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Abstract

Dependency structure provides grammat-
ical relations between words, which have
shown to be effective in Statistical Ma-
chine Translation (SMT). In this paper, we
present an open source module in Moses
which implements a dependency-to-string
model. We propose a method to trans-
form the input dependency tree into a cor-
responding constituent tree for reusing the
tree-based decoder in Moses. In our ex-
periments, this method achieves compara-
ble results with the standard model. Fur-
thermore, we enrich this model via the
decomposition of dependency structure,
including extracting rules from the sub-
structures of the dependency tree during
training and creating a pseudo-forest in-
stead of the tree per se as the input dur-
ing decoding. Large-scale experiments
on Chinese–English and German–English
tasks show that the decomposition ap-
proach improves the baseline dependency-
to-string model significantly. Our sys-
tem achieves comparable results with the
state-of-the-art hierarchical phrase-based
model (HPB). Finally, when resorting to
phrasal rules, the dependency-to-string
model performs significantly better than
Moses HPB.

1 Introduction

Dependency structure models relations between
words in a sentence. Such relations indicate
the syntactic function of one word to another
word. As dependency structure directly encodes

semantic information and has the best inter-lingual
phrasal cohesion properties (Fox, 2002), it is be-
lieved to be helpful to translation.

In recent years, dependency structure has been
widely used in SMT. For example, Shen et al.
(2010) present a string-to-dependency model by
using the dependency fragments of the neighbour-
ing words on the target side, which makes it easier
to integrate a dependency language model. How-
ever such string-to-tree systems run slowly in cu-
bic time (Huang et al., 2006).

Another example is the treelet approach
(Menezes and Quirk, 2005; Quirk et al., 2005),
which uses dependency structure on the source
side. Xiong et al. (2007) extend the treelet ap-
proach to allow dependency fragments with gaps.
As the treelet is defined as an arbitrary connected
sub-graph, typically both substitution and inser-
tion operations are adopted for decoding. How-
ever, as translation rules based on the treelets
do not encode enough reordering information di-
rectly, another heuristic or separate reordering
model is usually needed to decide the best target
position of the inserted words.

Different from these works, Xie et al. (2011)
present a dependency-to-string (Dep2Str) model,
which extracts head-dependent (HD) rules from
word-aligned source dependency trees and target
strings. As this model specifies reordering infor-
mation in the HD rules, during translation only the
substitution operation is needed, because words
are reordered simultaneously with the rule being
applied. Meng et al. (2013) and Xie et al. (2014)
extend the model by augmenting HD rules with the
help of either constituent tree or fixed/float struc-
ture (Shen et al., 2010). Augmented rules are cre-
ated by the combination of two or more nodes in
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the HD fragment, and are capable of capturing
translations of non-syntactic phrases. However,
the decoder needs to be changed correspondingly
to handle these rules.

Attracted by the simplicity of the Dep2Str
model, in this paper we describe an easy way to
integrate the model into the popular translation
framework Moses (Koehn et al., 2007). In or-
der to share the same decoder with the conven-
tional syntax-based model, we present an algo-
rithm which transforms a dependency tree into a
corresponding constituent tree which encodes de-
pendency information in its non-leaf nodes and is
compatible with the Dep2Str model. In addition,
we present a method to decompose a dependency
structure (HD fragment) into smaller parts which
enrich translation rules and also allow us to cre-
ate a pseudo-forest as the input. “Pseudo” means
the forest is not obtained by combining several
trees from a parser, but rather that it is created
based on the decomposition of an HD fragment.
Large-scale experiments on Chinese–English and
German–English tasks show that the transforma-
tion and decomposition are effective for transla-
tion.

In the remainder of the paper, we first describe
the Dep2Str model (Section 2). Then we describe
how to transform a dependency tree into a con-
stituent tree which is compatible with the Dep2Str
model (Section 3). The idea of decomposition in-
cluding extracting sub-structural rules and creat-
ing a pseudo-forest is presented in Section 4. Then
experiments are conducted to compare translation
results of our approach with the state-of-the-art
HPB model (Section 5). We conclude in Section 6
and present avenues for future work.

