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Abstract

We investigate the utility of linguistic features
for automatically differentiating between chil-
dren with varying combinations of two po-
tentially comorbid neurodevelopmental disor-
ders: autism spectrum disorder and specific
language impairment. We find that certain
manual codes for linguistic errors are useful
for distinguishing between diagnostic groups.
We investigate the relationship between cod-
ing detail and diagnostic classification perfor-
mance, and find that a simple coding scheme
is of high diagnostic utility. We propose a sim-
ple method to automate the pared down coding
scheme, and find that these automatic codes
are of diagnostic utility.

1 Introduction

In Autism Spectrum Disorders (ASD), language im-
pairments are common, but not universal (American
Psychiatric Association, 2000). Whether these lan-
guage impairments are distinct from those in Spe-
cific Language Impairment (SLI) is an unresolved
issue (Williams et al., 2008; Kjelgaard and Tager-
Flusberg, 2001). Accurate and detailed characteri-
zation of these impairments is important not only for
resolving this issue, but also for diagnostic practice
and remediation.

Language ability is typically assessed with struc-
tured instruments (“tests”) that elicit brief, easy to
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score, responses to a sequence of items. For exam-
ple, the CELF-4 includes nineteen multi-item sub-
tests with tasks such as object naming, word defini-
tion, reciting the days of the week, or repeating sen-
tences (Semel et al., 2003). Researchers are begin-
ning to discuss the limits of structured instruments in
terms of which language impairments they tap into
and how well they do so, and are advocating the po-
tential benefits of language sample analysis – an-
alyzing natural language samples – to complement
structured assessment, specifically for language as-
sessment in ASD where pragmatic and social com-
munication issues are paramount yet are hard to
assess in a conventional test format (e.g. Tager-
Flusberg et al. 2009). However, language sample
analysis faces two labor-intensive steps: transcrip-
tion and detailed coding of the transcripts.

To illustrate the latter, consider the Systematic
Analysis of Language Transcripts (SALT) (Miller
and Chapman, 1985; Miller et al., 2011), which is
the de-facto standard choice by clinicians looking
to code elicited language samples. SALT comprises
a scheme for coding transcripts of recorded speech,
together with software that tallies these codes, com-
putes scores describing utterance length and error
counts, and compares these scores with normative
samples. SALT codes indicate bound morphemes,
edits (which are referred to in the clinical literature
as ‘mazes’), and several types of errors in transcripts
of natural language, e.g., omitted or inappropriate
words.

Although this has not been formally documented,
our experience with SALT coding has shown that the
codes vary in terms of: 1) difficulty of manual cod-
ing – e.g., relatively subtle pragmatic errors versus
overgeneralization or marking bound morphemes;
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2) utility for identifying particular disorders; and 3)
difficulty of automating the code. This raises an im-
portant question: Is there a combination of codes
that jointly discriminate well between relevant diag-
nostic groups, and at the same time are either easy
to code manually or can in principle be automated?
This paper explores, first, how well the various man-
ual SALT codes classify certain diagnostic groups;
and, second, whether we can automate manual codes
that are of diagnostic utility. Our goal is limited: it
is not the automation of all SALT codes, but the au-
tomation of those that in combination are of high di-
agnostic utility. Automating all SALT codes is sub-
stantially more challenging; yet, we note that even
when some of these codes do not aid in classify-
ing groups, they nevertheless may be of importance
for developing remediation strategies for individual
children. We are particularly interested in the im-
pact of Autism in addition to language impairments
for the utility of particular SALT codes.

The diagnostic groups are carefully chosen to
be pairwise matched either on language abilities or
on autism symptomatology, thus enabling a pre-
cise, “surgical” determination of the degrees to
which SALT codes reflect language-specific vs.
autism-specific factors. Specifically, the groups in-
clude children with ASD with language impairment
(ALI); ASD with no language impairment (ALN);
SLI alone; and typically developing (TD), which is
strictly defined to exclude any neurodevelopmental
disorder. The TD and ALN groups, as well as the
ALI and SLI groups, are matched on language and
overall cognitive abilities, while the ALN and ALI
groups are matched on autism symptomatology but
not on language and overall cognitive abilities; all
groups are matched on chronological age.

