by adding the possibility 
of changing the type Qualification into 
Classifier/Classifier, we are able to turn the 
category of this symbolic structure into an 
adjunct for the classifier wine (Classifier) in this 
is a very nice wine. At  the same time, we still 
allow it to be a complement of the process is 
(Clause\Mention/Qualification) in this wine is 
very nice.

4.4 Grammatical Word Selection
In addition to the currently defined semantic 

elements, the semantic specification of Nigel 
also contains properties for answering semantic 
queries. These semantic queries embed a 
typology of deictics, of tense, and of phase 
inside of the systemic network. In order to 
embed these typologies into word forms, the 
semantic types must be moved to the semantic 
ontology. For instance, the meaning of the in 
KPML is that it  is a ‘nonselective’, ‘nontypic’, 
‘nominal’, and ‘specific’ instantiation of a 
‘class’ of ‘non-interactants’. The grammatical 
feature of the is a subtype of all these other 
features. During text analysis, the can be 
assigned the corresponding grammatical feature 
while the supertypes of this feature can be 
inferred with an ontology after the analysis.

4.5 Specification
In Nigel, there are systems whose features 

are realised either by selecting a unit/form class 
or by creating a head/tail structure. Tense is an 
example of this. On the one hand, positive future 
is realised by adding will (T0-head) and 
selecting the infinitive form for the head of the 
remaining verbal group (T0-tail) such as make in 
it will make sense. On the other hand, positive 
present  is realised by selecting the present form 
for the head of the verbal group (T0-atom) such 
as makes in it makes sense. Therefore, for each 
region in each rank that creates a specification 
of clauses, phrases, or groups, we need to have 
either a head-tail structure or an atom for 
KPML. The respective corresponding structures 
for OpenCCG would be an incomplete category 
or a type-change.

4.6 Complements
Circumstance complements such as of Mary 

in in front of Mary create no new challenges for 
description. Figure complements, on the other 
hand, do. The clause, as the representation of a 
figure (state or event), is a symbolic structure 

whose constituents represent the elements of a 
semantic figure. Nigel adds the representative 
functions of clause constituents in the traversal 
of a figure typology. Each level of the typology 
decides whether a semantic role is present or not 
in the figure and therefore if a constituent must 
have the function of such a role. Roles include 
those of actor, actee, senser, sensum, sayer, 
target, verbiage, carrier, attribute, identified, 
identifier among others. Semantic roles and their 
presence for a given figure type are stored 
outside the system in a separate typology 
(GUM-3) (Bateman et al., 2010). The 
correspondent of the transitivity region in 
OpenCCG would be the mapping of logical 
variables to the diamond modes of a figure node 
as specified in the XML below:
<satop nomvar=“SimpleAction”>
     <diamond mode=“hasProcess”>
          <nomvar name=“Process”/>
     </diamond>
     <diamond mode=“hasActor”>
          <nomvar name=“Actor”/>
     </diamond>
</satop>

Sample 3. Logical Form in OpenCCG

Which process words can be used in each 
figure type need not  be defined in KPML 
because both the figure type (SimpleAction, 
AffectingAction, etc.) and the process type 
(Running, Jumping, Singing, Seeing, etc.) are 
defined in the semantic specification that is 
passed to KPML as an input  for text synthesis. 
This mapping from process types to figure types 
is necessary in OpenCCG and, therefore, 
process words need to be assigned process types 
so that  SimpleActionProcesses are associated 
with a derivation family that has a medium/
actor, and so that AffectingActionProcesses are 
associated with a derivation family that has an 
agent/actor and a medium/goal, and so on. The 
whole set of rules involving transitivity can be 
automatically derived from a typology of figures 
both for KPML and for OpenCCG that includes 
such process classes.