2 Dependency-to-String Model

In the Dep2Str model (Xie et al., 2011), the HD
fragment is the basic unit. As shown in Figure
1, in a dependency tree, each non-leaf node is the
head of some other nodes (dependents), so an HD
fragment is composed of a head node and all of its
dependents.1

In this model, there are two kinds of rules for
translation. One is the head rule which specifies
the translation of a source word:

Juxing

举行→ holds
1In this paper, HD fragment of a node means the HD frag-

ment with this node as the head. Leaf nodes have no HD
fragments.

Boliweiya

玻利维亚/NN

Juxing

举行/VV

Zongtong

总统/NN
Yu

与/CC

Guohui

国会/NN

Xuanju

选举/NN

Figure 1: Example of a dependency tree, with
head-dependent fragments being indicated by dot-
ted lines.

The other one is the HD rule which consists of
three parts: the HD fragment s of the source
side (maybe containing variables), a target string
t (maybe containing variables) and a one-to-one
mapping φ from variables in s to variables in t, as
in:

s = (
Boliweiya

玻利维亚)
Juxing

举行 (x1:
Xuanju

选举 )

t = Bolivia holds x1

φ = {x1 :
Xuanju

选举→ x1}
where the underlined element denotes the leaf
node. Variables in the Dep2Str model are con-
strained either by words (like x1:选举) or Part-of-
Speech (POS) tags (like x1:NN).

Given a source sentence with a dependency tree,
a target string and the word alignment between the
source and target sentences, this model first an-
notates each node N with two annotations: head
span and dependency span.2 These two spans
specify the corresponding target position of a node
(by the head span) or sub-tree (by the depen-
dency span). After annotation, acceptable HD
fragments3 are utilized to induce lexicalized HD

2Some definitions: Closure clos(S) of set S is the small-
est superset of S in which the elements (integers) are contin-
uous. Let H be the set of indexes of target words aligned to
node N . Head span hsp(N) of node N is clos(H). Head
span hsp(N) is consistent if it does not overlap with head
span of any other node. Dependency span dsp(N) of node
N is the union of all consistent head spans in the subtree
rooted at N .

3A head-dependent fragment is acceptable if the head
span of the head node is consistent and none of the depen-
dency spans of its dependents is empty. We could see that
in an acceptable fragment, the head span of the head node
and dependency spans of dependents are not overlapped with
each other.
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          Boliweiya Juxing  Xuanju

Rule: (玻利维亚) 举行 (x1:选举) Bolivia holds x1

                       Xuanju

Rule: (x1:NN) 选举 x1 elections

           Guohui

Rule: 国会 parliament

           Zongtong Yu      Guohui

Rule:   (总统)   (与) x1:国会 presidential and x1

Boliweiya

玻利维亚/NN

Juxing

举行/VV

Zongtong

总统/NN
Yu

与/CC

Guohui

国会/NN

Xuanju

选举/NN

Zongtong

总统/NN
Yu

与/CC

Guohui

国会/NNBolivia holds elections

Bolivia holds

Zongtong

总统/NN
Yu

与/CC

Guohui

国会/NN

Xuanju

选举/NN

Bolivia holds presidential and parliament elections

Bolivia holds presidential and

Guohui

国会/NN elections

(a)

(b)

(c)

(d)

(e)

Figure 2: Example of a derivation. Underlined el-
ements indicate leaf nodes.

rules (the head node and leaf node are represented
by words, while the internal nodes are replaced by
variables constrained by word) and unlexicalized
HD rules (nodes are replaced by variables con-
strained by POS tags).

In HD rules, an internal node denotes the whole
sub-tree and is always a substitution site. The head
node and leaf nodes can be represented by either
words or variables. The target side corresponding
to an HD fragment and the mapping between vari-
ables are determined by the head span of the head
node and the dependency spans of the dependents.

A translation can be obtained by applying rules
to the input dependency tree. Figure 2 shows a
derivation for translating a Chinese sentence into
an English string. The derivation proceeds from
top to bottom. Variables in the higher-level HD
rules are substituted by the translations of lower
HD rules recursively.

The final translation is obtained by finding the
best derivation d∗ from all possible derivations
D which convert the source dependency structure
into a target string, as in Equation (1):

d∗ = argmax
d∈D

p(d) ≈ argmax
d∈D

∏
i

φi(d)
λi (1)

where φi(d) is the ith feature defined in the deriva-
tion d, and λi is the weight of the feature.