Regarding our algorithmic approach, we note that
automatic detection of relatively subtle errors may
be exceedingly difficult, but perhaps such subtle er-
rors are less critical for diagnosis than more obvi-
ous ones. Most prior work in grammaticality de-
tection in spoken language has focused on special-
ized detectors (e.g., Caines and Buttery 2010; Has-
sanali and Liu 2011), such as mis-use of particular
verb constructions rather than coarser detectors for
the presence of diverse classes of errors. We demon-
strate that these specialized error detectors can break
down when confronted with real world dialogue, and
that in general, the features in these detectors re-
stricts their utility in detecting other sorts of errors.

We implement a detector to automatically extract
coarse SALT codes from an uncoded transcript. This
detector only depends upon part of speech tags, as
opposed to the parse features that are often used in
grammaticality detectors. In most cases, these au-
tomatically extracted codes enable us to distinguish
between diagnostic groups more effectively than do
features that can be extracted trivially from an un-
coded transcript.

As far as we know, researchers have not pre-
viously considered the utility of grammatical er-
ror codes to identify ASD or SLI. Prudhommeaux
and Rouhizadeh (2012), however, found that au-
tomatically extracted pragmatic features are useful
for identifying children with ASD, among children
both with and without SLI. Gabani et al. (2009)
found that features derived from language models
are useful for distinguishing between children with
and without a language impairment, both in mono-
lingual English speakers, and in children who are
bilingual in English and Spanish.

Improving the characterization of a child’s lan-
guage impairments is a prerequisite to developing a
sound plan for language training and education for
that child. This paper presents a step in the direction
of effective automated analysis of linguistic samples
that can provide useful information even in the face
of comorbid disorders such as ASD and SLI.

2 Systematic Analysis of Language
Transcripts

Here we give an overview of what SALT requires of
transcriptions, and of SALT coding. The approach
has been in wide use for nearly 30 years (Miller and
Chapman, 1985), and now also exists as a software
package1 providing transcription and coding support
along with tools for aggregating statistics for man-
ual codes over the annotated corpora and comparing
with age norms. The SALT software is not the focus
of this investigation, so we do not discuss it further.

2.1 Basic Transcription

We apply the automated methods to what will be
called basic transcripts. Key for this concept is that,
first, these transcripts do not require linguistic ex-
pertise and thus can be performed by standard tran-
scription services; and, second, that – as we shall

1http://www.saltsoftware.com/
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see – useful features can be automatically computed
from them.

Following the SALT guidelines, a basic transcript
should indicate: the speaker of each utterance, par-
tial words (or stuttering), overlapping speech, unin-
telligible words, and non-speech sounds. It should
be verbatim, regardless of whether a child’s utter-
ance contains neologisms (novel words) or gram-
matical errors (for example ‘I goed’ should be writ-
ten as such).

A somewhat subtle issue is that SALT prescribes
that the basic transcript be broken into communi-
cation units (which in this paper will be synony-
mous with utterance). Communication units are
defined as “a main clause with all its dependent
clauses” (Miller et al., 2011). One reason for defin-
ing utterance boundaries with communication units,
rather than turns or sentences, is that in addition to
this being standard practice in language sample anal-
ysis, doing so does not reward children for making
long, but rather simple statements, nor does it penal-
ize children for being interrupted. To illustrate the
first point, the utterance “I like apples, and bananas,
and pears, and oranges, and grapes.” is one sen-
tence long, but has five communication units (one at
each comma). If the sentence were used as the ba-
sic unit, the utterance would indicate the same level
complexity as the obviously more intricate “for the
past three years we have lived in an apartment”. In
the basic transcript, each communication unit should
be terminated by one of the following punctuation
marks: ‘?’ if it is a question, ‘∧’ if the speaker was
interrupted, ‘>’ if the speaker abandoned the utter-
ance, and ‘.’ in all other cases. Thus, the above
example would be transcribed as “C: I like apples.
. . . C: and grapes.”

2.2 Markup

There are three broad categories of SALT codes: in-
dicators of 1) certain bound morphemes, 2) edits
(discussed below), and 3) errors.

