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Abstract

Segmentation of spoken discourse into
distinct conversational activities has been
applied to broadcast news, meetings,
monologs, and two-party dialogs. This
paper considers the aspectual properties
of discourse segments, meaning how they
transpire in time. Classifiers were con-
structed to distinguish between segment
boundaries and non-boundaries, where the
sizes of utterance spans to represent data
instances were varied, and the locations
of segment boundaries relative to these in-
stances. Classifier performance was better
for representations that included the end of
one discourse segment combined with the
beginning of the next. In addition, classi-
fication accuracy was better for segments
in which speakers accomplish goals with
distinctive start and end points.

1 Introduction

People engage in dialogue to address a wide range
of goals. It has long been observed that discourse
can be structured into units that correspond to dis-
tinct goals and activities (Grosz and Sidner, 1986;
Passonneau and Litman, 1997). This is concep-
tually distinct from structuring discourse into the
topical units addressed in (Hearst, 1997). The
ability to recognize where distinct activities oc-
cur in spoken discourse could support offline ap-
plications to spoken corpora such as search (Ward
and Werner, 2013), summarization (Murray et al.,
2005), and question answering. Further, a deeper
understanding of the relation of conversational
activities to observable features of utterance se-
quences could inform the design of interactive sys-
tems for online applications such as information
gathering, service requests, tutoring, and compan-
ionship. Automatic identification of such units,

however, has been difficult to achieve. This pa-
per considers the aspectual properties of speak-
ers’ conversational activities, meaning how they
transpire in time. We hypothesize that recognition
of a transition to a new conversational activity de-
pends on recognizing not only the start of a new
activity but also the end of the preceding one, on
the grounds that the relative contrast between end-
ings and beginnings might matter as much or more
than absolute characteristics consistent across all
beginnings or all endings. We further hypothesize
that transitions to certain kinds of conversational
activity may be easier to detect than others.

Following Austin’s view that speech constitutes
action of different kinds (Austin, 1962), we as-
sume that different kinds of communicative ac-
tion have different ways of transpiring in time,
just as other actions do. Conversational activities
that address objective goals, for example, can have
very well-demarcated beginnings and endings, as
when two people choose a restaurant to go to
for dinner. Conversational participants can, how-
ever, address goals that need not have a specific
resolution, such as shared complaints about the
lack of good Chinese restaurants. This distinction
between different kinds of actions that speakers
perform through their communicative behavior is
analogous to the distinction in linguistic semantics
pertaining to verbal aspect, between states, pro-
cesses and transition events (or accomplishments
and achievements) (Vendler, 1957) (Dowty, 1986).
States (e.g., being at a standstill) have no percep-
tible change from moment to moment; processes
(e.g., walking) have detectable differences in state
from moment to moment with no clearly demar-
cated change of state during the process; transition
events (e.g., starting to walk; walking to the end
of the block) involve a transition from one state or
process to another.

To investigate the aspectual properties of dis-
course segments, we constructed classifiers to de-
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tect discourse segment boundaries based on fea-
tures of utterances. We considered the aspec-
tual properties of discourse segments in two ways.
First, to investigate the relative contribution of
features from segment endings versus beginnings,
we experimented with different sizes of utter-
ance sequences, and different locations of seg-
ment boundaries relative to these sequences. Sec-
ond, we considered different categories of seg-
ments, based on the speculation that segment tran-
sitions that are easier to recognize would be as-
sociated with conversational activities that have
a well-demarcated event structure, in constrast to
activities that involve goals to maintain or sustain
aspects of interaction.

The following section describes related work in
this area, as well as the difficulties in achieving
good performance. Most work on identification of
discourse segments (or other forms of discourse
structure in spoken interaction) depends on a prior
phase of annotation (e.g., (Galley et al., 2003; Pas-
sonneau and Litman, 1997)). We studied a corpus
of eighty-two transcribed and annotated telephone
dialogues between library patrons and librarians
that had been annotated with units analogous to
speech acts, and subsequently annotated with dis-
course segments comprised of these units. The an-
notation yielded eight distinct kinds of discourse
segment, where a segment results from a linear
segmentation of a discourse into strictly sequential
units. (While the segmentation is sequential, the
units can have hierarchical relations.) We found
that classifiers to detect segment boundaries per-
formed best with boundaries represented by fea-
tures of sequences of utterances that spanned the
end of one segment and the beginning of the next.
Error analysis indicated that performance was bet-
ter for boundaries that initiate conversational ac-
tivities with clear beginnings and endings.

