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Abstract

Converting information contained in natural language clinical text into computer-amenable struc-

tured representations can automate many clinical applications. As a step towards that goal, we present

a method which could help in converting novel clinical phrases into new expressions in SNOMED

CT, a standard clinical terminology. Since expressions in SNOMED CT are written in terms of their

relations with other SNOMED CT concepts, we formulate the important task of identifying relations

between clinical phrases and SNOMED CT concepts. We present a machine learning approach for

this task and using the dataset of existing SNOMED CT relations we show that it performs well.

1 Introduction

Many clinical applications, including clinical decision support, medical error detection, answering clin-

ical queries, generating patient statistics, and biosurveillance, would be automated if the clinical infor-

mation locked in natural language clinical text could be converted into computer-amenable structured

representations. To enable this, a long-term goal is to convert entire natural language clinical documents

into structured representations. As an important step in that direction, in this paper we focus on a task

that can help in converting clinical phrases into a structured representation. SNOMED CT (IHTSDO,

2009) is a standardized representation for clinical concepts whose extensiveness and expressivity makes

it suitable for precisely encoding clinical phrases. A concept in SNOMED CT is defined in terms of its

relations with other concepts and it currently includes around four hundred thousand pre-defined clinical

concepts. If a natural language clinical phrase represents a concept which is already present in SNOMED

CT then the conversion process reduces to a matching function; some previous work (Stenzhorn et al.,

2009; Barrett et al., 2012) as well as existing SNOMED CT browsers, like CliniClue,1 can automatically

perform such a matching. But our focus in this paper is instead on the task of creating new SNOMED

CT concepts for clinical phrases for which no SNOMED CT concept already exists.

Since new concepts in SNOMED CT can be created by identifying their relations with existing

SNOMED CT concepts, we formulate the important task of identifying relations between clinical phrases

and SNOMED CT concepts. That is, given a clinical phrase (for example, “acute gastric ulcer with

perforation”) and a description of a SNOMED CT concept (for example, “stomach structure”), whether

a particular kind of relation (for example, “finding site”) is present between them or not (in this example

it is present). To the best of our knowledge, there is no other work which has attempted this type of

relation identification task. Note that this task is very different from the relation extraction task (Zelenko

et al., 2003). In that task, two entities are given in a sentence and the system determines whether the two

entities are related or not mostly based on what the sentence says. In contrast, there is no sentence in this

task and the presence of a relation is determined entirely based on the two entities.

Since several thousand relations already exist in SNOMED CT, we used these existing relations to

form our dataset. Both training and test relation example pairs were obtained from this dataset. To

identify each kind of relation we separately trained a machine learning method. We employed SVM

1http://www.cliniclue.com



(Cristianini and Shawe-Taylor, 2000) machine learning method in combination with a new kernel that

we specifically designed for this relation identification task. The experimental results show that the

trained system obtains a good accuracy.

Such a system could be used for creating precise SNOMED CT expressions for clinical phrases.

For example, “acute gastric ulcer with perforation” could be represented as an “acute gastric ulcer”,

whose finding site is “stomach structure” and whose associated morphologies are “perforated ulcer” and

“acute ulcer” (this is also shown in Table 1 under phrase (c)). In this example, “is a”, “finding site”

and “associated morphology” are the identified relations, and “acute gastric ulcer”, “stomach structure”,

“perforated ulcer” and “acute ulcer” are already present concepts in SNOMED CT. This representation

would be obtained by efficiently testing the phrase for all the relations and with all the existing SNOMED

CT concepts.

2 Background and Related Work

Realizing the importance of unlocking the clinical information present in free-text clinical reports, re-

searchers started working on automatically converting them into structured representations years ago.

Previous systems to convert natural language clinical information into structured representation, like

LSP (Sager et al., 1987, 1995), MedLEE (Friedman et al., 1994, 2004) and Menelas (Spyns et al., 1992;

Spyns and Willems, 1995), were manually built by linguistically and medically trained experts over a

long course of time. The builders manually encoded how different natural language patterns should

convert into the target structured representations. They also developed their own suitable structured rep-

resentations (Friedman et al., 1993; Zweigenbaum et al., 1995) which restricts their systems from being

useful elsewhere where a different type of structured representation is in use. Although we are limiting

ourselves to clinical phrases instead of full sentences at this stage, we use machine learning techniques

to minimize the manual cost of building such a system. For the structured representation, we are using

the standardized clinical terminology, SNOMED CT, which is already widely in use.

Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT; IHTSDO, 2009) is the

most comprehensive clinical terminology in the world today and is widely used in electronic health

record systems for documentation purposes and reporting (Benson, 2010). Its extensive content and ex-

pressivity makes it suitable for precisely encoding clinical concepts. Not only does it specify around four

hundred thousand pre-defined medical concepts and relations between them, but also its compositional

grammar (IHTSDO, 2008) can be used to build new expressions that represent new medical concepts

in terms of the existing concepts. SNOMED CT has been developed in the description logic formalism

(Baader et al., 2003) which also makes it suitable for automated reasoning. For all these reasons, we

think that it is the best structured representation into which natural language clinical phrases may be

converted. There are browsers and tools available that can help users search SNOMED CT as well as

interactively build new expressions, like CliniClue. Lee et al. (2010) presented a method for manually

encoding text with SNOMED CT. There also has been recent work in automatically mapping text to

SNOMED CT pre-defined concepts (Jung et al., 2009; Stenzhorn et al., 2009; Barrett et al., 2012) or

UMLS pre-defined concepts (Aronson and Lang, 2010). However, these systems at best do an approx-

imate match from clinical phrases to pre-defined concepts, also known as pre-coordinated expressions.

In contrast, the system presented in this paper can help to automatically map natural language clinical

phrases which do not match any pre-defined concepts into their semantically equivalent new SNOMED

CT expressions. The new SNOMED CT expressions are also known as post-coordinated expressions.

We did a preliminary analysis of the i2b2 2010 clinical text corpus (Uzuner et al., 2011) and found that

out of around 8300 unique annotated concepts (noun phrases) in it, only around 1600 were pre-defined

concepts in SNOMED CT. This shows that new phrases are abundantly present in clinical text and hence

the ability to convert them into new SNOMED CT expressions is important.



Natural Language Clinical Phrase SNOMED CT Expresesion

(a) severe pain in the stomach

116680003 |is a| = 22253000 |pain|
{363698007 |finding site| = 69695003 | stomach structure |,
272141005 |severity| = 24484000 |severe| }

(b) neoplasm of right lower lobe of lung

116680003 |is a| = 126713003 |neoplasm of lung|
{116676008 |associated morphology| = 108369006 |neoplasm|,
363698007 |finding site| =

266005 |structure of right lower lobe of lung|}

(c) acute gastric ulcer with perforation

116680003 |is a| = 95529005 |acute gastric ulcer|
{363698007 |finding site| = 69695003 | stomach structure |,
116676008 |associated morphology| = 26317001 |acute ulcer|,
116676008 |associated morphology| = 91182001 |perforated ulcer|}

(d) family history of aplastic anemia

116680003 |is a| 243796009 |situation with explicit context|
{246090004 |associated finding| =

306058006 |aplastic anemia|
{408732007 |subject relationship context| =

303071001 |person in the family|} }

Table 1: Some examples of natural language clinical phrases and their corresponding SNOMED CT ex-

pressions. The numbers are the SNOMED CT concept and relation identifiers and their natural language

descriptions are shown for human readability. The “=” character indicates relation kind on its left side

and the related concept on its right side.

3 Identifying SNOMED CT Relations

3.1 Formulation of the Task

Table 1 shows some examples of clinical phrases and their associated SNOMED CT expressions. The

expressions are shown using the syntax of SNOMED CT’s compositional grammar (IHTSDO, 2008).

The numbers are the unique SNOMED CT concept and relation identifiers. Each concept in SNOMED

CT has at least one natural language description. A description for each concept and relation is shown

within vertical bars for human readability. The “=” character denotes relation kind on its left side and

the related concept on its right side. The “is a” relation identifies the basic concept a clinical phrase

represents and this is then further qualified using more relations which are shown in “{}” brackets. Note

that there could be multiple relations of the same kind in an expression, for example, in phrase (c) the

“associated morphology” relation occurs twice. Similarly, even the “is a” relation can occur more than

once because SNOMED CT allows multiple inheritance of concepts. There is more than one way to write

an expression in SNOMED CT, ranging from close-to-user form to normal form (IHTSDO, 2009). We

have shown close-to-user forms in the Table 1 which are simpler and easier for humans to understand.

