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Preface

These proceedings contain the papers presented at the 10th International Workshop on Finite State
Methods and Natural Language Processing (FSMNLP 2012), held in Donostia-San Sebastián (Basque
Country), July 23–25, 2012.

The workshop covers a wide range of topics from morphology to formal language theory. A special
theme was chosen for FSMNLP 2012: “practical issues in finite-state technology,” including:

• Practical implementations of linguistic descriptions with finite-state technology

• Software tools and utilities for finite-state NLP

• Finite-state models of linguistic theories

• Applications of finite-state-based NLP in closely related fields

This volume contains the 7 long and 12 short papers presented at the workshop. In total, 31 papers (13
long and 18 short papers) were submitted and double-blind refereed. Each paper was reviewed by 3
program committee members. The overall acceptance rate was 61 per cent.

The program committee was composed of internationally leading researchers and practitioners selected
from academia, research labs, and companies.

The organizing committee would like to thank the program committee for their hard work, the referees
for their valuable feedback, the invited speaker and the presenters of tutorials for their contributions
and the local organizers for their tireless efforts. We are particularly indebted to the University of the
Basque Country (UPV/EHU) and the Basque Government (Eusko Jaurlaritza) for significant financial
support and to the Cursos de Verano/Uda Ikastaroak and the IXA research group for their support in
organizing the event.

IÑAKI ALEGRIA

MANS HULDEN
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Jorge González . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Finite-State Acoustic and Translation Model Composition in Statistical Speech Translation: Empirical
Assessment
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Manex Agirrezabal, Iñaki Alegria, Bertol Arrieta and Mans Hulden

13:00–14:30 Lunch

ix



Tuesday, July 24th, 2012 (continued)

14:30–15:30 SHORT PAPERS II

DAGGER: A Toolkit for Automata on Directed Acyclic Graphs
Daniel Quernheim and Kevin Knight

WFST-based Grapheme-to-Phoneme conversion: Open Source Tools for Alignment,
Model-Building and Decoding
Josef R. Novak, Nobuaki Minematsu and Keikichi Hirose

Kleene, a Free and Open-Source Language for Finite-State Programming
Kenneth R. Beesley

Implementation of Replace Rules Using Preference Operator
Senka Drobac, Miikka Silfverberg and Anssi Yli-Jyrä
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Abstract

We inspect the viability of finite-state spell-
checking and contextless correction of non-
word errors in three languages with a large de-
gree of morphological variety. Overviewing
previous work, we conduct large-scale tests
involving three languages — English, Finnish
and Greenlandic — and a variety of error mod-
els and algorithms, including proposed im-
provements of our own. Special reference
is made to on-line three-way composition of
the input, the error model and the language
model. Tests are run on real-world text ac-
quired from freely available sources. We show
that the finite-state approaches discussed are
sufficiently fast for high-quality correction,
even for Greenlandic which, due to its mor-
phological complexity, is a difficult task for
non-finite-state approaches.

1 Introduction

In most implementations of spell-checking, effi-
ciency is a limiting factor for selecting or discard-
ing spell-checking solutions. In the case of finite-
state spell-checking it is known that finite-state lan-
guage models can efficiently encode dictionaries of
natural languages (Beesley and Karttunen, 2003),
even for polysynthetic languages. Most contem-
porary spell-checking and correction systems are
still based on programmatic solutions (e.g. hun-
spell1, and its *spell relatives), or at most specialised
algorithms for implementing error-tolerant traver-
sal of the finite-state dictionaries (Oflazer, 1996;
Huldén, 2009a). There have also been few fully

1http://hunspell.sf.net

finite-state implementations that both detect and cor-
rect errors (Schulz and Mihov, 2002; Pirinen and
Lindén, 2010). In this paper we further evaluate the
use of finite-state dictionaries with two-tape finite-
state automatons as a mechanism for correcting mis-
spellings, and optimisations to the finite-state error
models, intending to demonstrate that purely finite-
state algorithms can be made sufficiently efficient.

To evaluate the general usability and efficiency
of finite-state spell-checking we test a number of
possible implementations of such a system with
three languages of typologically different morpho-
logical features2 and reference implementations for
contemporary spell-checking applications: English
as a morphologically more isolating language with
essentially a word-list approach to spell-checking;
Finnish, whose computational complexity has been
just beyond the edge of being too hard to implement
nicely in eg. hunspell (Pitkänen, 2006); and Green-
landic, a polysynthetic language which is imple-
mented as a finite-state system using Xerox’s orig-
inal finite-state morphology formalism (Beesley and
Karttunen, 2003). As a general purpose finite-state
library we use HFST3, which also contains our spell-

2We will not go into details regarding the morphological fea-
tures of these languages. We thank the anonymous reviewer for
guiding us to make a rough comparison using a piece of trans-
lated text. We observe from the translations of the Universal
Declaration of Human Rights (with pre-amble included) as fol-
lows: the number of word-like tokens for English is 1,746, for
Finnish 1,275 and for Greenlandic 1,063. The count of the 15
most frequent tokens are for English 120—28, for Finnish 85—
10 and for Greenlandic 38—7.

The average word length is 5.0 characters for English, 7.8
for Finnish and 14.9 for Greenlandic. For the complexity of
computational models refer to Table 2 in this article.

3http://hfst.sf.net
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checking code.
As neither Finnish nor Greenlandic have been

successfully implemented in the hunspell formal-
ism, we mainly use them to evaluate how the com-
plexity of a language model affects the efficiency of
finite-state spell-checking. For a full-scale survey on
the state-of-the-art non-finite-state spell-checking,
refer to Mitton (2009).

The efficiency results are contrasted with the ex-
isting research on finite-state spell-checking in Has-
san et al. (2008) and the theoretical results on finite-
state error-models in Mitankin (2005). Our contri-
bution primarily comprises the addition of morpho-
logically complex languages with actual cyclic dic-
tionary automata (i.e. infinite dictionaries formed
by compounding and recurring derivation) and more
complex structure in general, compared to those of
English and Arabic. Our goal is to demonstrate that
finite-state spelling is tractable for these complex
languages, to document their implications for per-
formance and to present an algorithm for the task.
We also point out that previous approaches have ne-
glected to simultaneously constrain the error model
and the dictionary with each other in on-line com-
position, which affords a significant speed benefit
compared to generating the two component compo-
sitions.

The rest of the paper is organised as follows. In
Section 2 we discuss the spell-checking task, current
non-finite-state spell-checkers and previously used
finite-state methods for spell-checking and correc-
tion and propose some possible speed optimisations
for the error models. We also investigate algorith-
mic limitations of finite-state approaches and ways
to remedy them. In Section 3 we present the lan-
guage models, error models and the testing corpora.
In Section 4 we present the comparisons of speed
and quality with combinations of different language
and error models and corpora for spell-checking. In
Section 5 we summarise our findings and results,
and outline future goals.

2 Methods

A finite-state spell-checker is typically (Pirinen and
Lindén, 2010) composed of at least two finite-state
automata; one for the dictionary of the language, or
the language model, which contains valid strings of

the language, and one automaton to map misspelt
words into correct strings, or the error model. Both
the language model and the error model are usu-
ally (Pirinen and Lindén, 2010) weighted finite-state
automata, where the weights represent the prob-
abilities are of a word being correctly spelled in
the language model and of specific misspellings,
respectively. We evaluate here the effect of both
the language and error model automatons’ structure
and complexity on the efficiency of the finite-state
spelling task.4

2.1 Language Models

The most basic language model for a spell-checking
dictionary is a list of correctly spelled word forms.
One of the easiest ways of creating such a spell-
checker is to collect the word forms from a reason-
ably large corpus of (mostly) correctly spelt texts.
Additionally we can count the frequency of words
and use that as the likelihood, P (w) = c(w)∑

w∈D c(w)

where c(w) is the count of the word w and D is the
set of corpus word forms. For morphologically more
isolating languages such as English, this is often a
sufficient approach (Norvig, 2010), and we use it to
create a dictionary for our English spell-checker as
well. As a non-finite-state reference point we use
hunspell.

For agglutinative languages like Finnish, for
which the word-list approach is likely to miss a
much greater number of words, one of the most
common approaches is to use right-linear gram-
mars, possibly combined with finite-state rule lan-
guages to implement morphophonological alter-
ations (Koskenniemi, 1983). This approach also ap-
plies to the newest available free / open source and
full-fledged finite-state Finnish morphological dic-
tionary we found (Pirinen, 2011). This language
model features productive derivations, compound-
ing and rudimentary probabilistic models. We take,
as a reference non-finite state language model for
Finnish, Voikko’s implementation in Malaga, which
is currently used as a spell-checking component
in open source software. It is implemented in a

4The methods introduced in this research as well as all ma-
terials are free/libre open source. Please see our svn repos-
itory https://hfst.svn.sf.net/svnroot/trunk/
fsmnlp-2012-spellers/ for detailed implementation
and scripts to reproduce all the results.
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left-associative grammar formalism, which is a po-
tentially less efficient system with more expressive
power. It’s similar to finite-state formulations in
terms of linguistic coverage.

For polysynthetic languages it will be obvious
that the coverage of any word-list-based approach
will be even lower. Furthermore, most simple ex-
tensions to it such as affix stripping (as in hun-
spell) are not adequate for describing word forms.
To our knowledge, the only approaches that have
been widely used for spell-checking and morpho-
logical analysis of Greenlandic have been based
on traditional finite-state solutions, such as the Xe-
rox formalisms. In our case we have obtained
a freely available finite-state morphology imple-
mentation from the Internet5. For further de-
tails we refer to the authors’ website http://
oqaaserpassualeriffik.org/.

2.2 Error Models

The ubiquitous formula for modeling typing er-
rors since computer-assisted spelling correction be-
gan has been the edit distance metric sometimes
attributed to Levenshtein (1966) and/or Damerau
(1964). It maps four typical slips of the fingers on
a keyboard to events in the fuzzy matching of mis-
spelt word forms to correct ones, that is, the deletion
of a character (i.e. failing to press a key), addition
of a character (i.e. hitting an extra key accidentally),
changing a character (i.e. hitting the wrong key) and
transposing adjacent characters (i.e. hitting two keys
in the wrong order).

When modeling edit distance as a finite-state au-
tomaton, a relatively simple two-tape automaton is
sufficient to implement the algorithm (Hassan et al.,
2008). The automaton will consist of one arc for
each type of error, and additionally one state for
each transposition pair. This means that the trivial
nondetermistic finite-state automaton implementing
the algorithm is of space complexity S(V,E,Σ) =
O(|Σ|2|V | + |Σ|2|E|), where Σ is the alphabet of
language, V is the set vertices in automaton and E is
the set of edges in automaton. This edit distance for-
mulation is roughly feature equivalent to hunspell’s
TRY mechanism.

5https://victorio.uit.no/langtech/trunk/
st/kal

To further fine-tune this finite-state formulation
of the edit distance algorithm, it is possible to at-
tach a probability to each of the error events as a
weight in a weighted finite-state automaton, corre-
sponding to the likelihood of an error, or a con-
fusion factor. This can be used to implement fea-
tures like keyboard adjacency or an OCR confusion
factor to the error correction model. This will not
modify the structure of the finite-state error mod-
els or the search space—which is why we did not
test their effects in this article—, but introduction of
non-homogenous weights to the resulting finite-state
network may have an effect on search time. This ad-
dition is equivalent to hunspell’s KEY mechanism.

For English language spelling correction there
is also an additional type of error model to deal
with competence-related misspellings—as opposed
to models that mainly deal with mistypings—
implemented in the form of phonemic folding and
unfolding. This type of error is very specific to cer-
tain types of English text and is not in the scope of
this experiment. This is the PHON part of the hun-
spell’s correction mechanism.

After fine-tuning the error models to reimplement
hunspell’s feature set, we propose variations of this
edit distance scheme to optimise the speed of er-
ror correction with little or no negative effect to the
quality of the correction suggestions. The time re-
quirement of the algorithm is determined by the size
of the search space, i.e. the complexity of the result-
ing network when the error model is applied to the
misspelt string and intersected with the dictionary6.

To optimise the application of edit distance by
limiting the search space, many traditional spell
checkers will not attempt to correct the very first let-
ter of the word form. We investigated whether this
decision is a particularly effective way to limit the
search space, but it does not appear to significantly
differ from restricting edits at any other position in
the input.

Dividing the states of a dictionary automaton into
6For non-finite-state solutions, the search space is simply

the number of possible strings given the error corrections made
in the algorithm. For finite-state systems the amount of gener-
ated strings with cyclic language and error models is infinite, so
complexity calculation are theoretically slightly more complex,
however for basic edit distance implementations used in this ar-
ticle the search space complexities are always the same and the
amount of suggestions generated finite

3



classes corresponding to the minimum number of
input symbols consumed by that state, we found
that the average ambiguity in a particular class is
somewhat higher for the first input symbols, but
then stabilises quickly at a lower level. This was
accomplished by performing the following state-
categorisation procedure:

1. The start state is assigned to class 0, and all
other states are assigned to a candidate pool.

2. All states to which there is an (input) epsilon
transition from the start state are assigned to
class 0 and removed from the candidate pool.

3. This is repeated for each state in class 0 until
no more states are added to class 0. This com-
pletes class 0 as the set of states in which the
automaton can be before consuming any input.

4. For each state in class 0, states in the candidate
pool to which there is a non-epsilon transition
are assigned to class 1 and removed from the
candidate pool.

5. Class 1 is epsilon-completed as in (2-3).
6. After the completion of class n, class n + 1

is constructed. This continues until the candi-
date pool is empty, which will happen as long
as there are no unreachable states.

With this categorisation, we tallied the total num-
ber of arcs from states in each class and divided the
total by the number of states in the class. This is
intended as an approximate measure of the ambigu-
ity present at a particular point in the input. Some
results are summarized in Table 1.

Class Transitions States Average
0 156 3 52
1 1,015 109 9.3
2 6,439 1,029 6.3
3 22,436 5,780 3.9
4 38,899 12,785 3.0
5 44,973 15,481 2.9
6 47,808 17,014 2.8
7 47,495 18,866 2.5
8 39,835 17,000 2.3
9 36,786 14,304 2.6
10 45,092 14,633 3.1
11 66,598 22,007 3.0
12 86,206 30,017 2.9

Table 1: State classification by minimum input consumed
for the Finnish dictionary

Further, the size of a dictionary automaton that is
restricted to have a particular symbol in a particular

position does not apparently depend on the choice
of position. This result was acquired by intersecting
eg. the automaton e.+with the dictionary to restrict
the first position to have the symbol e, the automa-
ton .e.+ to restrict the second position, and so on.
The transducers acquired by this intersection vary in
size of the language, number of states and number of
transitions, but without any trend depending on the
position of the restriction. This is in line with the
rather obvious finding that the size of the restricted
dictionary in terms of number of strings is similarily
position-agnostic.

Presumably, the rationale is a belief that errors
predominately occur at other positions in the input.
As far as we know, the complete justification for this
belief remains to be made with a high-quality, hand-
checked error corpus.

On the error model side this optimisation has been
justified by findings where between 1.5 % and 15 %
of spelling errors happen in the first character of the
word, depending on the text type (Bhagat, 2007); the
1.5 % from a small corpus of academic texts (Yan-
nakoudakis and Fawthrop, 1983) and 15 % from dic-
tated corpora (Kukich, 1992). We also performed a
rudimentary classification of the errors in the small
error corpus of 333 entries from Pirinen et al. (2012),
and found errors at the first position in 1.2 % of the
entries. Furthermore, we noticed that when evenly
splitting the word forms in three parts, 15 % of the
errors are in the first third of the word form, while
second has 47 % and third 38 %, which would be in
favor of discarding initial errors7.

A second form of optimisation that is used by
many traditional spell-checking systems is to apply
a lower order edit distance separately before trying
higher order ones. This is based on the assumption
that the vast majority of spelling errors will be of
lower order. In the original account of edit distance
for spell-checking, 80 % of the spelling errors were
found to be correctable with distance 1 (Pollock and
Zamora, 1984).

The third form of optimisation that we test is
omitting redundant corrections in error models of
higher order than one. Without such an optimisa-

7By crude classification we mean that all errors were forced
to one of the three classes at weight of one, e.g. a series of
three consecutive instances of the same letters was counted as
deletion at the first position.
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tion, higher order error models will permit adding
and deleting the same character in succession at any
position, which is obviously futile work for error
correction. Performing the optimisation makes the
error model larger but reduces the search space, and
does not affect the quality of results.

2.3 Algorithms
The obvious baseline algorithm for the task of find-
ing which strings can be altered by the error model
in such a way that the alteration is present in the lan-
guage model is generating all the possible alterations
and checking which ones are present in the language
model. This was done in Hassan et al. (2008) by first
calculating the composition of the input string with
the error model and then composing the result with
the language model.

If we simplify the error model to one in which
only substitutions occur, it can already be seen that
this method is quite sensitive to input length and al-
phabet size. The composition explores each combi-
nation of edit sites in the input string. If any number
of edits up to d can be made at positions in an input
string of length n, there are

d∑

i=1

(
n

i

)

ways to choose the edit site, and each site is subject
to a choice of |Σ|−1 edits (the entire alphabet except
for the actual input). This expression has no closed
form, but as d grows to n, the number of choices
has the form 2n, so the altogether complexity is ex-
ponential in input length and linear in alphabet size
(quadratic if transpositions are considered).

In practice (when d is small relative to n) it is use-
ful to observe that an increase of 1 in distance results
in an additional term to the aforementioned sum, the
ratio of which to the previously greatest term is

n!/(d! · (n− d!))

n!/((d− 1)! · (n− d + 1)!)
=

n− d + 1

d

indicating that when d is small, increases in it pro-
duce an exponential increase in complexity. For
an English 26-letter lowercase alphabet, edit dis-
tance 2 and the 8-letter word “spelling”, 700 strings
are stored in a transducer. With transpositions,
deletions, insertions and edit weights this grows to

100, 215 different outputs. We have implemented
this algorithm for our results by generating the
edited strings by lookup, and performing another
lookup with the language model on these strings.

Plainly, it would be desirable to improve on this.
The intuition behind our improvement is that when
editing an input string, say “spellling”, it is a wasted
effort to explore the remainder after generating a
prefix that is not present in the lexicon. For example,
after changing the first character to “z” and not edit-
ing the second characted, we have the prefix “zp-”,
which does not occur in our English lexicon. So the
remaining possibilities - performing any edits on the
remaining 7-character word - can be ignored.

This is accomplished with a three-way composi-
tion in which the input, the error model and the lan-
guage model simultaneously constrain each other to
produce the legal correction set. This algorithm is
presented in some detail in Lindén et al. (2012). A
more advanced and general algorithm is due to Al-
lauzen and Mohri (2009).

3 Material

For language models we have acquired suitable free-
to-use dictionaries, readily obtainable on the Inter-
net.

We made our own implementations of the al-
gorithms to create and modify finite-state error
models. Our source repository contains a Python
script for generating error models and an extensive
Makefile for exercising it in various permuta-
tions.

To test the effect of correctness of the source
text to the speed of the spell-checker we have re-
trieved one of largest freely available open source
text materials from the Internet, i.e. Wikipedia. The
Wikipedia text is an appropriate real-world material
as it is a large body of text authored by many individ-
uals, and may be expected to contain a wide variety
of spelling errors. For material with more errors, we
have used a simple script to introduce (further, ar-
bitrary) errors at a uniform probability of 1/33 per
character; using this method we can also obtain a
corpus of errors with correct corrections along them.
Finally we have used a text corpus from a language
different than the one being spelled to ensure that the
majority of words are not in the vocabulary and (al-
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most always) not correctable by standard error mod-
els.

The Wikipedia corpora were sourced from
wikimedia.org. For exact references, see our
previously mentioned repository. From the dumps
we extracted the contents of the articles and picked
the first 100,000 word tokens for evaluation.

In Table 2 we summarize the sizes of automata in
terms of structural elements. On the first row, we
give the size of the alphabet needed to represent the
entire dictionary. Next we give the sizes of automata
as nodes and arcs of the finite-state automaton en-
coding the dictionary. Finally we give the size of the
automaton as serialised on the hard disk. While this
is not the same amount of memory as its loaded data
structures, it gives some indication of memory usage
of the program while running the automaton in ques-
tion. As can be clearly seen from the table, the mor-
phologically less isolating languages do fairly con-
sistently have larger automata in every sense.

Automaton En Fi Kl
Σ set size 43 117 133
Dictionary FSM nodes 49,778 286,719 628,177
Dictionary FSM arcs 86,523 783,461 11,596,911
Dictionary FSM on disk 2.3 MiB 43 MiB 290 MiB

Table 2: The sizes of dictionaries as automata

In Table 3 we give the same figures for the sizes of
error models we’ve generated. The Σ size row here
shows the number of symbols left when we have re-
moved the symbols that are usually not considered
to be a part of a spell-checking mechanism, such as
all punctuation that does not occur word-internally
and white-space characters8. Note that sizes of error
models can be directly computed from their parame-
ters; i.e., the distance, the Σ set size and the optimi-
sation, so this table is provided for reference only.

4 Evaluation

We ran various combinations of language and error
models on the corpora described in section 3. We
give tabular results of the speed of the system and
the effect of the error model on recall. The latter

8The method described here does not handle run-on words
or extraneous spaces, as they introduce lot of programmatic
complexity which we believe is irrelevant to the results of this
experiment.

Automaton En Fi Kl
Σ set size 28 60 64
Edit distance 1 nodes 652 3,308 3,784
Edit distance 1 arcs 2,081 10,209 11,657
Edit distance 2 nodes 1,303 6,615 7,567
Edit distance 2 arcs 4136 20,360 23,252
No firsts ed 1 nodes 652 3,308 3,784
No firsts ed 1 arcs 2,107 10,267 11,719
No firsts ed 2 nodes 1,303 6,615 7,567
No firsts ed 2 arcs 4,162 20,418 23,314
No redundancy and 1st ed 2 nodes 1,303 6,615 7,567
No redundancy and 1st ed 2 arcs 4,162 20,418 23,314
Lower order first ed 1 to 2 arcs 6,217 30,569 34,909
Lower order first ed 1 to 2 nodes 1,955 9,923 11,351

Table 3: The sizes of error models as automata

is to establish that simpler error models lead to de-
graded recall—and not to more generally evaluate
the present system as a spell-checker.

The evaluations in this section are performed on
quad-core Intel Xeon E5450 running at 3 GHz with
64 GiB of RAM memory. The times are averaged
over five test runs of 10,000 words in a stable server
environment with no server processes or running
graphical interfaces or other uses. The test results
are measured using the getrusage C function on
a system that supports the maximum resident stack
size ru maxrss and user time ru utime fields.
The times are also verified with the GNU time
command. The results for hunspell, Voikkospell
and foma processes are only measured with time
and top. The respective versions of the soft-
ware are Voikkospell 3.3, hunspell 1.2.14, and Foma
0.9.16alpha. The reference systems are tested with
default settings, meaning that they will only give
some fixed number of suggestions whereas our sys-
tem will calculate all strings within the given error
model.

As a reference implementation for English we use
hunspell’s en-US dictionary9 and for a finite-state
implementation we use a weighted word-list from
Norvig (2010). As a Finnish reference implementa-
tion we use Voikko10, with a LAG-based dictionary
using Malaga11. The reference correction task for
Greenlandic is done with foma’s (Huldén, 2009b)

9http://wiki.services.openoffice.org/
wiki/Dictionaries

10http://voikko.sf.net
11http://home.arcor.de/bjoern-beutel/

malaga/
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apply med function with default settings12.
The baseline feature set and the efficiency of

spell-checking we are targeting is defined by the cur-
rently de facto standard spelling suite in open source
systems, hunspell.

In Table 4 we measure the speed of the spell-
checking process on native language Wikipedia
text with real-world spelling errors and unknown
strings. The error model rows are defined as fol-
lows: on the Reference impl. row, we test the spell-
checking speed of the hunspell tool for English, and
Voikkospell tool for Finnish. On the edit distance 2
row we use the basic traditional edit distance 2 with-
out any modifications. On the No first edits row we
use the error model that does not modify the first
character of the word. On the No redundancy row
we use the edit distance 2 error model with the re-
dundant edit combinations removed. On the No re-
dundancy and firsts rows we use the combined er-
ror model of No first edits and No redundancy func-
tionalities. On the row Lower order first we apply a
lower order edit distance model first, then if no re-
sults are found, a higher order model is used. In the
tables and formulae we routinely use the language
codes to denote the languages: en for English, fi for
Finnish and kl for Greenlandic (Kalaallisut).

Error model En Fi Kl
Reference impl. 9.93 7.96 11.42
Generate all edits 2 3818.20 118775.60 36432.80
Edit distance 1 0.26 6.78 4.79
Edit distance 2 7.55 220.42 568.36
No first edits 1 0.44 3.19 3.52
No firsts ed 2 1.38 61.88 386.06
No redundancy ed 2 7.52 4230.94 6420.66
No redundancy and firsts ed 2 1.51 62.05 386.63
Lower order first ed 1 to 2 4.31 157.07 545.91

Table 4: Effect of language and error models to speed
(time in seconds per 10,000 word forms)

The results show that not editing the first posi-
tion does indeed give significant boost to the speed,
regardless of language model, which is of course
caused by the significant reduction in search space.
However, the redundancy avoidance does not seem
to make a significant difference. This is most likely
because the amount of duplicate paths in the search
space is not so proportionally large and their traver-
sal will be relatively fast. The separate application

12http://code.google.com/p/Foma/

of error models gives the expected timing result be-
tween its relevant primary and secondary error mod-
els. It should be noteworthy that, when thinking of
real world applications, the speed of the most of the
models described here is greater than 1 word per sec-
ond (i.e. 10,000 seconds per 10,000 words).

We measured memory consumption when per-
forming the same tests. Varying the error model had
little to no effect. Memory consumption was almost
entirely determined by the language model, giving
consumptions of 13-7 MiB for English, 0.2 GiB for
Finnish and 1.6 GiB for Greenlandic.

To measure the degradation of quality when us-
ing different error models we count the proportion
of suggestion sets that contain the correct correction
among the corrected strings. The suggestion sets are
the entire (unrestricted by number) results of correc-
tion, with no attempt to evaluate precision13. For
this test we use automatically generated corpus of
spelling errors to get the large-scale results.

Error model En Fi Kl

Edit distance 1 0.89 0.83 0.81
Edit distance 2 0.99 0.95 0.92
Edit distance 3 1.00 0.96 —
No firsts ed 1 0.74 0.73 0.60
No firsts ed 2 0.81 0.82 0.69
No firsts ed 3 0.82 — —

Table 5: Effect of language and error models to quality
(recall, proportion of suggestion sets containing a cor-
rectly suggested word)

This test with automatically introduced errors
shows us that with uniformly distributed errors the
penalty of using an error model that ignores word-
initial corrections could be significant. This con-
trasts to our findings with real world errors, that the
distribution of errors tends towards the end of the
word, described in 2.2 and (Bhagat, 2007), but it
should be noted that degradation can be as bad as
given here.

Finally we measure how the text type used
will affect the speed of spell-checking. As the
best-case scenario we use the unmodified texts of
Wikipedia, which contain probably the most real-
istic native-language-speaker-like typing error dis-

13Which, in the absence of suitable error corpora and a more
full-fledged language model taking context into account, would
be irrelevant for the goal at hand.
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tribution available. For text with more errors,
where the majority of errors should be recoverable,
we introduce automatically generated errors in the
Wikipedia texts. Finally to see the performance in
the worst case scenario where most of the words
have unrecoverable spelling errors we use texts
from other languages, in this case English texts for
Finnish and Greenlandic spell-checking and Finnish
texts for English spell-checking, which should bring
us close to the lower bounds on performance. The
effects of text type (i.e. frequency of non-words) on
speed of spell-checking is given in Table 6. All of
the tests in this category were performed with er-
ror models under the avoid redundancy and firsts
ed 2 row in previous tables, which gave us the best
speed/quality ratio.

Error model En Fi Kl
Native Lang. Corpus 1.38 61.88 386.06
Added automatic errors 6.91 95.01 551.81
Text in another language 22.40 148.86 783.64

Table 6: Effect of text type on error models to speed (in
seconds per 10,000 word-forms)

Here we chiefly note that the amount of non-
words in text directly reflects the speed of spell-
checking. This shows that the dominating factor of
the speed of spell-checking is indeed in the correct-
ing of misspelled words.

5 Conclusions and Future Work

In this article, we built a full-fledged finite-state
spell-checking system from existing finite-state lan-
guage models and generated error models. This
work uses the system initially described in Pirinen
and Lindén (2010) and an algorithm described in
Lindén et al. (2012), providing an extensive quan-
titative evaluation of various combinations of con-
stituents for such a system, and applying it to the
most challenging linguistic environments available
for testing. We showed that using on-line composi-
tion of the word form, error model and dictionary is
usable for morphologically complex languages. Fur-
thermore we showed that the error models can be au-
tomatically optimised in several ways to gain some
speed at cost of recall.

We showed that the memory consumption of the
spell-checking process is mainly unaffected by the

selection of error model, apart from the need to store
a greater set of suggestions for models that generate
more suggestions. The error models may therefore
be quite freely changed in real world applications as
needed.

We verified that correcting only the first input let-
ter affords a significant speed improvement, but that
this improvement is not greatly dependent on the po-
sition of such a restriction. This practice is some-
what supported by our tentative finding that it may
cause the least drop in practical recall figures, at
least in Finnish. It is promising especially in con-
junction with a fallback model that does correct the
first letter.

We described a way to avoid having a finite-state
error model perform redundant work, such as delet-
ing and inserting the same letter in succession. The
practical improvement from doing this is extremely
modest, and it increases the size of the error model.

In this research we focused on differences in au-
tomatically generated error models and their optimi-
sations in the case of morphologically complex lan-
guages. For future research we intend to study more
realistic error models induced from actual error cor-
pora (e.g. Brill and Moore (2000)). Research into
different ways to induce weights into the language
models, as well as further use of context in finite-
state spell-checking (as in Pirinen et al. (2012)), is
warranted.
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Abstract

Previous work for encoding Optimality The-
ory grammars as finite-state transducers has
included two prominent approaches: the so-
called ‘counting’ method where constraint vi-
olations are counted and filtered out to some
set limit of approximability in a finite-state
system, and the ‘matching’ method, where
constraint violations in alternative strings are
matched through violation alignment in order
to remove suboptimal candidates. In this pa-
per we extend the matching approach to show
how not only markedness constraints, but also
faithfulness constraints and the interaction of
the two types of constraints can be captured
by the matching method. This often produces
exact and small FST representations for OT
grammars which we illustrate with two practi-
cal example grammars. We also provide a new
proof of nonregularity of simple OT gram-
mars.

1 Introduction

The possibility of representing Optimality Theory
(OT) grammars (Prince and Smolensky, 1993) as
computational models and finite-state transducers,
in particular, has been widely studied since the in-
ception of the theory itself. In particular, construct-
ing an OT grammar step-by-step as the composition
of a set of transducers, akin to rewrite rule com-
position in (Kaplan and Kay, 1994), has offered
the attractive possibility of simultaneously model-
ing OT parsing and generation as a natural conse-
quence of the bidirectionality of finite-state trans-
ducers. Two main approaches have received atten-
tion as practical options for implementing OT with
finite-state transducers: that of Karttunen (1998)
and Gerdemann and van Noord (2000).1 Both ap-

1Earlier finite-state approaches do exist, see e.g. Ellison
(1994) and Hammond (1997).

proaches model constraint interaction by construct-
ing a GEN-transducer, which is subsequently com-
posed with filtering transducers that mark violations
of constraints, and remove suboptimal candidates—
candidates that have received more violation marks
than the optimal candidate, with the general tem-
plate:

Grammar = Gen .o. MarkC1 .o. FilterC1 ...
MarkCN .o. FilterCN

In Karttunen’s system, auxiliary ‘counting’ trans-
ducers are created that first remove candidates with
maximally k violation marks for some fixed k, then
k−1, and so on, until nothing can be removed with-
out emptying the candidate set, using a finite-state
operation called priority union. Gerdemann and van
Noord (2000) present a similar system that they call
a ‘matching’ approach, but which does not rely on
fixing a maximal number of distinguishable viola-
tions k. The matching method is a procedure by
which we can in many cases (though not always)
distinguish between infinitely many violations in a
finite-state system—something that is not possible
when encoding OT by the alternative approach of
counting violations.

In this paper our primary purpose is to both ex-
tend and simplify this ‘matching’ method. We
will include interaction of both markedness and
faithfulness constraints (MAX, DEP, and IDENT

violations)—going beyond both Karttunen (1998)
and Gerdemann and van Noord (2000), where only
markedness constraints were modeled. We shall also
clarify the notation and markup used in the matching
approach as well as present a set of generic trans-
ducer templates for EVAL by which modeling vary-
ing OT grammars becomes a simple matter of mod-
ifying the necessary constraint transducers and or-
dering them correctly in a series of compositions.
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We will first give a detailed explanation of the
‘matching’ approach in section 2—our encoding,
notation, and tools differ somewhat from that of
Gerdemann and van Noord (2000), although the core
techniques are essentially alike. This is followed by
an illustration of our encoding and method through
a standard OT grammar example in section 3. In
that section we also give examples of debugging OT
grammars using standard finite state calculus meth-
ods. In section 4 we also present an alternate en-
coding of an OT account of prosody in Karttunen
(2006) illustrating devices where GEN is assumed to
add metrical and stress markup in addition to chang-
ing, inserting, or deleting segments. We also com-
pare this grammar to both a non-OT grammar and an
OT grammar of the same phenomenon described in
Karttunen (2006). In section 5, we conclude with a
brief discussion about the limitations of FST-based
OT grammars in light of the method developed in
this paper, as well as show a new proof of nonregu-
larity of some very simple OT constraint systems.

1.1 Notation

All the examples discussed are implemented with
the finite-state toolkit foma (Hulden, 2009b). The
regular expressions are also compilable with the Xe-
rox tools (Beesley and Karttunen, 2003), although
some of the tests of properties of finite-state trans-
ducers, crucial for debugging, are unavailable. The
regular expression formalism used is summarized in
table 1.

2 OT evaluation with matching

In order to clarify the main method used in this pa-
per to model OT systems, we will briefly recapitu-
late the ‘matching’ approach to filter out suboptimal
candidates, or candidates with more violation marks
in a string representation, developed in Gerdemann
and van Noord (2000).2

2.1 Worsening

The fundamental technique behind the finite-state
matching approach to OT is a device which we call
‘worsening’, used to filter out strings from a trans-
ducer containing more occurrences of some desig-
nated special symbol s (e.g. a violation marker),

2Also discussed in Jäger (2002).

AB Concatenation
A|B Union
˜A Complement
? Any symbol in alphabet
% Escape symbol

[ and ] Grouping brackets
A:B Cross product
T.l Output projection of T

A -> B Rewrite A as B
A (->) B Optionally rewrite A as B
|| C D Context specifier

[..] -> A Insert one instance of A
A -> B ... C Insert B and C around A

.#. End or beginning of string

Table 1: Regular expression notation in foma.

than some other candidate string in the same pool
of strings. This method of transducer manipulation
is perhaps best illustrated through a self-contained
example.

Consider a simple morphological analyzer en-
coded as an FST, say of English, that only
adds morpheme-boundaries—+-symbols—to input
words, perhaps consulting a dictionary of affixes and
stems. Some of the mappings of such a transducer
could be ambiguous: for example, the words decon-
struction or incorporate could be broken down in
two ways by such a morpheme analyzer:

Suppose our task was now to remove alternate
morpheme breakdowns from the transducer so that,
if an analysis with a smaller number of morphemes
was available for any word, a longer analysis would
not be produced. In effect, deconstruction should
only map to deconstruct+ion, since the other al-
ternative has one more morpheme boundary. The
worsening trick is based on the idea that we can
use the existing set of words from the output side
of the morphology, add at least one morpheme
boundary to all of them, and use the resulting set
of words to filter out longer ‘candidates’ from the
original morphology. For example, one way of
adding a +-symbol to de+construction produces
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de+construct+ion, which coincides with the orig-
inal output in the morphology, and can now be used
to knock out this suboptimal division. This process
can be captured through:

AddBoundary = [?* 0:%+ ?*]+;
Worsen = Morphology .o. AddBoundary;
Shortest = Morphology .o. ˜Worsen.l;

the effect of which is illustrated for the word de-
construction in figure 1. Here, AddBoundary is
a transducer that adds at least one +-symbol to the
input. The Worsen transducer is simply the origi-
nal transducer composed with the AddBoundary
transducer. The Shortest morphology is then
constructed by extracting the output projection of
Worsen, and composing its negation with the orig-
inal morphology.

Figure 1: Illustration of a worsening filter for morpheme
boundaries.

2.2 Worsening in OT
The above ‘worsening’ maneuver is what the
‘matching’ approach to model OT syllabification is
based upon. Evaluation of competing candidates
with regard to a single OT constraint can be per-
formed in the same manner. This, of course, pre-
supposes that we are using transducers to mark con-
straint violations in input strings, say by the sym-
bol *. Gerdemann and van Noord (2000) illustrate
this by constructing a GEN-transducer that syllabi-
fies words,3 and another set of transducers that mark

3Although using a much more complex set of markup sym-
bols than here.

violations of some constraint. Then, having a con-
straint, NOCODA, implemented as a transducer that
adds violation marks when syllables end in conso-
nants, we can achieve the following sequence of
markup by composition of GEN and NOCODA, for
a particular example input bebop:

The above transducers could be implemented very
simply, by epenthesis replacement rules:

# Insert periods arbitrarily inside words
Gen = [..] (->) %. || \.#. _ \.#. ;
# Insert *-marks after C . or C .#.
NoCoda = [..] -> %* || C+ [%. | .#.] _ ;

Naturally, at this point in the composition
chain we would like to filter out the suboptimal
candidates—that is, the ones with fewer violation
marks, then remove the marks, and continue with
the next constraint, until all constraints have been
evaluated. The problem of filtering out the subopti-
mal candidates is now analogous to the ‘worsening’
scenario above: we can create a ‘worsening’-filter
automaton by adding violation marks to the entire
set of candidates. In this example, the candidate
be.bop∗ would produce a worse candidate be∗.bop∗,
which (disregarding for the moment syllable bound-
ary marks and the exact position of the violation) can
be used to filter out the suboptimal beb∗.op∗.

3 An OT grammar with faithfulness and
markedness constraints

As previous work has been limited to working with
only markedness constraints as well as a some-
what impoverished GEN—one that only syllabifies
words—our first task when approaching a more
complete finite-state methodology of OT needs to
address this point. In keeping with the ‘richness
of the base’-concept of OT, we require a suitable
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GEN to be able to perform arbitrary deletions (eli-
sions), insertions (epentheses), and changes to the
input. A GEN-FST that only performs this task
(maps Σ∗ → Σ∗) on input strings is obviously fairly
easy to construct. However, we need to do more than
this: we also need to keep track of which parts of
the input have been modified by GEN in any way
to later be able to pinpoint and mark faithfulness
violations—places where GEN has manipulated the
input—through an FST.

3.1 Encoding of GEN

Perhaps the simplest possible encoding that meets
the above criteria is to have GEN not only change
the input, but also mark each segment in its output
with a marker whereby we can later distinguish how
the input was changed. To do so, we perform the
following markup:

• Every surface segment (output) is surrounded
by brackets [ . . . ].

• Every input segment that was manipulated by
GEN is surrounded by parentheses ( . . . ).

For example, given the input a, GEN would pro-
duce an infinite number of outputs, and among them:

[a] GEN did nothing
(a)[] GEN deleted the a
(a)[e] GEN changed the a to e
()[d](a)[i] GEN inserted a d and changed a to i
...

This type of generic GEN can be defined through:

Gen = S -> %( ... %) %[ (S) %] ,,
S -> %[ ... %] ,,
[..] (->) [%( %) %[ S %]]* ;

assuming here that S represents the set of segments
available.

3.2 Evaluation of faithfulness and markedness
constraints

As an illustrative grammar, let us consider a standard
OT example of word-final obstruent devoicing—as
in Dutch or German—achieved through the interac-
tion of faithfulness and markedness constraints. The
constraints model the fact that underlyingly voiced

obstruents surface as devoiced in word-final posi-
tion, as in pad → pat. A set of core constraints to
illustrate this include:

• ∗VF: a markedness constraint that disallows fi-
nal voiced obstruents.

• IDENTV: a faithfulness constraint that militates
against change in voicing.

• VOP: a markedness constraint against voiced
obstruents in general.

The interaction of these constraints to achieve de-
voicing can be illustrated by the following tableau.4

bed ∗VF IDENTV VOP
+ bet * *

pet **!
bed *! **
ped *! * *

The tableau above represents a kind of shorthand
often given in the linguistic literature where, for the
sake of conciseness, higher-ranked faithfulness con-
straints are omitted. For example, there is nothing
preventing the candidate bede to rank equally with
bet, were it not for an implicit high-ranked DEP-
constraint disallowing epenthesis. As we are build-
ing a complete computational model with an unre-
stricted GEN, and no implicit assumptions, we need
to add a few constraints not normally given when
arguing about OT models. These include:

• DEP: a faithfulness constraint against epenthe-
sis.

• MAX: a faithfulness constraint against dele-
tion.

• IDENTPL: a faithfulness constraint against
changes in place of articulation of segments.
This is crucial to avoid e.g. bat or bap being
equally ranked with bet in the above example.5

4The illustration roughly follows (Kager, 1999), p. 42.
5Note that a generic higher-ranked IDENT will not do, be-

cause then we would never get the desired devoicing in the first
place.
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Including these constraints explicitly allows us to
rule out unwanted candidates that may otherwise
rank equal with the candidate where word-final ob-
struents are devoiced, as illustrated in the following:

bed D
E

P

M
A

X

ID
E

N
T

P
L

∗ V
F

ID
E

N
T

V

V
O

P

+ bet * *
pet **!
bed *! **
ped *! * *
bat *! * *
bep *! * *
be *! *
bede *! **

Once we have settled for the representation
of GEN, the basic faithfulness constraint markup
transducers—whose job is to insert asterisks wher-
ever violations occur—can be defined as follows:

Dep = [..] -> {*} || %( %) _ ;
Max = [..] -> {*} || %[ %] _ ;
Ident = [..] -> {*} || %( S %) %[ S %] _ ;

That is, DEP inserts a *-symbol after ( )-
sequences, which is how GEN marks epenthesis.
Likewise, MAX-violations are identified by the se-
quence [ ], and IDENT-violations by a parenthesized
segment followed by a bracketed segment. To define
the remaining markup transducers, we shall take ad-
vantage of some auxiliary template definitions, de-
fined as functions:
def Surf(X) [X .o. [0:%[ ? 0:%]]*].l/

[ %( (S) %) | %[ %] ];
def Change(X,Y) [%( X %) %[ Y %]];

Here, Surf(X) in effect changes the language X
so that it can match every possible surface encod-
ing produced by GEN; for example, a surface se-
quence ab may look like [a][b], or [a](a)[b], etc.,
since it may spring from various different underly-
ing forms. This is a useful auxiliary definition that
will serve to identify markedness violations. Like-
wise Change(X,Y) reflects the GEN representa-
tion of changing a segment X to Y needed to con-
cisely identify changed segments. Using the above

we may now define the remaining violation markups
needed.

CVOI = [b|d|g];
Voiced = [b|d|g|V];
Unvoiced = [p|t|k];
define VC Change(Voiced,Unvoiced) |

Change(Unvoiced,Voiced);
define Place Change(p,?-b)|Change(t,?-d)|

Change(k,?-g)|Change(b,?-p)|
Change(d,?-t)|Change(g,?-k)|
Change(a,?)|Change(e,?)|
Change(i,?)|Change(o,?)|
Change(u,?);

VF = [..] -> {*} || Surf(CVOI) _ .#. ;
IdentV = [..] -> {*} || VC _ ;
VOP = [..] -> {*} || Surf(CVOI) _ ;
IdentPl = [..] -> {*} || Place _ ;

The final remaining element for a complete imple-
mentation concerns the question of ‘worsening’ and
its introduction into a chain of transducer composi-
tion. To this end, we include a few more definitions:

AddViol = [?* 0:%* ?*]+;
Worsen = [Gen.i .o. Gen]/%* .o. AddViol;
def Eval(X) X .o. ˜[X .o. Worsen].l .o. %*->0;
Cleanup = %[|%] -> 0 .o. %( \%)* %) -> 0;

Here, AddViol is the basic worsening method
discussed above whereby at least one violation mark
is added. However, because GEN adds markup to
the underlying forms, we need to be a bit more flex-
ible in our worsening procedure when matching up
violations. It may be the case that two different com-
peting surface forms have the same underlying form,
but the violation marks will not align correctly be-
cause of interfering brackets. Given two competing
candidates with a different number of violations, for
example (a)[b]* and [a], we would like the latter to
match the former after adding a violation mark since
they both originate in the same underlying form a.
The way to achieve this is to undo the effect of GEN,
and then redo GEN in every possible configuration
before adding the violation marks. The transducer
Worsen, above, does this by a composition of the
inverse GEN, followed by GEN, ignoring already ex-
isting violations. For the above example, this leads
to representations such as:

[a]
Gen.i→ a

Gen→ (a)[b]
AddViol→ (a)[b]*.
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Figure 2: OT grammar for devoicing compiled into an
FST.