2 Related Work

Segmentation of spoken language interaction into
distinct discourse units has been applied to meet-
ings as well as to two-party discourse using acous-
tic features, lexical features, and very heteroge-
neous features. In our previous work, we used
a very heterogeneous set of features to segment
monologues into units that had been identified
by annotators as corresonding to distinct inten-
tional units (Passonneau and Litman, 1997). Text
tiling (Hearst, 1997) has been applied to segmen-

tation of meetings into distinct agenda segments
using both prior and following context (Baner-
jee and Rudnicky, 2006). Results had high pre-
cision and low recall. We also find that recall is
more challenging than precision. Topic modeling
methods have also been applied to the identifica-
tion of topical segments in speech (Purver et al.,
2006) (Eisenstein and Barzilay, 2008), with im-
provements over earlier work on the ICSI meeting
corpus (Galley et al., 2003) (Malioutov and Barzi-
lay, 2006).

An analog of text tiling that uses acoustic pat-
terns rather than lexical items has been applied to
the segmentation of speech into stories using seg-
mental dynamic time warping (SDTW) (Park and
Glass, 2008). The method is based on the intuition
of aligning utterances by similar acoustic patterns,
possibly representing common words and phrases.
Results on TDT2 Mandarin Broadcast News cor-
pus were moderately good for short episodes with
F=0.71 beating the baseline for lexical text tiling
of 0.66, but poor on long episodes.

An alternative method of relying solely on
acoustic information has been applied to impor-
tance prediction at a very fine granularity (Ward
and Richart-Ruiz, 2013). Four basic classes
of prosodic features derived from PCA were
used (Ward and Vega, 2012): volume, pitch
height, pitch range and speaking rate cross various
widths of time intervals. The data was labeled by
annotators using an importance scale of 1 to 5, and
linear regression was used to predict the label for
instances consisting of frames. The method per-
formed well with a correlation of 0.82 and mean
average error of 0.75 (5-fold cross validation).

The identification of different kinds of units in
discourse is somewhat related to the notion of
genre identification, e.g. (Obin et al., 2010) (Ries
et al., 2000). Results from this area have been ap-
plied to segmentation of conversation by a combi-
nation of topic and style (Ries, 2002).

3 Data and Annotations

The corpus consists of recordings, transcripts and
annotations on the transcripts of a set of 82 calls
recorded in 2005 between patrons of the Andrew
Heiskell Braille and Talking Book Library of New
York City.1 An annotation for dialog acts with a

1The audio files and transcripts are available for download
from the Columbia University Data Commons. The annota-
tions and raw features will be released in the near future.
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reduced set of dialog act types and adjacency pair
relations (Dialogue Function Units, DFUs) was
developed, originally for comparison of dialogues
across modalities (Hu et al., 2009). A subsequent
phase of annotation at the discourse level that
makes use of the dialog act annotation was later
applied. This later annotation, referred to as Task
Success and Cost Annotation (TSCA), was aimed
at identifying individual dialog tasks analogous to
those carried out by spoken dialog systems, to fa-
cilitate comparison of human-human dialog with
human-machine dialog. Interannotator reliability
of both annotations was measured using Krippen-
dorff’s alpha (Krippendorff, 1980) at levels of 0.66
and above for individual dialogues (Passonneau et
al., 2011). The corpus consists of 24,760 words,
or 302 words per dialog.