For the record, the concepts for phrases (b) and (c) are already present in the current version of SNOMED

CT but the concepts for phrases (a) and (d) are not present.

As it can be observed, relations are the basis for forming SNOMED CT expressions. Hence, in

this paper, we formulate the task of identifying relations between clinical phrases and SNOMED CT

concepts. A new SNOMED CT expression could then be formed for a new clinical phrase by identifying

its relations with exiting concepts. We present a machine learning method for training a separate relation

identifier for each of the relations present in SNOMED CT (for example, “is a”, “finding site” etc.). Since

every concept in SNOMED CT has a basic type (for example, “substance”, “disorder”, “body structure”

etc.), and the basic type can also be determined for every clinical phrase (either directly from the context

it is used in or by using a trained classifier),2 we treat each relation with different types separately. For

2Alternatively, the type of a clinical phrase could also be identified by first determining the “is a” relation.



example, the “finding site” relation that relates “disorder” to “body structure” is treated separately from

the “finding site” relation that relates “finding” to “body structure”. The first column of Table 2 shows

the most frequent relations in SNOMED CT along with their types which we used in our experiments.

Since several hundred thousand concepts and the relations between them are already present in

SNOMED CT, we decided to use them as our dataset for training and testing our method. Every concept

in SNOMED CT has a unique identifier and is also given a unique fully specified natural language name.

In addition, it may have several natural language descriptions which are essentially a few different ways

of expressing the same concept. To create our dataset, for every kind of relation, we randomly took some

pairs of related concepts as positive examples and some pairs of unrelated concepts as negative examples.

For each of the two concepts in a relation example, we randomly selected one description (phrase) out of

all the descriptions it may have (including its fully specified name). We did so because a clinical phrase

may not always be a fully specified name and the method should also be trained to work with alternate

descriptions. Then the task of relation identification is: given the two descriptions of two concepts of

particular types, determine whether they are related by a particular relation or not. We are not aware of

any other work that has considered such a relation identification task for SNOMED CT.

3.2 Machine Learning Approach for the Task

For every kind of relation along with its types, we built a separate relation identifier. It may be noted that

sometimes a presence of a relation can be identified simply by detecting overlap between the words in

the two descriptions. For example, for the phrase (a) in Table 2, the word “pain” overlaps, hence “severe

pain in the stomach” is a “pain”. Similarly for the phrase (b), “neoplasm of right lower lobe of lung” is

a “neoplasm of lung”. However, this is not the case for many other relations. For example, the phrase

(c) does not contain “stomach structure” which is its “finding site”. Hence besides mere overlap, the

relation identifier system should be able to use several other clues. In the previous example, it should

know that “gastric” generally means related to “stomach structure”. As it will be a formidable task to

manually encode every piece of such knowledge, we use machine learning approach so that the system

would automatically learn this kind of knowledge from training examples.

Another kind of knowledge a relation identifier would need is what words in the clinical phrase

indicate what relations. For example, the word “in” in a disorder concept would usually indicate a

“finding site” relation to a “body structure”. The machine learning system is expected to also learn this

kind of knowledge from training examples. In our experiments, we used a baseline for comparison that

uses only the amount of overlap for identifying relations.

We decided to use Support Vector Machine (SVM; Cristianini and Shawe-Taylor, 2000) as our

learning algorithm because it has been shown to work well with thousands of features and hence has

been widely used in natural language processing tasks which often involve use of several thousand fea-

tures, for example, words and their combinations. An additional advantage of SVM is that one can

implicitly specify potentially infinite number of features without actually enumerating them by defining

a similarity function between the examples, called a kernel. This is also known as the kernel trick. For

our relation identification task, we designed a specific kernel to enable the SVM learner to learn the

kinds of knowledge it needs to learn which were mentioned earlier. It also incorporates word overlap

which is sometimes a good indication of a relation. The kernel is defined as follows. Let A and B be

two examples. Let c1
A and c2

A be the descriptions of the first and the second concepts of the example

A respectively. Similarly, let c1
B and c2

B be the descriptions of the first and the second concepts of the

example B respectively. Then the kernel K(, ) between examples A and B is defined as:

