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Abstract 

In this paper we describe the implementation 

of an Arabic error correction system devel-

oped for the EMNLP2014 shared task on au-

tomatic error correction for Arabic text. We 

proposed a novel algorithm, where we find 

some correction rules and calculate their 

probability based on the training data, they 

we rank the correction rules, then we apply 

them on the text to maximize the overall F-

score for the provided data. The system 

achieves and F-score of 0.6573 on the test da-

ta. 

1 Introduction 

    Traditional techniques in text correction is the 

generation of a large set of candidates for an in-

correct word using different approaches like 

enumerating all possible candidates in edit dis-

tance of one. Then, all the candidates are ranked 

such that the best candidates are ranked on the 

top of the list. Finally, the best candidate is cho-

sen to replace incorrect word. 

The traditional techniques are slow, since the 

generation of a large set of candidates is time 

consuming task. Also, it doesn’t take into con-

sideration the overall score of the system. While, 

in this paper we apply a novel technique in au-

tomatic error correction, where we take into con-

sideration the correction rules, not the variants. 

In the propose technique, we order corrections to 

be applied on text to maximize the F-score.  

This shared task was on automatic Arabic text 

correction. For this task, the Qatar Arabic Lan-

guage Bank (QALB) corpus (Mohit et. al, 2014) 

was provided. The QALB corpus contains a pre-

processed input text with some features extracted 

and the corrected output. The main issue in the 

shared task, that the tools used for the extraction 

of the provided features wasn’t provided. So, we 

had a choice, to create an algorithm that can deal 

with missing features, or to generate our own set 

of features. Finally, we have chosen to generate 

our own set of features.  

The proposed framework could be described 

as a probabilistic rule-based framework. During 

the training of this framework, we extracted 

some rules and assign a probability to each rule 

as shown later in section 3. The extracted rules 

are then sorted based on their probabilities. And 

during the test, we apply the rules from the high-

est probability to the lowest probability one by 

one, on the entire test data till a stopping criteria 

is satisfied. During the algorithm we have some 

kind of heuristic to estimate the F-score after 

each rule is apply. The stopping criteria for the 

algorithm is that the estimated F-score start to 

decrease. 

This paper is organized as follow, in section 2, 

an overview of the related work in the field of 

error correction is discussed. In section 3, the 

proposed system and its main components are 

explained. The evaluation process is presented in 

section 4. Finally, concluding remarks and future 

work are presented in section 5. 

2 Related Work 

Most of the work done in the field automatic er-

ror correction for text, is made for English lan-

guage (Kukich, 1992; Golding and Roth, 1999; 

Carlson and Fette, 2007; Banko and Brill, 2001).  

Arabic spelling correction has also received con-

siderable interest, Ben Othmane Zribi and Ben 

Ahmed, (2003) have proposed a new aiming to 

reduce the number of proposals given by auto-

matic Arabic spelling correction tools, which 

have reduced the proposals by about 75%. Had-

dad and Yaseen (2007) took into consideration 

the complex nature of the Arabic language and 

the effect of the root-pattern relationship to lo-
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cate, reduce and rank the most probable correc-

tion candidates in Arabic derivative words to 

improve the process of error detection and cor-

rection.  Hassan et al. (2008) used a finite state 

automata to propose candidates corrections, then 

assign a score to each candidate and choose the 

best correction in the context. Shaalan et al. 

(2010) developed an error correction system to 

Arabic learners. Alkanhal et al. (2012) have de-

veloped an error correction system and they em-

phasized on space insertion and deletion. Zag-

houani et al. (2014) provided a large scale da-

taset for the task of automatic error correction for 

Arabic text. 

3 The Proposed System 

The main system idea is explained by the al-

gorithm, in figure 1. The algorithm has two in-

puts: the set of sentences that need to be modi-

fied T[1..n], and the set of correction rules 

C[1..m] that could be applied to text. The algo-

rithm has one single output: the set of modified 

sentences T’[1..n]. The algorithm could be divid-

ed into two main component: the initialization 

and the main loop. 

