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Abstract 

Our research investigation focuses on the role of 
humans in supplying corrected examples in active 
learning cycles, an important aspect of deploying 
active learning in practice.  In this paper, we dis-
cuss sampling strategies and sampling sizes in set-
ting up an active learning system for human ex-
periments in the task of content analysis, which 
involves labeling concepts in large volumes of 
text.  The cost of conducting comprehensive hu-
man subject studies to experimentally determine 
the effects of sampling sizes and sampling sizes is 
high. To reduce those costs, we first applied an 
active learning simulation approach to test the ef-
fect of different sampling strategies and sampling 
sizes on machine learning (ML) performance in 
order to select a smaller set of parameters to be 
evaluated in human subject studies. 

1 Introduction 

Social scientists often use content analysis to 
understand the practices of groups by analyzing 
texts such as transcripts of interpersonal commu-
nication. Content analysis is the process of iden-
tifying and labeling conceptually significant fea-
tures in text, referred to as “coding” (Miles and 
Huberman, 1994). For example, researchers 
studying leadership might look for evidence of 
behaviors such as “suggesting or recommending” 
or “inclusive reference” expressed in email mes-
sages. However, analyzing text is very labor-
intensive, as the text must be read and under-
stood by a human. Consequently, important re-
search questions in the qualitative social sciences 
may not be addressed because there is too much 
data for humans to analyze in a reasonable time. 

A few researchers have tried automatic tech-
niques on content analysis problems. For exam-
ple, Crowston et al. (2012) manually developed a 
classifier to identify codes related to group 
maintenance behavior in free/libre open source 
software (FLOSS) teams. Others have applied 
machine-learning (ML) techniques. For example, 
Ishita et al. (2010) used ML to automatically 

classify sections of text within documents on ten 
human values taken from the Schwartz’s Value 
Inventory. Broadwell et al. (2012) developed 
models to classify sociolinguistic behaviors to 
infer social roles (e.g., leadership). On the best 
performing codes, these approaches achieve ac-
curacies from 60–80%, showing the potential of 
automatic qualitative content analysis. However, 
these studies all limited their reports to a subset 
of codes used by the social scientists, due in part 
to the need for a large volume of training data.  

The state-of-the-art ML approaches for con-
tent analysis require researchers to obtain a large 
amount of annotated data upfront, which is often 
costly or impractical. An active learning ap-
proach which uses human correction during the 
steps of active learning could potentially help 
produce a large amount of annotated data while 
minimizing the cost of human annotation effort.  
Unlike other text annotation tasks, the code an-
notation for content analysis requires significant 
cognitive effort, which may limit, or even nulli-
fy, the benefits of active learning.   

We are building an active machine learning 
system to semi-automate the process of content 
analysis, and are planning to study the human 
role in such machine learning systems.  
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Figure 1. Active learning for semi-automatic 

content analysis. 
 

As illustrated in Figure 1, the system design in-
corporates building a classifier from an initial set 
of hand-coded examples and iteratively improv-
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ing the model by having human annotators cor-
rect new examples identified by the system  

Little is yet known about the optimal number 
of machine annotations to be presented to human 
annotators for correction, and how the sample 
sizes of machine annotations affect ML perfor-
mance. Also, existing active learning sampling 
strategies to pick out the most “beneficial” ex-
amples for human correction to be used in the 
next round of ML training have not been tested 
in the context of social science data, where con-
cept codes may be multi-dimensional or hierar-
chical, and the problem may be multi-label (one 
phrase or sentence in the annotated text has mul-
tiple labels). Also, concept codes tend to be very 
sparse in the text, resulting in a classification 
problem that has both imbalance—the non-
annotated pieces of text (negative examples) tend 
to be far more frequent that annotated text—and 
rarity, where there may not be enough examples 
of some codes to achieve a good classifier.  

The cost of conducting comprehensive human 
subject studies to experimentally determine the 
effects of sampling sizes and sampling sizes is 
high. Therefore, we first applied an active learn-
ing simulation approach to test the effect of dif-
ferent sampling strategies and sampling sizes on 
machine learning (ML) performance. This allows 
the human subject studies to involve a smaller set 
of parameters to be evaluated. 

2 Related Work 

For active learning in our system, we are using 
what is sometimes called pool-based active 
learning, where a large number of unlabeled ex-
amples are available to be the pool of the next 
samples. This type of active learning has been 
well explored for text categorization tasks (Lewis 
and Gale, 1994; Tong and Koller 2000; Schohn 
and Cohn 2000). This approach often uses the 
method of uncertainty sampling to pick new 
samples from the pool, both with probability 
models to give the “uncertainty” (Lewis and 
Gale, 1994) and with SVM models, where the 
margin numbers give the “uncertainty” (Tong 
and Koller 2000; Schohn and Cohn 2000). While 
much of the research focus has been on the sam-
pling method, some has also focused on the size 
of the sample, e.g. in Schohn and Cohn (2000), 
sample sizes of 4, 8, 16, and 32 were used, where 
the result was that smaller sizes gave a steeper 
learning curve with a greater classification cost, 
and the authors settled on a sample size of 8. For 

additional active learning references, see the Set-
tles (2009) survey of active learning literature. 