Morphology The following inflectional suffixes
must be coded according to the SALT guidelines:
plural -s (/S), possessive -’s (/Z), possessive plural
-s’ (/S/Z), past tense -ed (/ED), 3rd person singular
-s (/3S), progressive -ing (/ING). The following cl-
itics must also be delimited with a ’/’, provided the
resulting root is unmodified in the surface form: n’t,
’t, ’d, ’re, ’s, ’ve. Since these morphemes are only in-
dicated if the root is unmodified in the surface form,
“won’t” will remain unsegmented because ‘wo’ is
not the root; “can’t” will be segmented “can/’T” and
“don’t” will be segmented “do/N’T”, so as to pre-
serve their respective roots. Nominal or verbal forms
with any of the preceding suffixes or clitics are writ-
ten as the base form with the code appended, for ex-
ample hitting→ hit/ING, bases→ base/S.

Edits Edits consist of filler words such as ‘like’,
‘um’ and ‘uh’, false starts, and revisions. There may
be multiple edits in a single utterance, as well as
multiple adjacent edits. Edits are indicated by paren-
theses, for example: “(And they like) and she (like)
faint/3S.” Note that in the SALT manual, and the lan-
guage sample analysis literature, edits are referred to
as mazes. We use the term edit here because this is
the more widely used term for this phenomenon in
natural language processing.

Error codes The exact set of error codes used de-
pends upon the clinician’s needs and the errors of
interest. Here we consider several key errors out-
lined in the SALT manual. These error codes and
examples are shown in Table 1. Some of these codes
describe precise classes of errors, for example [EO]
or [OW], but others do not. For example, [EW]
can describe using the wrong verb, tense, preposi-
tion or pronoun (in terms of case, person or gender),
as well as other errors. Note that [EU] (and [EC]) er-
ror codes can occur in grammatical utterances. The
[EU] code marks utterances that are ungrammatical
for reasons not captured by the other error codes, for
example severe problems with word order, or utter-

Table 1: SALT error codes and examples
Code Meaning Example Count in Corpus
[EC] Inappropriate response Did you help yourself stop? Mom[EC]. 9
[EO] Overgeneralization Yeah, cuz I almost saw/ED[EO] one. 229
[EW] Error word I play/ED of[EW] the cat. 1,456
[EU] Utterance-level error You can see it very hard because it/’S under my hair[EU]. 532
[EX] Extraneous word Would you like to be[EX] fall down? 322
[OM] Omitted morpheme The cat eat[OM] fish. 881
[OW] Omitted word He [OW] going now. 770
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ances which are simply nonsensical, as in Table 1.

3 Evaluation of Manual Codes

In this section we use features extracted from SALT-
coded transcripts for classification. We consider two
different types of features: baseline features, which
are easily derived from a basic transcript; and fea-
tures derived from SALT codes. We investigate
these features to determine which SALT codes are
most worth automating for classification.

3.1 Data
Our data is a collection of 144 transcripts of the
Autism Diagnostic Observation Schedule (ADOS),
which is a semi-structured task that includes an
examiner and a child (Lord et al., 2002). Semi-
structured means that the examiner carries out a
sequence of rigorously specified activities, but her
prompts and questions are not scripted verbatim for
all of them. Detailed guidelines exist for scoring
the ADOS, but these are not considered in the cur-
rent paper. All transcripts have been manually coded
with SALT codes, described in Table 1.

Subjects ranged in age between 4 and 8 years and
were required to be intelligible, to have a full-scale
IQ of greater than 70, and to have a mean length of
utterance (MLU) of at least 3. Diagnoses of ASD
and of SLI followed standard procedures, and were
based on clinical consensus in accordance to diag-
nostic criteria outlined in the DSM-IV (American
Psychiatric Association, 2000). Furthermore, ASD
diagnosis required ADOS and Social Communica-
tion Questionnaire scores (SCQ) (Berument et al.,
1999) to meet conventional thresholds. Diagnosis
of SLI required a CELF Core Language Score of at
least 1 standard deviation below the mean, in addi-
tion to exclusion of ASD.

Children were partitioned into pairs of groups
matched on certain key measures. Table 2 shows
these pairs and what they were matched on. The
individuals were selected from the initial pool of
all participants using the algorithm proposed by van
Santen et al. (2010), in which, for a given pair of
groups, children are iteratively removed from each
group until there is no significant difference (at p <
0.02) on any measure on which we want the pair to
be matched. We combined some groups into com-
posite groups: ASD (ALI and ALN), nASD (SLI
and TD), LN (‘language normal’: ALN and TD),
and LI (‘language impaired’: ALI and SLI).