We also define a Cleanup transducer that re-
moves brackets and parts of the underlying form.

Now we are ready to compile the entire system
into an FST. To apply only GEN and the first con-
straint, for example, we can calculate:

Eval(Gen .o. Dep) .o. Cleanup;

and likewise the entire grammar can be calculated
by:

Eval(Eval(Eval(Eval(Eval(Eval(
Gen .o. Dep) .o. Max) .o. IdentPl) .o.
VF) .o. IdentV) .o. VOP) .o. Cleanup;

This yields an FST of 6 states and 31 transitions
(see figure 2)—it can be ascertained that the FST
indeed does represent a relation where word-final
voiced obstruents are always devoiced.

3.3 Permutation of violations
As mentioned in Gerdemann and van Noord
(2000), there is an additional complication with the
‘worsening’-approach. It is not always the case that
in the pool of competing candidates, the violation
markers line up, which is a prerequisite for filtering
out suboptimal ones by adding violations—although
in the above grammar the violations do line up cor-
rectly. However, for the vast majority of OT gram-
mars, this can be remedied by inserting a violation-
permuting transducer that moves violations markers
around before worsening, to attempt to produce a
correct alignment. Such a permuting transducer can
be defined as in figure 3.

If the need for permutation arises, repeated per-
mutations can be included as many times as war-
ranted in the definition of Worsen:

Figure 3: Violation permutation transducer.

Permute = [%*:0 ?* 0:%*|0:%* ?* %*:0]*/?;
Worsen = [Gen.i .o. Gen]/%* .o.

Permute .o. ... .o. Permute .o.
AddViol;

Knowing how many permutations are necessary
for the transducer to be able to distinguish between
any number of violations in a candidate pool is pos-
sible as follows: we can can calculate for some con-
straint ConsN in a sequence of constraints,

Eval(Eval(Gen .o. Cons1) ... .o. ConsN) .o.
ConsN .o. \%* -> 0;

Now, this yields a transducer that maps every un-
derlying form to n asterisks, n being the number
of violations with respect to ConsN in the candi-
dates that have successfully survived ConsN. If this
transducer represents a function (is single-valued),
then we know that two candidates with a different
number of violations have not survived ConsN, and
that the worsening yielded the correct answer. Since
the question of transducer functionality is known
to be decidable (Blattner and Head, 1977), and
an efficient algorithm is given in Hulden (2009a),
which is included in foma (with the command test
functional) we can address this question by cal-
culating the above for each constraint, if necessary,
and then permute the violation markers until the
above transducer is functional.

3.4 Equivalence testing

In many cases, the purpose of an OT grammar is
to capture accurately some linguistic phenomenon
through the interaction of constraints rather than by
other formalisms. However, as has been noted by
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Karttunen (2006), among others, OT constraint de-
bugging is an arduous task due to the sheer num-
ber of unforeseen candidates. One of the advantages
in encoding an OT grammar through the worsening
approach is that we can produce an exact represen-
tation of the grammar, which is not an approxima-
tion bounded by the number of constraint violations
it can distinguish (as in Karttunen (1998)), or by the
length of strings it can handle. This allows us to
formally calculate, among other things, the equiva-
lence of an OT grammar represented as an FST and
some other transducer. For example, in the above
grammar, the intention was to model end-of-word
obstruent devoicing through optimality constraints.
Another way to model the same thing would be to
compile the replacement rule:

Rule = b -> p, d -> t, g -> k || _ .#. ;

The transducer resulting from this is shown in fig-
ure 4.

0

@ k p t 

1
b d g 

2b:p d:t g:k
@ k p t 

b d g 

b:p d:t g:k

Figure 4: Devoicing transducer compiled through a rule.

As is seen, the OT transducer (figure 2) and
the rule transducer (figure 4) are not structurally
identical. However, both transducers represent a
function—i.e. for any given input, there is always
a unique winning candidate. Although transducer
equivalence is not testable by algorithm in the gen-
eral case, it is decidable in the case where one of
two transducers is functional. If this is the case it is
sufficient to test that domain(τ1) = domain(τ2) and
that τ−1

2 ◦ τ1 represents identity relations only. As
an algorithm to decide if a transducer is an identity
transducer is also included in foma, it can be used to
ascertain that the two above transducers are in fact
identical, and that the linguistic generalization cap-
tured by the OT constraints is correct:

regex Rule.i .o. Grammar;
test identity

which indeed returns TRUE. For a small grammar,
such as the devoicing grammar, determining the cor-
rectness of the result by other means is certainly fea-
sible. However, for more complex systems the abil-
ity to test for equivalence becomes a valuable tool in
analyzing constraint systems.

4 Variations on GEN: an OT grammar of
stress assignment

Most OT grammars that deal with phonological phe-
nomena with faithfulness and markedness gram-
mars are implementable through the approach given
above, with minor variations according to what spe-
cific constraints are used. In other domains, how-
ever, in may be the case that GEN, as described
above, needs modification. A case in point are gram-
mars that mark prosody or perform syllabification
that often take advantage of only markedness con-
straints. In such cases, there is often no need for
GEN to insert, change, and delete material if all
faithfulness constraints are assumed to outrank all
markedness constraints. Or alternatively, if the OT
grammar is assumed to operate on a different stra-
tum where no faithfulness constraints are present.
However, GEN still needs to insert material into
strings, such as stress marks or syllable boundaries.

To test the approach with a larger ‘real-
world’ grammar we have reimplemented a Finnish
stress assignment grammar, originally implemented
through the counting approach of Karttunen (1998)
in Karttunen (2006), following a description in
Kiparsky (2003). The grammar itself contains nine
constraints, and is intended to give a complete ac-
count of stress placement in Finnish words. Without
going into a line-by-line analysis of the grammar,
the crucial main differences in this implementation
to that of the previous sections are:

• GEN only inserts symbols ( ) ‘ and ’
to mark feet and stress

• Violations need to be permuted in Worsen to
yield an exact representation

• GEN syllabifies words correctly through a re-
placement rule (no constraints are given in the
grammar to model syllabification; this is as-
sumed to be already performed)
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kainostelijat -> (ka´i.nos).(te‘.li).jat
kalastelemme -> (ka´.las).te.(le‘m.me)
kalasteleminen -> *(ka´.las).te.(le‘.mi).nen
kalastelet -> (ka´.las).(te‘.let)
kuningas -> (ku´.nin).gas
strukturalismi -> (stru´k.tu).ra.(li‘s.mi)
ergonomia -> (e´r.go).(no‘.mi).a
matematiikka -> (ma´.te).ma.(ti‘ik.ka)

Figure 5: Example outputs of matching implementation
of Finnish OT.

Compiling the entire grammar through the same
procedure as above outputs a transducer with 134
states, and produces the same predictions as Kart-
tunen’s counting OT grammar.6 As opposed to the
previous devoicing grammar, compiling the Finnish
prosody grammar requires permutation of the viola-
tion markers, although only one constraint requires
it (STRESS-TO-WEIGHT, and in that case, compos-
ing Worsen with one round of permutation is suffi-
cient for convergence).

Unlike the counting approach, the current ap-
proach confers two significant advantages. The first
is that we can compile the entire grammar into an
FST that does not restrict the inputs in any way. That
is, the final product is a stand-alone transducer that
accepts as input any sequence of any length of sym-
bols in the Finnish alphabet, and produces an output
where the sequence is syllabified, marked with feet,
and primary and secondary stress placement (see fig-
ure 5). The counting method, in order to compile at
all, requires that the set of inputs be fixed to some
very limited set of words, and that the maximum
number of distinguishable violations (and indirectly
word length) be fixed to some k.7 The second ad-
vantage is that, as mentioned before, we are able to
formally compare the OT grammar (because it is not
an approximation), to a rule-based grammar (FST)
that purports to capture the same phenomena. For
example, Karttunen (2006), apart from the count-
ing OT implementation, also provides a rule-based
account of Finnish stress, which he discovers to be
distinct from an OT account by finding two words

6Including replicating errors in Kiparsky’s OT analysis dis-
covered by Karttunen, as seen in figure 5.

7Also, compiling the grammar is reasonably quick: 7.04s on
a 2.8MHz Intel Core 2, vs. 2.1s for a rewrite-rule-based account
of the same phenomena.

where their respective predictions differ. However,
by virtue of having an exact transducer, we can for-
mally analyze the OT account together with the rule-
based account to see if they differ in their predictions
for any input, without having to first intuit a differ-
ing example:

regex RuleGrammar.i .o. OTGrammar;
test identity

Further, we can subject the two grammars to the
usual finite-state calculus operations to gain possible
insight into what kinds of words yield different pre-
dictions with the two—something useful for linguis-
tic debugging. Likewise, we can use similar tech-
niques to analyze for redundancy in grammars. For
example, we have assumed that the VOP-constraint
plays no role in the above devoicing tableaux. Using
finite-state calculus, we can prove it to be so for any
input if the grammar is constructed with the method
presented here.

5 Limits on FST implementation

We shall conclude the presentation here with a brief
discussion of the limits of FST representability, even
of simple OT grammars. Previous analyses have
shown that OT systems are beyond the generative
capacity of finite-state systems, under some assump-
tions of what GEN looks like. For example, Frank
and Satta (1998) present such a constraint system
where GEN is taken to be defined through a trans-
duction equivalent to:8

Gen = [a:b|b:a]* | [a|b]*;

That is, a relation which either maps all a’s to b’s
and vice versa, or leaves the input unchanged. Now,
let us assume the presence of a single markedness
constraint ∗a, militating against the letter a. In that
case, given an input of the format a∗b∗ the effective
mapping of the entire system is one that is an identity
relation if there are fewer a’s than b’s; otherwise the
a’s and b’s are swapped. As is easily seen, this is not
a regular relation.

One possible objection to this analysis of non-
regularity is that linguistically GEN is usually as-
sumed to perform any transformation to the input

8The idea is attributed to Markus Hiller in the article.
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whatsoever—not just limiting itself to a proper sub-
set of Σ∗ → Σ∗. However, it is indeed the case
that even with a canonical GEN-function, some very
simple OT systems fall outside the purview of finite-
state expressibility, as we shall illustrate by a differ-
ent example here.

5.1 A simple proof of OT nonregularity

Assume a grammar that has four very basic con-
straints: IDENT, forbidding changes, DEP, for-
bidding epenthesis, ∗ab, a markedness constraint
against the sequence ab, and MAX, forbidding dele-
tion, ranked IDENT,DEP � ∗ab � MAX. We as-
sume GEN to be as general as possible—performing
arbitrary deletions, insertions, and changes.

It is clear, as is illustrated in table 2, that for all in-
puts of the format anbm the grammar in question de-
scribes a relation that deletes all the a’s or all the b’s
depending on which there are fewer instances of, i.e.
anbm → an if m < n, and anbm → bm if n < m.
This can be shown by a simple pumping argument
to not be realizable through an FST.

aaabb IDENT DEP ∗ab MAX

aaaaa *!*
aaacbb *!
aaabb *!
aaab *! *
bb ***!

+ aaa **

Table 2: Illustrative tableau for a simple constraint sys-
tem not capturable as a regular relation.

Implementing this constraint system with the
methods presented here is an interesting exercise
and serves to examine the behavior of the method.

We define GEN, DEP, MAX, and IDENT as be-
fore, define a universal alphabet (excluding markup
symbols), and the constraint ∗ab naturally as:

S = ? - %( - %) - %[ - %] - %* ;
NotAB = [..] -> {*} || Surf(a b) _ ;

Now, with one round of permutation of the viola-
tion markers in Worsen as follows:

Worsen = [Gen.i .o. Gen]/{*} .o.
AddViol .o. Permute;

we calculate

define Grammar Eval(Eval(Eval(Eval(
Gen .o. Ident) .o. Dep) .o. NotAB) .o.
Max) .o. Cleanup;

which produces an FST that cannot distinguish be-
tween more than two a’s or b’s in a string. While
it correctly maps aab to aa and abb to bb, the
tableau example of aaabb is mapped to both aaa
and bb. However, with one more round of permu-
tation in Worsen, we produce an FST that can in-
deed cover the example, mapping aaabb uniquely
to bb, while failing with aaaabbb (see figure 6).
This illustrates the approximation characteristic of
the matching method: for some grammars (proba-
bly most natural language grammars) the worsening
approach will at some point of permutation of the vi-
olation markers terminate and produce an exact FST
representation of the grammar, while for some gram-
mars such convergence will never happen. How-
ever, if the permutation of markers terminates and
produces a functional transducer when testing each
violation as described above, the FST is guaranteed
to be an exact representation.
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Figure 6: An non-regular OT approximation.

It is an open question if it is decidable by exam-
ining a grammar whether it will yield an exact FST
representation. We do not expect this question to be
easy, since it cannot be determined by the nature of
the constraints alone. For example, the above four-
constraint system does have an exact FST represen-
tation in some orderings of the constraints, but not
in the particular one given above.
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6 Conclusion

We have presented a practical method of implement-
ing OT grammars as finite-state transducers. The ex-
amples, definitions, and templates given should be
sufficient and flexible enough to encode a wide vari-
ety of OT grammars as FSTs. Although no method
can encode all OT grammars as FSTs, the funda-
mental advantage with the system outlined is that
for a large majority of practical cases, an FST can
be produced which is not an approximation that can
only tell apart a limited number of violations. As
has been noted elsewhere (e.g. Eisner (2000b,a)),
some OT constraints, such as Generalized Align-
ment constraints, are on the face of it not suitable
for FST implementation. We may add to this that
some very simple constraint systems, assuming a
canonical GEN, and only using the most basic faith-
fulness and markedness constraints, are likewise not
encodable as regular relations, and seem to have the
generative power to encode phenomena not found
in natural language. However, for most practical
purposes—and this includes modeling actual phe-
nomena in phonology and morphology—the present
approach offers a fruitful way to implement, ana-
lyze, and debug OT grammars.
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Abstract 

A morphological analyser only recognizes 
words that it already knows in the lexical 
database. It needs, however, a way of sensing 
significant changes in the language in the form 
of newly borrowed or coined words with high 
frequency. We develop a finite-state 
morphological guesser in a pipelined 
methodology for extracting unknown words, 
lemmatizing them, and giving them a priority 
weight for inclusion in a lexicon. The 
processing is performed on a large 
contemporary corpus of 1,089,111,204 words 
and passed through a machine-learning-based 
annotation tool. Our method is tested on a 
manually-annotated gold standard of 1,310 
forms and yields good results despite the 
complexity of the task. Our work shows the 
usability of a highly non-deterministic finite 
state guesser in a practical and complex 
application. 

1 Introduction 

Due to the complex and semi-algorithmic nature of 
the Arabic morphology, it has always been a 
challenge for computational processing and 
analysis (Kiraz, 2001; Beesley 2003; Shaalan et al., 
2012). A lexicon is an indispensable part of a 
morphological analyser (Dichy and Farghaly, 
2003; Attia, 2006; Buckwalter, 2004; Beesley, 
2001), and the coverage of the lexical database is a 
key factor in the coverage of the morphological 
analyser. This is why an automatic method for 
updating a lexical database is crucially important. 

 
We present the first attempt, to the best of our 
knowledge, to address lemmatization of Arabic 
unknown words. The specific problem with 
lemmatizing unknown words is that they cannot be 
matched against a morphological lexicon. We 
develop a rule-based finite-state morphological 
guesser and use a machine learning disambiguator, 
MADA (Roth et al., 2008), in a pipelined approach 
to lemmatization.  
 
This paper is structured as follows. The remainder 
of the introduction reviews previous work on 
Arabic unknown word extraction and 
lemmatization, and explains the data used in our 
experiments. Section 2 presents the methodology 
followed in extracting and analysing unknown 
words. Section 3 provides details on the 
morphological guesser we have developed to help 
deal with the problem. Section 4 shows and 
discusses the testing and evaluation results, and 
finally Section 5 gives the conclusion. 

1.1 Previous Work 

Lemmatization of Arabic words has been 
addressed in (Roth et al., 2008; Dichy, 2001). 
Lemmatization of unknown words has been 
addressed for Slovene in (Erjavec and Džerosk, 
2004), for Hebrew in (Adler at al., 2008) and for 
English, Finnish, Swedish and Swahili in (Lindén, 
2008). Lemmatization means the normalization of 
text data by reducing surface forms to their 
canonical underlying representations, which, in 
Arabic, means verbs in their perfective, indicative, 
3rd person, masculine, singular forms, such as  َشَكَر 
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$akara “to thank”; and nominals in their 
nominative, singular, masculine forms, such as 
 TAlib “student”; and nominative plural for ططالِب
pluralia tantum nouns (or nouns that appear only 
in the plural form and are not derived from a 
singular word), such as ناسس nAs “people”. To the 
best of our knowledge, the study presented here is 
the first to address lemmatization of Arabic 
unknown words. The specific problem with 
lemmatizing unknown words is that they cannot be 
matched against a lexicon. In our method, we use a 
machine learning disambiguator, develop a rule-
based finite-state morphological guesser, and 
combine them in a pipelined process of 
lemmatization. We test our method against a 
manually created gold standard of 1,310 types 
(unique forms) and show a significant 
improvement over the baseline. Furthermore, we 
develop an algorithm for weighting and prioritizing 
new words for inclusion in a lexicon depending on 
three factors: number of form variations of the 
lemmas, cumulative frequency of the forms, and 
POS tags.  

1.2 Data Used 

In our work we rely on a large-scale corpus of 
1,089,111,204 words, consisting of 925,461,707 
words from the Arabic Gigaword Fourth Edition 
(Parker et al., 2009), and 163,649,497 words from 
news articles collected from the Al-Jazeera web 
site.1 In this corpus, unknown words appear at a 
rate of between 2% of word tokens (when we 
ignore possible spelling variants) and 9% of word 
tokens (when possible spelling variants are 
included).  

2 Methodology 

To deal with unknown words, or out-of-vocabulary 
words (OOVs), we use a pipelined approach, 
which predicts part-of-speech tags and morpho-
syntactic features before lemmatization. First, a 
machine learning, context-sensitive tool is used. 
This tool, MADA (Roth et al., 2008), performs 
POS tagging and morpho-syntactic analysis and 
disambiguation of words in context. MADA 
internally uses the Standard Arabic Morphological 
Analyser (SAMA) (Maamouri et al., 2010), an 
updated version of Buckalter Arabic 

                                                             
1 http://aljazeera.net/portal. Collected in January 2010. 

Morphological  Analyser (BAMA) (Buckwalter, 
2004). Second, we develop a finite-state 
morphological guesser that gives all possible 
interpretations of a given word. The morphological 
guesser first takes an Arabic form as a whole and 
then strips off all possible affixes and clitics one by 
one until all potential analyses are exhausted. As 
the morphological guesser is highly non-
deterministic, all the interpretations are matched 
against the morphological analysis of MADA that 
receives the highest probabilistic scores. The 
guesser’s analysis that bears the closest 
resemblance (in terms of morphological features) 
with the MADA analysis is selected. 
 
These are the steps followed in extracting and 
lemmatizing Arabic unknown words: 
• A corpus of 1,089,111,204 is analysed with 

MADA. The number of types for which 
MADA could not find an analysis in SAMA is 
2,116,180.  

• These unknown types are spell checked by the 
Microsoft Arabic spell checker using MS 
Office 2010. Among the unknown types, the 
number of types accepted as correctly spelt is 
208,188. 

• We then select types with frequency of 10 or 
more. This leave us with 40,277 types. 

• We randomly select 1,310 types and manually 
annotate them with the gold lemma, the gold 
POS and lexicographic preference for 
inclusion in a dictionary. 

• We use the full POS tags and morpho-syntactic 
features produced by MADA. 

• We use the finite-state morphological guesser 
to produce all possible morphological inter-
pretations and corresponding lemmatizations. 

• We compare the POS tags and morpho-
syntactic features in MADA output with the 
output of the morphological guesser and 
choose the one with the highest matching 
score. 

 

3 Morphological Guesser 

We develop a morphological guesser for Arabic 
that analyses unknown words with all possible 
clitics, morpho-syntactic affixes and all relevant 
alteration operations that include insertion, 
assimilation, and deletion. Beesley and Karttunen 
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(2003) show how to create a basic guesser. The 
core idea of a guesser is to assume that a stem is 
composed of any arbitrary sequence of Arabic non-
numeric characters, and this stem can be prefixed 
and/or suffixed with a predefined set of prefixes, 
suffixes or clitics. The guesser marks clitic 
boundaries and tries to return the stem to its 
underlying representation, the lemma. Due to the 
nondeterministic nature of the guesser, there will 
be a large number of possible lemmas for each 
form.  
 
The XFST finite-state compiler (Beesley and 
Karttunen, 2003) uses the “substitute defined” 
command for creating the guesser. The XFST 
commands in our guesser are stated as follows.  
 
define PossNounStem 
[[Alphabet]^{2,24}] "+Guess":0; 
define PossVerbStem 
[[Alphabet]^{2,6}] "+Guess":0; 
 
This rule states that a possible noun stem is defined 
as any sequence of Arabic non-numeric characters 
of length between 2 and 24 characters.  A possible 
verb stem is between 2 and 6 characters. The 
length is the only constraint applied to an Arabic 
word stem. This word stem is surrounded by 
prefixes, suffixes, proclitics and enclitics. Clitics 
are considered as independent tokens and are 
separated by the ‘@’ sign, while prefixes and 
suffixes are considered as morpho-syntactic 
features and are interpreted with tags preceded by 
the ‘+’ sign. Below we present the analysis of the 
unknown noun  َقونن  wa-Al-musaw~iquwna وواالمُسَوِّ
“and-the-marketers”. 
 
MADA output: 
form:wAlmswqwn num:p gen:m per:na
 case:n asp:na mod:na vox:na pos:noun
 prc0:Al_det prc1:0 prc2:wa_conj
 prc3:0 enc0:0 stt:d 
 
Finite-state guesser output: 
 @Guess+masc+pl+nom+وواالمسوققadj+ وواالمسوقونن
 @Guess+sg+وواالمسوقوننadj+ وواالمسوقونن
 @Guess+masc+pl+nom+وواالمسوققnoun+ وواالمسوقونن
 @Guess+sg+وواالمسوقوننnoun+ وواالمسوقونن
 مسوققdefArt@+adj+االل@conj+وو وواالمسوقونن
 +Guess+masc+pl+nom@ 
 مسوقوننdefArt@+adj+االل@conj+وو وواالمسوقونن

 +Guess+sg@ 
 مسوققdefArt@+noun+االل@conj+وو وواالمسوقونن
 +Guess+masc+pl+nom@ 
 مسوقوننdefArt@+noun+االل@conj+وو وواالمسوقونن
 +Guess+sg@ 
 Guess+masc+االمسوققconj@+adj+وو وواالمسوقونن
 +pl+nom@ 
 @Guess+sg+االمسوقوننconj@+adj+وو وواالمسوقونن
 Guess+masc+االمسوققconj@+noun+وو وواالمسوقونن
 +pl+nom@ 
 @Guess+sg+االمسوقوننconj@+noun+وو وواالمسوقونن
 
For a list of 40,277 word types, the morphological 
guesser gives an average of 12.6 possible 
interpretations per word. This is highly non-
deterministic when compared to AraComLex 
morphological analyser (Attia et al. 2011) which 
has an average of 2.1 solutions per word. We also 
note that 97% of the gold lemmas are found among 
the finite-state guesser's choices. 
 

4 Testing and Evaluation 

To evaluate our methodology we create a manually 
annotated gold standard test suite of randomly 
selected surface form types. For these surface 
forms, the gold lemma and part of speech are 
manually given. Besides, the human annotator 
gives a preference on whether or not to include the 
entry in a dictionary. This feature helps to evaluate 
our lemma weighting equation. The annotator 
tends to include nouns, verbs and adjectives, and 
only proper nouns that have a high frequency. The 
size of the test suite is 1,310.  
 

4.1 Evaluating Lemmatization 

In the evaluation experiment we measure accuracy 
calculated as the number of correct tags divided by 
the count of all tags. The baseline is given by the 
assumption that new words appear in their base 
form, i.e., we do not need to lemmatize them. The 
baseline accuracy is 45% as shown in Table 1. The 
POS tagging baseline proposes the most frequent 
tag (proper name) for all unknown words. In our 
test data this stands at 45%. We notice that MADA 
POS tagging accuracy is unexpectedly low (60%). 
We use Voted POS Tagging, that is when a lemma 
gets a different POS tag with a higher frequency, 
the new tag replaces the old low frequency tag. 
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This method has improved the tagging results 
significantly (69%). 
 

  Accuracy 
 POS tagging 
1 POS Tagging baseline 45% 
2 MADA POS tagging 60% 
3 Voted POS Tagging 69% 

Table 1. Evaluation of POS tagging 
 
As for the lemmatization process itself, we notice 
that our experiment in the pipelined lemmatization 
approach gains a higher (54%) score than the 
baseline (45%) as shown in Table 2. This score 
significantly rises to 63% when the difference in 
the definite article ‘Al’ is ignored. The testing 
results indicate significant improvements over the 
baseline. 
 

 Lemmatization 
1 Lemmas found among corpus forms 64% 
2 Lemmas found among FST guesser 

forms 
97% 

3 Lemma first-order baseline 45% 
4 Pipelined lemmatization (first-order 

decision) with strict definite article 
matching 

54% 

5 Pipelined lemmatization  (first-order 
decision) ignoring definite article 
matching 

63% 

Table 2. Evaluation of lemmatization 
 

4.2 Evaluating Lemma Weighting 

In our data we have 40,277 unknown token types. 
After lemmatization they are reduced to 18,399 
types (that is 54% reduction of the surface forms) 
which are presumably ready for manual validation 
before being included in a lexicon. This number is 
still too big for manual inspection. In order to 
facilitate human revision, we devise a weighting 
algorithm for ranking so that the top n number of 
words will include the most lexicographically 
relevant words. We call surface forms that share 
the same lemma ‘sister forms’, and we call the 
lemma that they share the ‘mother lemma’. This 
weighting algorithm is based on three criteria: 
frequency of the sister forms, number of sister 
forms, and a POS factor which penalizes proper 
nouns (due to their disproportionate high 
frequency). The parameters of the weighting 

algorithm has been tuned through several rounds of 
experimentation. 
 

Word Weight = ((number of sister 
forms having the same mother 
lemma * 800) + cumulative sum of 
frequencies of sister forms 
having the same mother lemma) / 
2 + POS factor 

 
Good words In top 

100 
In bottom 
100 

relying on Frequency 
alone (baseline) 

63 50 

relying on number of sister 
forms * 800 

87 28 

relying on POS factor 58 30 
using the combined criteria 78 15 

Table 3. Evaluation of lemma weighting and ranking 
 
Table 3 shows the evaluation of the weighting  
criteria. We notice that the combined criteria gives 
the best balance between increasing the number of 
good words in the top 100 words and reducing the 
number of good words in the bottom 100 words. 
 

5 Conclusion 

We develop a methodology for automatically 
extracting unknown words in Arabic and 
lemmatizing them in order to relate multiple 
surface forms to their base underlying 
representation using a finite-state guesser and a 
machine learning tool for disambiguation. We 
develop a weighting mechanism for simulating a 
human decision on whether or not to include the 
new words in a general-domain lexical database. 
We show the feasibility of a highly non-
deterministic finite state guesser in an essential and 
practical application. 
 
Out of a word list of 40,255 unknown words, we 
create a lexicon of 18,399 lemmatized, POS-tagged 
and weighted entries. We make our unknown word 
lexicon available as a free open-source resource2. 
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Abstract

This paper introduces a two-way Urdu–
Roman transliterator based solely on a non-
probabilistic finite state transducer that solves
the encountered scriptural issues via a partic-
ular architectural design in combination with
a set of restrictions. In order to deal with the
enormous amount of overgenerations caused
by inherent properties of the Urdu script, the
transliterator depends on a set of phonologi-
cal and orthographic restrictions and a word
list; additionally, a default component is im-
plemented to allow for unknown entities to be
transliterated, thus ensuring a large degree of
flexibility in addition to robustness.

1 Introduction

This paper introduces a way of transliterating Urdu
and Roman via a non-probabilistic finite state trans-
ducer (TURF), thus allowing for easier machine
processing.1 The TURF transliterator was originally
designed for a grammar of Hindi/Urdu (Bögel et al.,
2009), based on the grammar development platform
XLE (Crouch et al., 2011). This grammar is writ-
ten in Roman script to serve as a bridge/pivot lan-
guage between the different scripts used by Urdu
and Hindi. It is in principle able to parse input from
both Hindi and Urdu and can generate output for
both of these language varieties. In order to achieve
this goal, transliterators converting the scripts of
Urdu and Hindi, respectively, into the common Ro-
man representation are of great importance.

1I would like to thank Tafseer Ahmed and Miriam Butt
for their help with the content of this paper. This research
was part of the Urdu ParGram project funded by the Deutsche
Forschungsgemeinschaft.

The TURF system presented in this paper is con-
cerned with the Urdu–Roman transliteration. It
deals with the Urdu-specific orthographic issues by
integrating certain restrictional components into the
finite state transducer to cut down on overgener-
ation, while at the same time employing an ar-
chitectural design that allows for a large degree
of flexibility. The transliterator is based solely
on a non-probabilistic finite state transducer im-
plemented with the Xerox finite state technology
(XFST) (Beesley and Karttunen, 2003), a robust and
easy-to-use finite state tool.

This paper is organized as follows: In section 2,
one of the (many) orthographic issues of Urdu is in-
troduced. Section 3 contains a short review of ear-
lier approaches. Section 4 gives a brief introduction
into the transducer and the set of restrictions used to
cut down on overgeneration. Following this is an
account of the architectural design of the translit-
eration process (section 5). The last two sections
provide a first evaluation of the TURF system and a
final conclusion.

2 Urdu script issues

Urdu is an Indo-Aryan language spoken mainly in
Pakistan and India. It is written in a version of the
Persian alphabet and includes a substantial amount
of Persian and Arabic vocabulary. The direction of
the script is from right to left and the shapes of most
characters are context sensitive; i.e., depending on
the position within the word, a character assumes a
certain form.

Urdu has a set of diacritical marks which ap-
pear above or below a character defining a partic-
ular vowel, its absence or compound forms. In total,
there are 15 of these diacritics (Malik, 2006, 13);
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the four most frequent ones are shown in Table 1 in
combination with the letter H. ‘b’.

H. + diacritic Name Roman transliteration
�H. Zabar ba

H.� Zer bi
�H. Pesh bu
�H. Tashdid bb

Table 1: The four most frequently used diacritics

When transliterating from the Urdu script to another
script, these diacritics present a huge problem be-
cause in standard Urdu texts, the diacritics are rarely
used. Thus, for example, we generally are only con-
fronted with the letter H. ‘b’ and have to guess at
the pronunciation that was intended. Take, e.g., the
following example, where the word A�J» kuttA ‘dog’
is to be transliterated. Without diacritics, the word
consists of three letters: k, t and A. If in the case of
transliteration, the system takes a guess at possible
short vowels and geminated consonants, the output
contains multiple possibilities ((1)).

(1)

In addition to the correct transliteration kuttA, the
transliterator proposes five other possibilities for the
missing diacritics. These examples show that this
property of the Urdu script makes it extremely dif-
ficult for any transliterator to correctly transliterate
undiacriticized input without the help of word lists.

3 Earlier approaches

Earlier approaches to Urdu transliteration almost
always have been concerned with the process of
transliterating Urdu to Hindi or Hindi to Urdu (see,
e.g., Lehal and Saini (2010) (Hindi → Urdu), Ma-
lik et al. (2009) (Urdu → Hindi), Malik et al.
(2010) (Urdu→ Roman) or Ahmed (2009) (Roman
→ Urdu). An exception is Malik (2006), who ex-
plored the general idea of using finite state transduc-
ers and an intermediate/pivot language to deal with

the issues of the scripts of Urdu and Hindi.
All of these approaches are highly dependent on

word lists due to the properties of the Urdu script and
the problems arising with the use of diacritics. Most
systems dealing with undiacriticized input are faced
with low accuracy rates: The original system of Ma-
lik (2006), e.g., drops from approximately 80% to
50% accuracy (cf. Malik et al. (2009, 178)) – others
have higher accuracy rates at the cost of being uni-
directional.

While Malik et al. (2009) have claimed that the
non-probabilistic finite state model is not able to
handle the orthographic issues of Urdu in a satisfy-
ing way, this paper shows that there are possibilities
for allowing a high accuracy of interpretation, even
if the input text does not include diacritics.

4 The TURF Transliterator

The TURF transliterator has been implemented as
a non-probabilistic finite state transducer compiled
with the lexc language (Lexicon Compiler), which is
explicitly designed to build finite state networks and
analyzers (Beesley and Karttunen, 2003, 203). The
resulting network is completely compatible with one
that was written with, e.g., regular expressions, but
has the advantage in that it is easily readable. The
transliteration scheme used here was developed by
Malik et al. (2010), following Glassman (1986).

As has been shown in section 1, Urdu transliter-
ation with simple character-to-character mapping is
not sufficient. A default integration of short vowels
and geminated consonants will, on the other hand,
cause significant overgeneration. In order to reduce
this overgeneration and to keep the transliterator as
efficient as possible, the current approach integrates
several layers of restrictions.

4.1 The word list

When dealing with Urdu transliteration it is not pos-
sible to not work with a word list in order to ex-
clude a large proportion of the overgenerated out-
put. In contrast to other approaches, which depend
on Hindi or Urdu wordlists, TURF works with a Ro-
man wordlist. This wordlist is derived from an XFST

finite state morphology (Bögel et al., 2007) indepen-
dently created as part of the Urdu ParGram devel-
opment effort for the Roman intermediate language
(Bögel et al., 2009).
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4.2 Regular expression filters

The regular expression filters are based on knowl-
edge about the phonotactics of the language and are
a powerful tool for reducing the number of possi-
bilities proposed by the transliterator. As a concrete
example, consider the filter in (2).

(2) [ ∼[ y A [a |i |u] ]]

In Urdu a combination of [ y A short vowel ] is not
allowed (∼). A filter like in (2) can thus be used to
disallow any generations that match this sequence.

4.3 Flag diacritics

The XFST software also provides the user with a
method to store ‘memory’ within a finite state net-
work (cf. Beesley and Karttunen (2003, 339)).
These so-called flag diacritics enable the user to en-
force desired constraints within a network, keeping
the transducers relatively small and simple by re-
moving illegal paths and thus reducing the number
of possible analyses.

5 The overall TURF architecture

However, the finite state transducer should also be
able to deal with unknown items; thus, the con-
straints on transliteration should not be too restric-
tive, but should allow for a default transliteration as
well. Word lists in general have the drawback that a
matching of a finite state transducer output against a
word list will delete any entities not on the word list.
This means that a methodology needs to be found
to deal with unknown but legitimate words with-
out involving any further (non-finite state) software.
Figure 1 shows the general architecture to achieve
this goal. For illustrative purposes two words are
transliterated: H. A �J» kitAb ‘book’ and �I», which
transliterates to an unknown word kt, potentially
having the surface forms kut, kat or kit.

5.1 Step 1: Transliteration Part 1

The finite state transducer itself consists of a net-
work containing the Roman–Urdu character map-
ping with the possible paths regulated via flag dia-
critics. Apart from these regular mappings, the net-
work also contains a default Urdu and a default Ro-
man component where the respective characters are

simply matched against themselves (e.g. k:k, r:r).
On top of this network, the regular expression filters
provide further restrictions for the output form.

Figure 1: Transliteration of �I» and H. A�J»

The Urdu script default 1-1 mappings are marked
with a special identification tag ([+Uscript]) for
later processing purposes. Thus, an Urdu script
word will not only be transliterated into the corre-
sponding Roman script, but will also be ‘transliter-
ated’ into itself plus an identificational tag.

The output of the basic transliterator shows part
of the vast overgeneration caused by the underspec-
ified nature of the script, even though the restricting
filters and flags are compiled into this component.

5.2 Step 2: Word list matching and tag deletion
In step 2, the output is matched against a Roman
word list. In case there is a match, the respective
word is tagged [+match]. After this process, a
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filter is applied, erasing all output forms that contain
neither a [+match] nor a [Uscript+] tag. This
way we are left with two choices for the word H. A�J»
– one transliterated ‘matched’ form and one default
Urdu form – while the word �I» is left with only the
default Urdu form.

5.3 Step 3: Distinguishing unknown and
overgenerated entities

The Urdu word list applied in step 3 is a translitera-
tion of the original Roman word list (4.1), which was
transliterated via the TURF system. Thus, the Urdu
word list is a mirror image of the Roman word list.
During this step, the Urdu script words are matched
against the Urdu word list, this time deleting all the
words that find a match. As was to be expected from
matching against a mirror word list of the original
Roman word list, all of the words that found a match
in the Roman word list will also find a match in the
Urdu word list, while all unknown entities fail to
match. As a result, any Urdu script version of an al-
ready correctly transliterated word is deleted, while
the Urdu script unknown entity is kept for further
processing – the system has now effectively sepa-
rated known from unknown entities.

In a further step, the tags of the remaining entities
are deleted, which leaves us with the correct translit-
eration of the known word kitAb and the unknown
Urdu script word �I».

5.4 Step 4: Transliteration Part 2

The remaining words are once again sent into the
finite state transducer of step 1. The Roman translit-
eration kitAb passes unhindered through the Default
Roman part. The Urdu word on the other hand is
transliterated to all possible forms (in this case three)
within the range of the restrictions applied by flags
and filters.

5.5 Step 5: Final adjustments

Up to now, the transliterator is only applicable to
single words. With a simple (recursive) regular ex-
pression it can be designed to apply to larger strings
containing more than one word.

The ouput can then be easily composed with a
standard tokenizer (e.g. Kaplan (2005)) to enable
smooth machine processing.

6 Evaluation

A first evaluation of the TURF transliterator with
unseen texts resulted in an accuracy of 86%, if the
input was not diacriticized. The accuracy rate for
undiacriticized text always depends on the size of
the word list. The word list used in this application
is currently being extended from formerly 20.000 to
40.000 words; thus, a significant improvement of the
accuracy rate can be expected within the next few
months.

If the optional inclusion of short vowels is re-
moved from the network, the accuracy rate for di-
acriticized input is close to 97%.

When transliterating from Roman to Urdu, the ac-
curacy rate is close to a 100%, iff the Roman script is
written according to the transliteration scheme pro-
posed by Malik et al. (2010).

Transliteration U→ R U→ R R→ U

Input diacritics no diacritics

Diacritics opt. / compuls. optional
Accuracy 86% / 97% 86% ∼ 100%

Table 2: Accuracy rates of the TURF transliterator

7 Conclusion
This paper has introduced a finite state transducer
for Urdu ↔ Roman transliteration. Furthermore,
this paper has shown that it is possible for appli-
cations based only on non-probabilistic finite state
technology to return output with a high state-of-the-
art accuracy rate; as a consequence, the application
profits from the inherently fast and small nature of
finite state transducers.

While the transliteration from Roman to Urdu is
basically a simple character to character mapping,
the transliteration from Urdu to Roman causes a
substantial amount of overgeneration due to the
underspecified nature of the Urdu script. This was
solved by applying different layers of restrictions.

The specific architectural design enables TURF to
distinguish between unknown-to-the-word-list and
overgenerated items; thus, when matched against
a word list, unknown items are not deleted along
with the overgenerated items, but are transliterated
along with the known items. As a consequence,
a transliteration is always given, resulting in an
efficient, highly accurate and robust system.
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Sulger, Tina Bögel, Atif Gulzar, Ghulam Raza, Sar-
mad Hussain, and Miriam Butt. 2010. Transliter-
ating Urdu for a Broad-Coverage Urdu/Hindi LFG
Grammar. In Proceedings of the Seventh Conference
on International Language Resources and Evaluation
(LREC 2010). European Language Resources Associ-
ation (ELRA).

Abbas Malik. 2006. Hindi Urdu machine transliteration
system. Master’s thesis, University of Paris.

29



Proceedings of the 10th International Workshop on Finite State Methods and Natural Language Processing, pages 30–34,
Donostia–San Sebastián, July 23–25, 2012. c©2012 Association for Computational Linguistics

Integrating Aspectually Relevant Properties of Verbs into a  

Morphological Analyzer for English 

 Katina Bontcheva 
Heinrich-Heine-University 

Düsseldorf 
bontcheva@phil.uni-

duesseldorf.de 

 

 

Abstract 

The integration of semantic properties into mor-
phological analyzers can significantly enhance the 
performance of any tool that uses their output as 
input, e.g., for derivation or for syntactic parsing. 
In this paper will be presented my approach to the 
integration of aspectually relevant properties of 
verbs into a morphological analyzer for English. 

1 Introduction 

Heid, Radtke and Klosa (2012) have recently sur-
veyed morphological analyzers and interactive 
online dictionaries for German and French. They 
have established that most of them do not utilize 
semantic properties. The integration of semantic 
properties into morphological analyzers can sig-
nificantly enhance the performance of any tool that 
uses their output as input, e.g., for derivation or for 
syntactic parsing. In this paper will be presented 
my approach to the integration of aspectually rele-
vant properties of verbs into a morphological ana-
lyzer for English. 

In section 2 I will describe a prototypical finite-
state morphological analyzer for English that 
doesn’t utilize semantic properties. Some classifi-
cations of English verbs with respect to the aspec-
tually relevant properties that they lexicalize will 
be outlined in section 3. In section 4 will be pre-
sented my approach to the integration the semantic 
classes in the lexicon. I will describe the modified 
morphological analyzer for English in section 5 
and point out in section 6 the challenges that 
inflectionally-rich languages present to the tech-
niques outlined in section 4.  

Finally, in section 7 I will draw some conclu-
sions and outline future work on other languages. 

2 A Prototypical Finite-State Morpho-
logical Analyzer for English 

English is an inflectionally-poor language which 
for this reason has been chosen to illustrate my 
approach to the integration of grammatically rele-
vant lexicalized meaning into morphological ana-
lyzers. It has a finite number of irregular (strong) 
verbs. The rest of the verbs are regular and consti-
tute a single inflectional class.  

This prototypical morphological analyzer for 
English has parallel implementations in xfst (cf. 
Beesley and Karttunen (2003)) and foma (cf. Hul-
den (2009a) and (2009b)). It consists of a lexicon 
that describes the morphotactics of the language, 
and of phonological and orthographical alterna-
tions and realizational rules that are handled by 
finite-state replace rules elsewhere. The bases of 
the regular verbs are stored in a single text file. 
Here is an excerpt from the lexc lexicon without 
semantic features: 

 
LEXICON Root 
               Verb ; 
… 
LEXICON Verb 
^VREG     VerbReg ; 
… 
LEXICON VerbReg 
+V:0       VerbRegFlex ; 
… 
! This lexicon contains the morpho-
tactic rules. 
 
LEXICON VerbRegFlex 
< ["+Pres"] ["+3P"] ["+Sg"]  > # ; 
< ["+Pres"] ["+Non3PSg"]  > # ; 
< ["+Past"] >   # ; 
< ["+PrPart"|"+PaPart"] >  # ; 
< ["+Inf"] >  # ; 
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3 Aspectually Relevant Properties of 
Verbs 

The information that is provided by the prototypi-
cal analyzer described above contains lemma, 
W(ord)-features (morphosyntactic features that 
exhibit different specifications in different cells of 
the same inflectional paradigm) and L(exeme)-
features that “specify a lexeme’s invariant mor-
phosyntactic properties” (e.g., gender of nouns, cf. 
Stump (2001), p. 137, emphasis mine). 

L-features should not be confused with lexical-
ized meaning. I adopt the definition in Rappaport 
Hovav and Levin (2010), p. 23: “In order to distin-
guish lexicalized meaning from inferences derived 
from particular uses of verbs in sentences, we take 
lexicalized meaning to be those components of 
meaning that are entailed in all uses of (a single 
sense of) a verb, regardless of context” (emphasis 
mine). Obviously, this definition is applicable not 
only to verbs but to all word classes. 

However, in this paper I will limit myself to the 
description of lexicalized aspectually relevant 
properties of verbs. 

3.1 Vendler’s Classification 

In his famous paper “Verbs and Times” Vendler 
(1957) introduced his “time schemata presupposed 
by various verbs” (ibid.). He proposes four time 
schemata: states, activities, accomplishments and 
achievements. 

It is important to point out from the beginning 
that although he didn’t declare explicitly that he 
was classifying VPs, he did imply this: “Obviously 
these differences cannot be explained in terms of 
time alone: other factors, like the presence or 
absence of an object, conditions, intended state 
of affairs, also enter the picture.” (ibid., p. 143, 
emphasis mine). 

The properties that are often used to define 
Vendler’s classes are dynamicity, duration and 
telicity. States are non-dynamic, achievements are 
non-durative. States and activities are inherently 
unbounded (non-telic); accomplishments and 
achievements are inherently bounded. Since three 
features are needed to differentiate between only 
four classes that cannot be represented as, e.g., a 
right-branching tree one wonders if these are the 
right features to be used for the classification.  

Vendler’s classification was widely accepted 
and is used in most current studies on aspect. 