Briefly, the second phase of annotation involved
grouping DFUs into larger sequences in which
the participants continued to pursue a single co-
ordinated activity, and labeling the large discourse
units for their discourse function. The human an-
notation instructions avoided reference to overt
signals of dialog structure. Rather, annotators
were asked to judge the semantic and pragmatic
functions of utterances. The annotations have been
described in previous work (Hu et al., 2009; Pas-
sonneau et al., 2011); the annotation guidelines are
available online.2

The location of a transition between one con-
versational activity and the next is represented as
occurring between adjacent utterances. There are
9,340 utterance in the corpus, or 114 per dialog.
About 10.6 percent of the utterances (994) start a
new discourse unit. Within each unit, the speak-
ers establish a conversational goal explicitly or im-
plicitly, and continue to address the goal until it
is achieved, suspended, or abandoned. The dis-
course segments were of the following seven cate-
gories, with an additional Other category for none
of the above (examples from the corpus are shown
after each segment category description; words
in brackets represent overlapping talk of the two
speakers):

• Conventional: The participants engage in
conventionalized behavior, e.g., greetings (at
the beginning of the call) or goodbyes (at the
end of the call).

2See links at http://www1.ccls.columbia.
edu/˜Loqui/resources.html for transcription
guidelines, and annotation manuals.

Librarian: andrew heiskell library
Librarian: how are you
Patron: good morning
Librarian: good morning

• Book-Request: The participants address a pa-
tron’s request for a book, which can be a spe-
cific book that first needs to be identified,
or which can be a non-specific request for a
book fitting some criterion (e.g., a mystery
the patron has not read before).

Patron: do you have any fannie flagg stories
Librarian: flag
Patron: yeah
Patron: F L A <Pause>
Patron: A G G I think it is

• Inform: One of the participants provides the
other with general information that does not
support a Book Request, e.g., the patron pro-
vides identifying information so the librarian
can pull up the patron’s record.

Patron: well I’ll call him again then
Patron: and I’ll get the name [today]
Librarian [talk] to him and call me back
Patron: <pause> i- i’ll call him
Patron: and then i’ll call you okay
Librarian: okay

• Librarian-Proposal: The participants address
the librarian’s suggestion of a specific book
or a kind of book that might meet the patron’s
desires.

Librarian: I have ellis but not bret
Patron: ah wa wa what do you have by him
Librarian: by cose
Librarian: C O S E
Librarian: I have the rage of a privileged class
Patron: that’s all right

• Request-Action: One of the participants asks
the other to perform an action, e.g., the pa-
tron asks that certain authors be added to the
patron’s list of preferences

Patron: also <pause> uh
Patron: <pause> of the favorite author list
Librarian: mmhm
Patron: would you um
Patron: remove t jefferson parker
Librarian: okay
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• Information-Request: One of the participants
seeks information from the other, e.g., the pa-
tron wants to know if

Patron: this is the talking books right
Librarian: yes
Librarian: this is the library for the blind

• Sidebar: The librarian temporarily takes a
call from another Patron only long enough to
place the new caller on hold

Librarian: hold on one second
Librarian: Andrew Heiskell Library
Librarian: please hold

• Other

Of these seven kinds of discourse units, Book-
Requests and Librarian-Proposals are the most
clearly delimited by beginning and ending points.
At the beginning of a Book-Request, the patron
establishes that she wants a book, and the end is
identified by the mutual achievement of the librar-
ian and patron of either a successful resolution,
meaning the identification of a particular book in
the library’s collection that the patron will accept,
or a failure of the current attempt, which often
leads to a new revised book request. Librarian-
Proposals are very parallel to Book-Requests; the
difference is that the librarian makes a suggestion
of a specific book or kind of book which must be
identified for the patron, and which the patron then
accepts or rejects.

4 Experiments

The experiments to automatically identify the lo-
cations of the annotated discourse units apply ma-
chine learning to instances consisting of utterance
sequences that represent the two classes, presence
versus absence of a boundary. We hyothesize
that the enormous challenges for identifying dis-
course structure in human-machine dialogue can
be better addressed through complementary re-
liance on semantics and interaction structure (be-
havioral cues), and each can reinforce the other.
The main focus of the experiments reported here
is on data representation to address the questions,
what features of the context support the ability
to segment a dialogue into conversational activity
units, and how much context is necessary?