Group 1 Group 2
Group N Group N Matched on
ALI 25 ALN 21 Age, ADOS, SCQ
ALI 24 SLI 19 Age, NVIQ, VIQ
ALN 25 TD 27 Age, NVIQ, VIQ
ASD 48 nASD 61 Age
LN 61 LI 39 Age
SLI 15 TD 38 Age

Table 2: Matched measures for paired groups (ADOS =
ADOS score, NVIQ = non-verbal IQ, VIQ = verbal IQ)

3.2 Features
The term “feature” will be used to refer to instances
of various classes of SALT codes as well as to in-
stances of other events that can be trivially extracted
from the basic transcripts but do not involve SALT
codes (e.g, the ratio of ‘uh’ to ‘um’). We distinguish
between five levels of features, enumerated in Table
3, that vary in the number and complexity of codes
required. This ranges from the baseline features that
require no manual codes to SALT-5 features that re-
quire full SALT coding. We consider two normal-
ized variants of each feature: one normalized by the
number of utterances spoken by the child, and the
other normalized by the number of words spoken
by the child (except for TKCT). The ratios OCRAT
and UMUHRAT are never normalized. Each feature
level includes all features on lower levels. Finally,
to make our investigation into feature combinations
more tractable, we do not consider combining two
different normalizations of the same feature.

3.3 Classification

We perform six classification tasks in our investi-
gation, according to the paired groups in Table 2:
ALI/ALN; ALI/SLI; ALN/TD; ASD/nASD; LN/LI;
and SLI/TD. We extract various features from the
ADOS transcripts, and then classify the children in
a leave-pair-out (LPO) schema (Cortes et al., 2007)
using the scikit logistic regression classifier with de-
fault parameters (Pedregosa et al., 2011). For LPO
analysis, we iterate over all possible pairs that con-
tain one positive and one negative instance (i.e. chil-
dren with different diagnoses), training on all other
instances, and testing on that pair. We count a trial
as a success if the classifier assigns a higher proba-
bility of being positive to the positive instance than
to the negative instance. We then divide the num-
ber of successes by the number of pairs to get an
unbiased estimate of the area under the receiver op-
erating curve (AUC) (Airola et al., 2011). AUC is
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Group Feature Description
Baseline CEOLP # of times examiner speaks while child is talking

ECOLP # of times child speaks while examiner is talking
INCCT Incomplete word count
OCRAT Ratio of open- to closed-class words
TKCT Token count
TPCT Type count
UMUHRAT Ratio of ‘uh’ to ‘um’
UINTCT Unintelligible word count

SALT-1 All baseline features +
MPCT Morpheme count
EDITCT Edit count

SALT-2 All SALT-1 features +
NERRUTT Number of utterances with any SALT error codes

SALT-3 All SALT-2 features +
ERRCT Count of SALT error codes

SALT-4 All SALT-3 features +
UTLERRCT Count of utterance level errors (EC / EU)
WDLERRCT Count of word level errors (all other error codes)

SALT-5 All SALT-4 features +
XCT Count of individual error codes (X=EC, EO, . . . ; see Table 1)

Table 3: Features by Level

the probability that the classifier will assign a higher
score to a randomly chosen positive example than to
a randomly chosen negative example.

3.4 Determining Relevant Features
We use a t-test based criterion as a simple way to de-
termine which features to investigate for each clas-
sification task. For a given classification task, we
perform a t-test for independent samples on each
feature under both normalization schemes (if ap-
propriate). We retain a feature for investigation if
that feature is significantly different between the two
groups at the α = 0.10 level. If a particular feature
varies significantly between groups under both nor-
malization schemes, we retain the version that has
the larger T-statistic. For the sake of brevity, we
do not report all of the features that varied between
groups here, but this data is available upon request
from the authors.

3.5 Initial Feature Ablation
We perform feature ablation to see which features
are most useful for performing each classification
task. Figure 1 shows the maximum performance (in
terms of AUC) over all subsets of features at each
feature level (on the x-axis) on each of the six di-
agnostic classification tasks. Missing values for a
particular level of features for any comparison indi-
cate that no features in that level that passed the t-test
based criterion for the two groups being compared.