However, Vendlerian classes cannot be imple-
mented in a lexc lexicon for the following reasons: 

 Vendler does not classify verbs but VPs 
 Part of the features used to differentiate be-

tween the classes are not lexicalized by the 
verb but can be determined at the VP level 

 This classification allows multiple class 
membership even for the same word sense. 
Thus run can be activity and accomplish-
ment, cf. above running/running a mile. 

3.2 Levin and Rappaport Hovav’s Approach 
to English Verb classes 

Sets of semantically related verbs that share a 
range of linguistic properties form verb classes. 
There are different criteria for grouping and granu-
larity, e.g., Levin (1993) classifies the verbs in two 
ways: a) according to semantic content with 48 
broad classes and 192 smaller classes; b) according 
to their participation in argument alternations with 
79 alternations. The account of Beth Levin and 
Malka Rappaport Hovav for verb classes devel-
oped over the years in a steady and consistent way 
that can be trailed in the following publications: 
(Levin 1993; Levin and Rappaport Hovav 1991, 
1995, 2005; Rappaport Hovav 2008; Rappaport 
Hovav and Levin 1998, 2001, 2005, 2010), among 
others.  

Here I will just summarize the most important 
ideas and implications for the non-stative verbs: 

 Dynamic verbs either lexicalize scales (sca-
lar verbs) or do not (non-scalar verbs) 

 Non-scalar verbs lexicalize manner 
 Scalar verbs lexicalize result 
 Scalar verbs lexicalize two major types of 

scales – multi-point scales and two-point 
scales 

 The chosen aspectually relevant properties 
are complementary 

 All lexical distinctions described here have 
grammatical consequences which are rele-
vant to aspectual composition. 

 
This interpretation of non-stative verbs has some 
very attractive properties:  

 The verbs fall into disjunctive classes. 
There is no multiple class membership (for 
the same word sense).  

 The aspectual properties are lexicalized ex-
clusively by the verb and are not computed 
at the VP level.  
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 The lexicalized aspectual properties con-
strain the syntactical behavior of the verb.  

 Manner verbs in English show a uniform 
argument-realization pattern: they can ap-
pear with unspecified and non-
subcategorized objects. 

 Result verbs are more constrained and less 
uniform in their argument realization pat-
terns. Transitivity (in contrast to the manner 
verbs) is an issue.   

4 Intersection of Semantic Classes and 
Inflectional Classes 

The main difficulties here arise from the fact that 
the set of bases that belong to one inflectional class 
of verbs usually is not identical with the set of 
bases that lexicalize a particular aspectually rele-
vant property. As a rule, it has intersections with 
more than one semantic class. The situation is rela-
tively manageable in inflectionally-poor languages 
like English but becomes very complicated in 
inflectionally-rich languages. 

The distribution of verbs in inflectional classes 
is in general complementary. There are some ex-
ceptions that will not be discussed here. 

Vendler’s approach to the verb classification 
described in 3.1 has the undesirable property that 
most of the verbs have multiple class membership, 
while the approach of Levin and Rappaport Hovav 
described in 3.2 has advantages which make the 
task easier. 

Thus, for English we have the set of bases of 
regular verbs that is monolithic, and the same set 
of bases but this time divided into complementary 
subsets of aspectual semantic classes in the sense 
of Levin and Rappaport Hovav. The cross product 
of the number of subsets in the first set and the 
number of subsets in the second set equals the 
number of aspectual semantic classes since there is 
only one inflectional class of regular verbs. 

5 The modified Prototypical Lexicon for 
English 

The following modifications need to be introduced 
to the lexicon in order to incorporate the aspectual 
properties of English verbs. 

The single placeholder pointing to the single 
file containing the bases of regular verbs must be 
replaced with several placeholders that point to the 

files containing the complementary subsets of 
bases of verbs belonging to the different aspectual 
classes. 

New continuation lexicons introducing each as-
pectual class must be added immediately after 
LEXICON Verb. Since the union of the sets of 
aspectual-class bases of regular verbs is identical 
with the set of the bases of the regular verbs, all 
aspectual-class lexicons have the same continua-
tion lexicon: LEXICON VerbRegFlex. Irregular 
verbs get the semantic tags added to the lexical 
entry and suppletive verbs get them in the master 
lexicon. 

 
Multichar_Symbols 
+V +VIrrTT %<manner%> 
… 
 
LEXICON Root 
          Verb ; 
          VerbSuppl ;  
… 
 
LEXICON VerbSuppl 
go%<resmulpo%>+V+Inf:go  # ; 
go%<resmulpo%>+V+Pres+3P+Sg:goes # ; 
go%<resmulpo%>+V+Pres+Non3PSg:go # ; 
go%<resmulpo%>+V+Past:went  # ; 
go%<resmulpo%>+V+PaPart:gone  # ; 
go%<resmulpo%>+V+PrPart:going # ;  
… 
 
LEXICON Verb 
^VREGM     VerbRegManner ; 
… 
LEXICON VerbRegManner 
+V%<manner%>:0 VerbRegFlex ;           
 
LEXICON VerbRegFlex 
… 

 
Below is an excerpt from the file holding the 

bases of irregular verbs that build identical past-
tense and perfect-participle forms by adding ‘-t’: 

… 
{creep<manner>}:{creep} | 
{feel} | 
{keep} | 
{sleep} | 
{sweep<manner>}:{sweep} | 
… 
 

In order to be able to rewrite the semantic-class 
tags, which appear only on the lexical (upper) side 
of the transducer containing the lexicon, I invert 
the network, apply the semantic-tag rewriting rules 
and invert the resulting net again. The network is 
then composed with the realization rules and the 
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phonological and orthographical alternations that 
operate on the surface (lower) side of the trans-
ducer: 
 

! Semantic-features tag-rewriting  
define LEX2 [LEX1.i] ; 
define LEX2 [LEX1.i] ; 
define Mnr [ %< m a n n e r %> ->  
       %<%+SV%>%<%+SVO%>%<%+SVOOC%> ] ;  
 
! alternative RRG tags 
!define Mnr  [%< m a n n e r %> ->  
!%<do´ %(x%, %[predicate´ %(x%) or 
!            %(x%, y%)%]%)%>] ;  
 
define LEX3 [LEX2 .o. Mnr] ; 
define LEX  [LEX3.i] ; 
 
! Inflectional morphology: realization  
… 

 
Here is the output of the analysis of ‘swept’ with 
dependency-grammar valency-pattern tags 
(S=subject, V=verb, O=object, OC=object com-
plement): 

 
swept 
sweep<+SV><+SVO><+SVOOC>+V+Past 
sweep<+SV><+SVO><+SVOOC>+V+PaPart 

 
and the alternative output with Role and Reference 
Grammar logical structures: 

 
swept 
sweep<do´(x,[predicate´(x)or(x,y)])>+V+Past 
sweep<do´(x,[predicate´(x)or(x,y)])>+V+PaPart 
 

Valency information is necessary for syntactic 
parsing and has been used in Constraint Grammar 
shallow parsers and in dependency parsers. The 
advantage of this approach to already existing mor-
phological analyzers for English is that the 
valency-pattern tags are added to classes of verbs 
rather than to individual lexical entries. The ability 
to provide alternative outputs for the integrated 
aspectually relevant semantic information is a nov-
elty of this morphological analyzer. 

6 Beyond English: the Challenges of In-
flectionally-Rich Languages 

We have seen a simplified example that shows the 
modeling and the implementation of a morphologi-
cal analyzer that utilizes semantic-class tags for 
aspectually relevant lexical properties of English 
verbs.  

Things become much more challenging if we 
want to model inflectionally-rich languages such as 
Bulgarian, Russian or Finnish. Bulgarian verbs, for 
example, can be divided (depending on the model-
ing) into some 15 complementary inflectional 
classes.  This number multiplied by 4 Levin-
Rappaport-Hovav classes would result in some 60 
sets of verb bases that share the same inflectional 
class and Levin-Rappaport-Hovav class. If a finer-
grained semantic classification is adopted, the 
number of classes will considerably increase and 
this will lead to a lexicon that exclusively requires 
manual lexicographical work.  

7 Conclusion 

This paper illustrates the integration of aspectually 
relevant properties of verbs into a morphological 
analyzer for English. I showed that these features 
can be integrated while the computational effi-
ciency of the analyzer can still be maintained if the 
linguistic modelling is adequate. However, this 
only scratches the surface of the challenge of inte-
grating semantic features into morphological ana-
lyzers. In the future, it is planned (together with 
other researchers) to extend the integration of se-
mantic features to nouns, adjectives and adverbs. 
We also plan to model and implement morphologi-
cal analyzers for other languages such as German, 
Russian, Polish and Bulgarian. 
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Abstract

This paper presents a set of tools designed to
assist traditional Basque verse writers during
the composition process. In this article we
are going to focus on the parts that have been
created using finite-state technology: this in-
cludes tools such as syllable counters, rhyme
checkers and a rhyme search utility.

1 The BAD tool and the Basque singing
tradition

The BAD tool is an assistant tool for verse-makers
in the Basque bertsolari tradition. This is a form
of improvised verse composition and singing where
participants are asked to produce impromptu com-
positions around themes which are given to them
following one of many alternative verse formats.
The variety of verse schemata that exist all impose
fairly strict structural requirements on the composer.
Verses in the bertsolari tradition must consist of a
specified number of lines, each with a fixed num-
ber of syllables. Also, strict rhyme patterns must
be followed. The structural requirements are con-
sidered the most difficult element in the bertsolar-
itza—however, well-trained bertsolaris can usually
produce verses that fulfill the structural prerequisites
in a very limited time.

The BAD tool presented here is mainly di-
rected at those with less experience in the tradi-
tion such as students. One particular target group
are the bertso-eskola-s (verse-making schools) that
have been growing in popularity—these are schools
found throughout the Basque Country that train
young people in the art of bertsolaritza.

The primary functionality of the tool is illustrated
in figure 1 which shows the main view of the util-
ity. The user is offered a form in which a verse
can be written, after which the system checks the

technical correctness of the poem. To perform this
task, several finite state transducer-based modules,
are used, some of them involving the metrics (syl-
lable counter) of the verse, and others the rhyme
(rhyme searcher and checker). The tool has support
for 150 well known verse meters.

In the following sections, we will outline the tech-
nology used in each of the parts in the system.

2 Related work

Much of the existing technology for Basque mor-
phology and phonology uses finite-state technology,
including earlier work on rhyme patterns (Arrieta
et al., 2001). In our work, we have used the Basque
morphological description (Alegria et al., 1996) in
the rhyme search module. Arrieta et al. (2001) de-
velop a system where, among other things, users can
search for words that rhyme with an introduced pat-
tern. It is implemented in the formalism of two-level
morphology (Koskenniemi, 1983) and compiled into
finite-state transducers.

We have used the open-source foma finite-state
compiler to develop all the finite-state based parts
of our tool.1. After compiling the transducers, we
use them in our own application through the C/C++
API provided with foma.

3 Syllable counter

As mentioned, each line in a verse must contain a
specified number of syllables. The syllable counter
module that checks whether this is the case consists
of a submodule that performs the syllabification it-
self as well as a module that yields variants produced
by optional apocope and syncope effects. For the
syllabification itself, we use the approach described
in Hulden (2006), with some modifications to cap-
ture Basque phonology.

1In our examples, FST expressions are written using foma
syntax. For details, visit http://foma.googlecode.com
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Figure 1: A verse written in the BAD web application.

3.1 Syllabification

Basque syllables can be modeled by assuming a
maximum onset principle together with a sonority
hierarchy where obstruents are the least sonorous el-
ement, followed in sonority by the liquids, the nasals
and the glides. The syllable nuclei are always a sin-
gle vowel (a,e,i,o,u) or a combination of a low vowel
(a,e) and a high vowel (i,o,u) or a high vowel and an-
other high vowel.

The syllabifier relies on a chain of composed re-
placement rules (Beesley and Karttunen, 2003) com-
piled into finite-state transducers. These defini-
tions are shown in figure 2. The overall strategy
is to first mark off the nuclei in a word by the rule
MarkNuclei which takes advantage of a left-to-
right longest replacement rule. This is to ensure that
diphthongs do not get split into separate syllables
by the subsequent syllabification process. Follow-
ing this, syllables are marked off by the markSyll-
rule, which inserts periods after legitimate syllables.
This rule takes advantage of the shortest-leftmost re-
placement strategy—in effect minimizing the coda
and maximizing the size of the onset of a syllable to
the extent permitted by the allowed onsets and co-
das, defined in Onset and Coda, respectively.

To illustrate this process, supposing that we
are syllabifying the Basque word intransitiboa.
The first step in the syllabification process is
to mark the nuclei in the word, resulting in
{i}ntr{a}ns{i}t{i}b{o}{a}. In the more com-
plex syllabification step, the markSyll rule as-
sures that the juncture ntr gets divided as n.tr be-
cause nt.r would produce a non-maximal onset,
and i.ntr would in turn produce an illegal onset in

define Obs [f|h|j|k|p|s|t|t s|t z|t x|x|
z|b|d|g|v|d d|t t];

define LiqNasGli [l|r|r r|y|n|m];
define LowV [a|e|o];
define HighV [i|u];
define V LowV | HighV;
define Nucleus [V | LowV HighV |

[HighV HighV - [i i] - [u u]]];
define Onset (Obs) (LiqNasGli);
define Coda Cˆ<4;

define MarkNuclei Nucleus @-> %{ ... %};
define Syll Onset %{ Nucleus %} Coda;
define markSyll Syll @> ... "." || _ Syll ;
define cleanUp %{|%} -> 0;

regex MarkNuclei .o. markSyll .o. cleanUp;

Figure 2: Syllable definition

the second syllable. The final syllabification, af-
ter markup removal by the Cleanup rule, is then
in.tran.si.ti.bo.a. This process is illustrated in fig-
ure 3

In bertsolaritza, Basque verse-makers follow this
type of syllable counting in the majority if cases;
however, there is some flexibility as regards the syl-
labification process. For example, suppose that the
phrase ta lehenengo urtian needs to fit a line which
must contain six syllables. If we count the sylla-
bles using the algorithm shown above, we receive a
count of eight (ta le.hen.en.go ur.ti.an). However,
in the word lehenengo we can identify the syncope
pattern vowel-h-vowel, with the two vowels being
identical. In such cases, we may simply replace
the entire sequence by a single vowel (ehe → e).
This is phonetically equivalent to shortening the ehe-
sequence (for those dialects where the orthographi-
cal h is silent). With this modification, we can fit
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the line in a 7 syllable structure. We can, however,
further reduce the line to 6 syllables by a second
type of process that merges the last syllable of one
word with the first of the next one and then resyl-
labifying. Hence, ta lehenengo urtian, using the
modifications explained above, could be reduced to
ta.le.nen.gour.ti.an, which would fit the 6 syllable
structure. This production of syllabification variants
is shown in figure 4.

transformazioei

tr{a}nsf{o}rm{a}z{i}{o}{ei}

markNuclei

syllabify
tr{a}ns.f{o}r.m{a}.z{i}.{o}.{ei}

cleanUp

trans.for.ma.zi.o.ei

Figure 3: Normal syllabification.

lehentasun

le.hen.ta.sun

syllabification

alternates

le.hen.ta.sun len.ta.sun

etxera etorri

e.txe.ra e.to.rri

syllabification

alternates

e.txe.ra e.to.rri e.txe.rae.to.rri

Figure 4: Flexible syllabification.

4 Finite-state technology for rhymes

4.1 Basque rhyme patterns and rules
Similar to the flexibility in syllabification, Basque
rhyme schemes also allows for a certain amount
of leeway that bertsolaris can take advantage of.
The widely consulted rhyming dictionary Hiztegi
Errimatua (Amuriza, 1981) contains documented a
number of phonological alternations that are accept-
able as off-rhymes: for example the stops p, t, and k
are often interchangeable, as are some other phono-
logical groups. Figure 5 illustrates the definitions
for interchangeable phonemes when rhyming. The
interchangeability is done as a prelude to rhyme
checking, whereby phonemes in certain groups,
such as p, are replaced by an abstract symbol de-
noting the group (e.g. PTK).

4.2 Rhyme checker
The rhyme checker itself in BAD was originally de-
veloped as a php-script, and then reimplemented as

define plosvl [p | t | k];
define rplosv [b | d | g | r];
define sib [s | z | x];
define nas [n | m];

define plosvlconv ptk -> PTK;
define rplosvconv bdgr -> BDGR;
define sibconv sib -> SZX;
define nasconv nas -> NM;

define phoRules plosvlconv .o. rplosvconv .o.
sibconv .o. nasconv ;

Figure 5: Conflation of consonant groups before rhyme
checking.

a purely finite-state system. In this section we will
focus on the finite-state based one.

As the php version takes advantage of syllabifica-
tion, the one developed with transducers does not.
Instead, it relies on a series of replacement rules and
the special eq() operator available in foma. An
implementation of this is given in figure 6. As input
to the system, the two words to be checked are as-
sumed to be provided one after the other, joined by
a hyphen. Then, the system (by rule rhympat1)
identifies the segments that do not participate in the
rhyme and marks them off with “{” and “}” symbols
(e.g. landa-ganga→ <{l}anda>-<{g}anga>).

The third rule (rhympat3) removes everything
that is between “{” and “}”, leaving us only with
the segments relevant for the rhyming pattern (e.g.
<anda>-<anga>). Subsequent to this rule, we
apply the phonological grouping reductions men-
tioned above in section 4.1, producing, for example
(<aNMBDGRa>-<aNMBDGRa>).

After this reduction, we use the eq(X,L,R)-
operator in foma, which from a transducer X, filters
out those words in the output where material be-
tween the specified delimiter symbols L and R are
unequal. In our case, we use the < and > symbols
as delimiters, yielding a final transducer that does
not accept non-rhyming words.

4.3 Rhyme search

The BAD tool also includes a component for search-
ing words that rhyme with a given word. It is devel-
oped in php and uses a finite-state component like-
wise developed with foma.

Similarly to the techniques previously described,
it relies on extracting the segments relevant to the
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define rhympat1 [0:"{" ?* 0:"}"
[[[V+ C+] (V) V] | [(C) V V]] C* ];

# constraining V V C pattern
define rhympat2 ˜[?* V "}" V C];
# cleaning non-rhyme part
define rhympat3 "{" ?* "}" -> 0;
define rhympat rhympat1 .o. rhympat2 .o.

rhympat3;

# rhyming pattern on each word
# and phonological changes
define MarkPattern rhympat .o.

phoRules .o. patroiak;
# verifying if elements between < and >
# are equal
define MarkTwoPatterns

0:%< MarkPattern 0:%> %-
0:%< MarkPattern 0:%> ;

define Verify _eq(MarkTwoPatterns, %<, %>)
regex Verify .o. Clean;

Figure 6: Rhyme checking using foma.

rhyme, after which phonological rules are applied
(as in 4.1) to yield phonetically related forms. For
example, introducing the pattern era, the system re-
turns four phonetically similar forms era, eda, ega,
and eba. Then, these responses are fed to a trans-
ducer that returns a list of words with the same end-
ings. To this end, we take advantage of a finite-state
morphological description of Basque (Alegria et al.,
1996).

As this transducer returns a set of words which
may be very comprehensive—including words not
commonly used, or very long compounds—we then
apply a frequency-based filter to reduce the set of
possible rhymes. To construct the filter, we used
a newspaper corpus, (Egunkaria2) and extracted the
frequencies of each word form. Using the frequency
counts, we defined a transducer that returns a word’s
frequency, using which we can extract only the n-
most frequent candidates for rhymes. The system
also offers the possibility to limit the number of syl-
lables that desired rhyming words may contain. The
syllable filtering system and the frequency limiting
parts have been developed in php. Figure 7 shows
the principle of the rhyme search’s finite-state com-
ponent.

5 Evaluation

As we had available to us a rhyme checker written
in php before implementing the finite-state version,

2http://berria.info

regex phoRules .o. phoRules.i .o.
0:?* ?* .o. dictionary ;

Figure 7: Rhyme search using foma

it allowed for a comparison of the application speed
of each. We ran an experiment introducing 250,000
pairs of words to the two rhyme checkers and mea-
sured the time each system needed to reply. The
FST-based checker was roughly 25 times faster than
the one developed in php.

It is also important to mention that these tools
are going to be evaluated in an academic environ-
ment. As that evaluation has not been done yet, we
made another evaluation in our NLP group in or-
der to detect errors in terms of syllabification and
rhyme quality. The general feeling of the experiment
was that the BAD tool works well, but we had some
efficiency problems when many people worked to-
gether. To face this problem some tools are being
implemented as a server.

6 Discussion & Future work

Once the main tools of the BAD have been devel-
oped, we intend to focus on two different lines of
development. The first one is to extend to flexibil-
ity of rhyme checking. There are as of yet patterns
which are acceptable as rhymes to bertsolaris that
the system does not yet recognize. For example,
the words filma and errima will not be accepted by
the current system, as the two rhymes ilma and ima
are deemed to be incompatible. In reality, these two
words are acceptable as rhymes by bertsolaris, as
the l is not very phonetically prominent. However,
adding flexibility also involves controlling for over-
generation in rhymes. Other reduction patterns not
currently covered by the system include phenomena
such as synaloepha—omission of vowels at word
boundaries when one word ends and the next one
begins with a vowel.

Also, we intend to include a catalogue of melodies
in the system. These are traditional melodies that
usually go along with a specific meter. Some 3,000
melodies are catalogued (Dorronsoro, 1995). We are
also using the components described in this article in
another project whose aim is to construct a robot ca-
pable to find, generate and sing verses automatically.
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Abstract

This paper presents DAGGER, a toolkit for
finite-state automata that operate on directed
acyclic graphs (dags). The work is based on a
model introduced by (Kamimura and Slutzki,
1981; Kamimura and Slutzki, 1982), with a
few changes to make the automata more ap-
plicable to natural language processing. Avail-
able algorithms include membership checking
in bottom-up dag acceptors, transduction of
dags to trees (bottom-up dag-to-tree transduc-
ers), k-best generation and basic operations
such as union and intersection.

1 Introduction

Finite string automata and finite tree automata have
proved to be useful tools in various areas of natural
language processing (Knight and May, 2009). How-
ever, some applications, especially in semantics, re-
quire graph structures, in particular directed acyclic
graphs (dags), to model reentrancies. For instance,
the dags in Fig. 1 represents the semantics of the sen-
tences “The boy wants to believe the girl” and “The
boy wants the girl to believe him.” The double role
of “the boy” is made clear by the two parent edges of
the BOY node, making this structure non-tree-like.

Powerful graph rewriting systems have been used
for NLP (Bohnet and Wanner, 2010), yet we con-
sider a rather simple model: finite dag automata that
have been introduced by (Kamimura and Slutzki,
1981; Kamimura and Slutzki, 1982) as a straight-
forward extension of tree automata. We present the
toolkit DAGGER (written in PYTHON) that can be
used to visualize dags and to build dag acceptors

(a)

WANT

BELIEVE

BOY GIRL (b)

WANT

BELIEVE

BOY GIRL

Figure 1: (a) “The boy wants to believe the girl.” and
(b) “The boy wants the girl to believe him.” First edge
represents :agent role, second edge represents :patient
role.

and dag-to-tree transducers similar to their model.
Compared to those devices, in order to use them for
actual NLP tasks, our machines differ in certain as-
pects:
• We do not require our dags to be planar, and we

do not only consider derivation dags.
• We add weights from any commutative semir-

ing, e.g. real numbers.
The toolkit is available under an open source li-
cence.1

2 Dags and dag acceptors

DAGGER comes with a variety of example dags and
automata. Let us briefly illustrate some of them. The
dag of Fig. 1(a) can be defined in a human-readable
format called PENMAN (Bateman, 1990):

(1 / WANT
:agent (2 / BOY)
:patient (3 / BELIEVE

:agent 2
:patient (4 / GIRL)))

1http://www.ims.uni-stuttgart.de/

˜daniel/dagger/
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s
s -> (WANT :agent i :patient s)
s -> (BELIEVE :agent i :patient s)
i -> (0)
s -> (0)
i -> (GIRL)
i -> (BOY)
s -> (GIRL)
s -> (BOY)
i i -> (GIRL)
i i -> (BOY)
i s -> (GIRL)
i s -> (BOY)
s s -> (GIRL)
s s -> (BOY)

Figure 2: Example dag acceptor example.bda.

In this format, every node has a unique identifier,
and edge labels start with a colon. The tail node of
an edge is specified as a whole subdag, or, in the
case of a reentrancy, is referred to with its identifier.

Fig. 2 shows a dag acceptor. The first line con-
tains the final state, and the remaining lines contain
rules. Mind that the rules are written in a top-down
fashion, but are evaluated bottom-up for now. Let us
consider a single rule:

s -> (WANT :agent i :patient s)

The right-hand side is a symbol (WANT :agent

:patient) whose tail edges are labeled with states (i
and s), and after applying the rule, its head edges are
labeled with new states (s). All rules are height one,
but in the future we will allow for larger subgraphs.

In order to deal with symbols of arbitrary head
rank (i.e. symbols that can play multiple roles), we
can use rules using special symbols such as 2=1 and
3=1 that split one edge into more than one:

i s -> (2=1 :arg e)

Using these state-changing rules, the ruleset can
be simplified (see Fig. 3), however the dags look a
bit different now:

(1 / WANT
:agent (2 / 2=1

:arg (3 / BOY))
:patient (4 / BELIEVE

:agent 2
:patient (5 / GIRL)))

Note that we also added weights to the ruleset now.
Weights are separated from the rest of a rule by the @

sign. The weight semantics is the usual one, where
weights are multiplied along derivation steps, while
the weights of alternative derivations are added.

s
s -> (WANT :agent i :patient s) @ 0.6
s -> (BELIEVE :agent i :patient s) @ 0.4
i -> (0) @ 0.2
s -> (0) @ 0.4
i -> (GIRL) @ 0.3
s -> (GIRL) @ 0.3
i -> (BOY) @ 0.2
s -> (BOY) @ 0.2
i i -> (2=1 :arg e) @ 0.3
i s -> (2=1 :arg e) @ 0.3
s s -> (2=1 :arg e) @ 0.3
e -> (GIRL) @ 0.4
e -> (BOY) @ 0.6

Figure 3: Simplified dag acceptor simple.bda.

2.1 Membership checking and derivation
forests

DAGGER is able to perform various operations on
dags. The instructions can be given in a simple ex-
pression language. The general format of an expres-
sion is:

(command f1 .. fm p1 .. pn)

Every command has a number of (optional) features
fi and a fixed number of arguments pi. Most com-
mands have a short and a long name; we will use the
short names here to save space. In order to evaluate
a expression, you can either
• supply it on the command-line:

./dagger.py -e EXPRESSION

• or read from a file:
./dagger.py -f FILE

We will now show a couple of example expres-
sions that are composed of smaller expressions.
Assume that the dag acceptor of Fig. 2 is saved
in the file example.bda, and the file boywants.dag

contains the example dag in PENMAN format.
We can load the dag with the expression (g (f

boywants.dag)), and the acceptor with the expres-
sion (a w (f example.bda)) where w means that the
acceptor is weighted. We could also specify the dag
directly in PENMAN format using p instead of f. We
can use the command r:

(r (a w (f example.bda)) (g (f

boywants.dag)))

to check whether example.bda recognizes
boywants.dag. This will output one list item
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q

WANT

BELIEVE

BOY GIRL

=⇒

S

qnomb wants qinfb

BELIEVE

BOY GIRL

=⇒

S

qnomb wants INF

qaccg to believe qaccb

BOY GIRL

=⇒

S

INF

NP NP NP

the boy wants the girl to believe him

Figure 4: Derivation from graph to tree “the boy wants the girl to believe him”.

q
q.S(x1 wants x2)) -> (WANT :agent nomb.x1 :patient inf.x2)
inf.INF(x1 to believe x2) -> (BELIEVE :agent accg.x1 :patient accb.x2)
accg.NP(the girl) -> (GIRL)
nomb.NP(the boy) accb.(him) -> (BOY)

Figure 5: Example dag-to-tree-transducer example.bdt.

for each successful derivation (and, if the acceptor
is weighted, their weights), in this case: (’s’,

’0.1’, 0, ’0’), which means that the acceptor can
reach state s with a derivation weighted 0.1. The
rest of the output concerns dag-to-tree transducers
and will be explained later.

Note that in general, there might be multiple
derivations due to ambiguity (non-determinism).
Fortunately, the whole set of derivations can be effi-
ciently represented as another dag acceptor with the
d command. This derivation forest acceptor has the
set of rules as its symbol and the set of configura-
tions (state-labelings of the input dag) as its state set.

(d (a w (f example.bda)) (g f

boywants.dag)))

will write the derivation forest acceptor to the stan-
dard output.

2.2 k-best generation
To obtain the highest-weighted 7 dags generated by
the example dag acceptor, run:

(k 7 (a w (f example.bda)))

(1 / BOY)
(1 / GIRL)
(1 / BELIEVE :agent (2 / GIRL) :patient 2)
(1 / WANT :agent (2 / GIRL) :patient 2)
(1 / 0)
(1 / BELIEVE :agent (2 / BOY) :patient 2)
(1 / WANT :agent (2 / BOY) :patient 2)

If the acceptor is unweighted, the smallest dags
(in terms of derivation steps) are returned.

(1 / 0)
(1 / BOY)
(1 / GIRL)
(1 / BELIEVE :agent (2 / GIRL) :patient 2)
(1 / BELIEVE :agent (2 / BOY) :patient 2)
(1 / BELIEVE :agent (2 / GIRL) :patient

(3 / 0))
(1 / BELIEVE :agent (2 / GIRL) :patient

(3 / GIRL))

2.3 Visualization of dags
Both dags and dag acceptors can be visualized using
GRAPHVIZ2. For this purpose, we use the q (query)
command and the v feature:

(v (g (f boywants.dag)) boywants.pdf)

(v (a (f example.bda)) example.pdf)

Dag acceptors are represented as hypergraphs,
where the nodes are the states and each hyperedge
represents a rule labeled with a symbol.

2.4 Union and intersection
In order to construct complex acceptors from sim-
pler building blocks, it is helpful to make use of
union (u) and intersection (i). The following code
will intersect two acceptors and return the 5 best
dags of the intersection acceptor.

(k 5 (i (a (f example.bda)) (a (f

someother.bda))))

Weighted union, as usual, corresponds to sum,
weighted intersection to product.

2available under the Eclipse Public Licence from http://
www.graphviz.org/
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string automata tree automata dag automata
compute . . . strings (sentences) . . . (syntax) trees . . . semantic representations
k-best . . . paths through a WFSA (Viterbi,

1967; Eppstein, 1998)
. . . derivations in a weighted forest
(Jiménez and Marzal, 2000; Huang and
Chiang, 2005)

3

EM training Forward-backward EM (Baum et al.,
1970; Eisner, 2003)

Tree transducer EM training (Graehl et
al., 2008)

?

Determinization . . . of weighted string acceptors (Mohri,
1997)

. . . of weighted tree acceptors (Bor-
chardt and Vogler, 2003; May and
Knight, 2006a)

?

Transducer composi-
tion

WFST composition (Pereira and Riley,
1997)

Many transducers not closed under com-
position (Maletti et al., 2009)

?

General tools AT&T FSM (Mohri et al., 2000),
Carmel (Graehl, 1997), OpenFST (Riley
et al., 2009)

Tiburon (May and Knight, 2006b),
ForestFIRE (Cleophas, 2008; Strolen-
berg, 2007)

DAGGER

Table 1: General-purpose algorithms for strings, trees and feature structures.

3 Dag-to-tree transducers

Dag-to-tree transducers are dag acceptors with tree
output. In every rule, the states on the right-hand
sides have tree variables attached that are used to
build one tree for each state on the left-hand side. A
fragment of an example dag-to-tree transducer can
be seen in Fig. 5.

Let us see what happens if we apply this trans-
ducer to our example dag:

(r (a t (f example.bdt)) (g (f

boywants.dag)))

All derivations including output trees will be listed:

(’q’, ’1.0’,

S(NP(the boy) wants INF(NP(the girl)

to believe NP(him))),

’the boy wants the girl to believe

him’)

A graphical representation of this derivation (top-
down instead of bottom-up for illustrative purposes)
can be seen in Fig. 4.

3.1 Backward application and force decoding
Sometimes, we might want to see which dags map
to a certain input tree in a dag-to-tree transducer.
This is called backward application since we use the
transducer in the reverse direction: We are currently
implementing this by “generation and checking”, i.e.
a process that generates dags and trees at the same
time. Whenever a partial tree does not match the
input tree, it is discarded, until we find a derivation
and a dag for the input tree. If we also restrict the
dag part, we have force decoding.

4 Future work

This work describes the basics of a dag automata
toolkit. To the authors’ knowledge, no such im-
plementation already exists. Of course, many algo-
rithms are missing, and there is a lot of room for im-
provement, both from the theoretical and the practi-
cal viewpoint. This is a brief list of items for future
research (Quernheim and Knight, 2012):
• Complexity analysis of the algorithms.
• Closure properties of dag acceptors and dag-

to-tree transducers as well as composition with
tree transducers.
• Extended left-hand sides to condition on a

larger semantic context, just like extended top-
down tree transducers (Maletti et al., 2009).
• Handling flat, unordered, sparse sets of rela-

tions that are typical of feature structures. Cur-
rently, rules are specific to the rank of the
nodes. A first step in this direction could be
gone by getting rid of the explicit n=m symbols.
• Hand-annotated resources such as (dag, tree)

pairs, similar to treebanks for syntactic repre-
sentations as well as a reasonable probabilistic
model and training procedures.
• Useful algorithms for NLP applications that

exist for string and tree automata (cf. Ta-
ble 1). The long-term goal could be to build a
semantics-based machine translation pipeline.
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Abstract

This paper introduces a new open source,
WFST-based toolkit for Grapheme-to-
Phoneme conversion. The toolkit is efficient,
accurate and currently supports a range of
features including EM sequence alignment
and several decoding techniques novel in
the context of G2P. Experimental results
show that a combination RNNLM system
outperforms all previous reported results on
several standard G2P test sets. Preliminary
experiments applying Lattice Minimum
Bayes-Risk decoding to G2P conversion are
also provided. The toolkit is implemented
using OpenFst.

1 Introduction

Grapheme-to-Phoneme (G2P) conversion is an im-
portant problem related to Natural Language Pro-
cessing, Speech Recognition and Spoken Dialog
Systems development. The primary goal of G2P
conversion is to accurately predict the pronunciation
of a novel input word given only the spelling. For
example, we would like to be able to predict,

PHOENIX → /f i n I k s/

given only the input spelling and a G2P model or set
of rules. This problem is straightforward for some
languages like Spanish or Italian, where pronuncia-
tion rules are consistent. For languages like English
and French however, inconsistent conventions make
the problem much more challenging.

In this paper we present a fully data-driven,
state-of-the-art, open-source toolkit for G2P conver-
sion, Phonetisaurus [1]. It includes a novel mod-
ified Expectation-Maximization (EM)-driven G2P
sequence alignment algorithm, support for joint-
sequence language models, and several decoding so-
lutions. The paper also provides preliminary in-
vestigations of the applicability of Lattice Mini-

mum Bayes-Risk (LMBR) decoding [2; 3] and N-
best rescoring with a Recurrent Neural Network
Language Model (RNNLM) [4; 5] to G2P con-
version. The Weighted Finite-State Transducer
(WFST) framework is used throughout, and the open
source implementation relies on OpenFst [6]. Ex-
perimental results are provided illustrating the speed
and accuracy of the proposed system.

The remainder of the paper is structured as fol-
lows. Section 2 provides background, Section 3 out-
lines the alignment approach, Section 4 describes
the joint-sequence LM. Section 5 describes decod-
ing approaches. Section 6 discusses preliminary ex-
periments, Section 7 provides simple usage com-
mands and Section 8 concludes the paper.

2 G2P problem outline

Grapheme-to-Phoneme conversion has been a pop-
ular research topic for many years. Many differ-
ent approaches have been proposed, but perhaps the
most popular is the joint-sequence model [6]. Most
joint-sequence modeling techniques focus on pro-
ducing an initial alignment between corresponding
grapheme and phoneme sequences, and then mod-
eling the aligned dictionary as a series of joint to-
kens. The gold standard in this area is the EM-
driven joint-sequence modeling approach described
in [6] that simultaneously infers both alignments and
subsequence chunks. Due to space constraints the
reader is referred to [6] for a detailed background of
previous research.

The G2P conversion problem is typically bro-
ken down into several sub-problems: (1) Sequence
alignment, (2) Model training and, (3) Decoding.
The goal of (1) is to align the grapheme and
phoneme sequence pairs in a training dictionary.
The goal of (2) is to produce a model able to gen-
erate new pronunciations for novel words, and the
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goal of (3) is to find the most likely pronunciation
given the model.

3 Alignment

The proposed toolkit implements a modified WFST-
based version of the EM-driven multiple-to-multiple
alignment algorithm proposed in [7] and elaborated
in [8]. This algorithm is capable of learning natural
G-P relationships like igh→/AY/ which were not
possible with previous 1-to-1 algorithms like [9].

The proposed alignment algorithm includes three
modifications to [7]: (1) A constraint is imposed
such that only m-to-one and one-to-m arcs are
considered during training. (2) During initialization
a joint alignment lattice is constructed for each in-
put entry, and any unconnected arcs are deleted. (3)
All arcs, including deletions and insertions are ini-
tialized to and constrained to maintain a non-zero
weight.

These minor modifications appear to result in a
small but consistent improvement in terms of Word
Accuracy (WA) on G2P tasks. The Expectation and
Maximization steps for the EM training procedure
are outlined in Algorithms 2, 3. The EM algorithm

Algorithm 1: EM-driven M2One/One2M
Input: xT , yV , mX , mY , dX , dY
Output: γ, AlignedLattices

1 foreach sequence pair (xT , yV ) do
2 InitFSA(xT , yV , mX , mY , dX , dY )
3 foreach sequence pair (xT , yV ) do
4 Expectation(xT , yV , mX , mY , γ)
5 Maximization(γ)

is initialized by generating an alignment FSA for
each dictionary entry, which encodes all valid G-P
alignments, given max subsequence parameters sup-
plied by the user. Any unconnected arcs are deleted
and all remaining arcs are initialized with a non-zero
weight. In Algorithm 2 lines 2-3 compute the for-
ward and backward probabilities. Lines 4-8 com-
pute the arc posteriors and update the current model.
In Algorithm 3 lines 1-2 normalize the probability
distribution. Lines 3-6 update the alignment lattice
arc weights with the new model.

Algorithm 2: Expectation step
Input: AlignedLattices
Output: γ, total

1 foreach FSA alignment lattice F do
2 α← ShortestDistance(F )
3 β ← ShortestDistance(FR)
4 foreach state q ∈ Q[F ] do
5 foreach arc e ∈ E[q] do
6 v ← ((α[q]⊗w[e])⊗β[n[e]])�β[0];
7 γ[i[e]]← γ[i[e]]⊕ v;
8 total← total ⊕ v;

Algorithm 3: Maximization step
Input: γ, total
Output: AlignedLattices

1 foreach arc e in E[γ] do
2 γnew[i[e]]← w[e]/total; γ[i[e]]← 0;
3 foreach FSA alignment lattice F do
4 foreach state q ∈ Q[F ] do
5 foreach arc e ∈ E[q] do
6 w[e]← γnew[i[e]];

4 Joint Sequence N-gram model

The pronunciation model implemented by the
toolkit is a straightforward joint N-gram model. The
training corpus is constructed by extracting the best
alignment for each entry, e.g.:

a}x b}b a}@ c|k}k
a}x b}b a}@ f}f t}t

The training procedure is then, (1) Convert aligned
sequence pairs to sequences of aligned joint label
pairs, (g1:p1, g2:p2, ..., gn:pn); (2) Train an N-gram
model from (1); (3) Convert the N-gram model to
a WFST. Step (3) may be performed with any lan-
guage modeling toolkit. In this paper mitlm [11] is
utilized.

5 Decoding

The proposed toolkit provides varying support for
three different decoding schemes. The default de-
coder provided by the distribution simply extracts
the shortest path through the phoneme lattice created
via composition with the input word,

Hbest = ShortestPath(Projecto(w ◦M)) (1)
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whereHbest refers to the lowest cost path, Projecto
refers to projecting the output labels, w refers to the
input word, M refers to the G2P model, and ◦ indi-
cates composition.

5.1 RNNLM N-best rescoring
Recurrent Neural Network Language Models have
recently enjoyed a resurgence in popularity in the
context of ASR applications [4]. In another re-
cent publication we investigated the applicability
of this approach to G2P conversion with joint se-
quence models by providing support for the rnnlm
toolkit [5]. The training corpus for the G2P LM
is a corpus of joint sequences, thus it can be used
without modification to train a parallel RNNLM. N-
best reranking is then accomplished with the pro-
posed toolkit by causing the decoder to output the
N-best joint G-P sequences, and employing rnnlm
to rerank the the N-best joint sequences,

HNbest =NShortestPaths(w ◦M)

Hbest =Projecto(Rescorernn(HNbest)).
(2)

In practice the rnnlm models require considerable
tuning, and somewhat more time to train, but pro-
vide a consistent WA boost. For further details on
algorithm as well as tuning for G2P see [4; 10].

5.2 Lattice Minimum Bayes-Risk decoding for
G2P

In [2] the authors note that the aim of MBR decod-
ing is to find the hypothesis that has the “least ex-
pected loss under the model”. MBR decoding was
successfully applied to Statistical Machine Trans-
lation (SMT) lattices in [2], and significantly im-
proved in [3]. Noting the similarities between G2P
conversion and SMT, we have begun work imple-
menting an integrated LMBR decoder for the pro-
posed toolkit.

Our approach closely follows that described
in [3], and the algorithm implementation is sum-
marized in Algorithm 4. The inputs are the full
phoneme lattice that results from composing the in-
put word with the G2P model and projecting output
labels, an exponential scale factor α, and N-gram
precision factors θ0−N . The θn are computed us-
ing a linear corpus BLEU [2] N-gram precision p,
and a match ratio r using the following equations,
θ0 = −1/T ; θn = 1/(NTprn−1). T is a constant

Algorithm 4: G2P Lattice MBR-Decode
Input: E ← Projecto(w ◦M), α, θ0−n

1 E ←ScaleLattice(α× E)
2 NN ←ExtractN-grams(E)
3 for n← 1 to N do
4 Φn ←MakeMapper(Nn)
5 ΨR

n ←MakePathCounter(Nn)
6 Un ← Opt((E ◦ Φn) ◦ΨR

n )
7 Ωn = Φn

8 for state q ∈ Q[Ωn] do
9 for arc e ∈ E[q] do

10 w[e]← θn × U(o[e])

11 P ← Projectinput(Eθ0 ◦ Ω1)
12 for n← 2 to N do
13 P ← Projectinput(P ◦ Ωn)
14 Hbest = ShortestPath(P)

which does not affect the MBR decision [2]. Line
1 applies α to the raw lattice. In effect this controls
how much we trust the raw lattice weights. After
applying α, E is normalized by pushing weights to
the final state and removing any final weights. In
line 2 all unique N-grams up to order N are ex-
tracted from the lattice. Lines 4-10 create, for each
order, a context-dependency FST (Φn) and a spe-
cial path-posterior counting WFST (ΨR

n ), which are
then used to compute N-gram posteriors (Un), and
finally to create a decoder WFST (Ωn). The full
MBR decoder is then computed by first making an
unweighted copy of E , applying θ0 uniformly to all
arcs, and iteratively composing and input-projecting
with each Ωn. The MBR hypothesis is then the best
path through the result P . See [2; 3] for further
details.

6 Experimental results

Experimental evaluations were conducted utilizing
three standard G2P test sets. These included repli-
cations of the NetTalk, CMUdict, and OALD En-
glish language dictionary evaluations described in
detail in [6]. Results comparing various configu-
ration of the proposed toolkit to the joint sequence
model Sequitur [6] and an alternative discriminative
training toolkit direcTL+ [8] are described in Ta-
ble 1. Here m2m-P indicates the proposed toolkit
using the alignment algorithm from [7], m2m-fst-P
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System NT15k CMUdict OALD
Sequitur [6] 66.20 75.47 82.51
direcTL+ [8] ∼ 75.52 83.32
m2m-P 66.39 75.08 81.20
m2m-fst-P 66.41 75.25 81.86
rnnlm-P 67.77 75.56 83.52

Table 1: Comparison of G2P WA(%) for previous sys-
tems and variations of the proposed toolkit.

indicates the alternative FST-based alignment algo-
rithm, and rnnlm-P indicates the use of RNNLM N-
best reranking.

The results show that the improved alignment al-
gorithm contributes a small but consistent improve-
ment to WA, while RNNLM reranking contributes a
further small but significant boost to WA which pro-
duces state-of-the-art results on all three test sets.

The WA gains are interesting, however a major
plus point for the toolkit is speed. Table 2 compares
training times for the proposed toolkit with previ-
ously reported results. The m2m-fst-P for system for

System NETtalk-15k CMUdict
Sequitur [6] Hours Days
direcTL+ [8] Hours Days
m2m-P 2m56s 21m58s
m2m-fst-P 1m43s 13m06s
rnnlm-P 20m 2h

Table 2: Training times for the smallest (15k entries) and
largest (112k entries) training sets.