Figure 1: Proposed Algorithm 

 

First, the initialization part of the algorithm 

starts from line 1 to line 8. In the first line, the 

sentences are copied from T[1..n] to T’[1..n]. In 

line number 2, the number of errors in the test set 

T[1..n] is expected using the rate of errors in the 

train set (#error / #words). In lines 3 to 8, the 

variables used in the algorithm are initialized to 

zero.  

The main loop of the algorithm starts from 

line 9 to line 20. In line 9, the loop begins, and 

the sentences are copied from T[1..n] to T’[1..n] 

and the F-score is copied to old F-score, in lina-

rae 10 and 11. Then the first not applied correc-

tion with the highest probability to be correct is 

correct is chosen in line 12. In line 13, the cor-

rection is applied on the text T[1..n]. Then we 

calculate the number of changes between T[1..n] 

and T’[1..n], in line 14. And based on the ex-

pected number of changes, we update the ex-

pected number of performed edits in line 14. Al-

so, we update the expected number of the correct 

edits based on the number of change and the 

probability of a change to be correct in line 15. 

In lines 17 to 19, we calculate the expected pre-

cision, recall and F-score based on the expected 

gold edits, performed edits, and correct edits cal-

culated at lines 2, 14, and 15. If the F-score is 

higher than the old F-score, which means that 

applying the correction c on the text T[1..n] will 

increase the expected F-score, then go to line 9 

and start a new iteration in the loop. And if the F-

score is lower than the old F-score, which means 

that applying the correction c on the text T[1..n] 

will decrease the expected F-score, then exit the 

loop and return the modified text T’[1..n]. 

After we have discussed the main idea of algo-

rithm, in the following subsections we will dis-

cuss some of the extracted corrections rules and 

the calculation of the probability of each rule. 

These rules and their probabilities are compiled 

by analyzing the training data. 

3.1 Morphological Analyzer Corrections 

Rules 

We used a morphological analyzer, BAMA-

v2.0 (Buckwalter Arabic morphological analyzer 

version 2.0) (Buckwalter, 2010), in the extraction 

of a correction rule. This rule will be used to 

solve the errors caused by the exchange between 

some characters like: (“ا”, “A”), (“أ”, “>”), (“إ”, 

“<”) and (“ه”, “h”), (“ة”, “p”) and (“ي”, “y”), 

 .(”Y“ ,”ى“)

RULE: We analyze a word with the morpho-

logical analyzer, if all the solutions of the word 

have the same form that is different from the 

Input: T[1..n], C[1..m] 

Output: T’[1..n] 

1: T’ = T 

2: Gold Edits = #Words in Test * # Gold Edits in     

Train / # Words in Train 

3: Correct Edits = 0 

4: Performed Edits = 0 

5: Precision = 0 

6: Recall = 0 

7: Old F-score = 0 

8: F-score = 0 

9: Do 

10: T’ =  T 

11: Old F-score =  F-score 

12: Get next correction “c” with the highest 

probability “p” from C 

13:  Apply the correction “c” on T 

14:  N = number of changes between T and 

T’ 

15:  Performed Edits = Performed Edits + N 

16:  Correct Edits = Correct Edits + p * N 

17:  Precision = Correct Edits / Performed 

Edits 

18:  Recall = Correct Edits / Gold Edits 

19:  F-score = 2*Precision*Recall / (Preci-

sion+Recall) 

20: while F-score > Old F-score do 

21: return T’ 
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word, then change the word by the solutions 

form. 

For example, the word (“احمد”, “AHmd”), 

when the word is analyzed by the morphological 

analyzer, there are 02 different solutions, 14 are 

proper noun (“أحمد”, “>Hmd”, “Ahmed”) and the 

remaining 6 of them are verb (“ مدأح ”, “>Hmd”, “I 

praise”). Since all the solution of the word 

 ,”أحمد“) have the form (”AHmd“ ,”احمد“)

“>Hmd”), then we will change (“احمد”, “AHmd”) 

to (“أحمد”, “>Hmd”). Another example, the word 

 when the word is analyzed by ,(”AmAm“ ,”امام“)

the morphological analyzer, there are 04 differ-

ent solutions, 12 of them have the form (“أمام”, 

“>mAm”), and the other 12 have the form (“إمام”, 

“<mAm”), so we leave it unchanged. 