Figure 1 illustrates two important points. First,
classification difficulty depends heavily on the pair
that is being compared. For example, the AUC
for ALI/SLI is at most 0.723 (SALT-5), while the
AUC for SLI/TD reaches 0.982 (SALT-5). This is
not surprising, as some pairs, most notably SLI/TD,
differ widely in coarse measures of language abil-
ity (such as non-verbal IQ), while other pairs, in-
cluding ALI/SLI, do not. Second, in many of the
tasks, SALT-derived features are of high utility, but
the biggest gain in classification performance comes
with SALT-2, which is a count of the number of
sentences containing any SALT error code. In fact,
for all but one classification task (ASD/nASD), the
AUC achieved with SALT-2 is at least 96% of the
maximum AUC. Furthermore, the best feature set
using SALT-2 features for most of these tasks is ei-
ther the NERRUTT feature alone, or in the case of
ALI/SLI, NERRUTT and TPCT. These results lead
us to conclude that the most important SALT-derived
feature to code is NERRUTT.

Perhaps surprisingly, Figure 1 also shows that for
ALN/TD and SLI/TD, performance at SALT-1 is
lower than the baseline. There are two reasons for
this, which we explain in turn: 1) the SALT-1 fea-
ture set must include a feature that is less useful than
those in the optimal baseline feature set, and 2) the
classifier will not ignore this feature. MPCT must be
included in SALT-1 for both pairs, because the only

5



Figure 1: Maximum classification performance (AUC) at different feature levels (Bln=Baseline, S-N=SALT-N)

other SALT-1 feature, EDITCT, does not vary signif-
icantly between either ALN/TD or SLI/TD. Further-
more, MPCT is highly correlated with TKCT, yet
TKCT is not in the best baseline feature set for ei-
ther of these pairs. Therefore, the SALT-1 feature
set is required to include a feature that is less useful
than the most useful ones in the baseline set, which
results in lower performance. Once MPCT is in-
cluded in the SALT-1 feature set, the logistic regres-
sion classifier will not ignore it by assigning it a zero
coefficient. This is because MPCT distinguishes be-
tween groups, and because the classifier is trained
at each round of LPO classification to maximize the
likelihood of the training data, rather than the AUC
estimate provided by LPO classification.

3.6 Counting Specific Error Codes
The single feature in SALT-2, NERRUTT, counts
how many utterances spoken by the child contain at
least one SALT error code. Some of these heteroge-
nous errors, for example overgeneralization errors
([EO]), should be straightforward to identify auto-
matically. Automatically identifying others, for ex-
ample utterances that are inappropriate in context
([EC]), would be more difficult. Therefore, before
automating the extraction of NERRUTT, we should
see which errors most need to be identified, and
which can safely be ignored. To do this, we repeat
our LPO classification procedure on various tasks
using SALT-2 features.

We perform the following procedure to identify
the most diagnostically informative errors: for each
subset s of SALT error codes, 1) compute the fea-
ture NERRUTTSUBSET by counting the number of
utterances that contain any of the errors in s; then 2)
perform the LPO diagnostic classification task using

NERRUTTSUBSET as the only feature. The results
of this experiment are in Table 4. The ‘% Max’ col-
umn shows classification performance when a par-
ticular subset of error codes were counted, relative
to the maximum performance yielded by any subset
of error codes for that particular task. We exclude
the ALN/TD and ASD/nASD tasks from this exper-
iment because NERRUTT does not improve perfor-
mance on these tasks. This is perhaps unsurprising,
because SALT codes were designed to be diagnostic
of SLI, not ASD.

We find that in all tasks, ignoring certain error
codes raises performance. These results also show
that it is not necessary, and indeed not ideal, to iden-
tify utterances containing any SALT code. Identi-
fying utterances that contain any of the following
three codes is sufficient to achieve at least 97% of
the maximum AUC enabled by counting any sub-
set of SALT codes: [EW], [OM], [OW]. For clarity,
NERRUTTMOD is the count of utterances that con-
tain any of those three SALT codes.