CMUdict performs %0.27 worse than the state-of-
the-art, but requires just a tiny fraction of the train-
ing time. This turn-around time may be very impor-
tant for rapid system development. Finally, Figure. 1
plots WA versus decoding time for m2m-fst-P on the
largest test set, further illustrating the speed of the
decoder, and the impact of using larger models.

Preliminary experiments with the LMBR decoder
were also carried out using the smaller NT15k
dataset. The θn values were computed using p, r,
and T from [2] while α was tuned to 0.6. Re-
sults are described in Table 3. The system matched
the basic WA for N=6, and achieved a small im-
provement in PA over m2m-fst-P (%91.80 versus
%91.82). Tuning the loss function for the G2P task
should improve performance.
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Figure 1: Decoding speed vs. WA plot for various N-
gram orders for the CMUdict 12k/112k test/train set.
Times averaged over 5 run using ctime.

NT15k N=1 N=2 N=3 N=4 N=5 N=6
WA 28.88 65.48 66.03 66.41 66.37 66.50
PA 83.17 91.74 91.79 91.87 91.82 91.82

Table 3: LMBR decoding Word Accuracy (WA) and
Phoneme Accuracy (PA) for order N=1-6.

7 Toolkit distribution and usage

The preceding sections introduced various theoreti-
cal aspects of the toolkit as well as preliminary ex-
perimental results. The current section provides sev-
eral introductory usage commands.

The toolkit is open source and released under
the liberal BSD license. It is available for down-
load from [1], which also includes detailed com-
pilation instructions, tutorial information and addi-
tional examples. The examples that follow utilize
the NETTalk dictionary.
Align a dictionary:
$ phonetisaurus-align --input=test.dic \

--ofile=test.corpus

Train a 7-gram model with mitlm:
$ estimate-ngram -o 7 -t test.corpus \

-wl test.arpa

Convert the model to a WFSA
$ phonetisaurus-arpa2fst --input=test.arpa \

--prefix=test

Apply the default decoder
$ phonetisaurus-g2p --model=test.fst \

--input=abbreviate --nbest=3 --words
abbreviate 25.66 @ b r i v i e t
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abbreviate 28.20 @ b i v i e t
abbreviate 29.03 x b b r i v i e t

Apply the LMBR decoder

$ phonetisaurus-g2p --model=test.fst \
--input=abbreviate --nbest=3 --words \
--mbr --order=7

abbreviate 1.50 @ b r i v i e t
abbreviate 2.62 x b r i v i e t
abbreviate 2.81 a b r i v i e t

8 Conclusion and Future work

This work introduced a new Open Source WFST-
driven G2P conversion toolkit which is both highly
accurate as well as efficient to train and test. It incor-
porates a novel modified alignment algorithm. To
our knowledge the RNNLM N-best reranking and
LMBR decoding are also novel applications in the
context of G2P.

Both the RNNLM N-best reranking and LMBR
decoding are promising but further work is required
to improve usability and performance. In particular
RNNLM training requires considerable tuning, and
we would like to automate this process. The pro-
visional LMBR decoder achieved a small improve-
ment but further work will be needed to tune the
loss function. Several known optimizations are also
planned to speed up the LMBR decoder.

Nevertheless the current release of the toolkit pro-
vides several novel G2P solutions, achieves state-of-
the-art WA on several test sets and is efficient for
both training and decoding.
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Abstract

Kleene is a high-level programming language,
based on the OpenFst library, for constructing
and manipulating finite-state acceptors and
transducers. Users can program using reg-
ular expressions, alternation-rule syntax and
right-linear phrase-structure grammars; and
Kleene provides variables, lists, functions and
familiar program-control syntax. Kleene has
been approved by SAP AG for release as free,
open-source code under the Apache License,
Version 2.0, and will be available by Au-
gust 2012 for downloading from http://
www.kleene-lang.org. The design, im-
plementation, development status and future
plans for the language are discussed.

1 Introduction

Kleene1 is a finite-state programming language in
the tradition of the AT&T Lextools (Roark and
Sproat, 2007),2 the SFST-PL language (Schmid,
2005),3 the Xerox/PARC finite-state toolkit (Beesley
and Karttunen, 2003)4 and FOMA (Huldén, 2009b),5

all of which provide higher-level programming for-
malisms built on top of low-level finite-state li-
braries. Kleene itself is built on the OpenFst library

1Kleene is named after American mathematician Stephen
Cole Kleene (1909–1994), who investigated the properties of
regular sets and invented the metalanguage of regular expres-
sions.

2http://www.research.att.com/˜alb/
lextools/

3http://www.ims.uni-stuttgart.de/
projekte/gramotron/SOFTWARE/SFST.html

4http://www.fsmbook.com
5http://code.google.com/p/foma/

(Allauzen et al., 2007),6 developed by Google Labs
and NYU’s Courant Institute.

The design and implementation of the lan-
guage were motivated by three main principles,
summarized as Syntax Matters, Licensing Matters
and Open Source Matters. As for the syntax,
Kleene allows programmers to specify weighted
or unweighted finite-state machines (FSMs)—
including acceptors that encode regular languages
and two-projection transducers that encode regu-
lar relations—using regular expressions, alternation-
rule syntax and right-linear phrase-structure gram-
mars. The regular-expression operators are bor-
rowed, as far as possible, from familiar Perl-like
and academic regular expressions, and the alterna-
tion rules are based on the “rewrite rules” made pop-
ular by Chomsky and Halle (Chomsky and Halle,
1968). Borrowing from general-purpose program-
ming languages, Kleene also provides variables, lists
and functions, plus nested code blocks and familiar
control structures such as if-else statements and
while loops.

As for the licensing, Kleene, like the OpenFst li-
brary, is released under the Apache License, Version
2.0, and its other dependencies are also released un-
der this and similar permissive licenses that allow
commercial usage. In contrast, many notable finite-
state implementations, released under the GPL and
similar licenses, are restricted to academic and other
non-commercial use. The Kleene code is also open-
source, allowing users to examine, correct, augment
and even adopt the code if the project should ever be
abandoned by its original maintainer(s).

6http://www.openfst.org
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It is hoped that Kleene will provide an attractive
development environment for experts and students.
Pre-edited Kleene scripts can be run from the com-
mand line, but a graphical user interface is also pro-
vided for interactive learning, programming, testing
and drawing of FSMs.

Like comparable implementations of finite-state
machines, Kleene can be used to implement a vari-
ety of useful applications, including spell-checking
and -correction, phonetic modeling, morphological
analysis and generation, and various kinds of pat-
tern matching. The paper continues with a brief de-
scription the Kleene language, the current state of
development, and plans for the future.

2 Implementation

The Java-language Kleene parser, implemented with
JavaCC and JJTree (Copeland, 2007),7 is Unicode-
capable and portable. Successfully parsed state-
ments are reduced to abstract syntax trees (ASTs),
which are interpreted by calling C++ functions in the
OpenFst library via the Java Native Interface (JNI).

3 Kleene Syntax

3.1 Regular Expressions

Basic assignment statements have a regular expres-
sion on the right-hand side, as shown in Table 1. As
in Perl regular expressions, simple alphabetic char-
acters are literal, and concatenation is indicated by
juxtaposition, with no overt operator. Parentheses
can be used to group expressions. The postfixed *
(the “Kleene star”), + (the “Kleene plus”), and ? de-
note zero-or-more, one-or-more, and optionality, re-
spectively. Square-bracketed expressions have their
own internal syntax to denote character sets, includ-
ing character ranges such as [A-Z]. The union op-
erator is |. Basic regular operations missing from
Perl regular expressions include composition (◦ or
_o_), crossproduct (:), language intersection (&),
language negation (∼) and language subtraction (-).
Weights are indicated inside angle brackets, e.g.
<0.1>.

Special characters can be literalized with a pre-
ceding backslash or inside double quotes, e.g. \* or
"*" denotes a literal asterisk rather than the Kleene

7https://javacc.dev.java.net

plus. To improve the readability of expressions,
spaces are not significant, unless they appear inside
square brackets or are explicitly literalized inside
double quotes or with a preceding backslash.

In a language like Kleene where alphabetic sym-
bols are literal, and the expression dog denotes three
literal symbols, d, o and g, concatenated together,
there must be a way to distinguish variable names
from simple concatenations. The Kleene solution is
to prefix variable names that are bound to FSM val-
ues with a dollar-sign sigil, e.g. $myvar. Once
defined, a variable name can be used inside subse-
quent regular expressions, as in the following ex-
ample, which models a fragment of Esperanto verb
morphology.

$vroot = don | dir | pens | ir ;
// "give", "say", "think", "go"
$aspect = ad ;
// optional repeated aspect
$vend = as | is | os | us | u | i ;
// pres, past, fut, cond, subj, inf
$verbs = $vroot $aspect? $vend ;
// use of pre-defined variables

Similarly, names of functions that return FSMs are
distinguished with the $ˆ sigil. To denote less com-
mon operations, rather than inventing and prolifer-
ating new and arguably cryptic regular-expression
operators, Kleene provides a set of predefined func-
tions including

$ˆreverse(regexp)
$ˆinvert(regexp)
$ˆinputProj(regexp)
$ˆoutputProj(regexp)
$ˆcontains(regexp)
$ˆignore(regexp, regexp)
$ˆcopy(regexp)

Users can also define their own functions, and func-
tion calls are regular expressions that can appear as
operands inside larger regular expressions.

3.2 Alternation-Rule Syntax

Kleene provides a variety of alternation-rule types,
comparable to Xerox/PARC Replace Rules (Beesley
and Karttunen, 2003, pp. 130–82), but implemented
using algorithms by Måns Huldén (Huldén, 2009a).
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$var = dog ;
$var = d o g ; // equivalent to dog
$var = ˜( a+ b* c? ) ;
$var = \˜ \+ \* \? ; // literalized special characters
$var = "˜+*?"; // literalized characters inside double quotes
$var = "dog" ; // unnecessary literalization, equivalent to dog
$myvar = (dog | cat | horse) s? ;
$yourvar = [A-Za-z] [A-Za-z0-9]* ;
$hisvar = ([A-Za-z]-[aeiouAEIOU])+ ;
$hervar = (bird|cow|elephant|pig) & (pig|ant|bird) ;
$ourvar = (dog):(chien) ◦ (chien):(Hund) ;
$theirvar = [a-z]+ ( a <0.91629> | b <0.1> ) ; // weights in brackets

Table 1: Kleene Regular-Expression Assignment Examples.

input-expression -> output-expression / left-context _ right-context

Table 2: The Simplest Kleene Alternation-Rule Template.

The simplest rules have the template shown in Ta-
ble 2, and are interpreted into transducers that map
the input to the output in the specified context. Such
rules, which cannot be reviewed in detail here, are
commonly used to model phonetic and orthographi-
cal alternations.

3.3 Right-Linear Phrase Structure Grammars

While regular expressions are formally capable of
describing any regular language or regular relation,
some linguistic phenomena—especially productive
morphological compounding and derivation—can
be awkward to describe this way. Kleene therefore
provides right-linear phrase-structure grammars that
are similar in semantics, if not in syntax, to the Xe-
rox/PARC lexc language (Beesley and Karttunen,
2003, pp. 203–78).

A Kleene phrase-structure grammar is defined as
a set of productions, each assigned to a variable with
a $> sigil. Productions may include right-linear ref-
erences to themselves or to other productions, which
might not yet be defined. The productions are parsed
immediately but are not evaluated until the entire
grammar is built into an FSM via a call to the built-in
function $ˆstart(), which takes one production
variable as its argument and treats it as the starting
production of the whole grammar. The following
example models a fragment of Esperanto noun mor-

photactics, including noun-root compounding.

$>Root = (kat | hund | elefant | dom)
( $>Root | $>AugDim ) ;

$>AugDim = ( eg | et )? $>Noun ;
$>Noun = o $>Plur ;
$>Plur = j? $>Case ;
$>Case = n? ;

$net = $ˆstart($>Root) ;

The syntax on the right-hand side of productions is
identical to the regular-expression syntax, but allow-
ing right-linear references to productions of the form
$>Name.

4 Kleene FSMs

Each Kleene finite-state machine consists of a stan-
dard OpenFst FSM, under the default Tropical
Semiring, wrapped with a Java object8 that stores
the private alphabet9 of each machine.

In Kleene, it is not necessary or possible to de-
clare the characters being used; characters appearing
in regular expressions, alternation rules and right-
linear phrase-structure grammars are stored auto-
matically as FSM arc labels using their Unicode

8Each Java object of the class Fst contains a long integer
field that stores a pointer to the OpenFst machine, which actu-
ally resides in OpenFst’s C++ memory space.

9The alphabet, sometimes known as the sigma, contains just
the symbols that appear explicitly in the labels of the FSM.
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code point value, and this includes Unicode sup-
plementary characters. Programmer-defined multi-
character symbols, represented in the syntax with
surrounding single quotes, e.g. '+Noun' and
'+Verb', or, using another common convention,
'[Noun]' and '[Verb]', also need no declara-
tion and are automatically stored using code point
values taken from a Unicode Private Use Area.

The dot (.) denotes any character, and it translates
non-trivially into reserved arc labels that represent
OTHER (i.e. unknown) characters.10

5 Status

5.1 Currently Working

As of the date of writing, Kleene is an advanced beta
project offering the following:

• Compilation of regular expressions, right-
linear phrase-structure grammars, and several
alternation-rule variations into FSMs.

• Robust handling of Unicode, including sup-
plementary characters, plus support for user-
defined multi-character symbols.

• Variables and maintenance of symbol tables in
a frame-based environment.

• Pre-defined and user-defined functions.

• Handling of lists of FSMs, iteration over lists,
and functions that handle and return lists.

• A graphical user interface, including tools to
draw FSMs and test them manually.

• File I/O of FSMs in an XML format.

• Interpretation of arithmetic expressions,
arithmetic variables and functions, including
boolean functions; and if-then statements
and while loops that use boolean operators
and functions.

10The treatment of FSM-specific alphabets and the handling
of OTHER characters is modeled on the Xerox/PARC implemen-
tation (Beesley and Karttunen, 2003, pp. 56–60).

5.2 Future Work
The work remaining to be done includes:

• Completion of the implementation of
alternation-rule variations.

• Writing of runtime code and APIs to apply
FSMs to input and return output.

• Conversion of FSMs into stand-alone exe-
cutable code, initially in Java and C++.

• Expansion to handle semirings other than the
default Tropical Semiring of OpenFst.

• Testing in non-trivial applications to determine
memory usage and performance.

6 History and Licensing

Kleene was begun informally in late 2006, became
part of a company project in 2008, and was under
development until early 2011, when the project was
canceled. On 4 May 2012, SAP AG released Kleene
as free, open-source code under the Apache License,
Version 2.0.11

The Kleene source code will be repackaged ac-
cording to Apache standards and made available for
download by August of 2012 at http://www.
kleene-lang.org. A user manual, currently
over 100 pages, and an engineering manual will also
be released. Precompiled versions will be provided
for Linux, OS X and, if possible, Windows.
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Abstract 

We explain the implementation of replace 
rules with the .r-glc. operator and preference 
relations. Our modular approach combines 
various preference constraints to form differ-
ent replace rules. In addition to describing the 
method, we present illustrative examples. 

1 Introduction 

The idea of HFST - Helsinki Finite-State Technol-
ogy (Lindén et al. 2009, 2011) is to provide open-
source replicas of well-known tools for building 
morphologies, including XFST (Beesley and Kart-
tunen 2003). HFST's lack of replace rules such as 
those supported by XFST, prompted us to imple-
ment them using the present method, which repli-
cates XFST's behavior (with minor differences 
which will be detailed in later work), but will also 
allow easy expansion with new functionalities. 

The semantics of replacement rules mixes con-
textual conditions with replacement strategies that 
are specified by replace rule operators. This paper 
describes the implementation of replace rules using 
a preference operator, .r-glc., that disambiguates 
alternative replacement strategies according to a 
preference relation. The use of preference relations 
(Yli-Jyrä 2008b) is similar to the worsener rela-
tions used by Gerdemann (2009). The current ap-
proach was first described in Yli-Jyrä (2008b), and 
is closely related to the matching-based finite-state 
approaches to optimality in OT phonology (Noord 
and Gerdemann 1999; Eisner 2000). The prefer-
ence operator, .r-glc., is the reversal of generalized 
lenient composition (glc), a preference operator 
construct proposed by Jäger (2001). The imple-
mentation is developed using the HFST library, 
and is now a part of the same. 

The purpose of this paper is to explain a general 
method of compiling replace rules with .r-glc. 
operator and to show how preference constraints 
described in Yli-Jyrä (2008b) can be combined to 
form different replace rules. 

2 Notation 

The notation used in this paper is the standard reg-
ular expression notation extended with replace rule 
operators introduced and described in Beesley and 
Karttunen (2003). 

In a simple rule 
𝑎  𝑜𝑝  𝑏  𝑑𝑖𝑟  𝐿!  _  𝑅!,… , 𝐿!  _  𝑅! 

op is a replace rule operator such as: 
→, → ,  @→,  @>, ←, (←), …; 𝑎 ⊆   Σ∗  is the set 
of patterns in the input text that are overwritten in 
the output text by the alternative patterns, which 
are given as set 𝑏 ⊆   Σ∗, where Σ∗ is a universal 
language and  Σ set of alphabetical symbols; 𝐿! and 
𝑅! are left and right contexts and dir is context 
direction (||, //, \\ and \/). 

Rules can also be parallel. Then they are divid-
ed with double comma (,,), or alternately with sin-
gle comma if context is not specified. 

Operation Name 
X Y The concatenation of Y after X 
X | Y The disjunction of X and Y 

X:Y The cross product of X and Y, 
where X and Y denote languages 

X .o. Y The composition of X and Y, 
where X and Y denote relations 

X+ The Kleene plus 
X* The Kleene star 

proj1(X) The projection of the input lan-
guage of the relation X 

proj2(X) The projection of the output lan-
guage of the relation X 

Table 1 – List of operations 
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Operators used in the paper are listed in Table 
1, where X and Y stand for regular expressions. 

Additionally, parenthesis ( ) are used to mark 
optionality, squared brackets [ ] for precedence and 
question mark ? is used to denote set Σ in regular 
expressions. 

3 Method 

The general idea for compiling replace rules with 
the .r-glc. operator and preference constraints is 
shown in Figure 1. 

 
Figure 1: General method of building a replace rule 
 

The method consists of the following steps: 
1. Building an Unconstrained Bracketed 

Transducer (UBT) – a transducer which 
applies or skips contextually valid re-
placements freely in all possible portions 
of the inputs.  Every application of the re-
placement rule is marked with special 
brackets. Similar replace rules that differ 
only with respect to their replacement 
strategies will use the same UBT. Thus, 
the compilation of UBT is independent of 
the replacement strategy, which increases 
the modularity of the compilation algo-
rithm. 

2. Implement the functionality of the replace 
rule operator by constraining the UBT with 
the respective preference relation. 

3. Remove brackets from the transducer. 
 

The major advantage of this method is its mod-
ularity. The algorithm is divided into small com-
ponents which are combined in the desired way. 
This approach allows every part of the algorithm to 
be separately and clearly defined, tested and 

changed. Furthermore, modularity makes it possi-
ble to easily integrate new functionalities such as 
weighted replace rules or two level contexts. 

3.1 Unconstrained Bracketed Transducer 

As mentioned earlier, it is first necessary to build 
the UBT. This step can be seen as a variant of Yli-
Jyrä and Koskenniemi's (2007) method for compil-
ing contextually restricted changes in two-level 
grammars.  The main difference now is that the 
rule applications cannot overlap because they will 
be marked with brackets. 

 Step 1: Bracketed center 

The first step is to create a bracketed center, 
𝑐𝑒𝑛𝑡𝑒𝑟!  – the replace relation surrounded by 
brackets , . For optional replacement, it is nec-
essary that 𝑐𝑒𝑛𝑡𝑒𝑟! also contains the upper side of 
the relation bracketed with another pair of brackets 
𝐵! = , . This is necessary for filtering out all 
the results without any brackets (see later filter 
𝑇!"#$!) and getting non optional replacement.  

𝑐𝑒𝑛𝑡𝑒𝑟! = 𝑎! ∶ 𝑏! ∪ 𝑎!
!!!

   

In case of parallel replace rules, bracketed cen-
ter is the union of all individual bracketed centers. 
Like XFST, this implementation requires parallel 
replace rules to have the same replace operator 
(and optionality) in all replacements. 

Step 2: The change centers in free context 

The second step is to expand bracketed center to be 
valid in any context. 

If 𝐵 = , , ,   , we can define: 
𝒰 = Σ − 𝐵 ∪ 𝑐𝑒𝑛𝑡𝑒𝑟! ∗ 

Then, center in free context is: 
𝑐𝑒𝑛𝑡𝑒𝑟!"## = 𝒰   ⋄   𝑐𝑒𝑛𝑡𝑒𝑟!   𝒰 

where ⋄ is diamond, which is used to align centers 
and contexts during compilation. 

Step 3: Expanded center in context 

The next step is to compile contexts. The method 
used for constructing 𝑐𝑒𝑛𝑡𝑒𝑟𝐶𝑂𝑁𝑇𝑋𝑇  depends on 
whether the context must match on the upper or the 
lower side. Since it is possible to have multiple 
contexts, each replacement should be surrounded 
with all applicable contexts: 

𝑐𝑒𝑛𝑡𝑒𝑟!"#$%$ = 𝑐!|  𝑐!  |… |  𝑐! 
Center surrounded with one context is: 

𝑐! = 𝐿  |  𝐿′   ⋄   𝑐𝑒𝑛𝑡𝑒𝑟!    𝑅  |  𝑅´ , 

Remove 
brackets 

.r-glc. 

.r-glc. 
… 

.r-glc. 

UBT 

Constraint 1 

Constraint N 

REPLACE 
RULE 
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where 𝐿 and 𝑅 are left and right contexts from the 
replace rule, and 𝐿! and 𝑅′ are expanded contexts, 
depending on which side the context matches. In 
the case when context must match on the upper 
side, 𝐿′ and 𝑅′ are: 

𝐿′ = 𝒰  𝐿 ≪ B     . o.    𝒰 
𝑅′ = 𝑅  𝒰 ≪ B   . o.    𝒰 

If they must match on the lower side: 
𝐿′ = 𝒰. o. 𝒰  𝐿 ≪ B    
𝑅′ = 𝒰. o. 𝑅  𝒰 ≪ B  

where brackets are freely inserted (≪) in the con-
texts and then composed with 𝒰.  

In this example:  
𝑎   →   𝑏   ∥ 𝑐  _  𝑑 

both contexts should match on the upper side of 
the replacement, so 𝑐𝑒𝑛𝑡𝑒𝑟!"#$%$ is: 

𝐿′ = 𝒰  c ≪ B     . o.    𝒰 
𝑅′ = d  𝒰 ≪ B   . o.    𝒰 

𝑐! = (  𝑐  |  𝐿′)     ⋄    𝑎 ∶ 𝑏 ∪ 𝑎   (  𝑑  |  𝑅′) 
𝑐𝑒𝑛𝑡𝑒𝑟!"#$%$ = 𝑐! 

This way of compiling contexts allows every 
rule in a parallel replace rule to have its own con-
text direction (||, //, \\, \/). Therefore, rules like the 
following one are valid in this implementation:  

𝑎   →   𝑏  \\  𝑐  _  𝑑  , , 𝑏   →   𝑐  //  𝑐  _  𝑑 

Steps 4: Final operations 

Finally, to get the unconstrained replace transducer 
it is necessary to subtract 𝑐𝑒𝑛𝑡𝑒𝑟!"#$%$  from 
𝑐𝑒𝑛𝑡𝑒𝑟!"## , remove diamond and do a negation of 
that relation. 

Let 𝑉 = Σ − 𝐵 −  ⋄   ∪ 𝑐𝑒𝑛𝑡𝑒𝑟!
∗
, then: 

𝑉   − 𝑑  ⋄   𝑐𝑒𝑛𝑡𝑒𝑟!"##   –   𝑐𝑒𝑛𝑡𝑒𝑟!"#$%$     
where 𝑑  ⋄ denotes removal of diamond. 

3.2 Constraints 

All the preference constraints were defined in Yli-
Jyrä (2008), but since they were mostly difficult to 
interpret and implement, here is the list of the con-
straints written with regular expressions over the 
set of finite binary relations. 

First, let us define RP – a regular expression of-
ten used in the restraints: 

𝑅𝑃 =         𝐵: 0     0:𝐵     ?−𝐵   ∗ 
The left most preference is achieved by: 

𝑇!" =    ?∗<: 0   𝐵: 0 ∗ ?   −𝐵   𝑅𝑃   
Right most preference: 

𝑇!" =   𝑅𝑃   ?−𝐵 !       ∶ 0  ?∗     
Longest match left to right: 

𝐿! =    ?−𝐵   |   0:    0:         ∶0     𝐵  ] ?−𝐵 ! 
𝑇!"!#$% =  ?∗           ?   –𝐵   !    0  :       𝐿!   𝑅𝑃 

Longest match right to left: 
𝐿! =    ?−𝐵   | ?−𝐵 !   0:    0 ∶         ∶ 0   𝐵  ] 
𝑇!""#$% =   𝑅𝑃  𝐿!   0 ∶      ?   –𝐵   !     ?∗   

Shortest match left to right: 
𝑆! =    ?−𝐵   |     0 ∶         ∶ 0      ∶0     𝐵  ] ?−𝐵 ! 
𝑇!"#$%"& =  ?∗           ?   –𝐵   !       ∶ 0    𝑆!   𝑅𝑃 

Shortest match right to left: 
𝑆! =    ?−𝐵   |   ?−𝐵 !     0 ∶         ∶ 0      ∶0     𝐵  ] 

𝑇!"#$%!& =   𝑅𝑃  𝑆!      : 0   ?   –𝐵   !       ?∗ 
For compiling epenthesis rules, to avoid more than 
one epsilon in the row: 

𝐵! =   ,     
𝐵! =    ,     

  𝑇!"  !"#′ =  ?∗   𝐵!𝐵!𝐵!𝐵!   ?∗  
For non-optional replacements: 

𝑇!"#$! =  ?∗   [𝐵!: 0     ?−𝐵 !  𝐵!: 0  ?∗ ]! 
To remove paths containing 𝐵!, where 𝐵! =    , : 

𝑇!"#$′ =  ?∗ 𝐵!  ?∗ 
Since 𝑇!"  !"#′  and 𝑇!"#$′  are reflexive, they 

are not preference relation. Instead, they are filters 
applied after preference relations. 

3.3 Applying constraints with .r-glc. operator 

To apply a preference constraint in order to restrict 
transducer t, we use .r-glc. operator. The .r-glc. 
operation between transducer t and a constraint is 
shown in Figure 2. Input language of a transducer 
is noted as proj1 and output language as proj2. 

 
Figure 2: Breakdown of the operation: 

t .r-glc. constraint 

Contraints combinations 

As shown in Figure 1, in order to achieve desired 
replace rules, it is often necessary to use several 
constraints. For example, to achieve left to right 
longest match, it is necessary to combine 𝑇!" and 

.o. 

 

t 

proj1(t)   – proj2 

proj1(t) 
.o. 

constraint 
.o. 

proj1(t) 
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𝑇!"!#$%. If the same longest match contains epen-
thesis, 𝑇!"  !"# constraint should also be used. 

3.4 Removing brackets 

Removing brackets is simply achieved by applying 
𝑇!"#$ =  ?∗ 𝐵  ?∗ constraint, where B is set of brack-
ets we want to remove. Additionally, in HFST 
implementation, it is also required to remove the 
brackets from the transducers alphabets.  

4 Examples 

Let us show how the replace rule is compiled on 
different examples.  

Since it would take too much space to show 
whole transducers, we will show only output of the 
intermediate results applied to an input string.  

The first example shows how to achieve a non- 
optional replacement. Intermediate results of the 
replace rule 𝑎 →   𝑥  ||  𝑎  _  𝑎 is shown in the Table 2. 
Since the arrow demands non-optional replace-
ment, the unconstrained bracketed replace, if ap-
plied to the input string 𝑎  𝑎  𝑎 , contains three 
possible results. The first result is the input string 
itself, which would be part of the non-optional 
replacement. The second result is necessary to 
filter out the first one. In this example, because of 
the restricting context, replacement is possible only 
in the middle, and therefore, it is bracketed with 
special brackets. Finally, the third result contains 
the bracketed replace relation. 

𝑎 →   𝑥  ||  𝑎  _  𝑎 
UBT 𝑇!"#$! 𝑇!"#$′ 
𝑎  𝑎    𝑎 
𝑎   𝑎   𝑎 
𝑎 𝑎: 𝑥   𝑎 

𝑎 𝑎: 𝑥   𝑎 
𝑎   𝑎   𝑎 

 

𝑎 𝑎: 𝑥   𝑎 
 

Table 2: Steps of the non optional replacement 
 
Once when we have the unconstrained bracket-

ed replace transducer, we are ready to apply filters. 
First filter, 𝑇!"#$! will filter out all results that 
contain smaller number of brackets in every posi-
tion, without making difference to the type of 
brackets. In this example, it will filter out the first 
result, the one that does not have any brackets at 
all. 

The second filter, 𝑇!"#$′ will filter out all the 
results containing 𝐵!brackets because they don’t 
contain the replace relation. Finally, to get the final 

result, it is necessary to remove brackets from the 
relation. 

 Following examples will be shown on the input 
string 𝑎  𝑎  𝑎  𝑎. Table 3 shows steps of building left 
to right longest match and Table 4 left to right 
shortest match. 

Both longest match and shortest match have the 
same first two steps. After building Unconstrained 
Bracketed Replace, we apply 𝑇!"  filter which 
finds all the results with left most brackets in every 
position and filters out all the rest. This contraints 
characteristic filters out the results without the 
brackets as well, so the result will be non-optional. 
In order to get the longest match, we apply another 
filter (𝑇!"!#$%) to the result of the left most filter. 
This filter finds the longest of the bracketed 
matches with the same starting position. In the 
final step, if we apply filter 𝑇!"#$%"& instead of 
𝑇!"!#$% , we will get the shortest match (Table 4). 

𝑎+  @→  𝑥  ||  𝑎  _  𝑎 
UBT 𝑇!" 𝑇!"!#$%  
𝑎  𝑎  𝑎  𝑎 

𝑎 𝑎: 𝑥   𝑎  𝑎 
𝑎 𝑎: 𝑥 𝑎: 𝑥   𝑎 
𝑎 𝑎: 𝑥  𝑎: 𝜀   𝑎 
𝑎  𝑎   𝑎: 𝑥   𝑎 

𝑎 𝑎: 𝑥   𝑎  𝑎 
𝑎 𝑎: 𝑥 𝑎: 𝑥   𝑎 
𝑎 𝑎: 𝑥  𝑎: 𝜀   𝑎 
 

𝑎 𝑎: 𝑥  𝑎: 𝜀   𝑎 
 

Table 3: Left to right longest match 
 

𝑎+  @>  𝑥  ||  𝑎  _  𝑎 
UBT 𝑇!" 𝑇!"#$%"& 
𝑎  𝑎  𝑎  𝑎 

𝑎 𝑎: 𝑥   𝑎  𝑎 
𝑎 𝑎: 𝑥 𝑎: 𝑥   𝑎 
𝑎 𝑎: 𝑥  𝑎: 𝜀   𝑎 
𝑎  𝑎   𝑎: 𝑥   𝑎 

𝑎 𝑎: 𝑥   𝑎  𝑎 
𝑎 𝑎: 𝑥 𝑎: 𝑥   𝑎 
𝑎 𝑎: 𝑥  𝑎: 𝜀   𝑎 
 

𝑎 𝑎: 𝑥 𝑎: 𝑥   𝑎 
 

Table 4: Left to right shortest match 

5 Conclusion 

The large number of different replace operators 
makes it quite complicated and error-prone to build 
a supporting framework for them. However, the .r-
glc. operator and preference relations allow split-
ting the algorithm into small reusable units which 
are easy to maintain and upgrade with new func-
tionalities. 

The replace rules are now part of the HFST li-
brary and can be used through hfst-regexp2fst 
command line tool, but there is still some work to 
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be done to build an interactive interface. Addition-
ally, we are planning to add support for two level 
contexts and parallel weighted rules.  
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Abstract

This paper presents an application of finite-
state transducers to the domain of medicine.
The objective is to assign disease codes to
each Diagnostic Term in the medical records
generated by the Basque Health Hospital Sys-
tem. As a starting point, a set of manually
coded medical records were collected in order
to code new medical records on the basis of
this set of positive samples. Since the texts
are written in natural language by doctors, the
same Diagnostic Term might show alternative
forms. Hence, trying to code a new medical
record by exact matching the samples in the
set is not always feasible due to sparsity of
data. In an attempt to increase the coverage
of the data, our work centered on applying a
set of finite-state transducers that helped the
matching process between the positive sam-
ples and a set of new entries. That is, these
transducers allowed not only exact matching
but also approximate matching. While there
are related works in languages such as En-
glish, this work presents the first results on au-
tomatic assignment of disease codes to medi-
cal records written in Spanish.

1 Introduction

During the last years an exponential increase in
the number of electronic documents in the medi-
cal domain has occurred. The automatic process-
ing of these documents allows to retrieve informa-
tion, helping the health professionals in their work.
There are different sort of valuable data that help to
exploit medical information. Our framework lays

on the classification of Medical Records (MRs) ac-
cording to a standard. In our context, the MRs pro-
duced in a hospital have to be classified with re-
spect to the World Health Organization’s 9th Revi-
sion of the International Classification of Diseases1

(ICD-9). ICD-9 is designed for the classification of
morbidity and mortality information and for the in-
dexing of hospital records by disease and procedure.
The already classified MRs are stored in a database
that serves for further classification purposes. Each
MR consists of two pieces of information:

Diagnostic Terms (DTs): one or more terms that
describe the diseases corresponding to the MR.

Body-text: a description of the patient’s details,
antecedents, symptoms, adverse effects, meth-
ods of administration of medicines etc.

Even though the DTs are within a limited domain,
their description is not subject to a standard. Doc-
tors express the DTs in natural language with their
own style and different degrees of precision. Usu-
ally, a given concept might be expressed by alterna-
tive DTs with variations due to modifiers, abbrevia-
tions, acronyms, dates, names, misspellings or style.
This is a typical problem that arises in natural lan-
guage processing due to the fact that doctors focus
on the patients and not so much on the writing of the
MR. On account of this, there is ample variability in
the presentation of the DTs. Consequently, it is not
a straightforward task to get the corresponding ICD-
codes. That is, the task is by far more complex than
a standard dictionary lookup.

1http://www.cdc.gov/nchs/icd/icd9.htm
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The Basque Health Hospital System is concerned
with the automatization of this ICD-code assign-
ment task. So far, the hospital processes the daily
produced documents in the following sequence:

1. Automatic: exact match of the DTs in a set of
manually coded samples.

2. Semi-automatic: through semantic match,
ranking the DTs by means of machine-learning
techniques. This stage requires that experts se-
lect amongst the ranked choices.

3. Manual: the documents that were not matched
in the previous two stages are examined by pro-
fessional coders assigning the codes manually.

The goal of this paper is to bypass the variability
associated to natural language descriptions in an at-
tempt to maximize the proportion of automatically
assigned codes, as the Hospital System aims to ex-
pand the use of the automatic codification of MRs
to more hospitals. According to experts, even an in-
crease of 1% in exact match would represent a sig-
nificant improvement allowing to gain time and re-
sources.

Related work can be found in the literature. For
instance, Pestian et al. (2007) reported on a shared
task involving the assignment of ICD-codes to radi-
ology reports written in English from a reduced set
of 45 codes. In general it implied the examination of
the full MR (including body-text). In our case, the
number of ICD-codes is above 1,000, although we
restrict ourselves to exact and approximate match
over the diagnoses.

Farkas and Szarvas (2008) used machine learning
for the automatic assignment of ICD-9 codes. Their
results showed that hand-crafted systems could be
reproduced by replacing several laborious steps in
their construction with machine learning models.

Tsuruoka et al. (2008) presented a system that
tried to normalize different variants of the terms con-
tained in a medical dictionary, automatically getting
normalizing rules for genes, proteins, chemicals and
diseases in English.

The contribution of this work is: i) to collect
manually coded MRs in Spanish; ii) to approximate
transduction with finite-state (FS) models for auto-
matic MR coding and, iii) to assess the performance
of the proposed FS transduction approaches.

2 Approximate transduction

As it was previously mentioned, there are variations
regarding the DT descriptions due to style, miss-
spells, etc. Table 1 shows several pairs of DT and
ICD-codes within the collected samples that illus-
trate some of those variations.

DT ICD
1 Adenocarcinoma de prostata 185
2 Adenocarcinomas próstata. 185
3 Ca. prostata 185
4 CÁNCER DE PROSTATA 185
5 adenocarcinoma de pulmon estadio IV 1629
6 CA pulmón estadio 4 1629
7 ADENOCARCINOMA PANCREAS 1579

Table 1: Examples of DTs and their ICD-codes.

There are differences in the use of uppercase/lower
case; omissions of accents; use of both standard and
non-standard abbreviations (e.g. ca. for both cáncer
and adenocarcinoma); punctuation marks (inciden-
tal use of full-stop as commas, etc.); omission of
prepositions (see rows 1 and 2); equivalence be-
tween Roman and Arabic numerals (rows 5 and 6).
Due to these variations, our problem can be defined
as an approximate lookup in a dictionary.

2.1 Finite-state models
Foma toolkit was used to build the FS machines and
code the evaluation sets. Foma (Hulden, 2009) is
a freely available2 toolkit that allows to both build
and parse FS automata and transducers. Foma of-
fers a versatile layout that supports imports/exports
from/to other tools such as: Xerox XFST (Beesley
and Karttunen, 2003), AT&T (Mehryar Mohri
and Riley, 2003), OpenFST (Riley et al., 2009).
There are, as well, outstanding alternatives such as
HFST (Lindén et al., 2010). Refer to (Yli-Jyrä et al.,
2006) for a thorough inventory on FS resources.

The FS models in Figure 1 perform the conver-
sions necessary to carry out a soft match between
the dictionary entries and their variants.

• First, we define the transducer Accents that
takes into account the correspondences be-
tween standard letters and their versions using
accent text marks.

2http://code.google.com/p/foma
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define Accents [a:á|e:é|i:ı́|o:ó|u:ú|...];
define Case [a:A|b:B|c:C|d:D|e:E|f:F|...];
define Spaces [..] (->) " " || [.#. | "."] , .#.;
define Punctuation ["."|"-"|" "]:["."|"-"|" "];
define Plurals [..] -> ([s|es]) || [.#. | "." | " "];
define PluralsI [s|es] (->) "" || [.#. | "." | ","| " "];
define Preps [..] (->) [de |del |con |por ] || " " ;
define Disease [enf|enf.|enfermedad]:[enf|enf.|enfermedad];
define AltCa [tumor|ca|ca.|carcinoma|adenocarcinoma|cáncer];
define TagNormCa AltCa:AltCa;
define AltIzq [izquierdo|izquierda|izq|izq.|izqda|izqda.|

izqdo|izqdo.|izda|izda.|izdo|izdo.];
define TagNormIzq AltIzq:AltIzq;

Figure 1: A simplified version in Foma source code of the regular expressions and transducers used to
bypass several sources of distortion within the DTs in order to parse variations of unseen input DTs.

• The expression Case matches uppercase and
lowercase versions of the DTs.

• There is a set of transducers (Spaces,
Punctuation, Plurals and PluralsI)
that deal with the addition or deletion of spaces
and separators (as full-stop, comma, and hy-
phen) between words or at the end of the DT.

• Prepositions. Many DTs can be differen-
tiated by the use or absence of prepositions, al-
though they correspond to the same ICD-code.
For that reason, we designed a transducer that
inserts or deletes the prepositions from a re-
duced set that were identified by inspection of
the training set. In this way, expressions as
”Adenocarcinoma prostata” and ”Adenocarci-
noma de prostata” can be mapped to each other.

• Tag Normalization of synonyms, vari-
ants and abbreviations. The examination of the
DTs in the training set revealed that there were
several terms used indistinctly, including syn-
onyms and different kinds of variants (mascu-
line and feminine) and abbreviations. For ex-
ample, the words adenocarcinoma, adenoca.,
carcinoma, ca, ca. and cancer serve to name
the same disease. There are also multiple vari-
ants of left/right, indicating the location of an
illness, that do not affect the assignment of the
ICD-code (e.g. izquierdo, izq., izda.).

Finally, all the FS transducers were composed
into a single machine that served to overcome all the

sources of distortion together.

3 Experimental results

To begin with, coded MRs produced in the hospi-
tal throughout 12 months were collected summing
up a total of 8,020 MRs as described in Table 2.
Note that there are ambiguities in our data-set since
there are 3,313 different DTs that have resulted in
3,407 (DT, ICD-code) different pairs (as shown in
Table 2). That is, the same DT was not always as-
signed the same ICD-code.

DT ICD-code
entries 8,020
different entries 3,407
different forms 3,313 1,011

Table 2: The data-set of (DT, ICD-code) pairs.

Next, the data-set was shuffled and divided into 3
disjoint sets for training, development and test pur-
poses as shown in Table 3.

train dev test
entries 6,020 1,000 1,000
different entries 2,825 734 728

Table 3: The data-set shuffled and divided into 3 sets

Using the set of mappings derived from the train-
ing set we performed the experiments on the devel-
opment set. After several rounds of tuning the sys-
tem, the resulting system was applied to the test set.
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PERCENTAGE OF UNCLASSIFIED DTs
TRAIN EVAL-SET exact-match + case-ins. + punct. + plurals +preps. + tag-norm.
train dev 30.6 27.0 25.2 24.4 23.9 23.2
train test 29.8 26.7 25.1 24.8 24.3 23.2
train+dev test 27.7 24.5 23.0 22.9 22.5 21.4

Table 4: Performance of different FS machines in terms of the percentage of unclassified entries. All the
classified entries were correctly classified, yielding, as a result, a precision of 100%.

Given a DT, the goal is to find its corresponding
ICD-code despite the variations. Different FS ap-
proaches (described in Section 2.1) were proposed
to bypass particular sources of noise in the DT. Their
performance was assessed by means of the percent-
age of unclassified DTs, as summarized in Table 4.
Note that the lower the number of unclassified DTs
the better the performance. In each of the three rows
of Table 4 the results of different experimental se-
tups are shown: in the first two rows the training set
was used to build the models and either the devel-
opment or the test set was evaluated in their turn;
in the third row, both the training and the devel-
opment sets were used to build the model and the
test set was evaluated. The impact of adding pro-
gressively the FS machines built to tackle particular
sources of noise is shown by columns. Thus, the re-
sults of the last column represent the performance
of the transducer allowing exact-match search to-
gether with case-insensitive search, bypassing punc-
tuation marks, allowing plurals, bypassing preposi-
tions and allowing tag-normalization. The compo-
sition of each transducer outperforms the previous
result, yielding an improvement on the test of 6 ab-
solute points over the exact-match baseline, from
27.7% to 21.4%. As it can be derived from the
first column of Table 4 the test set contributed to the
training+development set with %27.7 of new DTs.

Overall, the FSMs progressively improved the re-
sults for the three series of experiments carried out
in more than 6%. As a result, less and less DTs are
left unclassified. In other words, the FS machines
tackling different sources of errors contribute to as-
sign ICD-codes to previously unassigned DTs.

A manual inspection over the results associated
to the evaluation of the development set (focus on
the first row of Table 4) showed that all the DTs
were correctly classified according to the training
data. Overall, the resulting transducer was unable

to classify 232 DTs out of 1,000 (see last column
in first row). Among the unclassified DTs, 10 out
of 232 were due to misspellings: e.g. cic atriz
(instead of cicatriz), desprendimineot (instead of
desprendimiento). In fact, spelling correction re-
ported improvements in related tasks (Patrick et al.,
2010). The remaining DTs showed wider variations
in their forms, as unexpected degree of specificity
(e.g. named entities), spurious dates or numbers.

4 Conclusions

Medical records in Spanish were collected yielding
a data set of 8,020 DT and ICD-code pairs. While
there are a number of references dealing with En-
glish medical records, there are few for Spanish.

The goal of this work was to build a system that
given a DT it would find its corresponding ICD-
code as in a standard key-value dictionary. Yet, the
DTs are far from being standard since they contain
a number of variations. We proposed the use of sev-
eral FS models to bypass different variants and al-
low to provide ICD-codes even when the exact DT
was not found. Each source of variations was tack-
led with a specific transducer based on handwritten
rules. The composition of each machine improved
the performance of the system gradually, leading to
an improvement up to 6% in accuracy, from 27.7%
unclassified DTs with the exact-match baseline to
21.4% with the tag-normalization transducer.