In addition, in KPML, voice is implemented 
by mapping the transitive functions described 
above (actor, actee, recipient, senser, sensum, 
sayer, target...) to a smaller set of ergative 
functions (agent, medium, beneficiary). For 
example, the clause the duke gave my aunt the 
teapot has the duke as actor, my aunt as recipient 
and the teapot as goal in the transitive structure 
and the duke as agent, my aunt as beneficiary, 
and the teapot as medium in the ergative 
structure. For each figure type, there is a 
mapping of specific transitive functions to 
ergative functions. The ergative functions are the 
ones that get mapped to the subject, the direct(-
object) and the indirect(-object) functions 
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depending on the voice (agent-receptive voice, 
medium-receptive voice, and beneficiary-
receptive voice). To implement a similar voice  
construct in OpenCCG, we propose a strategy of 
moving the mapping of transitive-ergative 
functions to a secondary step of reasoning after 
text analysis (example in https://github.com/
DanielCoutoVale/SymbolicMap). After doing 
this, the actual voice structure can be 
implemented with categories such as Clause
\Mention/Mention/Mention/Process for the 
auxiliary word was in the teapot was given by 
the duke to my aunt and with the type changing 
rule Process –> Clause\Mention/Mention/
Mention applied to the Process gave in the duke 
gave my aunt a teapot. Which category or rule 
to apply depends on the ergative functions of 
each figure type – e.g. figures with a medium 
and no agent  do not  have a “passive” form. 
Culmination – the choice between the teapot 
was given my aunt by the duke and the teapot 
was given by the duke to my aunt – was realised 
in OpenCCG together with voice.

5 Evaluation
For evaluation, we targeted the only real 

challenge in the relation between Nigel and our 
CCG (clause complements) by creating a simple 
symbolic map with two ranks (clause and 
mention), with three figure types, three voices 
and two culminations (complements). This 
resource was compiled into a systemic network 
and into combinatory categories and type 
change rules successfully. Text synthesis and 
text analysis work as intended, that  is, 
algorithmically without  backtracking. For 
instance, the automatically generated CCG gives 
the correct standard analysis for the duke gave 
my aunt the teapot according to SFG as seen in 
the Table 1:

the duke gave my aunt the teapot

Actor Process Recipient Goal

Agent Beneficiary Medium

Table 1. Analysis for the duke as subject

For utterances such as my aunt was given the 
teapot by the duke see Tables 2-3, two 
hypotheses of analysis are given by CCG. Both 
analyses are correct  if only symbolic and 
semantic compositionality is taken into account. 
An analysis, according to which the teapot 
receives someone’s aunt  (Table 3), can only be 
discarded when knowledge about  the world (and 
not about language) is applied.

my aunt was given the teapot by the 
duke

Recipient Process Goal Actor

Beneficiary Medium Agent

Table 2. Analysis 1 for my aunt as subject

my aunt was given the teapot by the 
duke

Goal Process Recipient Actor

Medium Beneficiary Agent

Table 3. Analysis 2 for my aunt as subject

The compilation speed for OpenCCG word 
forms is very slow: one second per word form 
on a computer with 2.6 Ghz processor. The 
compilation of OpenCCG combinatory 
categories, type changing rules, KPML lexicon 
and network, on the other hand, is efficient. 
Once compiled, the speed of text  analysis is that 
of a regular hand-written resource for OpenCCG 
and is equivalent in size and quality through 
code inspection. 

6 Conclusion
In this paper, we have shown that task-

oriented resources for KPML and OpenCCG do 
not contain the necessary information for doing 
the inverse task and that  their directed rules 
cannot encode the information that  is necessary 
for the resources to become reversible.

Therefore, we have adopted a third strategy 
of creating a completely descriptive map 
between symbolic and semantic structures that 
can be compiled into a systemic network and 
into combinatory categories and type changing 
rules.

Our evaluation has shown that the approach 
is sound and is able to solve previously 
identified issues on a theoretical level. However, 
we are still unsure about the amount  of 
engineering resources that would be needed in 
order to complete the same coverage of Nigel 
within such a paradigm. Nevertheless, from the 
pilot study undertaken, the approach appears 
promising.
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