Table 4: AUC from Counting Subsets of Errors
Classification Errors Counted AUC % Max
ALI/ALN EW, OM 0.762 100

EW, OM, OW 0.739 97
all 0.724 93

ALI/SLI EW, OM 0.715 100
EW, OM, OW 0.704 98
all 0.676 95

LN/LI EW, OM, OW 0.901 100
all 0.881 98

SLI/TD OM, OW 0.984 100
EW, OM, OW 0.970 99
all 0.951 97
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3.7 Robustness of NERRUTTMOD feature to
noise: a simulation experiment

We will consider two general ways of automatically
extractingNERRUTTMOD. The first way is to build
a detector to identify utterances that contain at least
one relevant error. The second way is to make de-
tectors for the each relevant error, then combine the
output of these detectors. It is unlikely that any error
detector will perform perfectly. Prior to investiga-
tion of automation strategies, we would like to get an
idea of how much such errors will affect diagnostic
classification performance. To this end, we investi-
gate how well we can perform the diagnostic classi-
fication tasks when noise is deliberately introduced
into the NERRUTTMOD values via simulation.

We consider two scenarios. In the first, we as-
sume a single error detector will be used to extract
NERRUTTMOD. We take each manually coded ut-
terance, then randomly change whether or not that
sentence is counted as having an error to simulate
different precision and recall levels of the automated
NERRUTTMOD extractor. We repeat this procedure
100 times for each classification task, and then ex-
amine the mean AUC over all trials. In the sec-
ond scenario, we assume a detector for each error
code that counts a sentence as having an error any
time one of the detectors fires. We randomly cor-
rupt the detection of each error code considered in
NERRUTTMOD in turn to simulate different preci-
sion and recall levels of each individual error detec-
tor. We assume perfect detection of all errors not
being randomly corrupted. Again, we repeat this
procedure 100 times for each classification task, and
consider the mean AUC over all trials.

In both experiments, and in all classification tasks,
we find that the NERRUTTMOD feature is ex-
tremely robust to noise. For example, finding the
NERRUTTMOD feature with a single detector with
a precision/recall of 0.1/0.3 enables SLI/TD clas-
sification with an average AUC of 0.975, as com-
pared to the maximum AUC of 0.984, enabled by
a perfect detector. When we use a cascaded de-
tector to corrupt each of the two errors counted in
NERRUTTMOD for classifying SLI/TD, so long as
one error is detected perfectly, the other error only
needs to be detected with precision and recall of 0.1
to enable a classification AUC within 0.02 of the
maximum.

The extreme robustness of this feature may appear

surprising, but it is easily explained by the data. The
mean value of NERRUTTMOD for the SLI group
is 7.8 times the mean value of this feature for the
TD group. So long as there is a correlation between
the true value of NERRUTTMOD and the estimated
value, as we have assumed in this experiment, then
the estimated value is bound to be of utility in clas-
sification. This bodes well for the utility of automa-
tion, even for a difficult task of discovering some of
the relatively subtle errors coded in SALT.

4 Automatic Feature Extraction
4.1 Evaluating Hassanali and Liu’s System

Hassanali and Liu developed two grammaticality de-
tectors that they used to identify ungrammatical ut-
terances in transcriptions of speech from children
both with and without language impairments (Has-
sanali and Liu, 2011). They tested their grammati-
cality detectors on the Paradise corpus, which con-
sists of conversations with children elicited during
an investigation of otitis media, a hearing disor-
der. They present both a rule-based and a statis-
tical grammaticality detector. Both detectors con-
sist of sub-detectors for the errors shown in Table
5. The rule-based and statistical detectors perform
well, with the statistical detector outperforming the
rule-based one (F1=0.967 vs. 0.929). The statistical
detector, however, requires each error identified by
any of the sub-detectors to be manually identified in
the training data.

We reimplement both the rule based and statis-
tical detectors proposed by Hassanali and Liu, and
apply it to our data, with three modifications. The
first two are minor: 1) we substitute the Charniak-
Johnson reranking parser (2005) for Charniak’s
original parser (Charniak, 2000), and 2) we use the
scikit multinomial naive bayes classifier (Pedregosa
et al., 2011) instead of the one in WEKA (Hall et al.,
2009). The third difference is that we use these de-
tectors to identify SALT error codes rather than the
errors these classifiers were originally built to detect.
The mapping of the original errors to SALT error
codes is given in Table 5. To clarify, if we are train-
ing the ‘Missing Verb’ detector, then any utterance
with an [OW] code is taken to be a positive exam-
ple. This issue does not present itself with the rule-
based detector because it is not trained. Note that the
two verb agreement features may correspond to ei-
ther [EW] or [OM] SALT codes. For example, ‘you
does’ would be [EW] because of the otiose 3rd per-
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Error SALT code
Misuse of -ing participle [EW]
Missing copulae [OW]
Missing verb [OW]
Subject-auxilliary agreement [EW]
Subject-verb agreement [EW]/[OM]
Missing infinitive ‘to’ [OW]

Table 5: Error detectors proposed by Hassanali and Liu

son singular suffix, while ‘he do’ would be an [OM]
because it is missing that same suffix.