This type of active learning has also been 
used in the context of human correction. One 
such system is described in Mandel et al. (2006), 
using active learning for music retrieval, where 
users were presented with up to 6 examples of 
songs to label. Another is the DUALLIST system 
described in Settles (2011) and Settles and Zhu 
(2012) where human experiments were carried 
out for text classification and other tasks.  While 
most active learning experiments focus on reduc-
ing the number of examples to achieve an accu-
rate model, there has been some effort to model 
the reduction of the cost of human time in anno-
tation, where the human time is non-uniform per 
example.  Both the systems in Culotta and 
McCallum (2005) and in Clancy et al. (2012) for 
the task of named entity extraction, modeled hu-
man cost in the context of sequential information 
extraction tasks.  However, one difference be-
tween these systems and ours is that all of the 
tasks studied in these systems did not require 
annotators to have extensive training to annotate 
complex concept codes.  

3 Problem 

We worked with a pilot project in which 
researchers are studying leadership in open 
source software groups by analyzing open source 
developer emails. After a year of part-time 
annotation by two annotators, the researchers 
developed a codebook that provides a definition 
and examples for 35 codes. The coders achieved 
an inter-annotator agreement (kappa) of about 
80%, and annotated about 400 email threads, 
consisting of about 3700 sentences. We used 
these coded messages as the “gold standard” data 
for our study. However, only 15 codes had more 
than 25 instances in the gold standard set. The 
most common code (“Explanation/Rationale/ 
Background”) occurred only 319 times.  

In our pilot correction experiments, annota-
tors tried correcting samples of sizes ranging 
from about 50 to about 400. Anecdotal evidence 
indicates that annotators liked to annotate sample 
sizes of about 100 in order to achieve good focus 
on a particular code definition at one time, but 
without getting stressed with too many examples.  
Part of the required focus is that annotators need 
to refresh their memory on any particular code at 
the start of annotation, so switching frequently 
between different codes is cognitively taxing. 
This desired sample size contrasts with prior ac-
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tive learning systems that employ much smaller 
sample sizes, in the range of 1 to 20.  

We are currently in the process of setting up 
the human experiments to test our main research 
question of achieving an accurate model for con-
tent analysis using a minimum of human effort. 

In this paper, we discuss two questions for 
active learning in order to have annotators cor-
rect an acceptable number of machine annota-
tions that are most likely to increase the perfor-
mance of the ML model in each iteration. These 
are:  how do different sample sizes and different 
sampling strategies of machine annotations pre-
sented to human annotators for correction in each 
round affect ML performance?  

4 Active Learning Simulation Setup 

In a similar strategy to that of Clancy et al. 
(2012), we carried out a preliminary investiga-
tion by conducting an active learning simulation 
on our gold standard data. The simulation starts 
with a small initial sample, and uses active learn-
ing where we “correct” the sample labels by tak-
ing labels from the gold standard corpus. For our 
simulation experiments, we separated the gold 
standard data randomly into a training set of 90% 
of the examples, 3298 sentences, and a test set of 
10%, 366 sentences.  

In the experimental setup, we used a version 
of libSVM that was modified to produce num-
bers of distance to the margin of the SVM classi-
fication. We implemented the multi-label classi-
fication by classifying each label separately 
where some sentences have the selected label 
and all others were counted as “negative” labels. 
We used svm weights to handle the problem of 
imbalance in the negative examples. After exper-
imentation with different combinations of fea-
tures, we used a set of features that was best 
overall for the codes: unigram tokens lowercased 
and filtered by stop words, bigrams, orthographic 
features from capitalization, the token count, and 
the role of the sender of the email. 

For an initial sample, we randomly chose 3 
positive and 3 negative examples from the de-
velopment set to be the initial training set used 
for all experimental runs. We carried out experi-
ments with a number of sample sizes, b, ranging 
over 5, 10, 20, 40, 50, 60, 80 and 100 instances. 

For experiments on methods used to select 
correction examples, we have chosen to experi-
ment with sampling methods similar to those 
found in Lewis and Gale (1994) and Lewis 
(1995) using a random sampling method, where 

a new sample is chosen randomly from the re-
maining examples in the development set, a rele-
vance sampling method, where a new sample is 
chosen as the b number of most likely labeled 
candidates in the development set with the larg-
est distance from the margin of the SVM classi-
fication, and an uncertainty sampling method, 
where a new sample is chosen as the b number of 
candidates in the region of uncertainty on either 
side of the margin of the SVM classification. 

5 Preliminary Results 

In this simulation experiment, the pool size is 
quite small (3664 examples) compared to the 
large amount of unlabeled data that is normally 
available for active learning, and would be avail-
able for our system under actual use. We tested 
the active learning simulation on 8 codes. There 
was no clear winning sampling strategy out of 
the 3 we used in the simulation experiment but 
random sampling (5 out of 8 codes) appeared to 
be the one that most often produced the highest 
Fß2 score in the shortest number of iterations. 
Figure 2 shows the Fß2 score for each sampling 
strategy based on code “Opinion/Preference” 
using sample sizes 5 and 100 respectively.  