3 Transformation of Dependency Trees

In this section, we introduce an algorithm to trans-
form a dependency tree into a corresponding con-
stituent tree, where words of the source sentence
are leaf nodes and internal nodes are labelled with
head words or POS tags which are constrained by
dependency information. Such a transformation
makes it possible to use the traditional tree-based
decoder to translate a dependency tree, so we can
easily integrate the Dep2Str model into the popu-
lar framework Moses.

In a tree-based system, the CYK algorithm
(Kasami, 1965; Younger, 1967; Cocke and
Schwartz, 1970) is usually employed to translate
the input sentence with a tree structure. Each time
a continuous sequence of words (a phrase) in the
source sentence is translated. Larger phrases can
be translated by combining translations of smaller
phrases.

In a constituent tree, the source words are leaf
nodes and all non-leaf nodes covering a phrase are
labelled with categories which are usually vari-
ables defined in the tree-based model. For trans-
lating a phrase covered by a non-leaf node, the de-
coder for the constituent tree can easily find ap-
plied rules by directly matching variables in these
rules to tree nodes. However, in a dependency tree,
each internal node represents a word of the source
sentence. Variables covering a phrase cannot be
recognized directly. Therefore, to share the same
decoder with the constituent tree, the dependency
tree needs to be transformed into a constituent-
style tree.

As we described in Section 2, each variable in
the Dep2Str model represents a word (for the head
and leaf node) or a sequence of continuous words
(for the internal node). Thus it is intuitive to use
these variables to label non-leaf nodes of the pro-
duced constituent tree. Furthermore, in order to
preserve the dependency information of each HD
fragment, the created constituent node needs to be
constrained by the dependency information in the
HD fragment.

Our transformation algorithm is shown in Al-
gorithm 1, which proceeds recursively from top to
bottom on each HD fragment. There are a maxi-
mum of three types of nodes in an HD fragment:
head node, leaf nodes, and internal nodes. The
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Algorithm 1 Algorithm for transforming a depen-
dency tree to constituent tree. Dnode means node
in dependency tree. Cnode means node in con-
stituent tree.

function CNODE(label, span)
create a new Cnode CN
CN.label← label
CN.span← span

end function
function TRANSFNODE(Dnode H)

pos← POS of H
constrain pos . with H0, like: NN:H0

CNODE(label,H.position)
for each dependent N of H do

pos← POS of N
word← word of N
constrain pos . with Li or Ri, like: NN:R1

constrain word . with Li or Ri

if N is leaf then
CNODE(pos,N.position)

else
CNODE(word,H.span)
CNODE(pos,H.span)
TRANSFNODE(N )

end if
end for

end function

leaf nodes and internal nodes are dependents of
the head node. For the leaf node and head node,
we create constituent nodes that just cover one
word. For an internal node N , we create con-
stituent nodes that cover all the words in the sub-
tree rooted at N . In Algorithm 1, N.position
means the position of the word represented by the
node N . N.span denotes indexes of words cov-
ered by the sub-tree rooted at node N .

Taking the dependency tree in Figure 1 as an
example, its transformation result for integration
with Moses is shown in Figure 3. In the Dep2Str
model, leaf nodes can be replaced by a vari-
able constrained by its POS tag, so for leaf node

“
Zongtong

总统 ” in HD fragment “
Zongtong

(总统)
Yu

(与)
Guohui
国会”,

we create a constituent node “NN:L2”, where
“NN” is the POS tag and “L2” denotes that the leaf
node is the second left dependent of the head node.

For the internal node “
Guohui
国会” in the HD fragment

“
Guohui
(国会)

Xuanju

选举”, we create two constituent nodes

Boliweiya

玻利维亚
Juxing

举行
Zongtong

总统
Yu

与
Guohui

国会
Xuanju

选举

NN:L1 VV:H0 NN:L2 CC:L1 NN:H0NN:H0

NN:L1

NN:R1

S

Guohui

国会:L1

Xuanju

选举:R1

Figure 3: The corresponding constituent tree af-
ter transforming the dependency tree in Figure 1.
Note in our implementation, we do not distinguish
the leaf node and internal node of a dependency
tree in the produced constituent tree and induced
rules.

which cover all words in the dependency sub-tree
rooted at this node, with one of them labelled by
the word itself. Both nodes are constrained by de-
pendency information “L1”. After such a transfor-
mation is conducted on each HD fragment recur-
sively, we obtain a constituent tree.