A disadvantage of the dataset is its relatively
small size, especially given the extreme skew with
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Figure 1: Schematic representation of instance
spans and labels. Bars on the left show the num-
ber of utterances (size) and position of segment
boundary (position) for five of the fourteen types
of instances. Positive and negative labels are
shown on the descriptions at the right.

the positive class consisting of only 10% of the in-
stances. On the other hand, the small size made
detailed annotation feasible, and the corpus is
well-suited to our research question in that it rep-
resents naturally occurring, spontaneous human-
human telephone discourse. Therefore. the man-
ner in which the dialogs evolve over time is en-
tirely natural. Our major question of interest is
how much of the time-course of the discourse is
required for a machine learner to identify the start
of a new discourse unit. To examine this question,
we vary two dimensions of the representation of
the instances for learning. The first is the number
of utterances around the location of the start of a
new discourse unit. The second is the set of fea-
tures to represent each instance, which as we will
see below, affects to some degree how many utter-
ances to include before and after the start of a new
discourse unit.

Four machine learning methods were tested us-
ing the Weka toolkit (Hall et al., 2009): Naive
Bayes, J48 Decision Trees, Logistic Regression
and Multilayer Perceptron. Of these, J48 had the
best and most consistent performance, which we
speculate is due to a combination of the small size
of the dataset, and non-linearity of the data. Be-
cause J48 is doing feature selection while building
the tree, it can identify different threshholds for
the same features, depending on the location in the
tree. All results reported here are for J48.

4.1 Labels and Instance Spans

We refer to a sequence of utterances, and a poten-
tial location of the onset of a discourse unit relative
to that sequence, as a span. We varied the num-
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ber of utterances for each span from 1 to 4, and
the location of the start of a new unit to be at the
beginning of the first utterance, at the end of the
last utterance, or between any pair of utterances in
the span. For a single utterance, there will be two
types of instances, as shown in Figure 1. Each in-
stance type is represented as S<N>P<M> where
N is the number of utterances in the span and M is
how many utterances there are before the bound-
ary. S1P0 denotes size 1 spans with the boundary
at position 0; positively labeled instances repre-
sent the first utterance of a segment. S1P1 denotes
size 1 spans with the boundary at position 1; posi-
tively labeled instances represent the last utterance
of a segment. The experiments used all labelings
for spans from size 1 to 4, yielding 14 types of
instances. For multi-utterance spans that occur at
the beginning or end of a discourse, dummy utter-
ances are used to fill out the spans.

4.2 Features
We use three sets of features. A set we refer to
as discourse features consists of a mixed set of
acoustic features and lexicogrammatical features
that have been associated with discourse structure,
such as discourse cue words (Hirschberg and Lit-
man, 1993). Table 1 lists the 35 discourse features.
The second set is a bag-of-words (BOW) vector
representation, and the third is the combination of
the discourse and BOW features. We used alterna-
tive sets of features on the assumption that the per-
formance of a machine learner across the differ-
ent instance spans will vary, depending on the as-
pects of the utterance that the features capture. We
see some expected differences in performance be-
tween the discourse features and BOW, with BOW
benefitting more than the discourse features from
longer spans. Unexpectedly, we see no gain in
performance from the combination of both feature
sets.

The discourse features consist of acoustic fea-
tures, pause features, word and utterance length
features, proper noun features and speaker change.
The acoustic features and the (unfilled) pause lo-
cation and duration features were extracted using
Praat, a cross-platform tool for speech analysis.
The features pertaining to filled pauses (e.g., um,
uh) were extracted from the transcripts.

4.3 Conditions and Evaluation
The experimental conditions varied the feature set,
the selection of training data versus testing data,

and the fourteen kinds of instance spans and la-
bels. Three feature sets consisted of the discourse
features from Table 1 (discourse), bag-of-words
(bow), and the combination of the two (combo).
In all experiments, the data was randomly split
into 75% for training, and 25% for testing, us-
ing two methods to select instances. In random-
ization by dialog, all utterances from a single di-
alog were kept together and 75% of the dialogs
were selected for training. In randomization by
utterance, 75% of all utterances were randomly
selected for training, without regard to which di-
alog they came from. This was done to test the
hypothesis that the bow representation would be
more sensitive to changes of vocabulary across di-
alogs. The three feature sets, fourteen data rep-
resentations and two randomization methods yield
84 experimental conditions.