Future work will focus on the unclassified DTs.
Together with FS models, other strategies shall be
explored. Machine-learning strategies in the field of
information retrieval might help to make the most of
the piece of information that was here discarded (i.e.
the body-text). All in all, regardless of the approach,
the command in this MR classification context is to
get an accuracy of 100%, possibly through the inter-
active inference framework (Toselli et al., 2011).
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Abstract

This paper presents the current status of de-
velopment of a finite state transducer gram-
mar for the verbal-chain transfer module in
Matxin, a Rule Based Machine Translation
system between Spanish and Basque. Due to
the distance between Spanish and Basque, the
verbal-chain transfer is a very complex mod-
ule in the overall system. The grammar is
compiled with foma, an open-source finite-
state toolkit, and yields a translation execution
time of 2000 verb chains/second.

1 Introduction

This paper presents the current status of develop-
ment of an FST (Finite State Transducer) grammar
we have developed for Matxin, a Machine Transla-
tion system between Spanish and Basque.

Basque is a minority language isolate, and it is
likely that an early form of this language was already
present in Western Europe before the arrival of the
Indo-European languages.

Basque is a highly inflected language with free
order of sentence constituents. It is an agglutinative
language, with a rich flexional morphology.

Basque is also a so-called ergative-absolutive lan-
guage where the subjects of intransitive verbs ap-
pear in the absolutive case (which is unmarked),
and where the same case is used for the direct ob-
ject of a transitive verb. The subject of the transi-
tive verb (that is, the agent) is marked differently,
with the ergative case (in Basque by the suffix -k).
The presence of this morpheme also triggers main
and auxiliary verbal agreement. Auxiliary verbs, or

‘periphrastic’ verbs, which accompany most main
verbs, agree not only with the subject, but also with
the direct object and the indirect object, if present.
Among European languages, this polypersonal sys-
tem (multiple verb agreement) is rare, and found
only in Basque, some Caucasian languages, and
Hungarian.

The fact that Basque is both a morphologically
rich and less-resourced language makes the use of
statistical approaches for Machine Translation dif-
ficult and raises the need to develop a rule-based
architecture which in the future could be combined
with statistical techniques.

The Matxin es-eu (Spanish-Basque) MT engine
is a classic transfer-based system comprising three
main modules: analysis of the Spanish text (based
on FreeLing, (Atserias et al., 2006)), transfer, and
generation of the Basque target text.

In the transfer process, lexical transfer is first
carried out using a bilingual dictionary coded in
the XML format of Apertium dictionary files (.dix)
(Forcada et al., 2009), and compiled, using the FST
library implemented in the Apertium project (the lt-
toolbox library), into a finite-state transducer that
can be processed very quickly.

Following this, structural transfer at the sentence
level is performed, and some information is trans-
ferred from some chunks1 to others while some
chunks may be deleted. Finally, the structural trans-

1A chunk is a non-recursive phrase (noun phrase, preposi-
tional phrase, verbal chain, etc.) which expresses a constituent
(Abney, 1991; Civit, 2003). In our system, chunks play a cru-
cial part in simplifying the translation process, due to the fact
that each module works only at a single level, either inside or
between chunks.
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fer at the verb chunk level is carried out. The verbal
chunk transfer is a very complex module because of
the nature of Spanish and Basque auxiliary verb con-
structions, and is the main subject of this paper.

This verb chain transfer module is implemented
as a series of ordered replacement rules (Beesley and
Karttunen, 2003) using the foma finite-state toolkit
(Hulden, 2009). In total, the system consists of 166
separate replacement rules that together perform the
verb chunk translation. In practice, the input is given
to the first transducer, after which its output is passed
to the second, and so forth, in a cascade. Each rule in
the system is unambiguous in its output; that is, for
each input in a particular step along the verb chain
transfer, the transducers never produce multiple out-
puts (i.e. the transducers in question are functional).
Some of the rules are joined together with composi-
tion, yielding a total of 55 separate transducers. In
principle, all the rules could be composed together
into one monolithic transducer, but in practice the
size of the composed transducer is too large to be
feasible. The choice to combine some transduc-
ers while leaving others separate is largely a mem-
ory/translation speed tradeoff.

2 Spanish and Basque verb features and
their translation

In the following, we will illustrate some of the main
issues in translating Spanish verb chains to Basque.
Since both languages make frequent use of auxiliary
verb constructions, and since periphrastic verb con-
structions are frequent in Basque, transfer rules can
get quite complex in their design.

For example, in translating the phrase

(Yo) compro (una manzana)
(I) buy (an apple)
[PP1CSN00] [VMIP1S0] [DI0FS0] [NCFS000]

we can translate it using the imperfective partici-
ple form (erosten) of the verb erosi (to buy), and a
transitive auxiliary (dut) which itself contains both
subject agreement information (I: 1st sg.) and num-
ber agreement with the object (an apple: 3rd sg.):
(nik) (sagar bat) erosten dut. The participle carries
information concerning meaning, aspect and tense,
whereas the auxiliaries convey information about ar-
gument structure, tense and mood.

Table 1 illustrates the central idea of the verb
chunk transfer. In the first four examples the form of
the transitive auxiliary changes to express agreement
with different ergative arguments (the subject of the
clause), absolutive arguments (the direct object) and
dative arguments (the indirect object). In the fifth
example the future participle is used. The last ex-
ample shows the translation of a periphrastic con-
struction, in which the the Spanish and the Basque
word orders are completely different: this is re-
flected in the Spanish tengo que-construction (have
to) which appears before the main verb, whereas in
the Basque, the equivalent (behar) appears after the
main verb (erosi).

3 The FST grammar

We carry out the verbal chunk transfer using finite-
state transducers (Alegria et al., 2005). The gram-
mar rules take as input the Spanish verbal chunk,
perform a number of transformations on the input,
and then create and output the verbal chunk for
Basque.

To illustrate the functioning of the grammar, let us
consider the following example sentence in Spanish:

“Un tribunal ha negado los derechos constitu-
cionales a los presos polticos” (A court has denied
constitutional rights to political prisoners). The cor-
rect translation into Basque given by the system for
this example is as follows: Auzitegi batek eskubide
konstituzionalak ukatu dizkie preso politikoei. Fig-
ure 1 shows a detailed overview of how the whole
transfer of the verbal chunk is performed for this par-
ticular example.

First, the input to the grammar is assumed to be a
string containing (separated by the ’&’ symbol) the
following information :

• the morphological information (using
EAGLES-style tags Leech and Wilson
(1996)) for all nodes (separated by ’+’
symbol) in the Spanish verbal chunk
(haber[VAIP3S0]+negar[VMP00SM]);

• the morphological information of the subject
([sub3s]), the direct object ([obj3p]) and the
indirect object ([iobj3p]);

• the translation of the main verb in Basque
(ukatu) and information about its transitivity
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Spanish sentence English Basque translation

(Yo) compro (una manzana) (I) buy (an apple) (Nik) (sagar bat) erosten dut
(Yo) compro (manzanas) (I) buy (apples) (Nik) (sagarrak) erosten ditut
(Tú) compras (manzanas) (You) buy (apples) (Zuk) (sagarrak) erosten dituzu
(Yo) (te) compro (una manzana) (I) buy (you) (an apple) (Nik) (zuri) (sagar bat) erosten dizut
(Yo) compraré (una manzana) (I) will buy (an apple) (Nik) (sagar bat) erosiko dut
(Yo) tengo que comprar (manzanas) (I) must buy (apples) (Nik) (sagarrak) erosi behar ditut

Table 1: Examples of translations

  

Un    tribunal     ha negado    los    derechos    constitucionales         a   los    presos    políticos

A     court     has denied     (the)   rights           constitutional            to (the)   prisoners  political

uka  +tu              d     +i      +zki   +e    +Ø

 Subject                Verb                                     Object                                                      Indirect
                                                                                                                                           Object

haber[VAIP3S0]+negar[VMP00SM]   &   [sub3s] [obj3p] [iobj3p]   &   ukatu [DIO] 

haber[VAIP3S0]+negar[VMP00SM]  &  [sub3s] [obj3p] [iobj3p]  & ukatu [DIO]
SimpleVerb   (main) AspectMain  /  Aux TenseMood Abs Dat Erg

1. Identification  
    of the schema 

[ SimpleVerbEsType  -> ...  SimpleVerbEuSchema ]

niega[VMIP3S0]   &   [sub3s] [obj3s] [dat3p]   &  ukatu [DIO] + 
SimpleVerb   (main)[perfPart]  /  edun(aux) [indPres] [abs3p][dat3p][erg3s]

2. Resolution  
    of the values

Attrib.               ->  Value             || Context                             
AspectMain  -> [perfPart]  || ?* VAIP ?* SimpleVerb ?* _
Aux  -> edun(aux) || ?* DIO ?* _
TenseMood  -> [indPres] || ?* VAIP ?* _
Abs  -> [abs3p] || ?* [obj3p] ?* edun(aux) ?* _
Dat  -> [dat3p] || ?* [iobj3p] ?* _
Erg  -> [erg3s] || ?* V???3S ?* edun(aux) ?* _

3. Elimination of 
    source information 

ukatu(main)[perfPart]   /  edun(aux) [indPres] [abs3p][dat3p][erg3s]

Input

Output

deny     perf.             ind.    trans.   3rdpl     3rdpl    3rdsg
             part.            pres.  aux.   abs.     dat.    erg.           

Figure 1: Example of the transfer of a verbal chunk.

67



([DIO]), indicating a ditransitive construction:

haber[VAIP3S0]+negar[VMP00SM] &

[sub3s][obj3p][iobj3p] & ukatu[DIO]

The grammatical rules are organized into three
groups according to the three main steps defined for
translating verbal chunks:

1. Identification of the Basque verbal chunk
schema corresponding to the source verbal
chunk.

There are twelve rules which perform this task,
each of which corresponds to one of the follow-
ing verbal chunks in Spanish: non-conjugated
verbs, simple non-periphrastic verbs as well
as four different groups reserved for the pe-
riphrastic verbs.

The verbal chunk of the example in figure 1 is
a simple non-periphrastic one, and the rule that
handles this particular case is as follows:

[simpleVerbEsType -> ...

simpleVerbEuSchema]

When this rule matches the input string
representing a simple non-periphrastic ver-
bal chunk (simpleVerbEsType) it adds the
corresponding Basque verbal chunk schema
(simpleVerbEuSchema) to the end of the input
string. simpleVerbEsType is a complex au-
tomaton that has the definition of the Spanish
simple verbs. simpleVerbEuSchema is the type
of the verbal chunk (SimpleVerb) and an au-
tomaton that contains as strings the pattern of
elements (separated by the ’/’ symbol) that the
corresponding Basque verb chunk will need to
have (in this case, the main verb and the auxil-
iary verb):

SimpleVerb (main) AspectMain /

Aux TenseMood Abs Dat Erg

2. Resolution of the values for the attributes in the
Basque schema.

A total of 150 replacement rules of this type
have been written in the grammar. Here are
some rules that apply to the above example:

[AspectMain -> [perfPart] || ?* VAIP

?* SimpleVerb ?* ]

[Aux -> edun(aux) || ?* DIO ?* ]

[Abs -> [abs3p] || ?* [obj3p] ?*

edun(aux) ?* ]

3. Elimination of source-language information (4
rules in total).

The output of the grammar for the example is:

ukatu(main)[perfPart] /

edun(aux)[indPres][abs3p][dat3p][erg3s]

The first node has the main verb (ukatu) with
the perfective participle aspect, and the sec-
ond one contains the auxiliary verb (edun) with
all its morphological information: indicative
present and argument structure.

In the output string, each of the elements contains
the information needed by the subsequent syntactic
generation and morphological generation phases.

4 Implementation

When the verbal chunk transfer module was first de-
veloped, there did not exist any efficient open-source
tools for the construction of finite state transduc-
ers. At the time, the XFST-toolkit (Beesley and
Karttunen, 2003) was used to produce the earlier
versions of the module: this included 25 separate
transducers of moderate size, occupying 2,795 kB
in total. The execution speed was roughly 250 verb
chains per second. Since Matxin was designed to be
open source, we built a simple compiler that con-
verted the XFST rules into regular expressions that
could then be applied without FST technology, at the
cost of execution speed. This verbal chunk transfer
module read and applied these regular expressions
at a speed of 50 verbal chunks per second.

In the work presented here, we have reimple-
mented and expanded the original rules written for
XFST with the foma2 toolkit (Hulden, 2009). Af-
ter adapting the grammar and compiling it, the 55
separate transducers occupy 607 kB and operate at
roughly 2,000 complete verb chains per second.3

Passing the strings from one transducer to the next in
the chain of 55 transducers in accomplished by the
depth-first-search transducer chaining functionality
available in the foma API.

2http://foma.sourceforge.net
3On a 2.8MHz Intel Core 2 Duo.
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Abstract

In this paper we describe a conversion of
the Buckwalter Morphological Analyzer for
Arabic, originally written as a Perl-script,
into a pure finite-state morphological ana-
lyzer. Representing a morphological ana-
lyzer as a finite-state transducer (FST) con-
fers many advantages over running a procedu-
ral affix-matching algorithm. Apart from ap-
plication speed, an FST representation imme-
diately offers various possibilities to flexibly
modify a grammar. In the case of Arabic, this
is illustrated through the addition of the abil-
ity to correctly parse partially vocalized forms
without overgeneration, something not possi-
ble in the original analyzer, as well as to serve
both as an analyzer and a generator.

1 Introduction

Many lexicon-driven morphological analysis sys-
tems rely on a general strategy of breaking down
input words into constituent parts by consulting cus-
tomized lexicons and rules designed for a particu-
lar language. The constraints imposed by the lex-
ica designed are then implemented as program code
that handles co-occurrence restrictions and analysis
of possible orthographic variants, finally producing
a parse of the input word. Some systems designed
along these lines are meant for general use, such as
the hunspell tool (Halácsy et al., 2004) which allows
users to specify lexicons and constraints, while oth-
ers are language-dependent, such as the Buckwalter
Arabic Morphological Analyzer (BAMA) (Buckwal-
ter, 2004).

In this paper we examine the possibility of con-
verting such morphological analysis tools to FSTs

that perform the same task. As a case study, we have
chosen to implement a one-to-one faithful conver-
sion of the Buckwalter Arabic analyzer into a finite-
state representation using the foma finite state com-
piler (Hulden, 2009b), while also adding some ex-
tensions to the original analyzer. These are useful
extensions which are difficult to add to the original
Perl-based analyzer because of its procedural nature,
but very straightforward to perform in a finite-state
environment using standard design techniques.

There are several advantages to representing mor-
phological analyzers as FSTs, as is well noted in the
literature. Here, in addition to documenting the con-
version, we shall also discuss and give examples of
the flexibility, extensibility, and speed of application
which results from using a finite-state representation
of a morphology.1

2 The Buckwalter Analyzer

Without going into an extensive linguistic discus-
sion, we shall briefly describe the widely used Buck-
walter morphological analyzer for Arabic. The
BAMA accepts as input Arabic words, with or with-
out vocalization, and produces as output a break-
down of the affixes participating in the word, the
stem, together with information about conjugation
classes. For example, for the input word ktb/I. �J»,
BAMA returns, among others:

LOOK-UP WORD: ktb
SOLUTION 1: (kataba) [katab-u_1]

katab/VERB_PERFECT
+a/PVSUFF_SUBJ:3MS

(GLOSS): + write + he/it <verb>

1The complete code and analyzer are available at
http://buckwalter-fst.googlecode.com/

70



Figure 1: The Buckwalter Arabic Morphological Analyzer’s lookup process exemplified for the word lilkitAbi.

2.1 BAMA lookup

In the BAMA system, every Arabic word is assumed
to consist of a sometimes optional prefix, an oblig-
atory stem, and a sometimes optional suffix.2 The
system for analysis is performed by a Perl-script that
carries out the following tasks:

1. Strips all diacritics (vowels) from the input
word (since Arabic words may contain vocal-
ization marks which are not included in the lex-
icon lookup). Example: kataba→ ktb

2. Factors the input word into all possible
combinations of prefix-stem-suffix. Stems
may not be empty, while affixes are optional.
Example: ktb→ { <k,t,b>,< kt,b,∅>,
<k,tb,∅>, <∅,k,tb>, <∅,kt,b>,
<∅,ktb,∅> }.

3. Consults three lexicons (dictPrefixes, dict-
Stems, dictSuffixes) for ruling out impossi-
ble divisions. For example, <kt,b,∅>, is
rejected since kt does not appear as a prefix
in dictPrefixes, while <k,tb,∅> is accepted
since k appears in dictPrefixes, tb in dict-
Stems, and ∅ in dictSuffixes.

4. Consults three co-occurrence constraint lists
for further ruling out incompatible prefix-
stem combinations, stem-suffix combinations,
and prefix-suffix combinations. For example,

2In reality, these are often conjoined prefixes treated as a
single entry within the system.

<k,tb,∅>, while accepted in the previous
step, is now rejected because the file dict-
Prefixes lists k as a prefix belonging to class
NPref-Bi, and the stem tb belonging to one of
PV V, IV V, NF, PV C, or IV C. However,
the compatibility file tableAB does not permit
a combination of prefix class NPref-Bi and any
of the above-mentioned stem classes.

5. In the event that the lookup fails, the analyzer
considers various alternative spellings of the in-
put word, and runs through the same steps us-
ing the alternate spellings.

The BAMA lookup process is illustrated using a
different example in figure 1.

3 Conversion

Our goal in the conversion of the Perl-code and the
lookup tables is to produce a single transducer that
maps input words directly to their morphological
analysis, including class and gloss information. In
order to do this, we break the process down into
three major steps:

(1) We construct a transducer Lexicon that ac-
cepts on its output side strings consisting of
any combinations of fully vocalized prefixes,
stems, and suffixes listed in dictPrefixes, dict-
Stems, and dictSuffixes. On the input side,
we find a string that represents the class each
morpheme on the output side corresponds to,
as well as the line number in the correspond-
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LEXICON Root
Prefixes ;

LEXICON Prefixes
[Pref-%0]{P%:34}:0 Stems;
[Pref-Wa]{P%:37}:wa Stems;
...

LEXICON Stems

[Nprop]{S%:23}:|b Suffixes;
[Nprop]{S%:27}:%<ib˜ Suffixes;
...

LEXICON Suffixes
[Suff-%0]{X%:34}:0 #;
[CVSuff-o]{X%:37}:o #;
...

Figure 2: Skeleton of basic lexicon transducer in LEXC
generated from BAMA lexicons.

ing file where the morpheme appears. For ex-
ample, the Lexicon transducer would contain
the mapping:

[Pref-0]{P:34}[PV]{S:102658}[NSuff-a]{X:72}
kataba

indicating that for the surface form
kataba/ �I.

��J
�
», the prefix class is Pref-0

appearing on line 34 in the file dictPrefixes,
the stem class is PV, appearing on line
102,658 in dictStems, and that the suffix
class is NSuff-a, appearing on line 72 in
dictSuffixes.

To construct the Lexicon, we produced a
Perl-script that reads the contents of the BAMA
files and automatically constructs a LEXC-
format file (Beesley and Karttunen, 2003),
which is compiled with foma into a finite trans-
ducer (see figure 2).

(2) We construct rule transducers that filter out im-
possible combinations of prefix classes based
on the data in the constraint tables tableAB,
tableBC, and tableAC. We then iteratively
compose the Lexicon transducer with each
rule transducer. This is achieved by converting
each suffix class mentioned in each of the class
files to a constraint rule, which is compiled

into a finite automaton. For example, the file
tableBC, which lists co-occurrence constraints
between stems and suffixes contains only the
following lines beginning with Nhy:

Nhy NSuff-h
Nhy NSuff-iy

indicating that the Nhy-class only combines
with Nsuff-h or Nsuff-iy. These lines are
converted by our script into the constraint re-
striction regular expression:

def Rule193 "[Nhy]" => _ ?*
"[NSuff-h]"|"[NSuff-iy]"];

This in effect defines the language where each
instance [Nhy] is always followed some-
time later in the string by either [NSuff-h],
or [NSuff-iy]. By composing this, and
the other constraints, with the Lexicon-
transducer, we can filter out all illegitimate
combinations of morphemes as dictated by the
original Buckwalter files, by calculating:

def Grammar Lexicon.i .o.
Rule1 .o.
...
RuleNNN ;

In this step, it is crucial to note that one cannot
in practice build a separate, single transducer
(or automaton) that models the intersection of
all the lexicon constraints, i.e. Rule1 .o.
Rule2 .o. ... RuleNNN, and then
compose that transducer with the Lexicon
transducer. The reason for this is that the
size of the intersection of all co-occurrence
rules grows exponentially with each rule. To
avoid this intermediate exponential size, the
Lexicon transducer must be composed with
the first rule, whose composition is then com-
posed with the second rule, etc., as above.

(3) As the previous two steps leave us with a trans-
ducer that accepts only legitimate combina-
tions of fully vocalized prefixes, stems, and
suffixes, we proceed to optionally remove short
vowel diacritics as well as perform optional
normalization of the letter Alif ( @) from the
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output side of the transducer. This means,
for instance, that an intermediate kataba/ �I.

��J
�
»,

would be mapped to the surface forms kataba,
katab, katba, katb, ktaba, ktab, ktba, and
ktb. This last step assures that we can
parse partially vocalized forms, fully vocal-
ized forms, completely unvocalized forms, and
common variants of Alif.

def RemoveShortVowels
[a|u|i|o|%˜|%‘] (->) 0;

def NormalizeAlif
["|"|"<"|">"] (->) A .o.
"{" (->) [A|"<"] ;

def RemovefatHatAn [F|K|N] -> 0;

def BAMA 0 <- %{|%} .o.
Grammar .o.
RemoveShortVowels .o.
NormalizeAlif .o.
RemovefatHatAn;

4 Results

Converting the entire BAMA grammar as described
above produces a final FST of 855,267 states and
1,907,978 arcs, which accepts 14,563,985,397 Ara-
bic surface forms. The transducer occupies 8.5Mb.
An optional auxiliary transducer for mapping line
numbers to complete long glosses and class names
occupies an additional 10.5 Mb. This is slightly
more than the original BAMA files which occupy
4.0Mb. However, having a FST representation of
the grammar provides us with a number of advan-
tages not available in the original BAMA, some of
which we will briefly discuss.

4.1 Orthographical variants
The original BAMA deals with spelling variants and
substandard spelling by performing Perl-regex re-
placements to the input string if lookup fails. In the
BAMA documentation, we find replacements such
as:
- word final Y’ should be y’
- word final Y’ should be }
- word final y’ should be }

In a finite-state system, once the grammar is con-
verted, we can easily build such search heuristics

into the FST itself using phonological replacement
rules and various composition strategies such as pri-
ority union (Kaplan, 1987). We can thus mimic the
behavior of the BAMA, albeit without incurring any
extra lookup time.

4.2 Vocalization
As noted above, by constructing the analyzer from
the fully vocalized forms and then optionally remov-
ing vowels in surface variants allows us to more ac-
curately parse partially vocalized Arabic forms. We
thus rectify one of the drawbacks of the original
BAMA, which makes no use of vocalization informa-
tion even when it is provided. For example, given an
input word qabol, BAMA would as a first step strip
off all the vocalization marks, producing qbl. Dur-
ing the parsing process, BAMA could then match qbl
with, for instance, qibal, an entirely different word,
even though vowels were indicated. The FST de-
sign addresses this problem elegantly: if the input
word is qabol, it will never match qibal because the
vocalized morphemes are used throughout the con-
struction of the FST and only optionally removed
from the surface forms, whereas BAMA used the un-
vocalized forms to match input. This behavior is in
line with other finite-state implementations of Ara-
bic, such as Beesley (1996), where diacritics, if they
happen to be present, are taken advantage of in order
to disambiguate and rule out illegitimate parses.

This is of practical importance when parsing Ara-
bic as writers often partially disambiguate words
depending on context. For example, the word
Hsbt/ �I�.�kis ambiguous (Hasabat = compute,
charge; Hasibat = regard, consider). One would
partially vocalize Hsbt as Hsibt to denote “she
regards”, or as Hsabt to imply “she computes.”
The FST-based system correctly narrows down the
parses accordingly, while BAMA would produce all
ambiguities regardless of the vocalization in the in-
put.

4.3 Surface lexicon extraction
Having the BAMA represented as a FST also al-
lows us to extract the output projection of the gram-
mar, producing an automaton that only accepts le-
gitimate words in Arabic. This can be then be
used in spell checking applications, for example,
by integrating the lexicon with weighted transduc-
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ers reflecting frequency information and error mod-
els (Hulden, 2009a; Pirinen et al., 2010).

4.4 Constraint analysis

Interestingly, the BAMA itself contains a vast
amount of redundant information in the co-
occurrence constraints. That is, some suffix-stem-
lexicon constraints are entirely subsumed by other
constraints and could be removed without affecting
the overall system. This can be observed during the
chain of composition of the various transducers rep-
resenting lexicon constraints. If a constraint X fails
to remove any words from the lexicon—something
that can be ascertained by noting that the number
of paths through the new transducer is the same as
in the transducer before composition—it is an indi-
cation that a previous constraint Y has already sub-
sumed X . In short, the constraint X is redundant.

The original grammar cannot be consistently ana-
lyzed for redundancies as it stands. However, redun-
dant constraints can be detected when compiling the
Lexicon FST together with the set of rules, offer-
ing a way to streamline the original grammar.

5 Conclusion

We have shown a method for converting the table-
based and producedural constraint-driven Buckwal-
ter Arabic Morphological Analyzer into an equiva-
lent finite-state transducer. By doing so, we can take
advantage of established finite-state methods to pro-
vide faster and more flexible parsing and also use the
finite-state calculus to produce derivative applica-
tions that were not possible using the original table-
driven Perl parser, such as spell checkers, normaliz-
ers, etc. The finite-state transducer implementation
also allows us to parse words with any vocalization
without sacrificing accuracy.

While the conversion method in this case is spe-
cific to the BAMA, the general principle illustrated
in this paper can be applied to many other procedu-
ral morphologies that rule out morphological parses
by first consulting a base lexicon and subsequently
applying a batch of serial or parallel constraints over
affix occurrence.
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Abstract

In this work, we describe a methodology
based on the Stochastic Finite State Trans-
ducers paradigm for Spoken Language Under-
standing (SLU) for obtaining concept graphs
from word graphs. In the edges of these con-
cept graphs, both semantic and lexical infor-
mation are represented. This makes these
graphs a very useful representation of the in-
formation for SLU. The best path in these con-
cept graphs provides the best sequence of con-
cepts.

1 Introduction

The task of SLU can be seen as the process that,
given an utterance, computes a semantic interpreta-
tion of the information contained in it. This semantic
interpretation will be based on a task-dependent set
of concepts.

An area where SLU systems are typically applied
is the construction of spoken dialog systems. The
goal of the SLU subsystem in the context of a dia-
log system is to process the information given by the
Automatic Speech Recognition (ASR) module, and
provide the semantic interpretation of it to the Dia-
log Manager, which will determine the next action
of the dialog. Thus, the work of the SLU module
can be split into two subtasks, the first of them is
the identification of the sequence of concepts and the
segments of the original sentence according to them,
and the other is the extraction of the relevant infor-
mation underlying to these labeled segments. In this
work we will focus on concept labeling, but we will
also consider the other subtask in our evaluation.

We can distinguish between the SLU systems that
work with the 1-best transcription and those that take
a representation of the n-best (Hakkani-Tür et al.,
2006; Tur et al., 2002). The use of a word graph as
the input of the SLU module makes this task more
difficult, as the search space becomes larger. On the
other hand, the advantage of using them is that there
is more information that could help to find the cor-
rect semantic interpretation, rather than just taking
the best sentence given by the ASR.

In the recent literature, a variety of approaches for
automatic SLU have been proposed, like those ex-
plained in (Hahn et al., 2010; Raymond and Ric-
cardi, 2007; McCallum et al., 2000; Macherey et
al., 2001; Léfèvre, 2007; Lafferty et al., 2001). The
methodology that we propose in this paper is based
on Stochastic Finite State Transducers (SFST). This
is a generative approach that composes several trans-
ducers containing acoustic, lexical and semantic
knowledge. Our method performs this composition
on-the-fly, obtaining as a result a concept graph,
where semantic information is associated with seg-
ments of words. To carry out this step, we use a
different language model for each concept and also
study the use of lexical categorization and lemmas.
The best sequence of concepts can be determined by
finding the best path in the concept graph, with the
help of a language model of sequences of the con-
cepts.

The rest of this paper is structured as follows. In
Section 2, the theoretical model for SLU based on
SFST is briefly presented. Then, in Section 3 the
methodology for converting word graphs into con-
cept graphs is described. A experimentation to eval-
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uate this methodology for the SLU task is shown in
Section 4. Finally, we draw some conclusions and
future work.

2 The SFST approach for SLU

The Bayes classifier for the SLU problem can be ex-
pressed as stated in equation 1, where C represents
a sequence of concepts or semantic labels and A is
the utterance that constitutes the input to the system.

Ĉ = argmax
C

p(C|A) (1)

Taking into account the underlying sequence of
words W , and assuming that the acoustics may de-
pend onW but not onC, this equation can be rewrit-
ten as follows.

Ĉ = argmax
C

max
W

p(A|W ) · p(W,C) (2)

To compute the best sequence of concepts Ĉ ex-
pressed as in equation 2, the proposal made by the
paradigm based on SFST is to search the best path in
a transducer λSLU result of composing four SFST:

λSLU = λG ◦ λgen ◦ λW2C ◦ λSLM (3)

In this equation λG is a SFST provided by
the ASR module where the acoustic probabilities
p(A|W ) are represented, λgen introduces prior in-
formation of the task by means of a lexical cate-
gorization, λW2C provides the probability of a se-
quence of words and labels it with a semantic label
and λSLM modelizes a language model of sequences
of concepts.

3 From word graphs to concept graphs

The output of an ASR can be represented as a word
graph. This word graph can be enriched with se-
mantic information, obtaining a concept graph. This
concept graph constitutes a useful representation of
the possible semantics, considering the uncertainty
expressed in the original word graph. Finally, find-
ing the best path in the concept graph using a lan-
guage model of sequences of concepts provides as
a result the best sequence of concepts Ĉ, the recog-
nized sentence W̃ , and its segmentation according
to Ĉ.

3.1 Topology and semantics of the word graph

To perform the transformations for obtaining the
concept graph, the input graph given by the ASR
should represent the information in the following
way. First, its nodes will be labeled with times-
tamps. Also, for every two nodes i, j such that
i < j − 1, there will be an edge from i to j labeled
with w and weight s if the ASR detected w between
the instants i and j − 1 with an acoustic score s.
Finally, there may exist a λ-transition between any
pair of adjacent nodes. The score of this edge should
be computed by means of a smoothing method.

Defining the word graph in this way allows us to
model on it the distribution p(A|w), where A is the
sequence of acoustic frames between the initial and
final nodes of any edge, and w the word attached to
it. This probability distribution is represented in the
theoretical model by λG.

3.2 Building the concept graph

The concept graph that is obtained has the following
features. First, its set of nodes is the same of the
word graph, and its meaning is kept. There is at most
one edge between every two nodes i and j (i < j)
labeled with the concept c. Every edge is labeled
with a pair (W, c), where W is a sequence of words
and c the concept that they represent. The weight
of the edge is maxW (p(Aj

i |W ) ·p(W |c)), where Aj
i

are the acoustic frames in the interval [i, j[ and W
the argument that maximizes the former expression.

In this specification appears the probability distri-
bution p(W |c), which can be estimated by using a
language model for each available concept.

This concept graph can be built using a Dynamic
Programming algorithm that finds for each concept
c and each pair of nodes i, j, with i < j, the
path from i to j on the word graph that maximizes
p(Aj

i |W )·p(W |c). In this case,W is the sequence of
words obtained by concatenating the words attached
to the edges of the path. Each of the “best paths”
computed in this way will become an edge in the
resulting concept graph.

Thus, in the concept graph it is represented infor-
mation about possible sequences of words that might
have been uttered by the speaker, along with the con-
cepts each of these sequences expresses. This pair is
weighted with a score that is the result of combining
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the acoustic score expressed in the word graph, and
the lexical and syntactic score given by the language
model, which is dependent on the current concept.
Furthermore, this information is enriched with tem-
poral information, since the initial and final nodes
of every edge represent the beginning and ending
timestamps of the sequence of words. Consequently,
this way of building the concept graph corresponds
to the transducer λW2C of equation 3, since we find
sequences of words and attach them to a concept.
However, we also take advantage of and keep other
information, such as the temporal one.

4 Experiments and results

To evaluate this methodology, we have performed
SLU experiments using the concept graphs obtained
as explained in Section 3 and then finding the best
path in each of them. For this experimentation we
have used the DIHANA corpus (Benedı́ et al., 2006).
This is a corpus of telephone spontaneous speech in
Spanish composed by 900 dialogs acquired by 225
speakers using the Wizard of Oz technique, with a
total of 6,229 user turns. All these dialogs simulate
real conversations in an automatic train information
phone service. The experiments reported here were
performed using the user turns of the dialogs, split-
ting them into a set of 1,340 utterances (turns) for
test and all the remaining 4,889 for training. Some
interesting statistics about the DIHANA corpus are
given in table 1.

Number of words 47,222
Vocabulary size 811
Average number of words per user turn 7.6
Number of concepts 30

Table 1: Characteristics of the DIHANA corpus.

In the DIHANA corpus, the orthographic tran-
scriptions of the utterances are semi-automatically
segmented and labeled in terms of semantic units.
This segmentation is used by our methodology as a
language model of sequences of words for each con-
cept. All the language models involved in this exper-
imentation are bigram models trained using Witten-
Bell smoothing and linear interpolation.

In our experimentation, we have considered three
different ways for building the λgen transducer ex-

plained in Section 2. The first way consists of con-
sidering a transducer that given a word as its input,
outputs that word with probability 1. This means
that no generalization is being done.

The second λgen transducer performs a lexical
categorization of some of the nouns of the vocab-
ulary. Some extra words have been added to some
lexical categories, in order to make the task more
realistic, as the lexical coverage is increased. Never-
theless, it also makes the task harder, as the size of
the vocabulary increases. We have used a total of 11
lexical categories.

Finally, the third λgen, transducer we have gen-
erated performs the same lexical categorization but
it also includes a lemmatization of the verbs. This
process is normally needed for real-world systems
that work with spontaneous (and maybe telephonic)
speech.

We have generated three sets of word graphs to
take them as the input for the method. The first of
these sets, G1, is made up by the whole graphs ob-
tained from a word graph builder module that works
without using any language model. The Oracle
WER of these graphs is 4.10. With Oracle WER we
mean the WER obtained considering the sequence of
words S(G) corresponding to the path in the graph
G that is the nearest to the reference sentence.

The second set, G2, is composed by word graphs
that only contain the path corresponding to S(G) for
each graph G ∈ G1. These graphs give an idea of
the best results we could achieve if we could mini-
mize the confusion due to misrecognized words.

The third set, G3 is formed by a synthetic word
graph for each reference sentence, in which only that
sentence is contained. This set of graphs allows us
to simulate an experimentation on plain text.

For our evaluation, we have taken two measures.
First, we have evaluated the Concept Error Rate
(CER) over the best sequence of concepts. The def-
inition of the CER is analogous to that of the WER
but taking concepts instead of words. Second, we
have also evaluated the slot-level error (SLE). The
SLE is similar to the CER but deleting the non-
relevant segments (such as courtesies) and substitut-
ing the relevant concepts by a canonic value for the
sequence of words associated to them.

Tables 2, 3, and 4 show the results obtained using
the different λgen transducers explained before.
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Input word graphs CER SLE
G1 31.794 35.392

G2 11.230 9.104

G3 9.933 5.321

Table 2: CER and SLE without any categorization.

Input word graphs CER SLE
G1 34.565 38.760

G2 11.755 8.714

G3 9.633 4.516

Table 3: CER and SLE with lexical categorization.

From the results of Tables 2, 3, and 4 several facts
come to light. First, we can see that, in all the exper-
iments performed with the G1 set, the CER is lower
than the SLE, while with the other sets the CER is
larger than the SLE. It is due to the fact that the
whole graphs obtained from the word graph builder
have more lexical confusion than those from G2 and
G3, which are based on the reference sentence. This
lexical confusion may cause that a well-recognized
concept is associated to a misrecognized sequence
of words. This would imply that a hit would be con-
sidered for the CER calculation, while the value for
this slot is missed.

Other interesting fact is that, for the G1 set, the
more complex λgen transducers give the worse re-
sults. This is because in these graphs there is a
significant confusion between phonetically similar
words, as the graphs were generated without any
language model. This phonetic confusion, combined
with the generalizations expressed by the lexical cat-
egorization and the lemmas, makes the task harder,
which leads to worse results. Nevertheless, in a real-
world application of this system these generaliza-
tions would be needed in order to have a larger cov-
erage of the lexicon of the language. The experi-
ments on G2 and G3 show that when the confusion
introduced in the graphs due to misrecognized words
is minimized, the use of lexical categorization and
lemmatization helps to improve the results.

5 Conclusions and future work

In this paper we have described a methodology,
based on the SFST paradigm for SLU, for obtaining

Input word graphs CER SLE
G1 36.536 40.640

G2 11.605 8.445

G3 9.458 4.064

Table 4: CER and SLE with lemmatization and lexical
categorization.

concept graphs from word graphs. The edges of the
concept graphs represent information about possible
sequences of words that might have been uttered by
the speaker, along with the concept each of these se-
quences expresses. Each of these edges is weighted
with a score that combines acoustic, lexical, syntac-
tic and semantic information. Furthermore, this in-
formation is enriched with temporal information, as
the nodes represent the beginning and ending of the
sequence of words. These concepts graphs consti-
tute a very useful representation of the information
for SLU.

To evaluate this methodology we have performed
an experimental evaluation in which different types
of lexical generalization have been considered. The
results show that a trade-off between the lexical con-
fusion expressed in the word graphs and the general-
izations encoded in the other transducers should be
achieved, in order to obtain the best results.

It would be interesting to apply this methodology
to word graphs generated with a language model,
although this way of generating the graphs would
not fit exactly the theoretical model. If a language
model is used to generate the graphs, then their lex-
ical confusion could be reduced, so better results
could be achieved. Other interesting task in which
this methodology could help is in performing SLU
experiments on a combination of the output of some
different ASR engines. All these interesting appli-
cations constitute a line of our future work.
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Abstract

A finite-state approach to temporal ontology
for natural language text is described under
which intervals (of the real line) paired with
event descriptions are encoded as strings. The
approach is applied to an interval temporal
logic linked to TimeML, a standard mark-up
language for time and events, for which vari-
ous finite-state mechanisms are proposed.

1 Introduction

A model-theoretic perspective on finite-state meth-
ods is provided by an important theorem due to
Büchi, Elgot and Trakhtenbrot (Thomas, 1997).
Given a finite alphabet Σ, a system MSOΣ of
monadic second-order logic is set up with a binary
relation symbol (for successor) and a unary relation
symbol for each symbol in Σ so that the formulae of
MSOΣ define precisely the regular languages over Σ
(minus the null string ε). Extensions of this theorem
to infinite strings and trees are fundamental to work
on formal verification associated with Model Check-
ing (Clarke et al., 1999). In that work, a well-defined
computational system (of hardware or software) can
be taken for granted, against which to evaluate pre-
cise specifications. The matter is far more delicate,
however, with natural language semantics. It is not
clear what models, if any, are appropriate for natural
language. Nor is it obvious what logical forms natu-
ral language statements translate to. That said, there
is a considerable body of work in linguistic seman-
tics that uses model theory, and no shortage of nat-
ural language text containing information that cries
out for extraction.

A step towards (semi-)automated reasoning about
temporal information is taken in TimeML (Puste-
jovsky et al., 2003), a “mark-up language for tempo-
ral and event expressions” (www.timeml.org).
The primary aim of the present paper is to show how
finite-state methods can push this step further, by
building strings, regular languages and regular rela-
tions to represent some basic semantic ingredients
proposed for TimeML. An instructive example is
sentence (1), which is assigned in (Pratt-Hartmann,
2005a; ISO, 2007) the logical form (2).

(1) After his talk with Mary, John drove to Boston.

(2) p(e) ∧ q(e′) ∧ after(e, e′)

If we read p(e) as “e is an event of John talking with
Mary” and q(e′) as “e′ is an event of John driving to
Boston” then (2) says “an event e′ of John driving to
Boston comes after an event e of John talking with
Mary .” Evidently, (1) follows from (3) and (4) be-
low (implicitly quantifying the variables e and e′ in
(2) existentially).

(3) John talked with Mary from 1pm to 2pm.

(4) John drove to Boston from 2pm to 4pm.

But is (3) not compatible with (5) — and indeed im-
plied by (5)?

(5) John talked with Mary from 1pm to 4pm.

Could we truthfully assert (1), given (4) and (5)? Or
if not (1), perhaps (6)?

(6) After talking with Mary for an hour, John drove
to Boston.
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The acceptability of (6) suffers, however, if we are
told (7).

(7) John drove toward Boston from 1pm to 2pm.

Clearly, individuating events, as (2) does, opens
up a can of worms. But since at least (Davidson,
1967), there has been no retreating from events (Par-
sons, 1990; Kamp and Reyle, 1993; Pratt-Hartmann,
2005). Be that as it may, an appeal to events carries
with it an obligation to provide a minimal account
of what holds during these events and perhaps even
a bit beyond. It is for such an account that finite-
state methods are deployed below, viewed through
the lens of the Büchi-Elgot-Trakhtenbrot theorem.

That lens gives temporal logic, the formulae of
which — hereafter called fluents (for brevity) —
may or may not hold at a string position, conceived
as time and ordered according to succession within
the string. For example, we can introduce a flu-
ent p for “John talked with Mary” and a fluent q
for “John drove to Boston” to form the string p q
(of length 2) for “after John talked with Mary, John
drove to Boston.” The idea is that a string α1 · · ·αn
of boxes αi describes a sequence t1, . . . , tn of n
times, ti coming before ti+1, such that every fluent
in αi holds at ti.1 To a first approximation, a box αi
is a snapshot at time ti, making α1 · · ·αn a cartoon
or filmstrip. But just what is a time ti: a temporal
point or an interval?

For p q to apply to (3) and (4), it is natural
to regard ti as an interval, setting up an account
of the entailment from (5) to (3) in terms of the
so-called subinterval property of John-talking-with-
Mary (Bennett and Partee, 1972). John-driving-to-
Boston, by contrast, does not have this property, ne-
cessitating the change from to Boston in (4) to to-
ward Boston in (7). We can bring out this fact by
representing individual events as strings, refining,
for instance, our picture q of John’s drive to Boston
by adding a fluent r for “John in Boston” to form
q q,r . An event of motion is conceptualized as a

finite sequence of snapshots in (Tenny, 1987) and
elsewhere — a conceptualization resoundingly re-
jected in (Jackendoff, 1996) because

1The alphabet Σ from which strings are formed is the family
Pow(X) of subsets of some set X of fluents. A fluent corre-
sponds to a monadic second-order variable in the Büchi-Elgot-
Trakhtenbrot theorem.

it misrepresents the essential continuity of
events of motion. For one thing, aside from
the beginning and end points, the choice of a
finite set of subevents is altogether arbitrary.
How many subevents are there, and how is one
to choose them? Notice that to stipulate the
subevents as equally spaced, for instance one
second or 3.5 milliseconds apart, is as arbi-
trary and unmotivated as any other choice.
Another difficulty with a snapshot conceptu-
alization concerns the representation of non-
bounded events (activities) such as John ran
along the river (for hours). A finite sequence
of subevents necessarily has a specified begin-
ning and ending, so it cannot encode the ab-
sence of endpoints. And excluding the speci-
fied endpoints simply exposes other specified
subevents, which thereby become new end-
points. Thus encoding nonbounded events re-
quires major surgery in the semantic represen-
tation. [page 316]

Jackendoff’s objections are overcome below by
finite-state manipulations that may well be called
surgery. Following details supplied in the next sec-
tion,2 strings are formed from a finite set X of flu-
ents that is allowed to vary so that

(i) the continuity desired by Jackendoff arises in
the inverse limit of a system of projections πX
(defined below; Table 1), and

(ii) the temporal span of any finite string may, on
expanding the set X , stretch without bound to
the left (past) and/or to the right (future).

Applying πX , section 2 proceeds to encode a model
A of an interval temporal logic as a string s(A).
Building on that encoding, section 3 develops finite-
state methods for interval temporal logic. Section
4 concludes with proposals (drawing on work of the
earlier sections) for extending the empirical (linguis-
tic) coverage.