This transformation makes our implementation
of the Dep2Str model easier, because we can use
the tree-to-string decoder in Moses. All we need
to do is to write a new rule extractor which extracts
head rules and HD rules (see Section 2) from the
word-aligned source dependency trees and target
strings, and represents these rules in the format de-
fined in Moses.4

Note that while this conversion is performed
on an input dependency tree during decoding, the
training part, including extracting rules and cal-
culating translation probabilities, does not change,
so the model is still a dependency-to-string model.

4Taking the rule in Section 2 as an example, its represen-
tation in Moses is:

s =
Boliweiya

玻利维亚
Juxing

举行
Xuanju

[选举:R1][X] [H1]

t = Bolivia holds
Xuanju

[选举:R1][X] [X]
φ = {2 → 2}

where “H1” denotes the position of the head word is 1, “R1”
indicates the first right dependent of the head word, “X” is the
general label for the target side and φ is the set of alignments
(the index-correspondences between s and t). The format has
been described in detail at http://www.statmt.org/
moses/?n=Moses.SyntaxTutorial.
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In addition, our transformation is different from
other works which transform a dependency tree
into a constituent tree (Collins et al., 1999; Xia and
Palmer, 2001). In this paper, the produced con-
stituent tree still preserves dependency relations
between words, and the phrasal structure is di-
rectly derived from the dependency structure with-
out refinement. Accordingly, the constituent tree
may not be a linguistically well-formed syntactic
structure. However, it is not a problem for our
model, because in this paper what matters is the
dependency structure which has already been en-
coded into the (ill-formed) constituent tree.

4 Decomposition of Dependency
Structure

The Dep2Str model treats a whole HD fragment
as the basic unit, which may result in a sparse-
data problem. For example, an HD fragment with
a verb as head typically consists of more than four
nodes (Xie et al., 2011). Thus in this section, in-
spired by the treelet approach, we describe a de-
composition method to make use of smaller frag-
ments.

In an HD fragment of a dependency tree, the
head determines the semantic category, while
the dependent gives the semantic specification
(Zwicky, 1985; Hudson, 1990). Accordingly, it
is reasonable to assume that in an HD fragment,
dependents could be removed or new dependents
could be attached as needed. Thus, in this paper,
we assume that a large HD fragment is formed by
attaching dependents to a small HD fragment. For
simplicity and reuse of the decoder, such an at-
tachment is carried out in one step. This means
that an HD fragment is decomposed into two
smaller parts in a possible decomposition. This
decomposition can be formulated as Equation (2):

Li · · ·L1HR1 · · ·Rj
= Lm · · ·L1HR1 · · ·Rn
+ Li · · ·Lm+1HRn+1 · · ·Rj

subject to

i ≥ 0, j ≥ 0
i ≥ m ≥ 0, j ≥ n ≥ 0
i+ j > m+ n > 0

(2)

whereH denotes the head node, Li denotes the ith
left dependent and Rj denotes the jth right depen-
dent. Figure 4 shows an example.

smart/JJ

very/RBShe/PRP

smart/JJ

is/VBZ

She/PRP

smart/JJ

is/VBZ very/RB

+

Figure 4: An example of decomposition on a head-
dependent fragment.

Algorithm 2 Algorithm for the decomposition of
an HD fragment into two sub-fragments. Index of
nodes in a fragment starts from 0.

function DECOMP(HD fragment frag)
fset ← {}
len← number of nodes in frag
hidx← the index of head node in frag
for s = 0 to hidx do

for e = hidx to len− 1 do
if 0 < e− s < len− 1 then

create sub-fragment core
core← nodes from s to e
add core to fset
create sub-fragment shell
initialize shell with head node
shell← nodes not in core
add shell to fset

end if
end for

end for
end function

Such a decomposition of an HD fragment en-
ables us to create translation rules extracted from
sub-structures and create a pseudo-forest from
the input dependency tree to make better use of
smaller rules.

4.1 Sub-structural Rules

In the Dep2Str model, rules are extracted on
an entire HD fragment. In this paper, when
the decomposition is considered, we also extract
sub-structural rules by taking each possible sub-
fragment as a new HD fragment. The algorithm
for recognizing the sub-fragments is shown in Al-
gorithm 2.

In Algorithm 2, we find all possible decom-
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positions of an HD fragment. Each decom-
position produces two sub-fragments: core and
shell. Both core and shell include the head node.
core contains the dependents surrounding the head
node, with the remaining dependents belonging to
shell. Taking Figure 4 as an example, the bottom-
right part is core, while the bottom-left part is
shell. Each core and shell could be seen as a
new HD fragment. Then HD rules are extracted as
defined in the Dep2Str model.