While N-fold cross-validation is a popular
method to estimate a classifier’s prediction error,
it is not a perfect substitute for isolating the train-
ing data from the test data (Ng, 1997). The cross-
validation estimate of prediction error is relatively
unbiased, but it can be highly variable (Efron and
Tibshirani, 1997)(Rodriguez et al., 2010). To
avoid the inherent risk of overfitting (Ng, 1997),
one recommendation is to use cross-validation to
compare models, and to reserve a test set to verify
that a selected classifier has superior generaliza-
tion (Rao and Fung, 2008). To assess whether per-
formance measures of different models are gen-
uinely different requires error bounds on the result,
which is not done with cross-validation. We per-
form train-test splits of the data to minimize over-
fitting, and bootstrap confidence intervals for each
classifier’s accuracy (and other metrics) in order to
measure the variance, and thereby assess whether
the performance error bounds of two conditions
are distinct.

5 Results

Given that for this data, the rate of segment
boundary instances (positive labels) is about 10%,
a baseline classifier that always predicts a non-
segment will have about 90% overall accuracy.
The baseline column in Table 2 shows the aver-
age accuracy that would be achieved by this sim-
ple baseline on the test data for a given run, along
with the bootstrapped confidence interval for this
baseline over the 50 runs. In the 84 experiments,
the baseline ranged from 90% (+/- 1%) to 89% (+/-
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Interaction feature
1 Speaker whether there is a speaker switch between preceding utterance and current utterance

Acoustic features
2 Pitch MIN Minimum pitch of the utterance
3 Pitch MAX Maximum pitch of the utterance
4 Pitch MEAN Mean pitch of the utterance
5 Pitch STDV Standard deviation of the pitch of the utterance
6 Pitch RANGE Maximim pitch of the utterance less the minimum pitch
7 Pitch CHANGE Pitch MEAN of the current utterance less the Pitch MEAN of the preceding utterance
8 Intensity MIN Minimum intensity of the utterance
9 Intensity MAX Maximum intensity of the utterance

10 Intensity MEAN Mean intensity of the utterance
11 Intensity STDV Standard deviation of the intensity of the utterance
12 Intensity RANGE Intensity MAX less Intensity MIN
13 Intensity CHANGE Intensity MEAN of the current utterance less Intensity MEAN of preceding utterance
14 LR1 Utterance duration
15 LR1 Normalized Utterance duration normalized by each speaker independently

Lexical features
16 LR2 1 Word count
17 LR2 2 Word count normalized by speaker
18 LR3 1 Words per second
19 LR3 2 Words per second by speaker
20 LR4 Average word length
21 LR5 Maximum word length
22 LR6 1 Average frequency of characters in the utterance
23 LR6 2 Number of low frequency characters
24 IR Number of content words
25 PN 1 Number of named entities
26 PN 2 Whether the utterance contains a new named entity

Pause features
27 Pause DURT total duration of all pauses
28 Pause RATIO proportion utterance consisting of pauses
29 FP1 Presence of a filled pause at the beginning of an utterance
30 FP2 Presence of a filled pause at the end of an utterance
31 FP3 Presence of a filled pause in the middle of an utterance
32 P1 Presence of a pause tag at the beginning of an utterance
33 P2 Presence of a pause tag at the end of an utterance
34 P3 Presence of a pause tag in the middle of an utterance

Table 1: Discourse Features

1%). Crucially, however, the simple baseline will
fail to identify any of the members of the positive
class. Though it is difficult to beat the baseline
on overall accuracy, the question addressed here
is what level of accuracy is achieved on the pos-
itive class, while remaining relatively consistent
with the baseline on overall accuracy. It should
be noted that accuracy on the positive class is the
same as recall, or sensitivity (the term used in the
epidemiological literature). The worst perform-
ing classifier among the 84 (disc/utterance/ S1P4)
achieves 83% (+/- 1%) accuracy overall, or below
the baseline by 6%, with 11% accuracy on the pos-
itive class, 100% of which is a gain over the base-
line. By this standard, the best classifier of the 84
conditions (bow/dial/S4P1) matches the baseline
on overall accuracy, and achieves 50% (+/- 5%)
accuracy on the positive class, which far exceeds
the baseline. About half of the experimental con-
ditions meet the baseline and achieve at least 25%

accuracy on the positive class.