2 From event-intervals to strings

Before equating the set X of fluents with a model
interpreting TimeML, let us bring out the intuition

2The present work extends a line of research most recently
reported in (Fernando, 2011, 2011a, 2011b, 2012). That line is
related to (Niemi and Koskenniemi, 2009), from which it dif-
fers in adopting an alphabet Pow(X) that equates sucession in
a string with temporal succession.
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ρX(α1 · · ·αn)
def
= (α1 ∩X) · · · (αn ∩X)

bc(s)
def
=





bc(αs′) if s = ααs′

αbc(α′s′) if s = αα′s′ and α 6= α′

s otherwise

unpad(s)
def
=

{
unpad(s′) if s = s′ or s′

s otherwise

Table 1: Behind πX(s)
def
= unpad(bc(ρX(s)))

underlying the function πX through a familiar exam-
ple. We can represent a calendar year by the string

smo
def
= Jan Feb · · · Dec

of length 12 (with a month in each box), or (adding
one of 31 days d1, d2,. . ., d31) the string

smo,dy
def
= Jan,d1 Jan,d2 · · ·

Jan,d31 Feb,d1 · · · Dec,d31

of length 365 (a box per day in a non-leap year).3

Unlike the points in say, the real line R, a box can
split if we enlarge the set X of fluents we can put in
it, as illustrated by the change from Jan in smo to
Jan,d1 Jan,d2 · · · Jan,d31 in smo,dy. Two func-

tions link the strings smo,dy and smo

(i) a function ρmo that keeps only the months in a
box so that

ρmo(smo,dy) = Jan
31

Feb
28 · · · Dec

31

(ii) block compression bc, which compresses con-
secutive occurrences of a box into one, map-
ping ρmo(smo,dy) to

bc( Jan
31

Feb
28 · · · Dec

31
) = smo

so that bc(ρmo(smo,dy)) = smo. As made precise

in Table 1, ρX “sees only X” (setting modef
= {Jan,

3In (Niemi and Koskenniemi, 2009), smo is represented as
the string

[m Jan ]m [m Feb ]m [m Mar ]m ... [m Dec ]m

of length 36 over 14 symbols (the 12 months plus the 2 brackets
[m and ]m) on which finite-state transducers operate. (See the
previous footnote.)

R ∈Allen sR ∈ Lπ({x, x′}) χR([a, b], [a′, b′])

x = x′ x, x′ a = a′, b = b′

x s x′ x, x′ x′ a = a′, b < b′

x si x′ x, x′ x a = a′, b′ < b

x f x′ x′ x, x′ a′ < a, b = b′

x fi x′ x x, x′ a < a′, b = b′

x d x′ x′ x, x′ x′ a′ < a, b < b′

x di x′ x x, x′ x a < a′, b′ < b

x o x′ x x, x′ x′ a < a′ ≤ b < b′

x oi x′ x′ x, x′ x a′ < a ≤ b′ < b

x m x′ x x′ --

x < x′ x x′ b < a′

x mi x′ x′ x --

x > x′ x′ x b′ < a

Table 2: The Allen relations via π{x,x′}

Feb, . . .Dec} to make ρmo an instance of ρX ), while
bc eliminates stutters, hardwiring the view that time
passes only if there is change (or rather: we observe
time passing only if we observe a change within a
box). As this example shows, temporal granularity
depends on the set X of observables that may go
inside a box. Writing bcX for the composition map-
ping s to bc(ρX(s)), we have

bc{Jan}(smo,dy) = bc{Jan}(smo) = Jan

bc{Feb}(smo,dy) = bc{Feb}(smo) = Feb

bc{d3}(smo,dy) = ( d3 )12 .

Now, the function πX is bcX followed by the deletion
unpad of any initial or final empty boxes (Table
1).4 We can then define a fluent x to be an s-interval
if π{x}(s) is x . Next, let Lπ(X) be the language
πX [

⋂
x∈X π

−1
{x} x ] consisting of strings πX(s) for

s ∈ Pow(X)∗ such that π{x}(s) = x for all x ∈ X .
Note that Lπ({x}) = { x } while for x 6= x′,
Lπ({x, x′}) consists of 13 strings sR, one per inter-
val relation R in (Allen, 1983); see columns 1 and 2
of Table 2

Lπ({x, x′}) = {sR | R ∈ Allen} .
4Restricted to a finite alphabet, the maps ρX , bc, unpad

and πX are computable by finite-state transducers (Fernando,
2011).
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For example, in the case of the “f inish” relation
f∈Allen,

s |= x fx′ ⇐⇒ π{x,x′}(s) = x′ x, x′

provided x and x′ are s-intervals. The third column
of Table 2 characterizes R ∈Allen as conditions χR
on pairs [a, b] and [a′, b′] of real numbers (in R) de-
noting closed intervals5 — e.g.,

[a, b] f [a′, b′] ⇐⇒ a′ < a and b = b′ .

This brings us to the semantics of TimeML pro-
posed in (Pratt-Hartmann, 2005a). A system T PL
of Temporal Preposition Logic is built from an infi-
nite set E of event-atoms, and interpreted relative to
the family

I def
= {[a, b] | a, b ∈ R and a ≤ b}

of closed, bounded non-empty intervals in R. A
T PL-model A is defined to be a finite subset of
I × E. The intuition is that a pair 〈I, e〉 in A repre-
sents “an occurrence of an event of type e over the
interval” I (Pratt-Hartmann, 2005; page 17), revers-
ing the construal in line (2) above of e as a token.
Identifying occurrences with events, we can think of
A as a finite set of events, conceived as “intervals
cum description” (van Benthem, 1983; page 113).
Treating events as fluents, we have

Proposition 1. For every T PL-model A, there is a
unique string s(A) ∈ Lπ(A) such that for all x, x′ ∈
A with x = 〈I, e〉 and x′ = 〈I ′, e′〉,

π{x,x′}(s(A)) = sR ⇐⇒ χR(I, I ′)

for R ∈Allen and sR, χR specified in Table 2.

To construct the string s(A), let Ends(A) be the set
of endpoints of A

Ends(A)
def
=

⋃

I∈dom(A)

ends(I)

where dom(A) is the domain {I | (∃e ∈ E) 〈I, e〉 ∈
A} of A, and ends([a, b]) is the unordered pair

5Over non-empty closed intervals that include points [a, a],
the Allen relations m and mi collapse to o and oi, respectively.
Alternatively, we can realize m and mi by trading closed in-
tervals for open intervals (required to be non-empty); see the
Appendix below.

x1
def
= 〈[1, 5], e〉 r1 = 1, r2 = 4

x2
def
= 〈[4, 9], e〉 r3 = 5, r4 = 9

x3
def
= 〈[9, 50], e′〉 r5 = 50

A def
= {x1, x2, x3}

Table 3: Example s(A) = x1 x1, x2 x2 x2, x3 x3

{a, b}. Sorting gives Ends(A) = {r1, r2, . . . , rn}
with r1 < r2 < · · · < rn. Breaking [r1, rn] up into
2n− 1 intervals, let

αi
def
= {〈I, e〉 ∈ A | ri ∈ I} for 1 ≤ i ≤ n

and

βi
def
= {〈I, e〉 ∈ A | [ri, ri+1] ⊆ I} for 1 ≤ i < n.

Interleaving and block-compressing give

s(A)
def
= bc(α1β1 · · ·αn−1βn−1αn)

(see Table 3 for an example). One may then verify
(by induction on the cardinality of the domain of A)
that s(A) is the unique string in Lπ(A) satisfying
the equivalence in Proposition 1.

But is encoding A as a string s(A) adequate for
T PL-satisfaction? Let us introduce T PL-formulae
through an English example.

(8) During each of John’s drives to Boston, he ate
a donut.

(8) translates in T PL to (9), which is interpreted
relative to a T PL-model A and an interval I ∈ I
according to (10) and (11), with [e]ϕ abbreviating
¬〈e〉¬ϕ (as usual), > a tautology (in that A |=I >
always) and ⊂ as strict (irreflexive) subset.

(9) [John-drive-to-Boston] 〈John-eat-a-donut〉>

(10) A |=I 〈e〉ϕ def⇐⇒ (∃J ⊂ I s.t. A(J, e))

A |=J ϕ

(11) A |=I ¬ϕ def⇐⇒ not A |=I ϕ

Clause (10) shows off a crucial feature of T PL:
quantification over intervals is bounded by the do-
main of A; that is, quantification is restricted to in-
tervals that are paired up with an event-atom by the
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T PL-model (making T PL “quasi-guarded”; Pratt-
Hartmann, 2005; page 5). This is not to say that the
only intervals I that may appear in formingA |=I ϕ
are those in the domain of A. Indeed, for [a, b] ∈ I
and [a′, b′] ∈ dom(A) such that [a′, b′] ⊂ [a, b],
T PL uses intervals

init([a′, b′], [a, b]) def
= [a, a′]

fin([a′, b′], [a, b]) def
= [b′, b]

to interpret {e}<ϕ and {e}>ϕ according to (12).

(12) A |=I {e}<ϕ def⇐⇒ (∃!J ⊂ I s.t. A(J, e))

A |=init(J,I) ϕ

A |=I {e}>ϕ def⇐⇒ (∃!J ⊂ I s.t. A(J, e))

A |=fin(J,I) ϕ

The bang ! in ∃!J in (12) expresses uniqueness,
which means that under the translation of (1) as (13)
below, the interval I of evaluation is required to con-
tain a unique event of John talking with Mary.

(1) After his talk with Mary︸ ︷︷ ︸ John drove to Boston︸ ︷︷ ︸.

p q

(13) {p}>〈q〉>

For a translation of (1) more faithful to

(2) p(e) ∧ q(e′) ∧ after(e, e′)

than (13),6 it suffices to drop ! in (12) for 〈e〉< and
〈e〉> in place of {e}< and {e}> respectively (Fer-
nando, 2011a), and to revise (13) to 〈p〉>〈q〉>. Re-
laxing uniqueness, we can form [p]>〈q〉> for after
every talk with Mary, John drove to Boston, as well
as 〈p〉>〈p〉> for after a talk with Mary, John talked
with Mary again. T PL has further constructs ef

and el for the (minimal) first and (minimal) last e-
events in an interval.

Returning to the suitability of s(A) for T PL, con-
sider the question: when do two pairsA, I andA′, I ′
of T PL-models A,A′ and intervals I, I ′ ∈ I sat-
isfy the same T PL-formulae? Some definitions are
in order. A bijection f : A → B between finite sets

6Caution: e and e′ are tokens in (2), but types in T PL.

A and B of real numbers is order-preserving if for
all a, a′ ∈ A,

a < a′ ⇐⇒ f(a) < f(a′)

in which case we write f : A ∼= B. Given a T PL-
model A, and a function f : Ends(A) → R, let Af
be A with all its intervals renamed by f

Af def
= {〈[f(a), f(b)], e〉 | 〈[a, b], e〉 ∈ A} .

Now, we say A is congruent with A′ and write A ∼=
A′ if there is an order-preserving bijection between
Ends(A) and Ends(A′) that renames A to A′

A ∼= A′ def⇐⇒ (∃f : Ends(A) ∼= Ends(A′))
A′ = Af .

Finally, we bring I into the picture by defining the
restriction AI of A to I to be the subset

AI def
= {〈J, e〉 ∈ A | J ⊂ I}

of A with intervals strictly contained in I .

Proposition 2. For all finite subsets A and A′ of
I × E and all intervals I, I ′ ∈ I, if AI ∼= A′I′ then
for every T PL-formula ϕ,

A |=I ϕ ⇐⇒ A′ |=I′ ϕ .

Proposition 2 suggests normalizing a T PLmodelA
with endpoints r1 < r2 < · · · < rn to nr(A) with ri
renamed to i

nr(A)
def
= Af where f def

= {〈r1, 1〉, . . . , 〈rn, n〉}.
Assigning every T PL-formula ϕ the truth set

T (ϕ)
def
= {s(nr(AI)) | A is a T PL-model,

I ∈ I and A |=I ϕ}
gives

Proposition 3. For every T PL-formula ϕ, T PL-
model A, and interval I ∈ I,

A |=I ϕ ⇐⇒ s(nr(AI)) ∈ T (ϕ) .

To bolster the claim that T (ϕ) encodes T PL-
satisfaction, we may construct T (ϕ) by induction
on ϕ, mimicking the clauses for T PL-satisfaction,
as in (14).

(14) T (ϕ ∧ ϕ′) = T (ϕ) ∩ T (ϕ′)

Details are provided in the next section, where we
consider the finite-state character of the clauses, and
may verify Propositions 2 and 3.
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3 Regularity and relations behind truth

A consequence of Proposition 3 is that the entail-
ment from ϕ to ϕ′ given by

ϕ |−I,E ϕ′ def⇐⇒ (∀ finite A ⊆ I × E)(∀I ∈ I)

A |=I ϕ implies A |=I ϕ
′

becomes equivalent to the inclusion T (ϕ) ⊆ T (ϕ′),
or to the unsatisfiability of ϕ ∧ ¬ϕ′

ϕ |−I,E ϕ′ ⇐⇒ T (ϕ ∧ ¬ϕ′) = ∅

assuming classical interpretations (14) and (15) of
conjunction ∧ and negation ¬.

(15) T (¬ϕ) = Σ+ − T (ϕ)

Finite-state methods are of interest as regular lan-
guages are closed under intersection and comple-
mentation. (Context-free languages are not; nor is
containment between context-free languages decid-
able.) The alphabet Σ in (15) is, however, infinite;
Σ is the set Fin(J × E) of finite subsets of J × E,
where J is the set

J def
= {[n,m] ∈ I | n,m ∈ Z+}

of intervals in I with endpoints in the set Z+ of
positive integers 1, 2, . . . (containing the domain of
a normalized T PL-model). As with πX , regular-
ity demands restricting Σ to a finite subalphabet —
or better: subalphabets given by the set F of pairs
〈I ′, E′〉 of finite subsets I ′ and E′ of J and E re-
spectively, for which

Σ =
⋃

〈I′,E′〉∈F
Pow(I ′ × E′) .

The basis of the decidability/complexity results in
(Pratt-Hartmann, 2005) is a lemma (number 3 in
page 20) that, for any T PL-formula ϕ, bounds the
size of a minimal model of ϕ. We get a computable
function mapping a T PL-formula ϕ to a finite sub-
set Iϕ of J just big enough so that if ϕ is T PL-
satisfiable,

(∃A ∈ Pow(Iϕ × Eϕ))(∃I ∈ Iϕ) A |=I ϕ

whereEϕ is the finite subset ofE occurring in ϕ. To
minimize notational clutter, we leave out the choice
〈I ′, E′〉 ∈ F of a finite alphabet below.

Next, keeping intersection and complementation
in (14) and (15) in mind, let us call an opera-
tion regularity-preserving (rp) if its output is regu-
lar whenever all its inputs are regular. To interpret
T PL, we construe operations broadly to allow their
inputs and output to range over relations between
strings (and not just languages), construing a rela-
tion to be regular if it is computable by a finite-state
transducer. For instance, the modal diamond 〈e〉 la-
belled by an event-atom e ∈ E is interpreted via an
accessibility relation R(e) in the usual Kripke se-
mantics

T (〈e〉ϕ) = R(e)−1T (ϕ)

of 〈e〉ϕ where R−1L is the set {s ∈ Σ∗ | (∃s′ ∈
L) sRs′} of strings related by R to a string in L.
The operation that outputs R−1L on inputs R and L
is rp. But what is the accessibility relationR(e)?

Three ingredients go into makingR(e):

(i) a notion of strict containment A between
strings

(ii) the demarcation s• of a string s

(iii) a set D(e) of strings representing full occur-
rences of e.

We take up each in turn, starting with A, which com-
bines two ways a string can be part of another. To
capture strict inclusion ⊂ between intervals, we say
a string s′ is a proper factor of a string s, and write
s pfac s′, if s′ is s with some prefix u and suffix v
deleted, and uv is non-empty

s pfac s′ ⇐⇒ (∃u, v) s = us′v and uv 6= ε.

(Dropping the requirement uv 6= ε gives factors
simpliciter.) The second way a string s′ may be part
of s applies specifically to strings of sets. We say s
subsumes s′, and write s� s′, if they are of the same
length, and ⊇ holds componentwise between them

α1 · · ·αn � α′1 · · ·α′m
def⇐⇒ n = m and

α′i ⊆ αi for 1 ≤ i ≤ n.

Now, writing R;R′ for the relational composition of
binary relations R and R′ in which the output of R
is fed as input to R′

s R;R′ s′ def⇐⇒ (∃s′′) sRs′′ and s′′R′s′ ,

85



we compose pfac with � for strict containment A

A def
= pfac ; � (= � ; pfac) .

(It is well-known that relational composition ; is
rp.) Next, the idea behind demarcating a string s
is to mark the beginning and ending of every in-
terval I mentioned in s, with fresh fluents bgn-I
and I-end. The demarcation (α1α2 · · ·αn)• of
α1α2 · · ·αn adds bgn-I to αi precisely if

there is some e such that 〈I, e〉 ∈ αi and either
i = 1 or 〈I, e〉 6∈ αi−1

and adds I-end to αi precisely if

there is some e such that 〈I, e〉 ∈ αi and either
i = n or 〈I, e〉 6∈ αi+1.7

For s = s(A) given by the example in Table 3,

s• = x1, bgn-I1 x1, x2, I1-end, bgn-I2

x2 x2, x3, I2-end, bgn-I3 x3, I3-end

We then form the denotation DI′(e) of e relative to
a finite subset I ′ of I by demarcating every string in⋃
I∈I′ 〈I, e〉

+
as in (16).

(16) DI′(e) def
=
⋃
I∈I′{s• | s ∈ 〈I, e〉

+}

To simplify notation, we suppress the subscript I ′
on DI′(e). Restricting strict containment A to D(e)
gives

sR◦(e) s′ def⇐⇒ s A s′ and s′ ∈ D(e)

from which we defineR(e), making adjustments for
demarcation

sR(e) s′ def⇐⇒ s• R◦(e) s′•.

That is, R(e) is the composition ·•;R◦(e); ·• where
demarcation ·• is inverted by ·•. As T PL’s other
constructs are shown in §4.1 of (Fernando, 2011a)
to be interpretable by rp operations, we have

7The markers bgn-I and I-end are analogous to the brackets
[g and ]g in (Niemi and Koskenniemi, 2009), an essential differ-
ence being that a grain (type) g supports multiple occurrences
of [g and ]g, in contrast to the (token) interval I .

Proposition 4. All T PL-connectives can be inter-
preted by rp operations.

Beyond T PL, the interval temporal logic HS of
(Halpern and Shoham, 1991) suggests variants of
〈e〉ϕ with strict containment A in R(e) replaced by
any of Allen’s 13 interval relations R.

(17) A |=I 〈e〉Rϕ def⇐⇒ (∃J s.t. I R J)

A(J, e) and A |=J ϕ

To emulate (17), we need to mark the evaluation in-
terval I in A by some r 6∈ E, setting

Ar[I]
def
= A ∪ {〈I, r〉}

rather than simply forming AI (which will do if we
can always assume the model’s full temporal extent
is marked). A string s = α1 · · ·αn r-marks I if
〈I, r〉 ∈ ⋃n

i=1 αi. If that interval is unique, we say
s is r-marked, and write I(s) for the interval it r-
marks, and s− for s with the fluent 〈I(s), r〉 deleted
(so that s(Ar[I])− = s(A)). For any of the rela-
tions R ∈Allen, we let ≈R hold between r-marked
strings that are identical except possibly for the in-
tervals they r-mark, which are related by R

s ≈R s′ def⇐⇒ s− = s′− and I(s) R I(s′).

Next, given an event-atom e, we let R(e)R be a bi-
nary relation that holds between r-marked strings re-
lated by ≈R, the latter of which picks out a factor
subsuming some string in D(e)

sR(e)R s
′ def⇐⇒ s ≈R s′ and

(∃d ∈ D(e)) s′r � d

where s′r is the factor of s′ that begins with bgn-I(s′)
and ends with I(s′)-end. Replacing AI by Ar[I] in
T (ϕ) for

Tr(ϕ)
def
= {s(nr(Ar[I])) | A is a T PL-model,

I ∈ I and A |=I ϕ} ,

(17) corresponds to

Tr(〈e〉Rϕ) = R(e)−1
R Tr(ϕ).

86



4 Conclusion and future work

The key notion behind the analysis above of time in
terms of strings is the map πX , which for X consist-
ing of interval-event pairs 〈I, e〉, is applied in Propo-
sition 1 to turn a T PL-model A into a string s(A).
As far as T PL-satisfaction A |=I ϕ is concerned,
we can normalize the endpoints of the intervals to an
initial segment of the positive integers, after restrict-
ing A to intervals contained in the evaluation inter-
val I (Proposition 3). For a finite-state encoding of
T PL-satisfaction, it is useful to demarcate the oth-
erwise homogeneous picture 〈I, e〉 +

of 〈I, e〉, and
to define a notion A of proper containment between
strings. We close with further finite-state enhance-
ments.

Demarcation is linguistically significant, bearing
directly on telicity and the so-called Aristotle-Ryle-
Kenny-Vendler classification (Dowty, 1979), illus-
trated by the contrasts in (18) and (19).

(18) John was driving |− John drove

John was driving to L.A. 6|− John drove to L.A.

(19) John drove for an hour

John drove to L.A. in an hour

The difference at work in (18) and (19) is that John
driving to L.A. has a termination condition, in(John,
L.A.), missing from John driving. Given a fluent
such as in(John, L.A.), we call a language L ϕ-telic
if for every s ∈ L, there is an n ≥ 0 such that
s � ¬ϕ n ϕ (which is to say: a string in L ends
as soon as ϕ becomes true). L is telic if it is ϕ-telic,
for some ϕ. Now, the contrasts in (18) and (19) can
be put down formally to the language for John driv-
ing to L.A. being telic, but not that for John driving
(Fernando, 2008).

The demarcation (via ϕ) just described does not
rely on some set I ′ of intervals I from which flu-
ents bgn-I and I-end are formed (as in s• from sec-
tion 3). There are at least two reasons for attempt-
ing to avoid I ′ when demarcating or, for that matter,
building the set D(e) of denotations of e. The first
is that under a definition such as (16), the number
of e-events (i.e., events of type e) is bounded by the
cardinality of I ′.

(16) DI′(e) def
=
⋃
I∈I′{s• | s ∈ 〈I, e〉

+}

The second is that an interval arguably has little to
do with an e-event being an e-event. An interval
[4,9] does not, in and of itself, make 〈[4, 9], e〉 an e-
event; 〈[4, 9], e〉 is an e-event only in a T PL-model
that says it is. An alternative is to express in strings
what holds during an event that makes it an e-event.
Consider the event type e of Pat walking a mile. In-
cremental change in an event of that type can be rep-
resented through a parametrized fluent f(r) with pa-
rameter r ranging over the reals in the unit interval
[0, 1], such that f(r) says Pat has walked r·(a mile).
Let D(e) be

f(0) f↑
+
f(1)

where f↑ abbreviates the fluent

(∃r < 1) f(r) ∧ Previous(¬f(r)).

Previous is a temporal operator that constrains
strings α1 · · ·αn so that whenever Previous(ϕ) be-
longs to αi+1, ϕ belongs to αi; that is,

Previous(ϕ) ⇒ ϕ

using an rp binary operator ⇒ on languages that
combines subsumption � with constraints famil-
iar from finite-state morphology (Beesley and Kart-
tunen, 2003).

The borders and interior of 〈I, e〉 aside, there is
the matter of locating an e-string in a larger string
(effected in T PL through strict inclusion ⊃, the
string-analog of which is proper containment A).
But what larger string? The influential theory of
tense and aspect in (Reichenbach, 1947) places e rel-
ative not only to the speech S but also to a reference
time r, differentiating, for instance, the simple past
e, r S from the present perfect e S,r , as required

by differences in defeasible entailments |∼, (20), and
acceptability, (21).

(20) Pat has left Paris |∼ Pat is not in Paris

Pat left Paris 6|∼ Pat is not in Paris

(21) Pat left Paris. (?Pat has left Paris.)

But Pat is back in Paris.

The placement of r provides a bound on the iner-
tia applying to the postcondition of Pat’s departure
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(Fernando, 2008). The extension Ar[I] proposed in
section 3 to the combinationAI (adequate for T PL,
but not HS) explicitly r-marks the evaluation inter-
val I , facilitating an account more intricate than sim-
ply A of e’s occurrence in the larger string. T PL
goes no further than Ramsey in analyzing That Cae-
sar died as an ontological claim that an event of cer-
tain sort exists (Parsons, 1990), leading to the view
of an event as a truthmaker (Davidson, 1967; Mulli-
gan et al., 1984). The idea of an event (in isolation)
as some sort of proof runs into serious difficulties,
however, as soon as tense and aspect are brought
into the picture; complications such as the Imperfec-
tive Paradox (Dowty, 1979), illustrated in (22), raise
tricky questions about what it means for an event to
exist and how to ground it in the world (speaking
loosely) in which the utterance is made.

(22) John was drawing a circle when he ran out of
ink.

But while the burden of proof may be too heavy to
be borne by a single pair 〈I, e〉 of interval I and
event-atom e, the larger picture in which the pair is
embedded can be strung out, and a temporal state-
ment ϕ interpreted as a binary relation Rϕ between
such strings that goes well beyond A. The inputs to
Rϕ serve as indices, with those in the domain of Rϕ

supporting the truth of ϕ

ϕ is true at s def⇐⇒ (∃s′) sRϕ s
′

(Fernando, 2011, 2012). In witnessing truth at par-
ticular inputs, the outputs of Rϕ constitute denota-
tions more informative than truth values, from which
indices can be built bottom-up, in harmony with a
semantic analysis of text from its parts (to which
presumably TimeML is committed). An obvious
question is how far finite-state methods will take us.
Based on the evidence at hand, we have much fur-
ther to go.
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Appendix: a case of “less is more”?

Because the set I of intervals from which a T PL-
model A is constructed includes singleton sets
[a, a] = {a} (for all real numbers a), there can never
be events x and x′ in A such that x meets (or abuts)
x′, x m x′, according to Table 2 above. It is, how-
ever, easy enough to throw out sets [a, a] from I,
requiring that for [a, b] ∈ I, a be strictly less than
b. (In doing so, we follow (Allen, 1983) and (Pratt-
Hartmann, 2005a), but stray from (Pratt-Hartmann,
2005).) The result is that the overlap at b between
[a, b] and [b, c] is deeemed un-observable (effec-
tively re-interpreting closed intervals by their interi-
ors, understood to be non-empty). The third column
χR([a, b], [a′, b′]) in Table 2 is modified to a condi-
tion [a, b]R◦ [a′, b′] that differs on the cases whereR
is one of the four Allen relations o,m,oi,mi, split-
ting the disjunction a′ ≤ b in o with m, and a ≤ b′

in oi with mi.

R ∈Allen sR ∈ Lπ({e1, e2}) [a, b] R◦ [a′, b′]

x o x′ x x, x′ x′ a < a′ < b < b′

x m x′ x x′ b = a′

x oi x′ x′ x, x′ x a′ < a < b′ < b

x mi x′ x′ x b′ = a

All other rows in Table 2 are the same for
[a, b] R◦ [a′, b′]. The somewhat wasteful encoding
s(A) in Proposition 1 then becomes s◦(A) in

Proposition 1◦. For every T PL-model A such that
a < b for all [a, b] ∈ dom(A), there is a unique
string s◦(A) ∈ Lπ(A) such that for all x, x′ ∈ A
with x = 〈I, e〉 and x′ = 〈I ′, e′〉, and R ∈Allen

π{x,x′}(s
◦(A)) = sR ⇐⇒ I R◦I ′.

The encoding s◦(A) is formed exactly as s(A) is in
section 2 above from the endpoints r1 < r2 < · · · <
rn of dom(A), except that the αi’s for the endpoints
ri are dropped (these being un-observable), leaving
us with the βi’s for [ri, ri+1]

s◦(A)
def
= bc(β1 · · ·βn−1).

Beyond Proposition 1, the arguments above for
s(A) carry over to s◦(A), with the requirement on
a T PL-model A that a < b for all [a, b] ∈ dom(A).
It is noteworthy that (Pratt-Hartmann, 2005a) makes
no mention that this requirement is a departure from
(Pratt-Hartmann, 2005). Although the restriction
a < b rules out T PL-models with points [a, a] in
their domain, it also opens T PL up to strings in
which events meet — a trade-off accepted in (Allen
and Ferguson, 1994). To properly accommodate
points alongside larger intervals, we can introduce
a fluent indiv marking out boxes corresponding to
points [a, a] (as opposed to divisible intervals [a, b]
where a < b), and re-define πX to leave boxes with
indiv in them alone. From this perspective, the re-
striction a < b is quite compatible with πX as de-
fined above. But can we justify the notational over-
head in introducing indiv and complicating πX? We
say no more here.
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Abstract

This paper presents a finite-state approach
to phrase-based statistical machine translation
where a log-linear modelling framework is im-
plemented by means of an on-the-fly com-
position of weighted finite-state transducers.
Moses, a well-known state-of-the-art system,
is used as a machine translation reference in
order to validate our results by comparison.
Experiments on the TED corpus achieve a
similar performance to that yielded by Moses.

1 Introduction

Statistical machine translation(SMT) is a pattern
recognition approach to machine translation which
was defined by Brown et al. (1993) as follows: given
a sentences from a certain source language, a cor-
responding sentencêt in a given target language
that maximises the posterior probabilityPr(t|s) is
to be found. State-of-the-art SMT systems model
the translation distributionPr(t|s) via the log-linear
approach (Och and Ney, 2002):

t̂ = argmax
t

Pr(t|s) (1)

≈ argmax
t

M∑

m=1

λmhm(s, t) (2)

wherehm(s, t) is a logarithmic function represen-
ting an important feature for the translation ofs into
t, M is the number of features (or models), andλm

is the weight ofhm in the log-linear combination.
This feature set typically includes severaltrans-

lation models so that different relations between

a source and a target sentence can be considered.
Nowadays, these models are strongly based on
phrases, i.e. variable-lengthn-grams, which means
that they are built from some other lower-context
models that, in this case, are defined at phrase level.
Phrase-based(PB) models (Tomas and Casacuberta,
2001; Och and Ney, 2002; Marcu and Wong, 2002;
Zens et al., 2002) constitute the core of the current
state-of-the-art in SMT. The basic idea of PB-SMT
systems is:

1. to segment the source sentence into phrases,
then

2. to translate each source phrase into a target
phrase, and finally

3. to reorder them in order to compose the final
translation in the target language.

In a monotone translation framework however,
the third step is omitted as the final translation is
just generated by concatenation of the target phrases.

Apart from translation functions, the log-linear
approach is also usually composed by means of a
target language model and some other additional
elements such as word penalties or phrase penalties.
The word and phrase penalties allow an SMT sys-
tem to limit the number of words or target phrases,
respectively, that constitute a translation hypothesis.

In this paper, a finite-state approach to a PB-SMT
state-of-the-art system, Moses (Koehn et al., 2007),
is presented. Experimental results validate our work
because they are similar to those yielded by Moses.
A related study can be found in Kumar et al. (2006)
for the alignment template model (Och et al., 1999).
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2 Log-linear features for monotone SMT

As a first approach to Moses using finite-state
models, a monotone PB-SMT framework is adopted.
Under this constraint, Moses’ log-linear model is
usually taking into account the following 7 features:

Translation features

1. Direct PB translation probability

2. Inverse PB translation probability

3. Direct PB lexical weighting

4. Inverse PB lexical weighting

Penalty features

5. PB penalty

6. Word penalty

Language features

7. Target language model

2.1 Translation features

All 4 features related to translation are PB models,
that is, their associated feature functionshm(s, t),
which are in any case defined for full sentences,
are modelled from other PB distributionsηm(s̃, t̃),
which are based on phrases.

Direct PB translation probability

The first featureh1(s, t) = logP (t|s) is based on
modelling the posterior probability by using the seg-
mentation betweens andt as a hidden variableβ1.
In this manner,Pr(t|s) =

∑

β1

Pr(t|s, β1) is then

approximated byP (t|s) by using maximization
instead of summation:P (t|s) = max

β1

P (t|s, β1).

Given a monotone segmentation betweens andt,
P (t|s, β1) is generatively computed as the product
of the translation probabilities for each segment pair
according to some PB probability distributions:

P (t|s, β1) =
|β1|∏

k=1

P (t̃
k
|s̃

k
)

where|β1| is the number of phrases thats andt are
segmented into, i.e. everỹs

k
and t̃

k
, respectively,

whose dependence onβ1 is omitted for the sake of
an easier reading.

Feature 1 is finally formulated as follows:

h1(s, t) = logmax
β1

|β1|∏

k=1

P (t̃
k
|s̃

k
) (3)

whereη1(s̃, t̃) = P (t̃|s̃) is a set of PB probability
distributions estimated from bilingual training data,
once statistically word-aligned (Brown et al., 1993)
by means of GIZA++ (Och and Ney, 2003), which
Moses relies on as far as training is concerned.
This information is organized as atranslation table
where a pool of phrase pairs is previously collected.

Inverse PB translation probability

Similar to what happens with Feature 1, Feature 2
is formulated as follows:

h2(s, t) = logmax
β2

|β2|∏

k=1

P (s̃
k
|t̃

k
) (4)

where η2(s̃, t̃) = P (s̃|t̃) is another set of PB
probability distributions, which are simultaneously
trained together with the ones for Feature 1,P (t̃|s̃),
over the same pool of phrase pairs already extracted.

Direct PB lexical weighting

Given the word-alignments obtained by GIZA++,
it is quite straight-forward to estimate a maximum
likelihood stochastic dictionaryP (ti|sj), which is
used to score a weightD(s̃, t̃) to each phrase pair in
the pool. Details about the computation ofD(s̃, t̃)
are given in Koehn et al. (2007). However, as far as
this work is concerned, these details are not relevant.

Feature 3 is then similarly formulated as follows:

h3(s, t) = logmax
β3

|β3|∏

k=1

D(s̃
k
, t̃

k
) (5)

whereη3(s̃, t̃) = D(s̃, t̃) is yet another score to use
with the pool of phrase pairs aligned during training.

Inverse PB lexical weighting

Similar to what happens with Feature 3, Feature 4
is formulated as follows:

h4(s, t) = logmax
β4

|β4|∏

k=1

I(s̃
k
, t̃

k
) (6)

91



whereη4(s̃, t̃) = I(s̃, t̃) is another weight vector,
which is computed by using a dictionaryP (sj |ti),
with which the translation table is expanded again,
thus scoring a new weight per phrase pair in the pool.

2.2 Penalty features

The penalties are not modelled in the same way.
The PB penalty is similar to a translation feature, i.e.
it is based on a monotone sentence segmentation.
The word penalty however is formulated as a whole,
being taken into account by Moses at decoding time.

PB penalty

The PB penalty scorese = 2.718 per phrase pair,
thus modelling somehow the segmentation length.
Therefore, Feature 5 is defined as follows:

h5(s, t) = logmax
β5

|β5|∏

k=1

e (7)

whereη5(s̃, t̃) = e extends the PB table once again.

Word penalty

Word penalties are not modelled as PB penalties.
In fact, this feature is not defined from PB scores,
but it is formulated at sentence level just as follows:

h6(s, t) = log e|t| (8)

where the exponent ofe is the number of words int.

2.3 Language features

Language models approach the a priori probability
that a given sentence belongs to a certain language.
In SMT, they are usually employed to guarantee that
translation hypotheses are built according to the pe-
culiarities of the target language.

Target language model

An n-gram is used as target language modelP (t),
where a word-based approach is usually considered.
Then, h7(s, t) = logP (t) is based on a model
where sentences are generatively built word by word
under the influence of the lastn− 1 previous words,
with the cutoff derived from the start of the sentence:

h7(s, t) = log

|t|∏

i=1

P (ti|ti−n+1 . . . ti−1) (9)

whereP (ti|ti−n+1 . . . ti−1) are word-based proba-
bility distributions learnt from monolingual corpora.

3 Data structures

This section shows how the features from Section 2
are actually organized into different data structures
in order to be efficiently used by the Moses decoder,
which implements the search defined by Equation 2
to find out the most likely translation hypothesist̂
for a given source sentences.

3.1 PB models

The PB distributions associated to Features 1 to 5
are organized in table form as a translation table for
the collection of phrase pairs previously extracted.
That builds a PB database similar to that in Table 1

Source Target η1 η2 η3 η4 η5
barato low cost 1 0.3 1 0.6 2.718
me gusta I like 0.6 1 0.9 1 2.718
es decir that is 0.8 0.5 0.7 0.9 2.718
por favor please 0.4 0.2 0.1 0.4 2.718

. . . . . . 2.718

Table 1: A Spanish-into-English PB translation table.
Each source-target phrase pair is scored by allη models.

where each phrase pair is scored by all five models.

3.2 Word-based models

Whereas PB models are an interesting approach
to deal with translation relations between languages,
language modelling itself is usually based on words.
Feature 6 is a length model of the target sentence,
and Feature 7 is a target language model.

Word penalty

Penalties are not models that need to be trained.
However, while PB penalties are provided to Moses
to take them into account during the search process
(see for example the last column of Table 1,η5),
word penalties are internally implemented in Moses
as part of the log-linear maximization in Equation 2,
and are automatically computed on-the-fly at search.

Target n-gram model

Language models, andn-grams in particular, suf-
fer from a sparseness problem (Rosenfeld, 1996).
The n-gram probability distributions are smoothed
to be able to deal with the unseen events out of train-
ing data, thus aiming for a larger language coverage.
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This smoothing is based on thebackoffmethod,
which introduces some penalties for level down-
grading within hierarchical language models.
For example, letM be a trigram language model,
which, as regards smoothing, needs both a bigram
and a unigram model trained on the same data.
Any trigram probability,P (c|ab), is then computed
as follows:

if abc ∈ M: PM(c|ab)
elseif bc ∈ M: BOM(ab)PM(c|b)
elseif c ∈ M: BOM(ab)BOM(b)PM(c)
else : BOM(ab)BOM(b)PM(unk)

(10)

wherePM is the probability estimated byM for the
correspondingn-gram,BOM is the backoff weight
to deal with the unseen events out of training data,
and finally, PM(unk) is the probability mass re-
served for unknown words.

TheP (ti|ti−n+1 . . . ti−1) term from Equation 9
is then computed according to that algorithm above,
given the model data organized again in table form
as a collection of probabilities and backoff weights
for the n-grams appearing in the training corpus.
This model displays similarly to that in Table 2.

n-gram P BO
please 0.02 0.2
low cost 0.05 0.3
I like 0.1 0.7
that is 0.08 0.5
. . . . . .

Table 2: An English word-based backoffn-gram model.
The likelihood and the backoff model score for eachn-
gram.

4 Weighted finite-state transducers

Weighted finite-state transducers(Mohri et al.,
2002) (WFSTs) are defined by means of a tuple
(Σ,∆, Q, q0, f, P ), whereΣ is the alphabet of in-
put symbols,∆ is the alphabet of output symbols,
Q is a finite set of states,q0 ∈ Q is the initial state,
f : Q → R is a state-based weight distribution to
quantify that states may be final states, and finally,
the partial functionP : Q × Σ⋆ × ∆⋆ × Q → R

defines a set of edges between pairs of states in such
a way that every edge is labelled with an input string
in Σ⋆, with an output string in∆⋆, and is assigned a
transition weight.

When weights are probabilities, i.e. the range of
functionsf andP is constrained between 0 and 1,
and under certain conditions, a weighted finite-
state transducer may define probability distributions.
Then, it is called astochastic finite-state transducer.

4.1 WFSTs for SMT models

Here, we show how the SMT models described in
Section 3 (that is, the fiveη scores in the PB trans-
lation table, the word penalty, and then-gram lan-
guage model) are represented by means of WFSTs.

First of all, the word penalty feature in Equation 8
is equivalently reformulated as another PB score,
as in Equations 3 to 7:

h6(s, t) = log e|t| = logmax
β6

|β6|∏

k=1

e|t̃k| (11)

where the length oft is split up by summation
using the length of each phrase in a segmentationβ6.
Actually, this feature is independent ofβ6, that is,
any segmentation produces the expected valuee|t|,
and therefore the maximization byβ6 is not needed.
However, the main goal is to introduce this feature as
another PB score similar to those in Features 1 to 5,
and so it is redefined following the same framework.
The PB table can be now extended by means of
η6(s̃, t̃) = e|t̃|, just as Table 3 shows.

Source Target η1 η2 η3 η4 η5 η6
barato low cost . . . e e2

me gusta I like . . . e e2

es decir that is . . . e e2

por favor please . . . e e
. . . . . .

Table 3: A word-penalty-extended PB translation table.
The exponent ofe in η6 is the number of words in Target.

Now, the translation table including 6 PB scores
and the target-language backoffn-gram model can
be expressed by means of (some stochastic) WFSTs.
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Translation table

Each PB model included in the translation table,
i.e. any PB distribution in{η1(s̃, t̃), . . . , η6(s̃, t̃)},
can be represented as a particular case of a WFST.
Figure 1 shows a PB score encoded as a WFST,
using a different looping transition per table row
within a WFST of only one state.

Source Target ηm
barato low cost x1

me gusta I like x2

. . . . . .

...q0

x1

barato/ low cost

me gusta/ I like

x2

Figure 1: Equivalent WFST representation of PB scores.
Table rows are embedded within as many looping
transitions of a WFST which has no topology at all;
η-scores are correspondingly stored as transition weights.

It is straight-forward to see that the application of
the Viterbi method (Viterbi, 1967) on these WFSTs
provides the corresponding feature valuehm(s, t)
for all Features 1 to 6 as defined in Equations 3 to 8.

Language model

It is well known thatn-gram models are a subclass
of stochastic finite-state automata where backoff
can also be adequately incorporated (Llorens, 2000).

Then, they can be equivalently turned into trans-
ducers by means of the concept of identity, that is,
transducers which map every input label to itself.
Figure 2 shows a WFST for a backoff bigram model.

It is also quite straight-forward to see thath7(s, t)
(as defined in Equation 9 for a targetn-gram model
where backoff is adopted according to Equation 10)
is also computed by means of a parsing algorithm,
which is actually a process that is simple to carry
out given that these backoffn-gram WFSTs are de-
terministic.

q0 q1 q2 q3

BO(q0)

BO(q1) BO(q2)

BO(q3)

qε

Bigram

Bigram

Unigram

Unigram

layer

layer

edges

edges

low / low

cost / cost

PM(low)

PM(cost | low)

Figure 2: A WFST example for a backoff bigram model.
Backoff (BO) is dealt with failure transitions from the bi-
gram layer to the unigram layer. Unigrams go in the other
direction and bigrams link states within the bigram layer.

To sum up, our log-linear combination scenario
considers 7 (some stochastic) WFSTs, 1 per feature:
6 of them are PB models related to a translation table
while the 7th one is a target-languagen-gram model.

Next in Section 4.2, we show how these WFSTs
are used in conjunction in a homogeneous frame-
work.

4.2 Search

Equation 2 is a general framework for log-linear ap-
proaches to SMT. This framework is adopted here in
order to combine several features based on WFSTs,
which are modelled as their respective Viterbi score.

As already mentioned, the computation of
hm(s, t) for each PB-WFST, let us sayTm (with
1 ≤ m ≤ 6), provides the most likely segmenta-
tion βm for s and t according toTm. However, a
constraint is used here so that allTm models define
the same segmentationβ:

|β| > 0

s = s̃1 . . . s̃|β|
t = t̃1 . . . t̃|β|

where the PB scores corresponding to Features 1 to 6
are directly applied on that particular segmentation
for each phrase pair(s̃

k
, t̃

k
) monotonically aligned.

Equations 3 to 7 and 11 can be simplified as follows:

∀m = 1, . . . , 6

hm(s, t) = logmax
β

|β|∏

k=1

ηm(s̃
k
, t̃

k
) (12)
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Then, Equation 2 can be instanced as follows:

t̂ = argmax
t

7∑

m=1

λm hm(s, t) (13)

= argmax
t




6∑

m=1

λmmax
β

|β|∑

k=1

log ηm(s̃
k
, t̃

k
)




+λ7

|t|∑

i=1

logP (ti|ti−n+1 . . . ti−1)

= argmax
t


max

β

|β|∑

k=1

6∑

m=1

λm log ηm(s̃
k
, t̃

k
)




+

|t|∑

i=1

λ7 logP (ti|ti−n+1 . . . ti−1)

as logarithm rules are applied to Equations 9 and 12.
The square-bracketed expression of Equation 13

is a Viterbi-like score which can be incrementally
built through the contribution of all the PB-WFSTs
(along with their respectiveλm-weights) over some
phrase pair(s̃

k
, t̃

k
) that extends a partial hypothesis.

As these models share their topology, we implement
them jointly including as many scores per transi-
tion as needed (González and Casacuberta, 2008).
These models can also be merged by means of union
once theirλm-weights are transferred into them.
That allows us to model the whole translation table
(see Table 3) by means of just 1 WFST structureT .
Therefore, the search framework for single models
can also be used for their log-linear combination.

As regards the remaining term from Equation 13,
i.e. the targetn-gram language model for Feature 7,
it is seen as a rescoring function (Och et al., 2004)
which is applied once the PB-WFSTT is explored.
The translation model returns the best hypotheses
that are later input to then-gram language modelL,
where they are reranked, to finally choose the bestt̂.

However, these two steps can be processed at once
if both the WFSTT and the WFSTL are merged
by means of their compositionT ◦L (Mohri, 2004).
The product of such an operation is another WFST
as WFSTs are closed under a composition operation.
In practice though, the size ofT ◦L can be very large
so composition is done on-the-fly (Caseiro, 2003),
which actually does not build the WFST forT ◦ L
but explores bothT andL as if they were composed,

using then-gram scores inL on the target hypo-
theses fromT as soon as they are partially produced.