Note that different from the augmented HD
rules, where Meng et al. (2013) annotate rules with
combined variables and Xie et al. (2014) create
special rules from HD rules at runtime by com-
bining several nodes, our sub-structural rules are
standard HD rules, which are extracted from the
connected sub-structures of a larger HD fragment
and can be used directly in the model.

4.2 Pseudo-Forest

Although sub-structural rules are effective in our
experiments (see Section 5), we still do not use
them to their best advantage, because we only en-
rich smaller rules in our model. During decod-
ing, for a large input HD fragment, the model is
still more likely to resort to glue rules. However,
the idea of decomposition allows us to create a
pseudo-forest directly from the dependency tree to
alleviate this problem to some extent.

As described above, an HD fragment can be
seen as being created by combining two smaller
fragments. This means, for an HD fragment in the
input dependency tree, we can translate one of its
sub-fragments first, then obtain the whole trans-
lation by combining with translations of another
sub-fragment. From Algorithm 2, we know that
the sub-fragment core covers a continuous phrase
of the source sentence. Accordingly, we can trans-
late this fragment first and then build the whole
translation by translating another sub-fragment
shell. Figure 5 gives an example of translating
an HD fragment by combining the translations of
its sub-fragments.

Instead of taking the dependency tree as the in-
put and looking for all rules for translating sub-
fragments of a whole HD, we directly encode the
decomposition into the input dependency tree with
the result being a pseudo-forest. Based on the
transformation algorithm in Section 3, the pseudo-
forest can also be represented in the constituent-
tree style, as shown in Figure 6.

          Yu  Guohui

Rule: (与) 国会
and parliment

Zongtong

总统/NN
Yu

与/CC

Guohui

国会/NN

Zongtong

Rule: (总统) x1:NN
presidential x1

presidential and parliament

Zongtong

总统        and parliament

Guohui

国会/NN

(a)

(b)

(c)

Figure 5: An example of translating a large HD
fragment with the help of translations of its de-
composed fragments.

S

NN:L1 VV:H0

NN:L2 CC:L1 NN:H0NN:H0

NN:R1

Xuanju

选举:R1

NN:L1

Guohui

国会:L1

Boliweiya

玻利维亚
Juxing

举行
Zongtong

总统
Yu

与
Guohui

国会
Xuanju

选举

NN:L1

NN:H0

VV:H0

VV:H0

Figure 6: An example of a pseudo-forest for the
dependency tree in Figure 1. It is represented us-
ing the constituent-tree style described in Section
3. Edges drawn in the same type of line are owned
by the same sub-tree. Solid lines are shared edges.

In the pseudo-forest, we actually only create a
forest structure for each HD fragment. For ex-
ample, based on Figure 5, we create a constituent
node labelled with “NN:H0” that covers the sub-

fragment “
Yu

(与)
Guohui
国会”. In so doing, a new node la-

belled with “NN:L1” is also created, which covers

the Node “
Zongtong

总统 ”, because it is now the first left

dependent in the sub-fragment “
Zongtong

(总统)
Guohui
国会 ”.

Compared to the forest-based model (Mi et al.,
2008), such a pseudo-forest cannot efficiently re-
duce the influence of parsing errors, but it is easily
available and compatible with the Dep2Str Model.
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corpus sentences words(ch) words(en)
train 1,501,652 38,388,118 44,901,788
dev 878 22,655 26,905
MT04 1,597 43,719 52,705
MT05 1,082 29,880 35,326

Table 1: Chinese–English corpus. For the English
dev and test sets, words counts are averaged across
4 references.

corpus sentences words(de) words(en)
train 2,037,209 52,671,991 55,023,999
dev 3,003 72,661 74,753
test12 3,003 72,603 72,988
test13 3,000 63,412 64,810

Table 2: German–English corpus. In the dev and
test sets, there is only one English reference for
each German sentence.

5 Experiments

We conduct large-scale experiments to exam-
ine our methods on the Chinese–English and
German–English translation tasks.