Hassanali and Liu’s error detectors perform
poorly on our data. Table 6 reports the performance
of their detectors detecting utterances with various
error codes. Five of the six statistical error detec-
tors that Hassanali and Liu proposed are unable to
identify any of the errors in our data. The‘misuse
of -ing participle’ detector, however, is an excep-
tion, and its performance detecting the analogous
error code [EW], using 10-fold cross validation is,
shown in Table 6. To detect the two pairs of er-
ror codes, [EW][OM] and [OM][OW], and all three
relevant error codes ([EW][OM][OW]), we use the
appropriate rule based detectors. For example, to
detect utterances with either [EW] or [OM] errors,
we pool the detectors for the analogous error codes:
‘misuse of -ing participle’, ‘subject-auxilliary agree-
ment’, and ‘subject-verb agreement’.

There are three factors that may explain the poor
performance observed with most of Hassanali and
Liu’s error detectors when used with our data. The
first is that the three SALT codes we try to detect
([EW], [OM], and [OW]) capture a wider variety of
errors than the six in Hassanali and Liu’s system.
This could account for the low recall. Second, there
are many utterances in our data that Hassanali and
Liu’s system would label an error, but which are not
marked with any SALT error codes. For example, if
the examiner asks the child what she is doing, ‘eat-
ing spaghetti’ is a faultless response, even though it
is missing both the subject and auxiliary verb. Such
utterances may account for the low precision. Fi-
nally, most of Hassanali and Liu’s sub-detectors de-
pend upon features describing the presence or ab-
sence of specific structures in the parses of the input.
The exception to this is the statistical ‘misuse of -ing
participle’ detector, which uses part of speech (POS)
tag bigrams and skip bigrams as features. It should
come as no surprise then that the ‘misuse of -ing par-
ticiple’ is the most robust of these detectors. Indeed,

Codes
System Detected P R F1
Hassanali [EW]† 0.074 0.218 0.110
& Liu [EW][OM]* 0.049 0.277 0.083

[OM][OW]* 0.028 0.191 0.049
All three* 0.066 0.354 0.111

POS-tag [EW] 0.074 0.218 0.110
feature- [OM] 0.070 0.191 0.103
based [OW] 0.064 0.210 0.099
classifier [EW][OM] 0.102 0.269 0.148

[OM][OW] 0.102 0.269 0.148
All three 0.127 0.308 0.180

Table 6: Performance on automatic detection of utter-
ances with certain error codes using Hassanali and Liu’s
detectors, and general POS-tag-feature-based classifier.
† = ‘misuse of -ing participle’, statistical; * = rule-based

in what follows, we make use of general POS-tag
features (tag n-gram and skip n-grams) as they do in
this detector, for a general purpose detector not tar-
geted specifically at this particular construction, but
rather to detect the presence of arbitrary given sets
of error tags.

4.2 Automatic SALT error code detection

We compare three types of automatic error code de-
tectors: 1) individual error code detectors; 2) pair
detectors, each of which detects a pair of error codes
included in NERRUTTMOD, following Table 4; and
3) a generic detector that identifies any utterance
containing any of the following SALT codes: [EW],
[OM], or [OW]. We investigate four different fea-
tures, all of which are easily derived from the basic
transcript: bigrams and skip bigrams of words, and
POS tags. We use POS tags extracted from the out-
put of the Charniak-Johnson reranking parser (2005)
(also used in our reimplementation of Hassanali and
Liu’s detectors) for simplicity. We use the Bernoulli
Naive Bayes classifier in scikit with the default set-
tings (Pedregosa et al., 2011).