Equation 13 represents a Viterbi-based compo-
sition framework where all the (weighted) models
contribute to the overall score to be maximized,
provided that the set ofλm-weights is instantiated.
Using a development corpus, the set ofλm-weights
can be empirically determined by means of running
several iterations of this framework, where different
values for theλm-weights are tried in each iteration.

5 Experiments

Experiments were carried out on the TED corpus,
which is described in depth throughout Section 5.1.
Automatic evaluation for SMT is often considered
and we use the measures enumerated in Section 5.2.
Results are shown and also discussed, in Section 5.3.

5.1 Corpora data

The TED corpus is composed of a collection of
English-French sentences from audiovisual content
whose main statistics are displayed in Table 4.

Subset English French

T
ra

in

Sentences 47.5K
Running words 747.2K 792.9K
Vocabulary 24.6K 31.7K

D
ev

el
op Sentences 571

Running words 9.2K 10.3K
Vocabulary 1.9K 2.2K

Te
st

Sentences 641
Running words 12.6K 12.8K
Vocabulary 2.4K 2.7K

Table 4: Main statistics from the TED corpus and its split.

As shown in Table 4, develop and test partitions
are statistically comparable. The former is used
to train theλm-weights in the log-linear approach,
in the hope that they can also work well for the latter.

5.2 Evaluation measures

Since its appearance as a translation quality mea-
sure, the BLEU metric (Papineni et al., 2002), which
stands forbilingual evaluation understudy, has be-
come consolidated in the area of automatic evalua-
tion as the most widely used SMT measure. Never-
theless, it was later found that its correlation factor
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with subjective evaluations (the original reason for
its success) is actually not so high as first thought
(Callison-Burch et al., 2006). Anyway, it is still the
most popular SMT measure in the literature.

However, theword error rate (WER) is a very
common measure in the area of speech recognition
which is also quite usually applied in SMT (Och et
al., 1999). Although it is not so widely employed as
BLEU, there exists some work that shows a better
correlation of WER with human assessments (Paul
et al., 2007). Of course, the WER measure has some
bad reviews as well (Chen and Goodman, 1996;
Wang et al., 2003) and one of the main criticisms
that it receives in SMT areas is about the fact that
there is only one translation reference to compare
with. The MWER measure (Nießen et al., 2000) is
an attempt to relax this dependence by means of an
average error rate with respect to a set of multiple
references of equivalent meaning, provided that they
are available.

Another measure also based on the edit distance
concept has recently arisen as an evolution of WER
towards SMT. It is thetranslation edit rate(TER),
and it has become popular because it takes into ac-
count the basic post-process operations that profes-
sional translators usually do during their daily work.
Statistically, it is considered as a measure highly cor-
related with the result of one or more subjective eval-
uations (Snover et al., 2006).

The definition of these evaluation measures is as
follows:

BLEU: It computes the precision of the unigrams,
bigrams, trigrams, and fourgrams that appear in
the hypotheses with respect to then-grams of
the same order that occur in the translation ref-
erence, with a penalty for too short sentences.
Unlike the WER measure, BLEU is not an error
rate but an accuracy measure.

WER: This measure computes the minimum num-
ber of editions (replacements, insertions or
deletions) that are needed to turn the system
hypothesis into the corresponding reference.

TER: It is computed similarly to WER, using an ad-
ditional edit operation. TER allows the move-
ment of phrases, besides replacements, inser-
tions, and deletions.

5.3 Results

The goal of this section is to assess experimentally
the finite-state approach to PB-SMT presented here.
First, an English-to-French translation is considered,
then a French-to-English direction is later evaluated.

On the one hand, our log-linear framework is
tuned on the basis of BLEU as the only evaluation
measure in order to select the best set ofλm-weights.
That is accomplished by means of development data,
however, once theλm-weights are estimated, they
are extrapolated to test data for the final evaluation.
Table 5 shows: a) the BLEU translation results for
the development data; and b) the BLEU, WER and
TER results for the test data. In both a) and b), the
λm-weights are trained on the development parti-
tion. These results are according to different feature
combinations in our log-linear approach to PB-SMT.

As shown in Table 5, the first experimental sce-
nario is not a log-linear framework since only one
feature, (a direct PB translation probability model)
is considered. The corresponding results are poor
and, judging by the remaining results in Table 5,
they reflect the need for a log-linear approach.

The following experiments in Table 5 represent
a log-linear framework for Features 1 to 6,
i.e. the PB translation table encoded as a WFSTT ,
where different PB models are the focus of attention.
Only the log-linear combination of Features 1 and 2

Log-linear Develop Test
features BLEU BLEU WER TER
1 (baseline) 8.5 7.1 102.9 101.5
1+2 4.0 3.0 116.6 115.6
1+2+3 22.7 18.4 66.6 64.4
1+2+3+4 22.8 18.5 66.3 64.2
1+2+3+4+5 22.7 18.8 65.2 63.2
1+2+3+4+5+6 23.1 19.1 65.9 63.8
1+7 24.6 20.5 65.1 62.9
1+2+7 25.5 21.3 63.7 61.6
1+2+3+7 25.9 22.2 62.5 60.4
1+2+3+4+7 26.3 22.0 63.4 61.3
1+2+3+4+5+7 26.4 22.1 63.1 61.0
1+2+3+4+5+6+7 27.0 21.8 64.4 62.2
Moses (1+. . .+7) 27.1 22.0 64.0 61.8

Table 5: English-to-French results for development and
test data according to different log-linear scenarios.
The set ofλm-weights is learnt from development data
for every feature combination log-linear scenario defined.
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is worse than the baseline, which feeds us back
on the fact that theλm-weights can be better trained,
that is, the log-linear model for Features 1 and 2
can be upgraded until baseline’s results withλ2 = 0.

This battery of experiments on Features 1 to 6
allows us to see the benefits of a log-linear approach.
The baseline results are clearly outperformed now,
and we can say that the more features are included,
the better are the results.

The next block of experiments in Table 5 always
include Feature 7, i.e. the target language modelL.
Features 1 to 6 are progressively introduced intoT .
These results confirm that the target language model
is still an important feature to take into account,
even though PB models are already providing a sur-
rounding context for their translation hypotheses be-
cause translation itself is modelled at phrase level.
These results are significantly better than the ones
where the target language model is not considered.
Again, the more translation features are included,
the better are the results on the development data.
However, an overtraining is presumedly occurring
with regard to the optimization of theλm-weights,
as results on the test partition do not reach their top
the same way the ones for the development data do,
i.e. when using all 7 features, but when combining
Features 1, 2, 3, and 7, instead. These differences
are not statistically significant though.

Finally, our finite-state approach to PB-SMT
is validated by comparison, as it allows us to achieve
similar results to those yielded by Moses itself.

On the other hand, a translation direction where
French is translated into English gets now the focus.
Their corresponding results are presented in Table 6.
A similar behaviour can be observed in Table 6
for the series of French-to-English empirical results.

6 Conclusions and future work

In this paper, a finite-state approach to Moses, which
is a PB-SMT state-of-the-art system, is presented.
A monotone framework is adopted, where 7 mo-
dels in log-linear combination are considered: a di-
rect and an inverse PB translation probability model,
a direct and an inverse PB lexical weighting model,
PB and word penalties, and a target language model.

Five out of these models are based on PB scores
which are organized under a PB translation table.

Log-linear Develop Test
features BLEU BLEU WER TER
1 (baseline) 7.1 7.4 101.6 100.0
1+2 4.1 3.5 117.5 116.0
1+2+3 24.2 21.1 58.9 56.5
1+2+3+4 24.4 20.8 58.0 55.7
1+2+3+4+5 24.9 21.2 56.9 54.8
1+2+3+4+5+6 25.2 21.2 57.1 55.0
1+7 24.7 22.5 60.0 57.7
1+2+7 26.0 23.2 58.8 56.5
1+2+3+7 28.5 23.0 56.1 54.0
1+2+3+4+7 28.4 23.1 56.0 53.8
1+2+3+4+5+7 28.8 23.4 56.0 53.9
1+2+3+4+5+6+7 28.7 23.8 55.8 53.7
Moses (1+. . .+7) 28.9 23.5 55.8 53.6

Table 6: French-to-English results for development
and test data according to different log-linear scenarios.

These models can also be implemented by means
of WFSTs on the basis of the Viterbi algorithm.
The word penalty can also be equivalently redefined
as another PB model, similar to the five others,
which allows us to constitute a translation modelT
composed of six parallel WFSTs that are constrained
to share the same monotonic bilingual segmentation.

A backoffn-gram model for the target languageL
can be represented as an identity WFST whereP (t)
is modelled on the basis of the Viterbi algorithm.
The whole log-linear approach to Moses is attained
by means of the on-the-fly WFST compositionT ◦L.

Our finite-state log-linear approach to PB-SMT
is validated by comparison, as it has allowed us
to achieve similar results to those yielded by Moses.

Monotonicity is an evident limitation of this work,
as Moses can also feature some limited reordering.
However, future work on that line is straight-forward
since the framework described in this paper can be
easily extended to include a PB reordering modelR,
by means of the on-the-fly compositionT ◦ R ◦ L.

Acknowledgments

The research leading to these results has received
funding from the European Union 7th Framework
Programme (FP7/2007-2013) under grant agree-
ment no. 287576. Work also supported by the EC
(FEDER, FSE), the Spanish government (MICINN,
MITyC, “Plan E”, grants MIPRCV “Consolider In-
genio 2010” and iTrans2 TIN2009-14511), and the
Generalitat Valenciana (grant Prometeo/2009/014).

97



References

P.F. Brown, S.A. Della Pietra, V.J. Della Pietra, and R.L.
Mercer. 1993. The mathematics of machine transla-
tion. In Computational Linguistics, volume 19, pages
263–311, June.

C. Callison-Burch, M. Osborne, and P. Koehn. 2006.
Re-evaluating the Role of Bleu in Machine Transla-
tion Research. InProceedings of the 11th conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 249–256.

D. Caseiro. 2003.Finite-State Methods in Automatic
Speech Recognition.PhD Thesis, Instituto Superior
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tores finitos estoćasticos. PhD Thesis, Departamento
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Abstract

Speech translation can be tackled by
means of the so-called decoupled ap-
proach: a speech recognition system fol-
lowed by a text translation system. The
major drawback of this two-pass decod-
ing approach lies in the fact that the trans-
lation system has to cope with the er-
rors derived from the speech recognition
system. There is hardly any cooperation
between the acoustic and the translation
knowledge sources. There is a line of re-
search focusing on alternatives to imple-
ment speech translation efficiently: rang-
ing from semi-decoupled to tightly in-
tegrated approaches. The goal of inte-
gration is to make acoustic and transla-
tion models cooperate in the underlying
decision problem. That is, the transla-
tion is built by virtue of the joint ac-
tion of both models. As a side-advantage
of the integrated approaches, the transla-
tion is obtained in a single-pass decod-
ing strategy. The aim of this paper is
to assess the quality of the hypotheses
explored within different speech transla-
tion approaches. Evidence of the perfor-
mance is given through experimental re-
sults on a limited-domain task.

1 Introduction

Statistical speech translation (SST) was typ-
ically implemented as a pair of consecutive
steps in the so-called decoupled approach: with
an automatic speech recognition (ASR) system
placed before to a text-to-text translation sys-
tem. This approach involves two independent
decision processes: first, getting the most likely
string in the source language and next, get-
ting the expected translation into the target lan-
guage. Since the ASR system is not an ideal
device it might make mistakes. Hence, the text
translation system would have to manage with
the transcription errors. Being the translation
models (TMs) trained with positive samples of
well-formed source strings, they are very sensi-
tive to ill-formed strings in the source language.
Hence, it seems ambitious for TMs to aspire to
cope with both well and ill formed sentences in
the source language.

1.1 Related work
Regarding the coupling of acoustic and trans-
lation models, there are some contributions in
the literature that propose the use of semi-
decoupled approaches. On the one hand, in
(Zhang et al., 2004), SST is carried out by
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an ASR placed before a TM with an addi-
tional stage that would re-score the obtained hy-
potheses within a log-linear framework gather-
ing features from both the ASR system (lexicon
and language model) and the TM (eg. distor-
tion, fertility) and also additional features (POS,
length etc.).

On the other hand, in (Quan et al., 2005), the
N-best hypotheses derived from an ASR sys-
tem were next translated by a TM, finally, a last
stage would re-score the hypotheses and make
a choice. Within the list of the N-best hypothe-
ses typically a number of them include some n-
grams that are identical, hence, the list results to
be an inefficient means of storing data. Alterna-
tively, in (Zhou et al., 2007) the search space
extracted from the ASR system, represented as
a word-graph (WG), was next explored by a TM
following a multilayer search algorithm.

Still, a further approach can be assumed
in order to make the graph-decoding com-
putationally cheaper, that is, confusion net-
works (Bertoldi et al., 2007). Confusion-
networks implement a linear approach of the
word-graphs, however, as a result, dummy hy-
potheses might be introduced and probabili-
ties mis-computed. Confusion networks traded
off between the accuracy and storage ability of
word-graphs for decoding time. Indeed, in (Ma-
tusov and Ney, 2011) an efficient means of do-
ing the decoding with confusion networks was
presented. Note that these approaches follow a
two-pass decoding strategy.

The aforementioned approaches imple-
mented phrase-based TMs within a log-linear
framework. In this context, in (Casacuberta
et al., 2008) a fully integrated approach was
examined. Under this approach, the translation
was carried out in a single-pass decoding,
involving a single decision process in which
acoustic and translations models cooperated.

This integration paradigm, was earlier proposed
in (Vidal, 1997), showing that a single-pass
decoding was enough to carry out SST.

Finally, in (Pérez et al., 2010) several SST de-
coding approaches including decoupled, N-best
lists and integrated were compared. Neverthe-
less, the paper focused on the potential scope of
the approaches, comparing the theoretical upper
threshold of their performance.

1.2 Contribution

All the models assessed in this work relay upon
exactly the same acoustic and translation mod-
els. It is the combination of them on which
we are focusing. In brief, the aim of this pa-
per is to compare different approaches to carry
out speech translation decoding. The compari-
son is carried out using exactly the same under-
lying acoustic and translation models in order
to allow to make a fair comparison of the abil-
ities inherent to the decoding strategy. Apart
from the decoupled and semi-decoupled strate-
gies we also focus on the fully-integrated ap-
proach. While the fully integrated approach al-
lows to provide the most-likely hypothesis, we
explored a variant: an integrated architecture
with a re-scoring LM that provided alternatives
derived from the integrated approach and used
re-scoring to make the final decision. Not only
an oracle-evaluation is provided as an upper-
threshold of the experiments but also an experi-
mental set-up to give empirical evidence.

The paper is arranged as follows: Section 2
introduces the formulation of statistical speech
translation (SST); Section 3 describes differ-
ent approaches to put into practice SST, plac-
ing emphasis on the assumptions behind each
of them. Section 4 is devoted to assess experi-
mentally the performance of each approach. Fi-
nally, in Section 5 the concussions drawn from
the experiments are summarized.
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2 Statistical speech translation

The goal of speech translation, formulated un-
der the probabilistic framework, is to find the
most likely string in the target language (̂t)
given the spoken utterance in the source lan-
guage. Speech signal in the source language
is characterized in terms of an array of acoustic
features in the source language, x. The decision
problem involved is formulated as follows:

t̂ = arg max
t

P (t|x) (1)

In this context, the text transcription in the
source language (denoted as s) is introduced as
a hidden variable and Bayes’ rule applied:

t̂ = arg max
t

∑

s

P (x|s, t)P (s, t) (2)

Assuming P (x|s, t) ≈ P (x|s), and using the
maximum term involved in the sum as an ap-
proach to the sum itself for the sake of compu-
tational affordability, we yield to:

t̂ ≈ arg max
t

max
s

P (x|s)P (s, t) (3)

As a result, the expected translation is built
relying upon both a translation model (P (s, t))
and an acoustic model in the source language
(P (x|s)). This approach requires the joint co-
operation of both models to implement the de-
cision problem since the maximum over s con-
cerns both of them.

2.1 Involved models
Being the goal of this paper to compare differ-
ent techniques to combine acoustic and trans-
lation models, it is important to keep constant
the underlying models while varying the strate-
gies to combine them. Before to delve into the
composition strategies and due to the fact that
some combination strategies are based on the

finite-state topology of the models, a summary
of the relevant features of the underlying mod-
els is given in this section.

2.1.1 Translation model
The translation model used in this work

to tackle all the approaches consists of a
stochastic finite-state transducer (SFST) en-
compassing phrases in the source and tar-
get languages together with a probability of
joint occurrence. The SFST (T ) is a tuple
T = 〈Σ,∆, Q, q0, R, F, P 〉, where:
Σ is a finite set of input symbols;
∆ is a finite set of output symbols;
Q is a finite set of states;
q0 ∈ Q is the initial state;
R ⊆ Q × Σ+ × ∆∗ × Q is a set of transi-

tions. (q, s̃, t̃, q′) ∈ R, represents a tran-
sition from the state q ∈ Q to the state
q′ ∈ Q, with the source phrase s̃ ∈ Σ+ and
producing the substring t̃ ∈ ∆∗, where t̃
might consist of zero or more target words
(|t̃| ≥ 0);

F : Q→ [0, 1] is a final state probability;
P : R→ [0, 1] is a transition probability;

Subject to the stochastic constraint:

∀q ∈ Q F (q) +
∑

s̃,t̃,q′

P (q, s̃, t̃, q′) = 1 (4)

For further reading on formulation and prop-
erties of these machines turn to (Vidal et al.,
2005).

The SFST can be understood as a statistical
bi-language implemented by means of finite-
state regular grammar (Casacuberta and Vidal,
2004) (in the same way as a stochastic finite-
state automaton can be used to model a sin-
gle language): A = 〈Γ, Q, q0, R, F, P 〉, being
Γ ⊆ Σ+ ×∆∗ a finite-set of bilingual-phrases.
Likewise, bilingual n-gram models can be in-
ferred in practice (Mariño et al., 2006).
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2.1.2 Acoustic models
The acoustic model consists of a mapping of

text-transcriptions of lexical units in the source
language and their acoustic representation. That
comprises the composition of: 1) a lexical
model consisting of a mapping between the tex-
tual representation with their phone-like repre-
sentation in terms of a left-to-right sequence;
and 2) an inventory of phone-like units con-
sists of a typical three-state hidden Markov
model (Rabiner, 1989). Thus, acoustic model
lays on the composition of two finite-state mod-
els (depicted in Figure 1).

/T/ /j/ /e/ /l/ /o/cielo

(a) Phonetic representation of a text lexical unit

/T/

/j/

/e/

(b) HMM phone-like units

Figure 1: Acoustic model requires composing
phone-like units within phonetic representation
of lexical units.
3 Decoding strategies

In the previous section the formulation of SST
was summarized. Let us now turn into prac-
tice and show the different strategies explored
to combine acoustic and translation models to
tackle SST. The approaches accounted are: de-
coupled, semi-decoupled and integrated archi-
tectures. While the former two are imple-
mentable by virtue of alternative TMs, the latter
is achieved thanks to the integration allowed by
finite-state framework. Thus, in order to com-
pare the combination rather than the TMs them-
selves, all of the combinations shall be put in
practice using the same SFST as TM.

3.1 Decoupled approach
Possibly the most widely used approach to
tackle speech translation is the so-called serial,
cascade or decoupled approach. It consists of
a text-to-text translation system placed after an
ASR system. This process is formally stated as:

t̂ ≈ arg max
t

max
s

P (x|s)P (s)P (t|s) (5)

In practice, previous expression is imple-
mented in two independent stages as follows:

1st stage: an ASR system would find the
most likely transcription (̂s):

ŝ ≈ arg max
s

P (x|s)P (s) (6)

2nd stage next, given the expected string in
the source language (̂s), a TM would find the
most likely translation:

t̂ ≈ arg max
t

P (t|̂s) = arg max
t

P (̂s, t) (7)

The TM involved in eq.(7) can be based on
either posterior or joint-probability as the dif-
ference between both of them is a normaliza-
tion term that does not intervene in the maxi-
mization process. The second stage has to cope
with expected transcription of speech (̂s) which
does not necessarily convey the exact reference
source string (s). That is, the ASR might intro-
duce errors in the source string to be translated
in the next stage. However, the TMs are typ-
ically trained with correct source-target pairs.
Thus, transcription errors are seldom foreseen
even in models including smoothing (Martin et
al., 1999). In addition, TMs are extremely sen-
sitive to the errors in the input, in particular to
substitutions (Vilar et al., 2006).

This architecture represents a suboptimal
means of contending with SST as referred in
eq. (3). This approach barely takes advantage of
the involved knowledge sources, namely, acous-
tic and translation models.
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3.2 Semi-Decoupled approach

Occasionally, the most probable translation
does not result to be the most accurate one with
respect to a given reference. That is, it might
happen that hypotheses with a slightly lower
probability than that of the expected hypothesis
turn to be more similar to the reference than the
expected hypothesis. This happens due to sev-
eral factors, amongst others, due to the sparsity
of the data with which the model was trained.

In brief, some sort of disparity between the
probability of the hypotheses and their quality
might arise in practice. The semi-decoupled ap-
proach arose to address this issue. Hence, rather
than translating a single transcription hypothe-
sis, a number of them are provided by the ASR
to the TM, and it is the latter that makes the de-
cision giving as a result the most likely transla-
tion. The decoupled approach is implemented
in two steps, and so is it the semi-decoupled ap-
proach. Details on the process are as follows:

1st stage: for a given utterance in the source
language, an ASR system, laying on source
acoustic model and source language model
(LM), would provide a search sub-space. This
sub-space is traced in the search process for the
most likely transcription of speech but without
getting rid of other highly probable hypotheses.

For what us concern, this sub-space is rep-
resented in terms of a graph of words in the
source language (S). The word-graph gath-
ers the hypotheses with a probability within a
threshold with respect to the optimal hypothesis
at each time-frame as it was formulated in (Ney
et al., 1997). The obtained graph is an acyclic
directed graph where the nodes are associated
with word-prefixes of a variable length, and the
edges join the word sequences allowed in the
recognition process with an associated recogni-
tion probability. The edges consist of the acous-

tic and language model probabilities as the ASR
system handles throughout the trellis.

2nd stage: translating the hypotheses within
S (the graph derived in the 1st stage) allows to
take into account alternative translations for the
given spoken utterance. The searching space
being explored is limited by the source strings
conveyed by S . The combination of the recog-
nition probability with the translation probabil-
ity results in a score that accounts both recogni-
tion and translation likelihood:

t̂ ≈ arg max
t

max
s∈S

P (s)P (s, t) (8)

Thus, acoustic and translation models would
one re-score the other.

All in all, this semi-decoupled approach re-
sults in an extension of the decoupled one.
It accounts alternative transcriptions of speech
in an attempt to get good quality transcrip-
tions (rather than the most probable transcrip-
tion as in the case of the decoupled approach).
Amongst all the transcriptions, those with high
quality are expected to provide the best quality
in the target language. That is, by avoiding er-
rors derived from the transcription process, the
TM should perform better, and thus get transla-
tions of higher quality. Note that finally, a single
translation hypothesis is selected. To do so, the
highest combined probability is accounted.

3.3 Fully-integrated approach
Finite-state framework (by contrast to other
frameworks) makes a tight composition of mod-
els possible. In our case, of acoustic and trans-
lation finite-state models. The fully-integrated
approach, proposed in (Vidal, 1997), encfom-
passed acoustic and translation models within a
single model. To develop the fully-integrated
approach a finite-state acoustic model on the
source language (A) providing the text tran-
scription of a given acoustic utterance (A :
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X → S) can be composed with a text transla-
tion model (T ) that provides the translation of a
given text in the source language (T : S → T )
and give as a result a transducer (Z = A ◦ T )
that would render acoustic utterances in the
source language to strings in the target lan-
guage. For the sake of efficiency in terms of
spatial cost, the models are integrated on-the-fly
in the same manner as it is done in ASR (Ca-
seiro and Trancoso, 2006).

The way in which integrated architecture ap-
proaches eq. (3) is looking for the most-likely
source-target translation pair as follows:

̂(s, t) = arg max
(s,t)

P (s, t)P (x|s) (9)

That is, the search is driven by bilingual phrases
made up of acoustic elements in the source
language integrated within bilingual phrases of
words together with target phrases.

Then, the expected translation would simply
be approached as the target projection of ̂(s, t),
the expected source-target string (also known
as the lower projection); and likewise, the ex-
pected transcription is obtained as a side-result
by the source projection (aka upper projection).

It is well-worth mentioning that this approach
implements fairly the eq. (3) without further
assumptions rather than those made in the de-
coding stage such as Viterbi-like decoding with
beam-search. All in all, acoustic and translation
models cooperate to find the expected transla-
tion. Moreover, it is carried out in a single-pass
decoding strategy by contrast to either decou-
pled or semi-decoupled approaches.

3.4 Integrated WG and re-scoring LM
The fully-integrated approach looks for the
single-best hypothesis within the integrated
acoustic-and-translation network. Following
the reasoning of Section 3.2, the most likely

path together with other locally close paths in
the integrated searching space can be extracted
and arranged in terms of a word graph. While
the WG derived in Section 3.2 was in source
language, this one would be bilingual.

Given a bilingual WG, the lower-side net
(WG.l) can be extracted keeping the topol-
ogy and the associated probability distributions
while getting rid of the input string of each tran-
sition, this gives as a result the projection of
the WG in the target language. Next, a target
language model (LM) would help to make the
choice for the most likely hypothesis amongst
those in the WG.l.

t̂ ≈ arg max
t

PWG.l(t)PLM (t) (10)

In other words, while in Section 3.2 the trans-
lation model was used to re-score alternative
transcriptions of speech whereas in this ap-
proach a target language models re-scores al-
ternative translations provided by the bilingual
WG. Note that this approach, as well as the
semi-decoupled one, entail a two-pass decoding
strategy. Both rely upon two models: the for-
mer focused on the source language WG, this
one focuses on the target language WG.

4 Experiments

The aim of this section is to assess empir-
ically the performance each of the four ap-
proaches previously introduced: decoupled,
semi-decoupled, fully-integrated and integrated
WG with re-scoring LM. The four approaches
differ on the decoding strategy implemented to
sort out the decision problem, but all of them
rely on the very same knowledge sources (that
is, the same acoustic and translation model).

The main features of the corpus used to carry
out the experimental layout are summarized in
Table 1. The training set was used to infer the
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TM consisting of an SFST and the test set to as-
sess the SST decoding approaches. The test set
consisted of 500 training-independent pairs dif-
ferent each other, each of them was uttered by
at least 3 speakers.

Spanish Basque

Tr
ai

n Sentences 15,000
Running words 191,000 187,000
Vocabulary 702 1,135

Te
st Sentences 1,800

Hours of speech 3.0 3.5

Table 1: Main features of the Meteus corpus.

The performance of each experiment is as-
sessed through well-known evaluation met-
rics, namely: bilingual evaluation under-study
(BLEU) (Papineni et al., 2002), word error-rate
(WER), translation edit rate (TER).

4.1 Results
The obtained results are given in Table 2. The
performance of the most-likely or single-best
translation derived by either decoupled or fully-
integrated architectures is shown in the first row
of Tables 2a and 2b respectively. The per-
formance of the semi-decoupled and integrated
WG with re-scoring LM is shown in the sec-
ond row. The highest performance achievable
by both the semi decoupled approach and the
integrated WG with re-scoring LM is given in
the third row. To do so, an oracle evaluation of
the alternatives was carried out and the score as-
sociated to the best choice achievable was given
as in (Pérez et al., 2010). Since the oracle evalu-
ation provides an upper threshold of the quality
achievable, the scope of each decoupled or in-
tegrated approaches can be assessed regardless
of the underlying decoding algorithms and ap-
proaches. The highest performance achievable
is reflected in the last row of Tables 2a and 2b.

4.2 Discussion

While the results with two-pass decoding strate-
gies (either decoupled or semi-decoupled ap-
proach) require an ASR engine, integrated ap-
proaches have the ability to get both the source
string together with its translation. This is why
we have make a distinction between ASR-WER
in the former and source-WER in the latter.
Nevertheless, our aim focuses on translation
rather than on recognition.

The results show that semi-decoupled ap-
proach outperforms the decoupled one. Simi-
larly, the approach based on the integrated WG
with the re-scoring target LM outperforms the
integrated approach. As a result, exploring dif-
ferent hypotheses and making the selection with
a second model allows to make refined deci-
sions. On the other hand, comparing the first
row of the Table 2a with the first row of the Ta-
ble 2b (or equally the second row of the former
with the second row of the latter), we conclude
that slightly better performance can be obtained
with the integrated approach.

Finally, comparing the third row of both Ta-
ble 2a and Table 2b, the conclusion is that the
eventual quality of the hypotheses within the in-
tegrated approach are significantly better than
those in the semi-decoupled approaches. That
is, what we can learn is that the integrated de-
coding strategy keeps much better hypotheses
than the semi-decoupled one throughout the de-
coding process. Still, while good quality hy-
potheses exist within the integrated approach,
the re-scoring with a target LM used to select
a single hypothesis from the entire network has
not resulted in getting the best possible hypoth-
esis. Oracle evaluation shows that the integrated
approach offers a leeway to achieve improve-
ments in the quality, yet, alternative strategies
have to be explored.
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ASR target
WER BLEU WER TER

D 1-best 7.9 40.8 50.3 47.7
SD 7.9 42.2 47.6 44.7
SD tgt-oracle 7.5 57.6 36.2 32.8

(a) Decoupled and semi-decoupled

source target
WER BLEU WER TER

I 1-best 9.6 40.9 49.6 46.8
I WG + LM 9.3 42.6 46.7 43.9
I tgt-oracle 6.6 64.0 32.2 28.5

(b) Integrated and integrated WG with LM

Table 2: Assessment of SST approaches decoupled (2a) and integrated (2b) respectively.

5 Conclusions

Different approaches to cope with the SST de-
coding methodology were explored, namely,
decoupled approach, semi-decoupled approach,
fully-integrated approach and integrated ap-
proach with a re-scoring LM. The first two fol-
low a two-pass decoding strategy and focus on
exploring alternatives in the source language;
while the integrated one follows a single-pass
decoding and present tight cooperation between
acoustic and translation models.

All the experimental layouts used exactly the
same translation and acoustic models differing
only on the methodology used to overcome the
decision problem. In this way, we can assert
that the differences lay on the decoding strate-
gies rather than on the models themselves. Note
that implementing all the models in terms of
finite-state models allows to build both decou-
pled and integrated approaches.

Both decoupled and integrated decoding ap-
proaches aim at finding the most-likely transla-
tion under different assumptions. Occasionally,
the most probable translation does not result to
be the most accurate one with respect to a given
reference. On account of this, we turned to ana-
lyzing alternatives and making use of re-scoring
techniques on both approaches in an attempt
to make the most accurate hypothesis emerge.
This resulted in semi-decoupled and integrated-
WG with re-scoring target LM approaches.

What we can learn from the experiments
is that integrating the models allow to keep
good quality hypotheses in the decoding pro-
cess. Nevertheless, the re-scoring model has
not resulted in being able to make the most of
the integrated approach. In other words, there
are better quality hypotheses within the word-
graph rather than that selected by the re-scoring
target LM. Hence, further work should be fo-
cused on other means of selecting hypotheses
from the integrated word-graph.

However, undoubtedly significantly better
performance can be reached from the inte-
grated decoding strategy than from the semi-
decoupled one. It seems as though knowledge
sources modeling the syntactic differences be-
tween source and target languages should be
tackled in order to improve the performance,
particularly in our case, a strategy for further
work could go on the line of the recently tack-
led approach (Durrani et al., 2011).
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Abstract

This work complements a parallel paper of
a new finite-state dependency parser archi-
tecture (Yli-Jyr̈a, 2012) by a proposal for
a linguistically elaborated morphology-syntax
interface and its finite-state implementation.
The proposed interfaceextendsGaifman’s
(1965) classical dependency rule formalism
by separating lexical word forms and morpho-
logical categories from syntactic categories.
The separation lets the linguist take advantage
of the morphological features in order to re-
duce the number of dependency rules and to
make them lexically selective. In addition,
the relative functional specificity of parse trees
gives rise toa measure of parse quality. By fil-
tering worse parses out from the parse forest
using finite-state techniques, the best parses
are saved. Finally, we presenta synthesis of
strict grammar parsing and robust text pars-
ing by connecting fragmental parses into trees
with additional linear successor links.

1 Introduction

Finite-state dependency parsing aims to combine de-
pendency syntax and finite-state automata into a sin-
gle elegant system. Deterministic systems such as
(Elworthy, 2000) are fast but susceptible to garden-
path type errors although some ambiguity is encoded
in the output. Some other systems such as (Oflazer,
2003; Yli-Jyr̈a, 2005) carry out full projective de-
pendency parsing while being much slower, espe-
cially if the syntactic ambiguity is high. In the worst
case, the size of the minimal finite-state automa-
ton storing the forest is exponentially larger than

the sentence: an 80-word sentence has potentially
1.1×1062 unrooted unlabeled dependency trees that
are stored “compactly” into a finite-state lattice that
requires at least2.4×1024 states, see Table 4 in Yli-
Jyr̈a (2012).

A truly compact representation of the parse forest
is provided by an interesting new extended finite-
state parsing architecture (Yli-Jyrä, 2012) that first
recognizes the grammatical sentences in quadratic
time and space if the nested dependencies are lim-
ited by a constant (in cubic time if the length of the
sentence limits the nesting). The new system (Yli-
Jyr̈a, 2012) replaces the additive (Oflazer, 2003) and
the intersecting (Yli-Jyr̈a, 2005) validation of depen-
dency links with reductive validation that gradually
contracts the dependencies until the whole tree has
been reduced into a trivial one. The idea of the con-
tractions is illustrated in Example 1. In practice, our
parser operates on bracketed trees (i.e., strings), but
the effect will be similar.

(1) a. time flies like an arrow

SUBJ ADVL

NOBJ

DET

b. time flies like an arrow

NOBJ

c. time flies like an arrow
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Despite being non-deterministic and efficient,
there are two important requirements that are not ful-
filled by the core of the new architecture (Yli-Jyrä,
2012):

1. A mature finite-state dependency parser must
be robust. The outputs should not be restricted
to complete grammatical parses. For exam-
ple, Oflazer (2003) builds fragmental parses but
later drops those fragmental parses for which
there are alternative parses with fewer frag-
ments. However, his approach handles only
gap-free bottom-up fragments and optimizes
the number of fragments by a counting method
whose capacity is limited.

2. Besides robustness, a wide-coverage parser
should be able to assign reasonably well-
motivated syntactic categories to every word in
the input. This amounts to having a morpho-
logical guesser and an adequate morphology-
syntax interface. Most prior work trivializes
the complexity of the interface, being compara-
ble to Gaifman’s (1965) legacy formalism that
is mathematically elegant but based on word-
form lists. A good interface formalism is pro-
vided, e.g., by Constraint Grammar parsers
(Karlsson et al., 1995) where syntactic rules
can refer to morphological features. Oflazer
(2003) tests morphological features in compli-
cated regular expressions. The state complexity
of the combination of such expressions is, how-
ever, a potential problem if many more rules
would be added to the system.

This paper makes two main contributions:

1. It adapts Gaifman’s elegant formalism to the re-
quirements of morphologically rich languages.
With the adapted formalism, grammar writing
becomes easier. However, efficient implemen-
tation of the rule lookup becomes inherently
trickier because testing several morphological
conditions in parallel increases the size of the
finite-state automata. Fortunately, the new for-
malism comes with an efficient implementation
that keeps the finite-state representation of the
rule set as elegant as possible.

2. The paper introduces a linguistically motivated
ranking for complete trees. According to it, a

tree is better than another tree if a larger propor-
tion of its dependency links is motivated by the
linguistic rules. In contrast to Oflazer (2003),
our method counts the number of links needed
to connect the fragments into a spanning tree.
Moreover, since such additional links are in-
deed included in the parses, the ranking method
turns a grammar parser into a robust text parser.

The paper is structured as follows. The next section
will give an overview of the new parser architecture.
After it, we present the new morphology-syntax in-
terface in Section 3 and the parse ranking method in
Section 4. The paper ends with theoretical evalua-
tion and discussion about the proposed formalism in
Section 5.

2 The General Design

2.1 The Internal Linguistic Representation

We need to define a string-based representation for
the structures that are processed by the parser. For
this purpose, we encode the dependency trees and
then augment the representation with morphological
features.

Dependency bracketsencode dependency links
betweenpairs of tokens that are separated by an (im-
plicit) token boundary. The four-token stringabcd
has 12 distinctundirected unlabeled dependency
bracketings a((()b)c)d, a((b())c)d, a(()b()c)d,
a(()bc())d, a(()b)c()d, a(b(()c))d, a(b(c()))d,
a(b()c())d, a(b())c()d, a()b(()c)d, a()b(c())d,
a()b()c()d.1

The basic dependency brackets extend with labels
such as in(LBL LBL) and directions such as in<LBL
LBL\ and in /LBL LBL>. Directed dependency links
designate one of the linked words as the head and
another as the dependent. The extended brackets let
us encode a full dependency tree in a string format
as indicated in (2).2 The dependent word of each

1Dependency bracketing differs clearly frombinary phrase-
structure bracketingsthat put bracketsaround phrases: the
string abcd has only five distinct bracketings((ab)(cd)),
(((ab)c)d), ((a(bc))d), (a((bc)d)), and(a(b(cd))).

2The syntactic labels used in this paper are:AG=Agent,
by=Preposition ’by’ as a phrasal verb complement,
D=Determiner, EN=Past Participle, FP=Final Punctuation,
P=adjunctive preposition, PC=Preposition Complement,
S=Subject,sgS=Singular Subject.
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link is indicated in trees with an arrowhead but in
bracketing with an angle bracket.

(2) it
<S

was
S\ /FP/EN

inspired
EN> /AG

by
AG> /PC

the
<D

writings
D\PC> FP>

.

S EN

G

PC

D

FP

In Table 1, the dependency bracketing is com-
bined with a common textual format for morpho-
logical analyses. In this format, the base forms are
defined over the alphabet of orthographical symbols
Ω whereas the morphological symbols and syntactic
categories are multi-character symbols that belong,
respectively, to the alphabetsΠ andΓ. In addition,
there is a token boundary symbol#.

Table 1: One morpho-syntactic analysis of a sentence

1 i t PRON NOM SG3 <S #
2 b e V PAST SG13 S\ /FP /EN #
3 i n s p i r e EN EN> /AG #
4 b y PREP AG> /PC #
5 t h e DET SG/PL <D #
6 w r i t i n g N NOM PL D\ PC> #
7 . PUNCT FP> #

Depending on the type of the languages, one or-
thographical word can be split into several parts such
as the inflectional groups in Turkish (Oflazer, 2003).
In this case, a separate word-initial token boundary
can be used to separate such parts into lines of their
own.

The current dependency bracketing captures pro-
jective and weakly non-projective (1-planar) trees
only, but an extended encoding for 2-planar and
multi-planar dependency trees seems feasible (Yli-
Jyr̈a, 2012):

2.2 The Valid Trees

We are now going to define precisely the semantics
of the syntactic grammar component using finite-
state relations.

The finite-state languageswill be defined over a
finite alphabetΣ and they include all finite subsets of

the universal languageΣ∗. The(binary) finite-state
relationsare defined overΣ∗ and include all finite
subsets ofΣ∗ × Σ∗. In addition, they are closed un-
der the operations over finite-state languagesL and
M and finite-state relationsR andS according to
Table 2. The language relation Id(L) restricts the
identity relation to a languageL. The composition
of language relations corresponds to the intersection
of their languages.

Table 2: The relevant closure properties

language relation meaning
LM RS concatenation
L∗ R∗ (Kleene) star
L+ R+ (Kleene) plus
L ∪M R ∪ S union

Id(L) language relation
Id−1(R) L for R = Id(L)
L−M Id(L)−Id(M) set difference

L×M cross product
R|L input restriction
R ◦ S composition
R−1 inverse
Proj1(R) Id(the input side ofR)
Proj2(R) Id(the output side ofR)

For notational convenience, the empty string is
denoted byǫ. A string x is identified with the sin-
gleton set{x}.

The syntactic component of the grammar defines
a set of parse strings where the bracketing is a valid
dependency tree. In these parses, there is no mor-
phological information. One way to express the set
is to intersect a set of constraints as in (Yli-Jyrä,
2005). However, the contracting dependency parser
expresses the Id relation of the set through a compo-
sition of simple finite-state relations:

Synt = Proj1(Abst◦R ◦ ... ◦R︸ ︷︷ ︸
t

◦Root), (1)

Root= Id(#). (2)

In (1), Abst is a relation that removes all non-
syntactic information from the strings,

Abst= (Id(Γ) ∪ Id(#) ∪ Delete)∗, (3)

Delete= {(x, ǫ) | x ∈ Ω ∪Π}, (4)
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andR is a relation that performs one layer of con-
tractions in dependency bracketing.

R = (Id(Γ) ∪ Id(#) ∪ Left ∪ Right)∗, (5)

Left = {(<α # α\, ǫ) | <α, α\ ∈ Γ}, (6)

Right= {(/α # α>, ǫ) | /α, α> ∈ Γ}. (7)

The parametert determines the maximum number
of layers of dependency links in the validated brack-
etings. The limit of Synt ast approaches∞ is not
necessarily a finite-state language, but it remains
context-free because only projective trees are as-
signed to the sentences.

2.3 The Big Picture

We are now ready to embed the contraction based
grammar into the bigger picture.

Let x ∈ Ω∗ be an orthographical string to be
parsed. Assume that it is segmented inton tokens.
The stringx is parsed by composition of four rela-
tions: the relation{(x, x)}, the lexical transducer
(Morph), the morphology-syntax interface (Iface),
and the syntactic validator Synn−1.

Parses(x) = Id(x) ◦Morph◦ Iface◦ Synn−1. (8)

The language relation Proj2(Parses(x)) encodes
the parse forest of the inputx.

In practice, the syntactic validator Synn−1 cannot
be compiled into a finite-state transducer due to its
large state complexity. However, when each copy of
the contracting transducerR in (1) is restricted by
its admissible input-side language, a compact rep-
resentation for the input-side restriction(Synn−1)|X
whereX = Proj2(Id(x)◦Morph◦Iface) is computed
efficiently as described in (Yli-Jyrä, 2012).

3 The Grammar Formalism

In the parser, the linguistic knowledge is organized
into Morph (the morphology) and Iface (the lexical-
ized morphology-syntax interface), while Syn has
mainly a technical role as a tree validator. Imple-
menting the morphology-syntax interface is far from
an easy task since it is actually the place that lexical-
izes the whole syntax.

3.1 Gaifman’s Dependency Rules

Gaifman’s legacy notation (Gaifman, 1965; Hays,
1964) for dependency grammars assigns word forms

to a finite number of potentialmorpho-syntacticcat-
egories that relate word forms to their syntactic func-
tions. The words of particular categories are then
related bydependency rules:

X0(Xp, . . . , X−1,*, X1, . . . , Xm). (9)

The rule (9) states that a word in categoryX0 is the
head of dependent words in categoriesXp, . . . , X−1

before it and words in categoriesX1, . . . , Xm after
it, in the given order. The rule expresses, in a cer-
tain sense, the frame or the argument structure of the
word. RuleX(*) indicates that the word in category
X can occur without dependents.

In addition, there is aroot rule *(X) that states
that a word in categoryX can occur independently,
that is, as the root of the sentence.

In the legacy notation, the distinction between
complements and adjuncts is not made explicit, as
both need to be listed as dependents. To compact the
notation, we introduceoptional dependentsthat will
be indicated by categoriesXp?, . . . , X−1? and cat-
egoriesX1?, . . . , Xm?. This extension potentially
saves a large number of rules in cases where sev-
eral dependents are actually adjuncts, some kinds of
modifiers.3

3.2 The Decomposed Categories

In practice, atomic morpho-syntactic categories are
often too coarse for morphological description but
too refined for convenient description of syntactic
frames. A practical description requires a more ex-
pressive and flexible formalism.

In our new rule formalism, each morpho-syntactic
categoryX is viewed as a combination of a morpho-
logical categoryM (including the information on
the lexical form of the word) and a syntactic cate-
gory S. The morphological categoryM is a string
of orthographical and morphological feature labels
while S is an atomic category label.

The morphological categoryM0 and the syntactic
categoryS0 are specified for the head of each de-
pendency rule. Together, they specify the morpho-
syntactic category(M0, S0). In contrast, the rule
specifies only the syntactic categoriesSp, . . . , S−1,

3Optional dependents may be a worthwhile extension even
in descriptions that treat the modified word as a complement of
a modifier.
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and S1, . . . , Sm of the dependent words and thus
delegates the selection of the morphological cate-
gories to the respective rules of the dependent words.
The categoriesSp, . . . , S−1, and S1, . . . , Sm may
again be marked optional with the question mark.

The rules are separated according to the direction
of the head dependency. Rules (10), (11) and (12)
attach the head to the right, to the left, and in any di-
rection, respectively. In addition, the syntactic cate-
gory of the root is specified with a rule of the form
(13).