5.1 Data
The Chinese–English training corpus is from
the LDC data, including LDC2002E18,
LDC2003E07, LDC2003E14, LDC2004T07,
the Hansards portion of LDC2004T08 and
LDC2005T06. We take NIST 2002 as the de-
velopment set to tune weights, and NIST 2004
(MT04) and NIST 2005 (MT05) as the test data to
evaluate the systems. Table 1 provides a summary
of the Chinese–English corpus.

The German–English training corpus is from
WMT 2014, including Europarl V7 and News
Commentary. News-test 2011 is taken as the de-
velopment set, while News-test 2012 (test12) and
News-test 2013 (test13) are our test sets. Table 2
provides a summary of the German–English cor-
pus.

5.2 Baseline
For both language pairs, we filter sentence pairs
longer than 80 words and keep the length ratio
less than or equal to 3. English sentences are to-
kenized with scripts in Moses. Word alignment is
performed by GIZA++ (Och and Ney, 2003) with
the heuristic function grow-diag-final-and (Koehn
et al., 2003). We use SRILM (Stolcke, 2002) to

Systems MT05
XJ 33.91
D2S 33.79

Table 3: BLEU score [%] of the Dep2Str model
before (XJ) and after (D2S) dependency tree be-
ing transformed. Systems are trained on a selected
1.2M Chinese–English corpus.

train a 5-gram language model on the Xinhua por-
tion of the English Gigaword corpus 5th edition
with modified Kneser-Ney discounting (Chen and
Goodman, 1996). Minimum Error Rate Train-
ing (Och, 2003) is used to tune weights. Case-
insensitive BLEU (Papineni et al., 2002) is used to
evaluate the translation results. Bootstrap resam-
pling (Koehn, 2004) is also performed to compute
statistical significance with 1000 iterations.

We implement the baseline Dep2Str model
in Moses with methods described in this paper,
which is denoted as D2S. The first experiment we
do is to sanity check our implementation. Thus
we take a separate system (denoted as XJ) for
comparison which implements the Dep2Str model
based on (Xie et al., 2011). As shown in Table
3, using the transformation of dependency trees,
the Dep2Str model implemented in Moses (D2S)
is comparable with the standard implementation
(XJ).

In the rest of this section, we describe exper-
iments which compare our system with Moses
HPB (default setting), and test whether our de-
composition approach improves performance over
the baseline D2S.

As described in Section 2, the Dep2Str model
only extracts phrase rules for translating a source
word (head rule). This model could be enhanced
by including phrase rules that cover more than one
source word. Thus we also conduct experiments
where phrase pairs5 are added into our system. We
set the length limit for phrase 7.

5.3 Chinese–English

In the Chinese–English translation task, the Stan-
ford Chinese word segmenter (Chang et al., 2008)
is used to segment Chinese sentences into words.
The Stanford dependency parser (Chang et al.,
2009) parses a Chinese sentence into the projec-
tive dependency tree.

5In this paper, the use of phrasal rules is similar to that of
the HPB model, so they can be handled by Moses directly.
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Systems MT04 MT05
Moses HPB 35.56 33.99
D2S 33.93 32.56

+pseudo-forest 34.28 34.10
+sub-structural rules 34.78 33.63

+pseudo-forest 35.46 34.13
+phrase 36.76* 34.67*

Table 4: BLEU score [%] of our method and
Moses HPB on the Chinese–English task. We use
bold font to indicate that the result of our method
is significantly better than D2S at p ≤ 0.01 level,
and * to indicate the result is significantly better
than Moses HPB at p ≤ 0.01 level.

Table 4 shows the translation results. We find
that the decomposition approach proposed in this
paper, including sub-structural rules and pseudo-
forest, improves the baseline system D2S sig-
nificantly (absolute improvement of +1.53/+1.57
(4.5%/4.8%, relative)). As a result, our sys-
tem achieves comparable (-0.1/+0.14) results with
Moses HPB. After including phrasal rules, our
system performs significantly better (absolute im-
provement of +1.2/+0.68 (3.4%/2.0%, relative))
than Moses HPB on both test sets.6

5.4 German–English

We tokenize German sentences with scripts in
Moses and use mate-tools7 to perform morpho-
logical analysis and parse the sentence (Bohnet,
2010). Then the MaltParser8 converts the parse
result into the projective dependency tree (Nivre
and Nilsson, 2005).