Overall accuracy, and accuracy on the positive
class, measure prediction error, but can be supple-
mented with additional metrics that facilitate anal-
ysis of the nature and cost of error types. As a sup-
plementary metric, we report average F-measure,
the harmonic mean of recall and precision, due to
its familiarity, and because it provides a sense of
how often a classifier incorrectly predicts the pos-
itive class. An F-measure close to accuracy on the
positive class indicates that precision is about the
same as recall, while a relatively higher F-measure
indicates that the precision is even higher than the
F-measure, and the converse is true when the F-
measure is lower than accuracy on the positive
class. Table 2 shows 32 classifiers with the high-
est measures of accuracy, accuracy on the positive
class, and F-measure. The confidence intervals for
accuracy on the positive class and F-measure are
rather wide, compared to those for overall accu-
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Exp. Baseline (sd) Acc (sd) AccPos(Recall) (sd) F (sd) >Accpos > F
bow/dial/S4P1 0.89 (+/-0.010) 0.89 (+/-0.009) 0.42 (+/-0.082) 0.28 (+/-0.054) 22 11
bow/dial/S4P2 0.90 (+/-0.013) 0.89 (+/-0.010) 0.39 (+/-0.071) 0.26 (+/-0.064) 22 3
bow/utterance/S1P0 0.90 (+/-0.004) 0.90 (+/-0.005) 0.51 (+/-0.051) 0.26 (+/-0.034) 30 11
bow/utterance/S4P0 0.89 (+/-0.005) 0.88 (+/-0.006) 0.43 (+/-0.049) 0.26 (+/-0.040) 23 10
disc/dial/S2P1 0.90 (+/-0.009) 0.87 (+/-0.009) 0.32 (+/-0.059) 0.26 (+/-0.037) 4 10
bow/utterance/S4P3 0.89 (+/-0.006) 0.88 (+/-0.005) 0.41 (+/-0.050) 0.25 (+/-0.027) 22 11
combo/dial/S3P2 0.89 (+/-0.011) 0.86 (+/-0.010) 0.31 (+/-0.048) 0.25 (+/-0.031) 7 10
disc/dial/S4P3 0.90 (+/-0.008) 0.86 (+/-0.009) 0.30 (+/-0.041) 0.25 (+/-0.030) 4 10
combo/dial/S3P1 0.89 (+/-0.010) 0.86 (+/-0.011) 0.31 (+/-0.059) 0.25 (+/-0.038) 3 10
combo/dial/S4P2 0.89 (+/-0.013) 0.86 (+/-0.012) 0.30 (+/-0.044) 0.25 (+/-0.031) 4 10
combo/dial/S2P1 0.89 (+/-0.012) 0.87 (+/-0.010) 0.32 (+/-0.054) 0.25 (+/-0.033) 7 10
combo/dial/S4P3 0.90 (+/-0.007) 0.87 (+/-0.008) 0.29 (+/-0.044) 0.25 (+/-0.035) 4 10
disc/dial/S3P2 0.90 (+/-0.008) 0.87 (+/-0.008) 0.29 (+/-0.047) 0.25 (+/-0.040) 3 10
bow/utterance/S4P1 0.90 (+/-0.005) 0.89 (+/-0.004) 0.40 (+/-0.053) 0.25 (+/-0.020) 22 10
bow/dial/S4P3 0.90 (+/-0.007) 0.89 (+/-0.009) 0.39 (+/-0.072) 0.25 (+/-0.035) 22 10
disc/dial/S4P2 0.90 (+/-0.009) 0.86 (+/-0.009) 0.28 (+/-0.042) 0.25 (+/-0.030) 0 10
bow/dial/S1P0 0.90 (+/-0.009) 0.89 (+/-0.009) 0.48 (+/-0.065) 0.24 (+/-0.045) 28 0
combo/dial/S4P1 0.90 (+/-0.010) 0.86 (+/-0.010) 0.28 (+/-0.045) 0.24 (+/-0.034) 0 9
disc/dial/S3P1 0.89 (+/-0.011) 0.86 (+/-0.010) 0.29 (+/-0.046) 0.24 (+/-0.033) 2 9
bow/dial/S4P0 0.90 (+/-0.009) 0.88 (+/-0.011) 0.37 (+/-0.031) 0.24 (+/-0.040) 22 0
disc/dial/S4P1 0.90 (+/-0.009) 0.86 (+/-0.008) 0.27 (+/-0.041) 0.23 (+/-0.032) 0 3
bow/utterance/S4P2 0.89 (+/-0.007) 0.88 (+/-0.010) 0.39 (+/-0.044) 0.23 (+/-0.033) 22 0
combo/utterance/S2P0 0.89 (+/-0.005) 0.86 (+/-0.009) 0.27 (+/-0.041) 0.21 (+/-0.029) 0 0
disc/dial/S2P0 0.89 (+/-0.010) 0.86 (+/-0.009) 0.27 (+/-0.047) 0.20 (+/-0.027) 0 0
disc/utterance/S2P0 0.90 (+/-0.006) 0.86 (+/-0.008) 0.26 (+/-0.032) 0.20 (+/-0.024) 0 0
combo/utterance/S1P0 0.89 (+/-0.005) 0.88 (+/-0.006) 0.31 (+/-0.041) 0.20 (+/-0.026) 10 0
combo/utterance/S3P0 0.90 (+/-0.005) 0.86 (+/-0.008) 0.25 (+/-0.038) 0.20 (+/-0.033) 0 0
disc/utterance/S4P3 0.89 (+/-0.006) 0.86 (+/-0.009) 0.24 (+/-0.043) 0.20 (+/-0.033) 0 0
combo/utterance/S2P1 0.89 (+/-0.006) 0.86 (+/-0.008) 0.26 (+/-0.036) 0.20 (+/-0.023) 0 0
disc/utterance/S2P1 0.89 (+/-0.005) 0.86 (+/-0.007) 0.26 (+/-0.032) 0.20 (+/-0.022) 0 0
combo/utterance/S4P1 0.89 (+/-0.006) 0.85 (+/-0.008) 0.24 (+/-0.033) 0.20 (+/-0.027) 0 0
disc/utterance/S4P0 0.89 (+/-0.006) 0.85 (+/-0.009) 0.24 (+/-0.034) 0.20 (+/-0.024) 0 0