To calculate the correctness probability of the 

rule, we apply the following rule to all the train-

ing set, then we calculate the number of correct 

edits, and the number of performed edits, finally 

we calculate the probability as the ratio between 

the correct and the performed edits. 

3.2 Colloquial to Arabic Corrections Rules 

To convert the colloquial Arabic words to Ar-

abic words, we have compiled some rules as 

shown below: 

RULE: Replace a word or a phrase by a spe-

cific word or phrase from a list extracted from 

the training set provided in Qalb shared task 

(Mohit et. al, 2014). 

From example replace the word (“احنا”, “AH-

nA”, “we”) by the word (“نحن”, “nHn”, “we”).  

RULE: Replace a word or phrase with a spe-

cific word or phrase based on its context. 

RULE: Replace a word or phrase with a spe-

cific pattern to another word or phrase. 

From example replace the word (“بيلعب”, 

“bylEb”, “is playing”) by the word (“يلعب”, 

“ylEb”, “is playing”).  

The correctness probability of each rule is the 

ratio between the correct and the performed edits 

when this rule is applied on the train data. 

3.3 The Single Character Spelling Errors 

Correction 

The single character spelling errors are divid-

ed into four main subcategories:  replace charac-

ter by another character, insert character, delete 

character, and transpose two adjacent characters. 

For these four errors, we have conducted four 

types of rules. 

RULE 1: We analyze a word with the mor-

phological analyzer, if it is outside the corpus, 

and it not defined in the correct words in qalb 

corpus (the words that don’t change) try to 

change one character by a specific character, if 

the new word is recognized by the morphological 

analyzer or it is inside the corpus, then change 

the word and keep the new solution. 

For example, if we have a word (“بعظ”, 

“bEZ”) and a rule that change the character (‘ظ’, 

‘Z’) to (‘ض’, ‘D’). And the word (“بعض”, 

“bED”) is recognized by the morphological ana-

lyzer, then we change the word (“بعظ”, “bEZ”) to 

 Another example, if we have .(”bED“ ,”بعض“)

the word (“بعظ”, “bEZ”) and a rule that change 

the character (‘ع’, ‘E’) to (‘غ’, ‘g’). And the 

word (“بغظ”, “bgZ”) is not recognized by the 

morphological analyzer and it is outside the Qalb 

corpus, then we don’t change the word. 

RULE 2: We analyze a word with the mor-

phological analyzer, if it is outside the corpus, 

and it not defined in the correct words in qalb 

corpus (the words that don’t change) try to insert 

one specific character between a pair of specific 

characters, if the new word is recognized by the 

morphological analyzer or it is inside the corpus, 

then change the word and keep the new solution.  

RULE 3: We analyze a word with the mor-

phological analyzer, if it is outside the corpus, 

and it not defined in the correct words in qalb 

corpus (the words that don’t change) try to delete 

one specific character from a triplet of specific 

characters, if the new word is recognized by the 

morphological analyzer or it is inside the corpus, 

then change the word and keep the new solution. 

RULE 4: We analyze a word with the mor-

phological analyzer, if it is outside the corpus, 

and it not defined in the correct words in Qalb 

corpus (the words that don’t change) try to re-

place a pair of characters to the transpose of the 

pair of characters, if the new word is recognized 

by the morphological analyzer or it is inside the 

corpus, then change the word and keep the new 

solution.  

The correctness probability of each rule is the 

ratio between the correct and the performed edits 

when this rule is applied on the train data, and it 

differs from one character to another (i.e. the two 

examples in rule 1, will have different correct-

ness probabilities based on the training data).  

3.4 The Space Insertion Errors Correction 

The space insertion error correction is the pro-

cess of splitting an incorrect word to multiple 

correct word.  

RULE: If there is a character concatenated af-

ter taa marbouta (‘ة’, ‘p’), insert a space between 

them.  

145



RULE: If the word starts with negation parti-

cle, split negation particle from it.  

RULE: If the word starts with vocative parti-

cle, split vocative particle from it.  