→ S0(Sp, . . . , S−1,*[M0], S1, . . . , Sm), (10)

← S0(Sp, . . . , S−1,*[M0], S1, . . . , Sm), (11)

S0(Sp, . . . , S−1,*[M0], S1, . . . , Sm), (12)

*(S0). (13)

The interpretations of rules (10) - (12) are similar to
rule (9), but the rules are lexicalized and directed.
The feature stringM0 ∈ (Ω∗%Ω∗ ∪ Ω∗)Π∗ defines
the relevant head word forms using the features pro-
vided by Morph. The percent symbol (%) stands for
the unspecified part of the lexical base form.

The use of the extended rule formalism is illus-
trated in Table 3. According to the rules in the table,
a phrase headed by prepositionby has three uses:
an adjunctive preposition (P), the complement of a
phrasal verb (by), or the agent of a passive verb (AG).
Note that the last two uses correspond to a fully lexi-
calized rule where the morphological category spec-
ifies the lexeme. The fourth rule illustrates how mor-
phological features are combined inN NOM SG and
then partly propagated to the atomic name of the
syntactic category.

Table 3: Extended Gaifman rules

1 P (*[% PREP], PC) % prepos.
2 by (*[b y PREP], PC) % phrasal
3 AG (*[b y PREP], PC) % agent
4 sgS (D?, M?, *[% N NOM SG], M?) % noun

3.3 Making a Gaifman Grammar Robust

Dependency syntax describes complete trees where
each node is described by one of the dependency
rules. Sometimes, however, no complete tree for an
input is induced by the linguistically motivated de-
pendency rules. In these cases, only tree fragments

can be motivated by the linguistic knowledge. To
glue the fragments together, we interpret the roots
of fragments aslinear successors– thus dependents
– for the word that immediately precedes the frag-
ment.

The link to a linear successor is indicated with a
special category++ having a default rule++(*). Since
any word can act as a root of a fragment, every word
is provided with this potential category. In addi-
tion, there is, for every rule (12), an automatic rule
++(Sp, . . . , S−1,*[M ], S1, . . . , Sm) that allows the
roots of the fragments to have the corresponding de-
pendents. Similar automatic rules are defined for the
directed rules.

The category++ is used to indicate dependent
words that do not have any linguistically motivated
syntactic function. The root rule*(++) states that
this special category can act as the root of the whole
dependency tree. In addition to the root function ex-
pressed by that rule, an optional dependent++? is
appended to the end of every dependency rule. This
connects fragments to their left contexts.

With the above extensions, all sentences will have
at least one complete tree as a parse. A parse with
some dependents of the type++ are linguistically in-
ferior to parses that do not have such dependents or
have fewer of them. Removing such inferior analy-
ses from the output of the parser is proposed in Sec-
tion 4.

3.4 The Formal Semantics of the Interface

Let there ber dependency rules. For each rulei,
i ∈ {1, ..., r} of type (10), let

Fi = M0, (14)

Gi = S−1\ . . . Sp\ S0> /Sm.../S1, (15)

whereS−1\, . . . , Sp\, S0>, /Sm, . . . , /S1 ∈ Γ. For
each rule of type (11),S0> in (15) is replaced with
<S0. Rules with optional dependents are expanded
into subrules, and every undirected rule (12) splits
into two directed subrules.

In (16), Iface is a finite-state relation that injects
dependency brackets to the parses according to the
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dependency rules.

Iface= Intro ◦ Chk, (16)

Intro = (Id(Ω∗Π∗)(ǫ×Γ∗)Id(#))∗, (17)

Chk= Proj1(Match◦ Rules), (18)

Rules= Id (∪ri=1FiGi#)
∗ . (19)

Match= (Id(Ω∗) Mid Id(Ω∗) Tag∗ Id(#))∗ (20)

Mid = Id(ǫ) ∪ (Ω∗×%), (21)

Tag= Id(Π) ∪ (Π×ǫ). (22)

Iface is the composition of relations Intro and Chk.
Relation Intro inserts dependency brackets between
the morphological analysis of each token and the fol-
lowing token boundary. Relation Chk verifies that
the inserted brackets are supported by dependency
rules that are represented by relation Rules.

In order to allow generalizations in the specifi-
cation of morphological categories, the relation In-
tro does not match dependency rules directly, but
through a filter. This filter, Match, optionally re-
places the middle part of each lexeme with% and ar-
bitrary morphological feature labels with the empty
string.

In addition to the dependency rules, we need to
define the semantics of the root rules. LetH be the
set of the categories having a root rule. The category
of the root word will be indicated in the dependency
bracketing as an unmatched bracket. It is checked by
relation Root= Id(H#) that replaces Root= Id(#)
in the composition formulas (1) .

3.5 An Efficient Implementation

The definition of Iface gives rise to a naive parser
implementation that is based on the formula

Parses(x) = MIx ◦ Chk◦ Synn−1, (23)

MIx = Id(x) ◦Morph◦ Intro. (24)

The naive implementation is inefficient in practice.
The main efficiency problem is that the state com-
plexity of relation Chk can be exponential to the
number of rules. To avoid this, we replace it with
Chkx, a restriction of Chk. This restriction is com-
puted lazily when the input is known.

Parses(x) = MIx ◦ Chkx ◦ Synn−1, (25)

Chkx = Proj1(Matchx◦Rules) (26)

Matchx = Proj2(MIx) ◦Match. (27)

In this improved method, the application of Iface de-
mands only linear space according to the number of
rules. This method is also fast to apply to the input,
as far as the morphology-syntax interface is con-
cerned. Meanwhile, one efficient implementation of
Synn−1 is already provided in (Yli-Jyr̈a, 2012).

4 The Most Specific Parse

The parsing method of (Yli-Jyrä, 2012) builds the
parse forest efficiently using several transducers,
but there is no guarantee that the whole set of
parses could be extracted efficiently from the com-
pact representation constructed during the recogni-
tion phase. We will now assume, however, that
the number of parses is, in practice, substantially
smaller than in the theoretically possible worst case.
Moreover, it is even more important to assume that
the set of parses is compactly packed into a finite au-
tomaton. These two assumptions let us proceed by
refining the parse forest without using weights such
as in (Yli-Jyr̈a, 2012).

In the following, we restrict the parse forest to
those parses that have the smallest number of ’linear
successor’ dependencies (++). The number of such
dependencies is compared with a finite-state relation
Cp⊆ (Γ∪{#})∗×(Γ∪{#})∗ constructed as follows:

Σ′ = Σ− {++>}, (28)

Cp= Mapi◦(Id(++>∗)(ǫ×++>)+)◦Map−1
i , (29)

Mapi = (Id(++>) ∪ (Σ′×ǫ))∗. (30)

In practice, the reduction of the parse forest is pos-
sible only if the parse forest Proj2(Parses(x)) is rec-
ognized by a sufficiently small finite-state automa-
ton that can then be operated in Formula (33). The
parses that minimize the number of ’linear succes-
sor’ dependencies are obtained as the output of the
relation Parses′(x).

Parses′(x) = MIx ◦ Chkx ◦ Tx,1, (31)

Tx,0 = Proj2(Parses(x)), (32)

Tx,1 = Tx,0 − Proj2(Tx,0 ◦ Cp◦ Tx,0). (33)

This restriction technique could be repeatedly ap-
plied to further levels of specificity. For example,
lexically motivated complements could be preferred
over adjuncts and other grammatically possible de-
pendents.
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5 Evaluation and Discussion

5.1 Elegance

We have retained most of the elegancy in the
contracting finite-state dependency parser (Yli-Jyrä,
2012). The changes introduced in this paper are
modular and implementable with standard opera-
tions on finite-state transducers.

Our refined design for a parser can be imple-
mented largely in similar lines as the general ap-
proach (Yli-Jyr̈a, 2012) up to the point when the
parses are extracted from the compact parse forest.

Parsing by arc contractions is closely related
to the idea of reductions with restarting automata
(Plátek et al., 2003).

5.2 Coverage

The representation of the parses can be extended to
handle word-internal token boundaries, which facil-
itates the adequate treatment of agglutinative lan-
guages, cf. (Oflazer, 2003).

The limit for nested brackets is based on the psy-
cholinguistic reality (Miller, 1956; Kornai and Tuza,
1992) and the observed tendency for short depen-
dencies (Lin, 1995; Eisner and Smith, 2005) in nat-
ural language.

The same general design can be used to produce
non-projective dependency analyses as required by
many European languages. The crossing dependen-
cies can be assigned to two or more planes as sug-
gested in (Yli-Jyr̈a, 2012). 2-planar bracketing al-
ready achieves very high recall in practice (Gómez-
Rodŕıguez and Nivre, 2010).

5.3 Ambiguity Management

Oflazer (2003) uses the lenient composition opera-
tion to compute the number of bottom-up fragments
in incomplete parses. The current solution improves
above this by supporting gapped fragments and un-
restricted counting of the graph components.

Like in another extended finite-state approach
(Oflazer, 2003), the ambiguity in the output of our
parsing method can be reduced by removing parses
with high total link length and by applying filters
that enforce barrier constraints to the dependency
links.

5.4 Computational Complexity

Thanks to dynamically applied finite-state opera-
tions and the representation of feature combinations
as strings rather than regular languages, the depen-
dency rules can be compiled quickly into the trans-
ducers used by the parser. For example, the actual
specifications of dependency rules are now com-
piled into a linear-size finite-state transducer, Chk.
The proposed implementation for the morphology-
syntax interface is, thus, a significant improvement
in comparison to the common approach that com-
piles and combines replacement rules into a single
transducer where the morphological conditions of
the rules are potentially mixed in a combinatorial
manner.

Although we have started to write an experimental
grammar, we do not exactly know how many rules
a mature grammar will contain. Lexicalization of
the rules will increase the number of rules signifi-
cantly. The number of syntactic categories will in-
crease even more if complements are lexicalized.

5.5 Robustness

In case the grammar does not fully disambiguate or
build a complete dependency structure, the parser
should be able to build and produce a partial anal-
ysis. (In interactive treebanking, it would be useful
if an additional knowledge source, e.g. a human, can
be used to provide additional information to help the
parser carry on the analysis to a complete structure.)

The current grammar system indeed assumes that
it can build complete trees for all input sentences.
This assumption is typical for all generative gram-
mars, but seems to contradict the requirement of ro-
bustness. To support robust parsing, we have now
proposed a simple technique where partial analyses
are connected into a tree with the “linear succes-
sor” links. The designed parser tries its best to avoid
these underspecific links, but uses the smallest pos-
sible number of them to connect the partial analyses
into a tree if more grammatical parses are not avail-
able.

5.6 Future Work

Although Oflazer (2003) does not report significant
problems with long sentences, it may be difficult to
construct a single automaton for the parse forest of a

114



sentence that contains many words. In the future,
a more efficient method for finding the most spe-
cific parse from the forest can be worked out us-
ing weighted finite-state automata. Such a method
would combine the approaches of the companion pa-
per (Yli-Jyr̈a, 2012) and the current paper.

It seems interesting to study further how the speci-
ficity reasoning and statistically learned weights
could complement each other in order to find the
best analyses. Moreover, the parser can be modified
in such a way that debugging information is pro-
duced. This could be very useful, especially when
learning contractions that handle the crossing depen-
dencies of non-projective trees.

A dependency parser should enable the building
of multiple types of analyses, e.g. to account for
syntactic and semantic dependencies. Also adding
more structure to the syntactic categories could be
useful.

6 Conclusions

The current theoretical work paves the way for a full
parser implementation. The parser should be able to
cope with large grammars to enable efficient devel-
opment, testing and application cycles.

The current work has sketched an expressive and
compact formalism and its efficient implementation
for the morphology-syntax interface of the contract-
ing dependency parser. In addition, the work has
elaborated strategies that help to make the grammar
more robust without sacrificing the optimal speci-
ficity of the analysis.
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Abstract

Minimum Error Rate Training (MERT) is a
method for training the parameters of a log-
linear model. One advantage of this method
of training is that it can use the large num-
ber of hypotheses encoded in a translation lat-
tice as training data. We demonstrate that the
MERT line optimisation can be modelled as
computing the shortest distance in a weighted
finite-state transducer using a tropical polyno-
mial semiring.

1 Introduction

Minimum Error Rate Training (MERT) (Och, 2003)
is an iterative procedure for training a log-linear sta-
tistical machine translation (SMT) model (Och and
Ney, 2002). MERT optimises model parameters
directly against a criterion based on an automated
translation quality metric, such as BLEU (Papineni
et al., 2002). Koehn (2010) provides a full descrip-
tion of the SMT task and MERT.

MERT uses a line optimisation procedure (Press
et al., 2002) to identify a range of points along a line
in parameter space that maximise an objective func-
tion based on the BLEU score. A key property of the
line optimisation is that it can consider a large set of
hypotheses encoded as a weighted directed acyclic
graph (Macherey et al., 2008), which is called a lat-
tice. The line optimisation procedure can also be ap-
plied to a hypergraph representation of the hypothe-
ses (Kumar et al., 2009).

∗The work reported in this paper was carried out while the
author was at the University of Cambridge.

It has been noted that line optimisation over a lat-
tice can be implemented as a semiring of sets of lin-
ear functions (Dyer et al., 2010). Sokolov and Yvon
(2011) provide a formal description of such a semir-
ing, which they denote the MERT semiring. The dif-
ference between the various algorithms derives from
the differences in their formulation and implemen-
tation, but not in the objective they attempt to opti-
mise.

Instead of an algebra defined in terms of trans-
formations of sets of linear functions, we propose
an alternative formulation using the tropical polyno-
mial semiring (Speyer and Sturmfels, 2009). This
semiring provides a concise formalism for describ-
ing line optimisation, an intuitive explanation of the
MERT shortest distance, and draws on techniques
in the currently active field of Tropical Geometry
(Richter-Gebert et al., 2005) 1.

We begin with a review of the line optimisation
procedure, lattice-based MERT, and the weighted
finite-state transducer formulation in Section 2. In
Section 3, we introduce our novel formulation
of lattice-based MERT using tropical polynomial
weights. Section 4 compares the performance of our
approach with k-best and lattice-based MERT.

2 Minimum Error Rate Training

Following Och and Ney (2002), we assume that
we are given a tuning set of parallel sentences
{(r1, f1), ..., (rS , fS)}, where rs is the reference
translation of the source sentence fs. We also as-
sume that sets of hypotheses Cs = {es,1, ..., es,K}

1An associated technical report contains an extended discus-
sion of our approach (Waite et al., 2011)
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are available for each source sentence fs.
Under the log-linear model formulation with fea-

ture functions hM1 and model parameters λM1 , the
most probable translation in a set Cs is selected as

ê(fs;λ
M
1 ) = argmax

e∈Cs

{
M∑

m=1

λmhm(e, fs)

}
. (1)

With an error function of the form E(rS1 , e
S
1 ) =∑S

s=1E(rs, es), MERT attempts to find model pa-
rameters to minimise the following objective:

λ̂M1 = argmin
λM1

{
S∑

s=1

E(rs, ê(fs;λ
M
1 ))

}
. (2)

Note that for MERT the hypotheses set Cs is
a k-best list of explicitly enumerated hypotheses,
whereas lattice-based MERT uses a larger space.

2.1 Line Optimisation

Although the objective function in Eq. (2) cannot be
solved analytically, the line optimisation procedure
of Och (2003) can be used to find an approxima-
tion of the optimal model parameters. Rather than
evaluating the decision rule in Eq. (1) over all pos-
sible points in parameter space, the line optimisa-
tion considers a subset of points defined by the line
λM1 +γdM1 , where λM1 corresponds to an initial point
in parameter space and dM1 is the direction along
which to optimise. Eq. (1) can be rewritten as:

ê(fs; γ) = argmax
e∈Cs

{
(λM1 + γdM1 )ThM1 (e, f s)

}

= argmax
e∈Cs

{∑

m

λmhm(e, f s)

︸ ︷︷ ︸
a(e,fs)

+γ
∑

m

dmhm(e, f s)

︸ ︷︷ ︸
b(e,fs)

}

= argmax
e∈Cs

{a(e, f s) + γb(e, f s)︸ ︷︷ ︸
`e(γ)

} (3)

This decision rule shows that each hypothesis
e ∈ Cs is associated with a linear function of γ:
`e(γ) = a(e, f s) + γb(e, f s), where a(e, f s) is the
y-intercept and b(e, f s) is the gradient. The opti-
misation problem is further simplified by defining a
subspace over which optimisation is performed. The
subspace is found by considering a form of the func-
tion in Eq. (3) defined with a range of real numbers
(Macherey et al., 2008; Och, 2003):

Env(f) = max
e∈C
{a(e, f) + γb(e, f)︸ ︷︷ ︸

`e(γ)

: γ ∈ R} (4)

γ

Env(fs; γ)

`e1
`e2 `e3

`e4

γ

E(rs, ê(fs; γ))
e4

e3

e1

γ1 γ2

Figure 1: An upper envelope and projected error. Note
that the upper envelope is completely defined by hypothe-
ses e4, e3, and e1, together with the intersection points γ1
and γ2 (after Macherey et al. (2008), Fig. 1).

For any value of γ the linear functions `e(γ) associ-
ated with Cs take (up to) K values. The function in
Eq. (4) defines the ‘upper envelope’ of these values
over all γ. The upper envelope has the form of a con-
tinuous piecewise linear function in γ. The piece-
wise linear function can be compactly described by
the linear functions which form line segments and
the values of γ at which they intersect. The example
in the upper part of Figure 1 shows how the upper
envelope associated with a set of four hypotheses
can be represented by three associated linear func-
tions and two values of γ. The first step of line op-
timisation is to compute this compact representation
of the upper envelope.

Macherey et al. (2008) use methods from com-
putational geometry to compute the upper envelope.
The SweepLine algorithm (Bentley and Ottmann,
1979) computes the upper envelope from a set of lin-
ear functions with a complexity of O(K log(K)).

Computing the upper envelope reduces the run-
time cost of line optimisation as the error function
need only be evaluated for the subset of hypotheses
in Cs that contribute to the upper envelope. These
errors are projected onto intervals of γ, as shown in
the lower part of Figure 1, so that Eq. (2) can be
readily solved.

2.2 Incorporation of Line Optimisation into
MERT

The previous algorithm finds the upper envelope
along a particular direction in parameter space over
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a hypothesis set Cs. The line optimisation algorithm
is then embedded within a general optimisation pro-
cedure. A common approach to MERT is to select
the directions using Powell’s method (Press et al.,
2002). A line optimisation is performed on each co-
ordinate axis. The axis giving the largest decrease
in error is replaced with a vector between the initial
parameters and the optimised parameters. Powell’s
method halts when there is no decrease in error.

Instead of using Powell’s method, the Downhill
Simplex algorithm (Press et al., 2002) can be used
to explore the criterion in Eq. (2). This is done by
defining a simplex in parameter space. Directions
where the error count decreases can be identified by
considering the change in error count at the points
of the simplex. This has been applied to parameter
searching over k-best lists (Zens et al., 2007).

Both Powell’s method and the Downhill Simplex
algorithms are approaches based on heuristics to se-
lect lines λM1 + γdM1 . It is difficult to find theoret-
ically sound reasons why one approach is superior.
Therefore Cer et al. (2008) instead choose the di-
rection vectors dM1 at random. They report that this
method can find parameters that are as good as the
parameters produced by more complex algorithms.

2.3 Lattice Line Optimisation
Macherey et al. (2008) describe a procedure for con-
ducting line optimisation directly over a word lattice
encoding the hypotheses in Cs. Each lattice edge is
labelled with a word e and has a weight defined by
the vector of word specific feature function values
hM1 (e, f) so that the weight of a path in the lattice
is found by summing over the word specific feature
function values on that path. Given a line through
parameter space, the goal is to extract from a lattice
its upper envelope and the associated hypotheses.

Their algorithm proceeds node by node through
the lattice. Suppose that for a state q the upper enve-
lope is known for all the partial hypotheses on all
paths leading to q. The upper envelope defines a
set of functions {`ẽ1(γ), ..., `ẽN (γ)} over the partial
hypotheses ẽn. Two operations propagate the upper
envelope to other lattice nodes.

We refer to the first operation as the ‘extend’ op-
eration. Consider a single edge from state q to state
q′. This edge defines a linear function associated
with a single word `e(γ). A path following this edge

transforms all the partial hypotheses leading to q by
concatenating the word e. The upper envelope as-
sociated with the edge from q to q′ is changed by
adding `e(γ) to the set of linear functions. The in-
tersection points are not changed by this operation.

The second operation is a union. Suppose q′

has another incoming edge from a state q′′ where
q 6= q′′. There are now two upper envelopes rep-
resenting two sets of linear functions. The first up-
per envelope is associated with the paths from the
initial state to state q′ via the state q. Similarly the
second upper envelope is associated with paths from
the initial state to state q′ via the state q′′. The upper
envelope that is associated with all paths from the
initial state to state q′ via both q and q′′ is the union
of the two sets of linear functions. This union is no
longer a compact representation of the upper enve-
lope as there may be functions which never achieve
a maximum for any value of γ. The SweepLine al-
gorithm (Bentley and Ottmann, 1979) is applied to
the union to discard redundant linear functions and
their associated hypotheses (Macherey et al., 2008).

The union and extend operations are applied to
states in topological order until the final state is
reached. The upper envelope computed at the final
state compactly encodes all the hypotheses that max-
imise Eq. (1) along the line λM1 + γdM1 . Macherey’s
theorem (Macherey et al., 2008) states that an upper
bound for the number of linear functions in the up-
per envelope at the final state is equal to the number
of edges in the lattice.

2.4 Line Optimisation using WFSTs
Formally, a weighted finite-state transducer (WFST)
T = (Σ,∆, Q, I, F,E, λ, ρ) over a semiring
(K,⊕,⊗, 0̄, 1̄) is defined by an input alphabet Σ, an
output alphabet ∆, a set of states Q, a set of initial
states I ⊆ Q, a set of final states F ⊆ Q, a set
of weighted transitions E, an initial state weight as-
signment λ : I → K, and a final state weight assign-
ment ρ : F → K (Mohri et al., 2008). The weighted
transitions of T form the setE ⊆ Q×Σ×∆×K×Q,
where each transition includes a source state fromQ,
input symbol from Σ, output symbol from ∆, cost
from the weight set K, and target state from Q.

For each state q ∈ Q, let E[q] denote the set of
edges leaving state q. For each transition e ∈ E[q],
let p[e] denote its source state, n[e] its target state,
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and w[e] its weight. Let π = e1 · · · eK denote a
path in T from state p[e1] to state n[eK ], so that
n[ek−1] = p[ek] for k = 2, . . . ,K. The weight as-
sociated by T to path π is the generalised product ⊗
of the weights of the individual transitions:

w[π] =

K⊗

k=1

w[ek] = w[e1]⊗ · · · ⊗ w[eK ] (5)

If P(q) denotes the set of all paths in T start-
ing from an initial state in I and ending in state q,
then the shortest distance d[q] is defined as the gen-
eralised sum ⊕ of the weights of all paths leading to
q (Mohri, 2002):

d[q] = ⊕π∈P(q)w[π] (6)

For some semirings, such as the tropical semir-
ing, the shortest distance is the weight of the short-
est path. For other semirings, the shortest distance
is associated with multiple paths (Mohri, 2002); for
these semirings there are shortest distances but need
not any be shortest paths. That will be the case in
what follows. However, the shortest distance algo-
rithms rely only on general properties of semirings,
and once the semiring is specified, the general short-
est distance algorithms can be directly employed.

Sokolov and Yvon (2011) define the MERT
semiring based on operations described in the pre-
vious section. The extend operation is used for the
generalised product ⊗. The union operation fol-
lowed by an application of the SweepLine algorithm
becomes the generalised sum ⊕. The word lattice
is then transformed for an initial parameter λM1 and
direction dM1 . The weight of edge is mapped from
a word specific feature function hM1 (e, f) to a word
specific linear function `e(γ). The weight of each
path is the generalised product ⊗ of the word spe-
cific feature linear functions. The upper envelope is
the shortest distance of all the paths in the WFST.

3 The Tropical Polynomial Semiring
In this section we introduce the tropical polynomial
semiring (Speyer and Sturmfels, 2009) as a replace-
ment for the MERT semiring (Sokolov and Yvon,
2011). We then provide a full description and a
worked example of our MERT algorithm.

3.1 Tropical Polynomials
A polynomial is a linear combination of a finite
number of non-zero monomials. A monomial con-

sists of a real valued coefficient multiplied by one or
more variables, and these variables may have expo-
nents that are non-negative integers. In this section
we limit ourselves to a description of a polynomial
in a single variable. A polynomial function is de-
fined by evaluating a polynomial:

f(γ) = anγ
n + an−1γn−1 + · · ·+ a2γ

2 + a1γ+ a0

A useful property of these polynomials is that they
form a ring2 (Cox et al., 2007) and therefore are can-
didates for use as weights in WFSTs.

Speyer and Sturmfels (2009) apply the defini-
tion of a classical polynomial to the formulation of
a tropical polynomial. The tropical semiring uses
summation for the generalised product ⊗ and a min
operation for the generalised sum ⊕. In this form,
let γ be a variable that represents an element in the
tropical semiring weight set R ∪ {−∞,+∞}. We
can write a monomial of γ raised to an integer expo-
nent as

γi = γ ⊗ · · · ⊗ γ︸ ︷︷ ︸
i

where i is a non-negative integer. The monomial
can also have a constant coefficient: a⊗ γi, a ∈ R.
We can define a function that evaluates a tropical
monomial for a particular value of γ. For example,
the tropical monomial a⊗ γi is evaluated as:

f(γ) = a⊗ γi = a+ iγ

This shows that a tropical monomial is a linear
function with the coefficient a as its y-intercept and
the integer exponent i as its gradient. A tropical
polynomial is the generalised sum of tropical mono-
mials where the generalised sum is evaluated using
the min operation. For example:

f(γ) = (a⊗ γi)⊕ (b⊗ γj) = min(a+ iγ, b+ jγ)

Evaluating tropical polynomials in classical arith-
metic gives the minimum of a finite collection of
linear functions.

Tropical polynomials can also be multiplied by a
monomial to form another tropical polynomial. For
example:

f(γ) = [(a⊗ γi)⊕ (b⊗ γj)]⊗ (c⊗ γk)
= [(a+ c)⊗ γi+k]⊕ [(b+ c)⊗ γj+k]
= min((a+ c) + (i+ k)γ, (b+ c) + (j + k)γ)

2A ring is a semiring that includes negation.
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Our re-formulation of Eq. (4) negates the feature
function weights and replaces the argmax by an
argmin. This allows us to keep the usual formu-
lation of tropical polynomials in terms of the min
operation when converting Eq. (4) to a tropical rep-
resentation. What remains to be addressed is the role
of integer exponents in the tropical polynomial.

3.2 Integer Realisations for Tropical
Monomials

In the previous section we noted that the function
defined by the upper envelope in Eq. (4) is simi-
lar to the function represented by a tropical poly-
nomial. A significant difference is that the formal
definition of a polynomial only allows integer expo-
nents, whereas the gradients in Eq. (4) are real num-
bers. The upper envelope therefore encodes a larger
set of model parameters than a tropical polynomial.

To create an equivalence between the upper enve-
lope and tropical polynomials we can approximate
the linear functions {`e(γ) = a(e, f s)+γ · b(e, f s)}
that compose segments of the upper envelope. We
define ã(e, f s) = [a(e, f s) · 10n]int and b̃(e, f s) =
[b(e, f s)·10n]int where [x]int denotes the integer part
of x. The approximation to `e(γ) is:

`e(γ) ≈ ˜̀
e(γ) =

ã(e, f s)

10n
+ γ · b̃(e, f s)

10n
(7)

The result of this operation is to approximate
the y-intercept and gradient of `e(γ) to n decimal
places. We can now represent the linear function
˜̀
e(γ) as the tropical monomial−ã(e, fs)⊗γ−b̃(e,fs).

Note that ã(e, fs) and b̃(e, fs) are negated since trop-
ical polynomials define the lower envelope as op-
posed to the upper envelope defined by Eq. (4).

The linear function represented by the tropical
monomial is a scaled version of `e(γ), but the up-
per envelope is unchanged (to the accuracy allowed
by n). If for a particular value of γ, `ei(γ) > `ej (γ),
then ˜̀

ei(γ) > ˜̀
ej (γ). Similarly, the boundary

points are unchanged: if `ei(γ) = `ej (γ), then
˜̀
ei(γ) = ˜̀

ej (γ). Setting n to a very large value re-
moves numerical differences between the upper en-
velope and the tropical polynomial representation,
as shown by the identical results in Table 1.

Using a scaled version of `e(γ) as the basis for a
tropical monomial may cause negative exponents to
be created. Following Speyer and Sturmfels (2009),

γ

f(γ)

0

a⊗ γi

(a⊗ γi)⊕ (b⊗ γj)⊕ (c⊗ γk)

b⊗ γj
c⊗ γk

Figure 2: Redundant terms in a tropical polynomial. In
this case (a⊗γi)⊕(b⊗γj)⊕(c⊗γk) = (a⊗γi)⊕(c⊗γk).

we widen the definition of a tropical polynomial to
allow for these negative exponents.

3.3 Canonical Form of a Tropical Polynomial

We noted in Section 2.1 that linear functions induced
by some hypotheses do not contribute to the upper
envelope and can be discarded. Terms in a tropi-
cal polynomial can have similar behaviour. Figure
2 plots the lines associated with the three terms of
the example polynomial function f(γ) = (a⊗γi)⊕
(b⊗γj)⊕(c⊗γk). We note that the piecewise linear
function can also be described with the polynomial
f(γ) = (a⊗γi)⊕(c⊗γk). The latter representation
is simpler but equivalent.

Having multiple representations of the same poly-
nomial causes problems when implementing the
shortest distance algorithm defined by Mohri (2002).
This algorithm performs an equality test between
values in the semiring used to weight the WFST. The
behaviour of the equality test is ambiguous when
there are multiple polynomial representations of the
same piecewise linear function. We therefore re-
quire a canonical form of a tropical polynomial so
that a single polynomial represents a single function.
We define the canonical form of a tropical polyno-
mial to be the tropical polynomial that contains only
the monomial terms necessary to describe the piece-
wise linear function it represents.

We remove redundant terms from a tropical poly-
nomial after computing the generalised sum. For a
tropical polynomial of one variable we can take ad-
vantage of the equivalence with Lattice MERT and
compute the canonical form using the SweepLine al-
gorithm (Bentley and Ottmann, 1979). Each term
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corresponds to a linear function; linear functions
that do not contribute to the upper envelope are dis-
carded. Only monomials which correspond to the
remaining linear functions are kept in the canonical
form. The canonical form of a tropical polynomial
thus corresponds to a unique and minimal represen-
tation of the upper envelope.

3.4 Relationship to the Tropical Semiring

Tropical monomial weights can be transformed into
regular tropical weights by evaluating the tropical
monomial for a specific value of γ. For example, a
tropical polynomial evaluated at γ = 1 corresponds
to the tropical weight:

f(1) = −ã(e, fs)⊗ 1−b̃(e,fs) = −ã(e, fs)− b̃(e, fs)
Each monomial term in the tropical polynomial
shortest distance represents a linear function. The
intersection points of these linear functions define
intervals of γ (as in Fig. 1). This suggests an alter-
nate explanation for what the shortest distance com-
puted using the tropical polynomial semiring rep-
resents. Conceptually, there is a continuum of lat-
tices which have identical edges and vertices but
with varying, real-valued edge weights determined
by values of γ ∈ R, so that each lattice in the contin-
uum is indexed by γ. The tropical polynomial short-
est distance agrees with the shortest distance through
each lattice in the continuum.

Our alternate explanation is consistent with the
Theorem of Macherey (Section 2.3), as there could
never be more paths than edges in the lattice. There-
fore the upper bound for the number of monomial
terms in the tropical polynomial shortest distance is
the number of edges in the input lattice.

We can use the mapping to the tropical semiring
to compute the error surface. Let us assume we have
n + 1 intervals separated by n interval boundaries.
We use the midpoint of each interval to transform the
lattice of tropical monomial weights into a lattice of
tropical weights. The sequence of words that label
the shortest path through the transformed lattice is
the MAP hypothesis for the interval. The shortest
path can be extracted using the WFST shortest path
algorithm (Mohri and Riley, 2002). As a technical
matter, the midpoints of the first interval [−∞, γ1)
and last interval [γn,∞) are not defined. We there-
fore evaluate the tropical polynomial at γ = γ1 − 1

and γ = γn + 1 to find the MAP hypothesis in the
first and last intervals, respectively.

3.5 The TGMERT Algorithm

We now describe an alternative algorithm to Lat-
tice MERT that is formulated using the tropical
polynomial shortest distance in one variable. We
call the algorithm TGMERT, for Tropical Geome-
try MERT. As input to this procedure we use a word
lattice weighted with word specific feature functions
hM1 (e, f), a starting point λM1 , and a direction dM1 in
parameter space.

1. Convert the word specific feature functions
hM1 (e, f) to a linear function `e(γ) using λM1
and dM1 , as in Eq. (3).

2. Convert `e(γ) to ˜̀
e(γ) by approximating y-

intercepts and gradients to n decimal places, as
in Eq. (7).

3. Convert ˜̀
e(γ) in Eq. (7) to the tropical mono-

mial −ã(e, fs)⊗ γ−b̃(e,fs).
4. Compute the WFST shortest distance to the exit

states (Mohri, 2002) with generalised sum ⊕
and generalised product ⊗ defined by the trop-
ical polynomial semiring. The resulting trop-
ical polynomial represents the upper envelope
of the lattice.

5. Compute the intersection points of the linear
functions corresponding to the monomial terms
of the tropical polynomial shortest distance.
These intersection points define intervals of γ
in which the MAP hypothesis does not change.

6. Using the midpoint of each interval convert the
tropical monomial−ã(e, fs)⊗γ−b̃(e,fs) to a reg-
ular tropical weight. Find the MAP hypothesis
for this interval by extracting the shortest path
using the WFST shortest path algorithm (Mohri
and Riley, 2002).

3.6 TGMERT Worked Example

This section presents a worked example showing
how we can use the TGMERT algorithm to compute
the upper envelope of a lattice. We start with a three
state lattice with a two dimensional feature vector
shown in the upper part of Figure 3.

We want to optimise the parameters along a line
in two-dimensional feature space. Suppose the ini-
tial parameters are λ21 = [0.7, 0.4] and the direction
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0 1 2

z/[−0.2, 0.7]′

x/[−1.4, 0.3]′

y/[−0.9,−0.8]′

z/[−0.2,−0.6]′

0 1 2

z/−14⊗ γ−29

x/86⊗ γ27

y/95⊗ γ67
z/38⊗ γ36

Figure 3: The upper part is a translation lattice with 2-
dimensional log feature vector weights hM1 (e, f) where
M = 2. The lower part is the lattice from the upper part
with weights transformed into tropical monomials.

is d21 = [0.3, 0.5]. Step 1 of the TGMERT algorithm
(Section 3.5) maps each edge weight to a word spe-
cific linear function. For example, the weight of the
edge labelled “x” between states 0 and 1 is trans-
formed as follows:

`e(γ) =
2∑

m=1

λmh
M
1 (e, f)

︸ ︷︷ ︸
a(e,f)

+γ

2∑

m=1

dmh
M
1 (e,fs)

︸ ︷︷ ︸
b(e,f)

= 0.7 · −1.4 + 0.4 · 0.3︸ ︷︷ ︸
a(e,f)

+γ · 0.3 · −1.4 + 0.5 · 0.3︸ ︷︷ ︸
b(e,f)

= −0.86− 0.27γ

Step 2 of the TGMERT algorithm converts the
word specific linear functions into tropical mono-
mial weights. Since all y-intercepts and gradients
have a precision of two decimal places, we scale the
linear functions `e(γ) by 102 and negate them to cre-
ate tropical monomials (Step 3). The edge labelled
“x” now has the monomial weight of 86⊗ γ27. The
transformed lattice with weights mapped to the trop-
ical polynomial semiring is shown in the lower part
of Figure 3.

We can now compute the shortest distance
(Mohri, 2002) from the transformed example lattice
with tropical monomial weights. There are three
unique paths through the lattice corresponding to
three distinct hypotheses. The weights associated
with these hypotheses are:

−14⊗ γ−29 ⊗ 38⊗ γ36 = 24⊗ γ7 z z

86⊗ γ27 ⊗ 38⊗ γ36 = 122⊗ γ63 x z

95⊗ γ67 ⊗ 38⊗ γ36 = 133⊗ γ103 y z

0 1 2

z/-2.4

x/75.2

y/68.2

z/23.6

0 1 2

z/55.6

x/21.2

y/-65.8

z/-48.4

Figure 4: The lattice in the lower part of Figure 3 trans-
formed to regular tropical weights: γ = −0.4 (top) and
γ = −1.4 (bottom).

The shortest distance from initial to final state is
the generalised sum of the path weights: (24⊗γ7)⊕
(133⊗ γ103). The monomial term 122⊗ γ63 corre-
sponding to “x z” can be dropped because it is not
part of the canonical form of the polynomial (Sec-
tion 3.3). The shortest distance to the exit state can
be represented as the minimum of two linear func-
tions: min(24 + 7γ, 133 + 103γ).

We now wish to find the hypotheses that define
the error surface by performing Steps 5 and 6 of the
TGMERT algorithm. These two linear functions de-
fine two intervals of γ. The linear functions intersect
at γ ≈ −1.4; at this value of γ the MAP hypothesis
changes. Two lattices with regular tropical weights
are created using γ = −0.4 and γ = −2.4. These
are shown in Figure 4. For the lattice shown in the
upper part the value for the edge labelled “x” is com-
puted as 86⊗−0.427 = 86 + 0.4 · 27 = 75.2.

When γ = −0.4 the lattice in the upper part in
Figure 4 shows that the shortest path is associated
with the hypothesis “z z”, which is the MAP hy-
pothesis for the range γ < 1.4. The lattice in the
lower part of Figure 4 shows that when γ = −2.4
the shortest path is associated with the hypothesis
“y z”, which is the MAP hypothesis when γ > 1.4.

3.7 TGMERT Implementation

TGMERT is implemented using the OpenFst Toolkit
(Allauzen et al., 2007). A weight class is added
for tropical polynomials which maintains them in
canonical form. The ⊗ and ⊕ operations are im-
plemented for piece-wise linear functions, with the
SweepLine algorithm included as discussed.
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Iteration Arabic-to-English
MERT LMERT TGMERT

Tune Test Tune Test Tune Test

1 36.2 36.2 36.2
42.1 40.9 39.7 38.9 39.7 38.9

2 42.0 44.5 44.5
45.1 43.2 45.8 44.3 45.8 44.3

3 44.5
45.5 44.1

4 45.6
45.7 44.0

Iteration Chinese-to-English
MERT LMERT TGMERT

Tune Test Tune Test Tune Test

1 19.5 19.5 19.5
25.3 16.7 29.3 22.6 29.3 22.6

2 16.4 22.5 22.5
18.9 23.9 31.4 32.1 31.4 32.1

3 23.6 31.6 31.6
28.2 29.1 32.2 32.5 32.2 32.5

4 29.2 32.2 32.2
31.3 31.5 32.2 32.5 32.2 32.5

5 31.3
31.8 32.1

6 32.1
32.4 32.3

7 32.4
32.4 32.3

Table 1: GALE AR→EN and ZH→EN BLEU scores
by MERT iteration. BLEU scores at the initial and final
points of each iteration are shown for the Tune sets.

4 Experiments

We compare feature weight optimisation using k-
best MERT (Och, 2003), lattice MERT (Macherey
et al., 2008), and tropical geometry MERT. We refer
to these as MERT, LMERT, and TGMERT, resp.

We investigate MERT performance in the context
of the Arabic-to-English GALE P4 and Chinese-
to-English GALE P3 evaluations3. For Arabic-to-
English translation, word alignments are generated
over around 9M sentences of GALE P4 parallel text.
Following de Gispert et al. (2010b), word align-
ments for Chinese-to-English translation are trained
from a subset of 2M sentences of GALE P3 paral-
lel text. Hierarchical rules are extracted from align-
ments using the constraints described in (Chiang,
2007) with additional count and pattern filters (Igle-

3See http://projects.ldc.upenn.edu/gale/data/catalog.html

sias et al., 2009b). We use a hierarchical phrase-
based decoder (Iglesias et al., 2009a; de Gispert et
al., 2010a) which directly generates word lattices
from recursive translation networks without any in-
termediate hypergraph representation (Iglesias et al.,
2011). The LMERT and TGMERT optimisation al-
gorithms are particularly suitable for this realisation
of hiero in that the lattice representation avoids the
need to use the hypergraph formulation of MERT
given by Kumar et al. (2009).

MERT optimises the weights of the following fea-
tures: target language model, source-to-target and
target-to-source translation models, word and rule
penalties, number of usages of the glue rule, word
deletion scale factor, source-to-target and target-to-
source lexical models, and three count-based fea-
tures that track the frequency of rules in the parallel
data (Bender et al., 2007). In both Arabic-to-English
and Chinese-to-English experiments all MERT im-
plementations start from a flat feature weight initial-
ization. At each iteration new lattices and k-best lists
are generated from the best parameters at the previ-
ous iteration, and each subsequent iteration includes
100 hypotheses from the previous iteration. For
Arabic-to-English we consider an additional twenty
random starting parameters at every iteration. All
translation scores are reported for the IBM imple-
mentation of BLEU using case-insensitive match-
ing. We report BLEU scores for the Tune set at the
start and end of each iteration.

The results for Arabic-to-English and Chinese-
to-English are shown in Table 1. Both TGMERT
and LMERT converge to a small gain over MERT
in fewer iterations, consistent with previous re-
ports (Macherey et al., 2008).

5 Discussion

We have described a lattice-based line optimisation
algorithm which can be incorporated into MERT
for parameter tuning of SMT systems and systems
based on log-linear models. Our approach recasts
the optimisation procedure used in MERT in terms
of Tropical Geometry; given this formulation imple-
mentation is relatively straightforward using stan-
dard WFST operations and algorithms.
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Adrià de Gispert, Juan Pino, and William Byrne. 2010b.
Hierarchical phrase-based translation grammars ex-
tracted from alignment posterior probabilities. In Pro-
ceedings of the 2010 Conference on Empirical Meth-
ods in Natural Language Processing, pages 545–554.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Jonathan
Weese, Ferhan Ture, Phil Blunsom, Hendra Setiawan,
Vladimir Eidelman, and Philip Resnik. 2010. cdec: A
decoder, alignment, and learning framework for finite-
state and context-free translation models. In Proceed-
ings of the ACL 2010 System Demonstrations, pages
7–12, July.
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de Gispert, and Michael Riley. 2011. Hierarchical
phrase-based translation representations. In Proceed-
ings of the 2011 Conference on Empirical Methods in
Natural Language Processing, pages 1373–1383. As-
sociation for Computational Linguistics.

Philipp Koehn. 2010. Statistical Machine Translation.
Cambridge University Press.

Shankar Kumar, Wolfgang Macherey, Chris Dyer, and
Franz Och. 2009. Efficient minimum error rate train-
ing and minimum bayes-risk decoding for translation
hypergraphs and lattices. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, pages 163–171.

Wolfgang Macherey, Franz Och, Ignacio Thayer, and
Jakob Uszkoreit. 2008. Lattice-based minimum error
rate training for statistical machine translation. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 725–734.

Mehryar Mohri and Michael Riley. 2002. An efficient
algorithm for the n-best-strings problem. In Proceed-
ings of the International Conference on Spoken Lan-
guage Processing 2002.

Mehryar Mohri, Fernando C. N. Pereira, and Michael Ri-
ley. 2008. Speech recognition with weighted finite-
state transducers. Handbook on Speech Processing
and Speech Communication.

Mehryar Mohri. 2002. Semiring frameworks and algo-
rithms for shortest-distance problems. J. Autom. Lang.
Comb., 7(3):321–350.

Franz Josef Och and Hermann Ney. 2002. Discrimi-
native training and maximum entropy models for sta-
tistical machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, pages 295–302.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
the 41st Annual Meeting on Association for Computa-
tional Linguistics, pages 160–167.

K. A. Papineni, S. Roukos, T. Ward, and W. Zhu. 2002.
BLEU: a method for automatic evaluation of ma-
chine translation. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguis-
tics, pages 311–318.

W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P.
Flannery. 2002. Numerical Recipes in C++: the art
of scientific computing. Cambridge University Press.

J. Richter-Gebert, B. Sturmfels, and T. Theobald. 2005.
First steps in tropical geometry. In Idempotent mathe-
matics and mathematical physics.

Artem Sokolov and François Yvon. 2011. Minimum er-
ror rate training semiring. In Proceedings of the Euro-
pean Association for Machine Translation.

124



David Speyer and Bernd Sturmfels. 2009. Tropical
mathematics. Mathematics Magazine.

Aurelien Waite, Graeme Blackwood, and William Byrne.
2011. Lattice-based minimum error rate training using
weighted finite-state transducers with tropical polyno-
mial weights. Technical report, Department of Engi-
neering, University of Cambridge.

Richard Zens, Sasa Hasan, and Hermann Ney. 2007.
A systematic comparison of training criteria for sta-
tistical machine translation. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, pages 524–532.

125





Author Index

Agirrezabal, Manex, 35
Alegria, Iñaki, 35
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