Table 2: Classification performance (with standard deviations in parentheses) of the best 40% of 84
J48 models trained on 75% of the data and tested on the remaining 25%, with bootstrapped confidence
intervals from 50 trials each.

racy. To draw comparisons among the classifiers
that take into account this variance, the two right-
most columns of the table indicate for each clas-
sifier how many other classifiers in the same ta-
ble the current classifier surpasses on mean accu-
racy of the positive class, or on mean F-measure.
Here, to surpass another classifier means the lower
bound of its confidence interval surpasses the up-
per bounds of other classifiers’ confidence inter-
vals.

Table 2 shows that there is no one classifier that
surpasses all others on all measures. There are,
however, some clear trends. Regarding the num-
ber of utterances spanned by each data instance,
the table shows that of the 32 best performing clas-
sifiers, the majority (seventeen) have size 4 spans,
and all but three have spans longer than a single
utterance. This trend indicates that more context
leads to better accuracy overall and better accuracy
on the positive class. Regarding where the seg-
ment boundary is located relative to the span, the
majority of cases (twenty-two) locate the bound-

ary within the span, meaning that the span includes
one or more of the final utterances of a segment
and one or more of the initial utterances of the next
segment. The remaining cases involve spans that
include utterances only from the beginning of the
segment. There are no cases of higher perform-
ing classifiers that use spans from segment end-
ings. Among the classifiers in the top half of the
table, the best performing bow classifiers surpass
a larger number of the other classifiers on accu-
racy of the positive class. The best performing dis-
course or combination classifiers surpass a larger
number of other classifiers on F-measure. This
suggests that in general, the bow classifiers do bet-
ter on recall and the classifiers with discourse fea-
tures have higher precision.