As for sampling sizes, we did not observe a 
large difference in the evolution of the Fß2 score 
between the various sample sizes, and the learn-
ing curves in Figure 2, shown for the sample siz-
es of 5 and 100, are typical. This means that we 
should be able to use larger sample sizes for hu-
man subject studies to achieve the same im-
provements in performance as with the smaller 
sample sizes, and can carry out the experiments 
to relate the cost of human annotation with in-
creases in performance. 

 

 
Figure 2. Active ML performance for code 
Opinion/Preference. 
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6 Conclusion and Future Work 

Our findings are inconclusive as we have yet to 
run the active learning simulations on all the 
codes. However, preliminary results are directing 
us towards using larger sample sizes and then 
experimenting with random and uncertainty 
sampling in the human subject studies.  

From our experiments with the different 
codes, we found the performance on less fre-
quent codes to be problematic as it is difficult for 
the active learning system to identify potential 
positive examples to improve the models. While 
the system performance may improve to handle 
such sparse cases, it may be better to modify the 
codebook instead. We plan to give the user feed-
back on the performance of the codes at each 
iteration of the active learning and support modi-
fications to the codebook, for example, the user 
may wish to drop some codes or collapse them 
according to some hierarchy. After all, if a code 
is not found in the text, it is hard to argue for its 
theoretical importance.  

We are currently completing the design of 
the parameters of the active learning process for 
the human correction experiments on our pilot 
project with the codes about leadership in open 
source software groups. We will also be testing 
and undergoing further development of the user 
interface for the annotators.  

Our next step will be to test the system on 
other projects with other researchers. We hope to 
gain more insight into what types of coding 
schemes and codes are easier to learn than oth-
ers, and to be able to guide social scientists into 
developing coding schemes that are not only 
based on the social science theory but also useful 
in practice to develop an accurate classifier for 
very large amounts of digital text. 
 
Acknowledgements:  

This material is based upon work supported 
by the National Science Foundation under Grant 
No. IIS-1111107. Kevin Crowston is supported 
by the National Science Foundation. Any opin-
ions, findings, and conclusions or recommenda-
tions expressed in this material are those of the 
author(s) and do not necessarily reflect the views 
of the National Science Foundation. The authors 
gratefully acknowledge helpful suggestions by 
the reviewers. 

Reference 
Broadwell, G. A., Stromer-Galley, J., Strzalkowski, 

T., Shaikh, S., Taylor, S., Liu, T., Boz, U., Elia, A., 
Jiao, L., & Webb, N. (2013). Modeling sociocul-
tural phenomena in discourse. Natural Language 
Engineering, 19(02), 213–257.  

Clancy, S., Bayer, S. and Kozierok, R. (2012)  “Ac-
tive Learning with a Human In The Loop,” Mitre 
Corporation.  

Crowston, K., Allen, E. E., & Heckman, R. (2012). 
Using natural language processing technology for 
qualitative data analysis. International Journal of 
Social Research Methodology, 15(6), 523–543.  

Culotta, A. and McCallum, A. (2005) “Reducing La-
beling Effort for Structured Prediction Tasks.” 

Ishita, E., Oard, D. W., Fleischmann, K. R., Cheng, 
A.-S., & Templeton, T. C. (2010). Investigating 
multi-label classification for human values. Pro-
ceedings of the American Society for Information 
Science and Technology, 47(1), 1–4.  

Miles, M. B., & Huberman, A. M. (1994). Qualitative 
data analysis: An expanded sourcebook. Sage Pub-
lications.  

Lewis, D. D., & Gale, W. A. (1994). A sequential 
algorithm for training text classifiers. In Proceed-
ings of the 17th annual international ACM SIGIR 
conference on Research and development in infor-
mation retrieval (pp. 3-12). 

Lewis, D. D. (1995). A sequential algorithm for train-
ing text classifiers: Corrigendum and additional da-
ta. In ACM SIGIR Forum (Vol. 29, No. 2, pp. 13-
19). 

Mandel, M. I., Poliner, G. E., & Ellis, D. P. (2006). 
Support vector machine active learning for music 
retrieval. Multimedia systems, 12(1), 3-13.  

Schohn, G., & Cohn, D. (2000). Less is more: Active 
learning with support vector machines. In Interna-
tional Conference on Machine Learning (pp. 839-
846).  

Settles, B. (2010). Active learning literature survey. 
University of Wisconsin, Madison, 52, 55-66. 

Settles, B. (2011). Closing the loop: Fast, interactive 
semi-supervised annotation with queries on fea-
tures and instances. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language 
Processing (pp. 1467-1478).  

Settles, B., & Zhu, X. (2012). Behavioral factors in 
interactive training of text classifiers. In Proceed-
ings of the 2012 Conference of the North American 
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (pp. 563-
567).  

 Tong, S., & Koller, D. (2002). Support vector ma-
chine active learning with applications to text clas-
sification. The Journal of Machine Learning Re-
search, 2, 45-66. 

 

 

62