K(A,B) = sim(c1
A, c1

B) ∗ sim(c2
A, c2

B) + sim(c1
A, c2

A) ∗ sim(c1
B, c2

B) (1)

where, sim(, ) is the similarity function between any two descriptions (which are phrases). In our

experiments, we defined similarity as the number of common words. We also tried defining it as the

number of common word subsequences (Lodhi et al., 2002; Bunescu and Mooney, 2005), but it did not

result in any gain in the performance. Note that the above is a well-defined kernel because products



and summations of kernels are also well-defined kernels (Haussler, 1999). The kernel is normalized by

dividing it by the square-root of K(A,A) ∗K(B,B).
We now explain this kernel and what its implicit features are. The first term of the addition is a

product of the number of common words between the first concepts of the two examples and the second

concepts of the two examples. This essentially counts the number of common word pairs present in the

two examples such that in each example the first word is present in the first concept and the second word

is present in the second concept. For example, if both examples have “gastric” present in the first concept

and “stomach” present in the second concept, then it will count “gastric,stomach” as a feature present

in both the examples. Thus this kernel term implicitly captures pairs of words, one in each concept,

as features. Based on these features, the learner may learn what combination of word pairs indicate a

relation.

The second term simply treats the number of words overlapping between the two concepts of an

example as a feature. The product then indicates how similar the two examples are along this feature.

As was indicated earlier, overlap is an important feature because often the descriptions of the related

concepts have overlap of words. In general, the two addition terms could be weighed differently, however,

presently we did not experiment with different weights and we simply let SVM learn appropriate weights

as part of its learning process.

4 Experiments

In this section we describe our experiments on the relation identification task for SNOMED CT relations.

4.1 Methodology

As was noted earlier, we formed our dataset utilizing the existing relations present in SNOMED CT.

There are hundreds of different kinds relations present in SNOMED CT, some of them are more impor-

tant than others (examples of some of the unimportant relations are “duplicate concept” and “inactive

concept”). We report our results on the fourteen important and most frequent relations, each of which

had more than ten thousand instances. The “is a(procedure,procedure)” relation had the highest number

of 93, 925 instances. Since we had enough examples to choose our training and test examples from,

instead of doing standard cross-validation, we ran five folds and in each fold we randomly selected five

thousand training and five thousand test examples. Training beyond five thousand examples would lead

to memory problems, but as our learning curves showed, the learning would generally converge by five

thousand training examples.

For each relation, positive examples for both training and testing were randomly selected without

replacement as pairs of concepts for which the relation is known to exist. Then equal number of negative

examples were randomly selected without replacement as pairs of concepts of the required types which

are not related by that relation. There was no overlap between training and testing datasets. We employed

SVM using the LibSVM package3 along with the user-defined kernel as defined in the previous section.

We measured precision and recall. Precision is the percentage of correctly identified relations out of

all the identified relations. Recall is the percentage of correctly identified relations out of all the relations

present in the test set. The evaluation was done for the combined output of all the folds. SVM can also

give the confidences for its classification decisions through Platt’s method (Platt, 1999). We used these

confidences to measure precision and recall at every confidence level and plotted precision-recall curves.

We also measured the maximum F-measure across the precision-recall curves, where F-measure is the

harmonic mean of precision can recall.

We compared our approach with a baseline method which only uses the amount of word overlap

between the two concepts to identify a relation between them. It is not a learning-based approach. It

outputs its confidence on a relation as the degree of overlap between the two concepts (i.e. the number of

common words after normalization for word lengths). We call this baseline the similarity baseline. Note

3http://www.csie.ntu.edu.tw/˜cjlin/libsvm/



that the similarity scores are already included as features in the kernel used in the learning approach.4

Since there were equal number of positive and negative examples, the accuracy of a random classifier

would be 50%.

4.2 Results and Discussion

Relation Similarity Baseline (%) Trained System (%)

associated morphology(disorder, morphologic abnormality) 66.67 83.29

causative agent(disorder, substance) 82.94 90.87

finding site(disorder, body structure) 66.67 84.35

finding site(finding, body structure) 66.67 89.11

has active ingredient(product, substance) 85.92 91.34

is a(body structure, body structure) 79.82 89.55

is a(disorder, disorder) 78.18 84.55

is a(finding, finding) 78.98 87.06

is a(organism, organism) 66.67 79.23

is a(procedure, procedure) 73.49 86.58

is a(product, product) 67.48 86.27

is a(substance, substance) 66.67 68.73

part of(body structure, body structure) 66.67 89.13

procedure site direct(procedure, body structure) 66.67 87.47

Table 2: Maximum F-measures over the precision-recall curves obtained by the similarity baseline and

by the trained system for the most frequent SNOMED CT relations.
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Figure 1: Precision-recall curves for the “is a(procedure, procedure)” relation obtained using the simi-

larity baseline and using the trained system.