We find that the word features do not aid clas-
sification in any condition, and that using both bi-
grams and skip bigrams of POS tags improves on
using either alone. We report the performance of
the three types of error detectors in Table 6. These
results are from 10-fold cross-validation using POS
tag bigrams and skip bigrams as features. Note that
the general POS-tag-feature-based classifier uses the
same features as Hassanali and Liu’s statistical ‘mis-
use of -ing participle’ detector, which is why the
performance for detecting [EW] error codes alone
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Manual features Automatic extraction
Baseline SALT-2 SALT-2 features

Baseline θ Optimized θ
Diagnoses AUC AUC θ AUC θ AUC
ALI/ALN 0.619† 0.723 0.5 0.611 0.94 0.676
ALI/SLI 0.562 0.686 0.5 0.632 0.99 0.671
LN/LI 0.755 0.881 0.5 0.801 0.50 0.801
SLI/TD 0.840 0.951 0.5 0.805 0.99 0.840

† SALT-1; no significantly different baseline features

Table 7: Diagnostic classification AUC using automatically extracted NERRUTTMOD

is identical between the two systems.
The generic error detector yields higher perfor-

mance than either the individual or pair error detec-
tors. Coding training data for the generic detector is
simpler than doing so for the others because it only
involves a single round of binary coding.

4.3 Diagnostic Classification

We repeat the LPO diagnostic classification tasks
using the automatically extracted NERRUTTMOD
feature. We recompute NERRUTTMOD for each
speaker at each iteration, training on all data except
for the two speakers in the test pair, and the speaker
whose NERRUTTMOD feature we are predicting.
The results from this task are shown in Table 7.

As can be seen in Table 7, diagnostic classifica-
tion performance using the automatically extracted
the NERRUTTMOD feature is markedly lower than
when we extracted this feature from manual codes.
However, raising the probability threshold θ at
which utterances are counted as containing an er-
ror from its default value of 0.5, improves diagnos-
tic classification performance for all but one pair
(LN/LI). This is because increasing the probability
threshold at which we count an utterance as hav-
ing an error improves in NERRUTTMOD detection.
For example, in the ALI/SLI group, using the de-
fault θ = 0.5, and a leave-one-out scenario, we can
automatically extract NERRUTTMOD with a preci-
sion/recall score of 0.19/0.47. When we increase θ
to 0.99, the precision and recall become 0.23/0.24.
Even though there is a massive drop in recall, the
improvement in precision is able to boost diagnostic
classification performance.

In all but one pair (SLI/TD), the automati-
cally extracted NERRUTTMOD feature improves
classification over the baseline, even though the
NERRUTTMOD extractor performs poorly in terms
of intrinsic evaluation, with an F1 score of 0.180.
These results are in line with the experiments per-

forming diagnostic classification with an artificially
noisy NERRUTTMOD feature (see Section 3.7).
These results also demonstrate that the automati-
cally extracted values of NERRUTTMOD are suffi-
ciently correlated with the true values of this feature
to be of some diagnostic utility.

5 Conclusions

We have found that the SALT codes provide use-
ful information for distinguishing between certain
diagnostic groups, but not all of them. Specifi-
cally, and not surprisingly given SALT’s focus on
language disorders and not generally on atypical
language use characteristic of ASD, adding SALT-
derived features to baseline features added little
to ASD/nASD, ALI/SLI, or ALN/TD classifica-
tion accuracy, but added substantially to SLI/TD,
ALI/ALN, and LN/LI classification accuracy. Fur-
thermore, we found that a simplified coding schema
is almost as useful as the complete one for differ-
entiating between these groups. Finally, we have
proposed a simple method to automatically extract
a variant of the most useful SALT-derived feature,
NERRUTTMOD, which is a count of sentences that
contain any of three types of errors (omitted mor-
phemes or words, and generic word-level errors).
Although this feature’s utility degrades when ex-
tracted automatically, it still has considerable dis-
criminative value.

In future work, we will investigate the util-
ity of more sophisticated features for extracting
NERRUTTMOD and other SALT-derived features.
We will also investigate the utility of other linguistic
features, for example parse structure, for the diag-
nostic classification task. Finally, we will also con-
sider whether we can perform the diagnostic classi-
fication task more effectively using cascaded binary
classifiers (for example language impaired vs. lan-
guage normal), as opposed to having a classifier for
every diagnostic pair.
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