The combination of BOW and discourse fea-
tures has a performance that differs little from the
discourse features alone, and does not do as well
as BOW S4P1. This result was unexpected, and
suggests that the bow and discourse feature sets
often identify nearly the same set of discourse
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Discourse, Rand Dial, S4P3
Activity Type TP % FN %
Inform 7 (0.11) 56 (0.89)
Book Request 18 (0.32) 40 (0.68)
Librarian Proposal 4 (0.27) 11 (0.73)
Request-Action 0 (0.00) 6 (1.00)
Information-Request 6 (0.11) 47 (0.89)
Sidebar 1 (0.08) 11 (0.92)
Conventional 5 (0.17) 25 (0.83)
Total 37 (0.14) 230 (0.86)

BOW, Rand Dial, S4P2
Inform 7 (0.10) 70 (0.90)
Book Request 14 (0.20) 57 (0.80)
Librarian Proposal 1 (0.05) 20 (0.95)
Request-Action 0 (0.00) 5 (1.00)
Information-Request 8 (0.16) 42 (0.84)
Sidebar 0 (0.00) 13 (1.00)
Conventional 6 (0.23) 29 (0.77)
Total 37 (0.14) 230 (0.86)

Table 3: Error Analysis of the Positive Class

boundaries. Since the initial utterances of a seg-
ment seem to have features with greater predictive
power than the final utterances of a segment, and
since discourse cue words tend to occur in the first
utterance or so of a segment, it could be that dis-
course cue words explain the good performance
of both sets of features. This could be tested in fu-
ture work by restricting a BOW representation to
words other than discourse cue words.

To pursue in more detail the factors that influ-
ence accuracy on the positive class (recall), we
now turn to an error analysis of the kinds of dis-
course units associated with true positives versus
false negatives of the classifier’s confusion matrix.
Table 3 presents the results of an error analysis of
the two cells of the confusion matrix for a clas-
sifier’s results on the positive class, the true pos-
itives and the false negatives. We looked at the
breakdown of the seven kinds of discourse units
to see whether there were differences in the like-
lihood of a correct identification of a boundary,
depending on the kind of discourse unit in ques-
tion. Results are drawn from classifiers learned
under two conditions, S4P3 spans with discourse
features randomized by dialogue (disc/dial/S4P3)
and S4P3 spans with BOW features, randomized
by dialogue (bow/dial/S4P3). (Results from other
classifiers are very similar.) In both cases, Book-
Requests have a much higher probability of be-
ing among the true positives (32% for discourse,
20% for BOW) than for the positive class over-
all (14%). Conventional discourse units, where
the participants first make their greetings, or make
their final good byes, are also correctly identified

more often than the overall TP rate. Librarian Pro-
posals are identified well by the model using the
discourse features, but not by the one using the
BOW features. We speculate that this is because
Librarian Proposals typically present information
that is new to the discourse: often, the librarian
is making a suggestion to the patron based on in-
formation the librarian can see in the preference
field of the patron’s record, or in the patron’s past
borrowing behavior. We speculate that the vocab-
ulary in Librarian Proposals may be too variable
to be predictive. Information-Request units and
Inform units are also relatively difficult to identify
correctly.

6 Conclusion

The problem of identification of conversational ac-
tivities is a difficult one for machine processing for
many reasons. Like vision and speech, segmenta-
tion of the units is difficult because the units are
not discrete, objective, components of perception,
but instead are the result of abstraction. The exper-
iments presented here consider a novel explana-
tion for the difficulty of the task, which is that dis-
course units differ from each other regarding the
manner in which they evolve in time. The results
show that a data representation that includes utter-
ances from both the end of one unit and the begin-
ning of another improves performance. The tran-
sition between one conversational activity and an-
other takes place over the course of several utter-
ances, rather than occurring at an instant in time.
Error analysis indicates further that discourse units
that correspond to conversational activities with
clear end points that can be achieved have a higher
probability of being recognized correctly.
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