Table 2 shows the maximum F-measures obtained across the precision-recall curves for the similarity

4We found that using the similarity score as the only feature in the learning method does not do well.



baseline and for the trained system for the fourteen most frequent relations in SNOMED CT. It may be

first noted that the baseline does well on a few of the relations, obtaining close to 80% or more on five

relations. This shows that the similarity baseline is not a trivial baseline although on some other relations

it does not do well at all. Note that 66.67% F-measure can be also obtained by a random classifier by

calling every relation as positive which would result in 50% precision and 100% recall. The learned

approach does substantially better than the baseline on every relation. On eight of the fourteen relations

it exceeds the baseline’s performance by more than 10% (absolute). On five other relations it exceeds by

more than 6%. The performance is close to 90% on five relations and is close to 80% or more on thirteen

relations. The only relation on which the performance is not high is the “is a(substance,substance)”

relation. We found that this is mostly because a lot of new names are used for substances and from the

names themselves it is not easy to identify that a particular substance is a type of another substance, for

example, “lacto-n-tetrasylceramide, type 2 chain” is a “blood group antigen precursor”.

Figure 1 shows the entire precision-recall curves obtained using the trained system and the similarity

baseline for the “is a(procedure, procedure)” relation. We are not showing these graphs for other relations

due to space limitations, but this graph shows the typical curves obtained by the two methods. It may

be noted looking at the lower part of the recall side that there are examples on which the relation can

be identified with high precision even by the similarity baseline. But the learned approach continues to

obtain high precision even on the high recall side when the precision of the baseline drops off. Finally,

Figure 2 shows the learning curves for the same relation for the maximum F-measures on the precision-

recall curves. Since the baseline method is not a learning method, its learning curve is horizontal. It

can be seen that the learning method has almost converged and more training examples are unlikely

to improve the performance substantially. It may also be noted that even with a few hundred training

examples, the trained system already does much better than the baseline.
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Figure 2: Learning curve for the “is a(procedure, procedure)” relation obtained using the trained system.

The similarity baseline is shown for comparison.

5 Future Work

There are several avenues for future work. Currently, our method does not do any syntactic analysis

of the phrases. Clearly the syntactic structure of the phrase indicates the presence of relations with



other concepts. Hence it will be potentially useful information to exploit. One may do this by using

syntactic tree kernels (Collins and Duffy, 2001; Moschitti, 2006) for computing the similarity between

the descriptions. Another way to improve the performance could be by incorporating the hierarchical

structure of concepts in SNOMED CT as additional features. This may help the learner generalize across

concepts at similar places in the hierarchy. In future, we also want to evaluate the performance of our

method on clinical phrases which are not in SNOMED CT. This will, however, require manual evaluation

by experts which may be doable only on a small scale.

In future, we plan to apply the SNOMED CT relation identification method to convert clinical phrases

into their SNOMED CT expressions. We have already done some preliminary experiments towards this

end. In order to identify relations for a new phrase, the system needs to check every relation with

every other concept. Given that there are around four hundred thousand concepts in SNOMED CT,

doing this is computationally very intensive (testing an example in SVM requires computing kernels

with all the training examples which have non-zero support vectors). However, we tested the idea on a

subset of SNOMED CT with around 3000 concepts whose all relations are preserved within the subset.

We obtained maximum F-measures for the relation identification task in this setting in the range of

10 − 20%. But given that this test dataset contains a few thousand negative examples for every positive

example (random guessing will perform less than 1%), this is in fact not a bad performance, although

it needs to be improved. One way to improve will be to design a top level classifier that will filter

out several obvious negative examples. Some of the SNOMED CT expressions require nested use of

relations, for example, the expression for the phrase (d) in Table 1. In order to compositionally build

a nested SNOMED CT expression, in future one may leverage ideas from semantic parsing (Mooney,

2007), the task of converting natural language utterances into complete meaning representations.

6 Conclusions

We formulated the task of identifying SNOMED CT relations as a means for converting natural language

clinical phrases into SNOMED CT expressions. We presented a machine learning approach for identi-

fying relations and also introduced an appropriate kernel for the task. Experimental results showed that

the trained system obtains a good performance on the relation identification task.
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