RULE: If the word starts with vocative parti-

cle, split vocative particle from it.  

RULE: We analyze a word with the morpho-

logical analyzer, if it is outside the corpus, and it 

not defined in the correct words in Qalb corpus 

(the words that don’t change) try to find the long 

substring from the word, that keep another sub-

string, where both of them are recognized by the 

morphological analyzer. 

The correctness probability of each rule is the 

ratio between the correct and the performed edits 

when this rule is applied on the train data. 

3.5 The Space Deletion Errors Correction 

The space deletion errors correction is the pro-

cess of merging multiple tokens into one correct 

word.  

RULE: Merge conjunction particles, with 

their succeeding token.  

RULE: If two out of corpus tokens could be 

merged to an inside the corpus word, then merge 

them.  

The correctness probability of each rule is the 

ratio between the correct and the performed edits 

when this rule is applied on the train data. 

3.6 Punctuation Errors Corrections 

The punctuation errors are hard to correct be-

cause they depends on the meaning of the sen-

tence, and require almost full understanding of 

the sentence. However, we have conducted some 

rules for the punctuation, for example: 

RULE: If the sentence doesn’t end with a 

punctuation point from (“.”, “!”, “؟”), then add a 

point at the end of the sentence. 

RULE: Insert a punctuation mark before a 

certain word. 

For example, insert a semicolon before the 

word (“لأنه”, “l>nH”, “because he”). 

The correctness probability of each rule is the 

ratio between the correct and the performed edits 

when this rule is applied on the train data. 

3.7 Syntactic Errors Corrections 

The syntactic errors is one of the most difficult 

error to correct. For this task we apply a simple 

kind of a grammatical analyzer to assign simple 

grammatical tag to some words. One simple 

grammatical system, is the one to determine gen-

itive noun. Nouns are genitive mainly if they oc-

cur after a preposition, or if they are possessives 

(definite noun after indefinite noun) or if they are 

adjectives of genitive nouns, or if they are con-

junction with genitive noun. 

RULE: Plural and Dual genitive nouns that 

end with (“ون”, “wn”) or (“ان”, “An”) should end 

with (“ين”, “yn”). 

The correctness probability of each rule is the 

ratio between the correct and the performed edits 

when this rule is applied on the train data. 

3.8 Additional Corrections Rules 

Finally, we generated some rules that present 

the data on a correct format as the training data 

and we will assign their correctness probability 

manually to be equal to 1.  

RULE: Remove kashida (tatweel) from text.  

RULE: Replace “*” if between parenthesis by 

the Arabic character (‘ذ’, ‘*’).  

RULE: If a character is repeated consecutive-

ly more than twice inside a word, remove the 

extra characters except if the word consists of 

only one char like (“ههههه”, “hhhhh”). 

RULE: Write a comma between two numbers.  

4 Evaluation of the System 

    For the evaluation of the system, we used the 

M2 scorer by Dahlmeier and Ng (2012). When 

we evaluated the system with the development 

dataset, we have reached an F-score of 0.6817; 

and when the system is evaluated the test dataset, 

we have reached and F-score of 0.6573.  

The proposed algorithm is very fast compared 

to traditional error correction algorithm. In tradi-

tional error correction algorithm, you generate all 

possible variants of an incorrect word, then you 

rank the solutions and choose the best solution. 

But, in the proposed algorithm, you rank the 

rules during the training time, and you apply one 

rule at the time until you find an appropriate so-

lution of an incorrect word.  

For example, let’s consider single character 

replace spelling error, if the incorrect word 

length is five characters, so you need to make 

((28-1)*5) iterations to generate all possible vari-

ants of a word, while in the proposed algorithm 

you generate one variant at the time, and you 

might stop after that. 

5 Conclusion  

In this paper we have presented a novel and 

fast algorithm for the automatic text correction 

for Arabic. The proposed algorithm has a good 

F-score, and the system has the potential to be 

further improved. As a future work, the punctua-
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tion error correction might need to be further im-

proved. And the expected number of gold edits, 

could be improved or calculated on the sentence 

level. And finally, the rules used in the frame-

work could be extended by further analysis of the 

training data. 
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