Experimental results in Table 5 show that incor-
porating sub-structural rules improves the base-
line D2S system significantly (absolute improve-
ment of +0.47/+0.63, (2.3%/2.8%, relative)), and
achieves a slightly better (+0.08) result on test12
than Moses HPB. However, in the German–
English task, the pseudo-forest produces a neg-
ative effect on the baseline system (-0.07/-0.45),
despite the fact that our system combining both
methods together is still better (+0.2/+0.11) than
the baseline D2S. In the end, by resorting to

6In our preliminary experiments, phrasal rules are also
able to significantly improve our system on their own on both
Chinese–English and German–English tasks, but the best per-
formance is achieved by combining them with sub-structural
rules and/or pseudo-forest.

7http://code.google.com/p/mate-tools/
8http://www.maltparser.org/

Systems test12 test13
Moses HPB 20.44 22.77
D2S 20.05 22.13

+pseudo-forest 19.98 21.68
+sub-structural rules 20.52 22.76

+phrase 20.91* 23.46*
+pseudo-forest 20.25 22.24

+phrase 20.75* 23.20*

Table 5: BLEU score [%] of our method and
Moses HPB on German–English task. We use
bold font to indicate that the result of our method
is significantly better than baseline D2S at p ≤
0.01 level, and * to indicate the result is signifi-
cantly better than Moses HPB at p ≤ 0.01 level.

Systems
# Rules

CE task DE task
Moses HPB 388M 684M
D2S 27M 41M

+sub-structural rules 116M 121M
+phrase 215M 274M

Table 6: The number of rules in different sys-
tems On the Chinese–English (CE) and German–
English (DE) corpus. Note that pseudo-forest (not
listed) does not influence the number of rules.

phrasal rules, our system achieves the best perfor-
mance overall which is significantly better (abso-
lute improvement of +0.47/+0.59 (2.3%/2.6%, rel-
ative)) than Moses HPB.

5.5 Discussion
Besides long-distance reordering (Xie et al.,
2011), another attraction of the Dep2Str model is
its simplicity. It can perform fast translation with
fewer rules than HPB. Table 6 shows the number
of rules in each system. It is easy to see that all of
our systems use fewer rules than HPB. However,
the number of rules is not proportional to transla-
tion quality, as shown in Tables 4 and 5.

Experiments on the Chinese–English corpus
show that it is feasible to translate the dependency
tree via transformation for the Dep2Str model de-
scribed in Section 2. Such a transformation causes
the model to be easily integrated into Moses with-
out making changes to the decoder, while at the
same time producing comparable results with the
standard implementation (shown in Table 3).

The decomposition approach proposed in this
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paper also shows a positive effect on the base-
line Dep2Str system. Especially, sub-structural
rules significantly improve the Dep2Str model on
both Chinese–English and German–English tasks.
However, experiments show that the pseudo-forest
significantly improves the D2S system on the
Chinese–English data, while it causes translation
quality to decline on the German–English data.

Since using the pseudo-forest in our system is
aimed at translating larger HD fragments via split-
ting it into pieces, we hypothesize that when trans-
lating German sentences, the pseudo-forest ap-
proach more likely results in much worse rules be-
ing applied. This is probably due to the shorter
Mean Dependency Distance (MDD) and freer
word order of German sentences(Eppler, 2013).

6 Conclusion

In this paper, we present an open source mod-
ule which integrates a dependency-to-string model
into Moses.

This module transforms an input depen-
dency tree into a corresponding constituent tree
during decoding which makes Moses perform
dependency-based translation without necessitat-
ing any changes to the decoder. Experiments on
Chinese–English show that the performance if our
system is comparable with that of the standard
dependency-based decoder.

Furthermore, we enhance the model by de-
composing head-dependent fragments into smaller
pieces. This decomposition enriches the Dep2Str
model with more rules during training and allows
us to create a pseudo-forest as input instead of
a dependency tree during decoding. Large-scale
experiments on Chinese–English and German–
English tasks show that this decomposition can
significantly improve the baseline dependency-
to-string model on both language pairs. On
the German–English task, sub-structural rules are
more useful than the pseudo-forest input. In the
end, by resorting to phrasal rules, our system
performs significantly better than the hierarchical
phrase-based model in Moses.

Our implementation of the dependency-to-
string model with methods described in this pa-
per is available at http://computing.dcu.
ie/˜liangyouli/dep2str.zip. In the fu-
ture, we would like to conduct more experiments
on other language pairs to examine this model,
as well as reducing the restrictions on decompo-

sition.
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