
Second ML4HMT Workshop, pages 77–84,
COLING 2012, Mumbai, December 2012.

System Combination Using Joint, Binarised Feature Vectors

Christ ian F EDERMANN 1

(1) DFKI GmbH, Language Technology Lab,
Stuhlsatzenhausweg 3, D-66123 Saarbrücken, GERMANY

cfedermann@dfki.de

Abstract
We describe a method for system combination based on joint, binarised feature vectors. Our method
can be used to combine several black-box source systems. We first define a total order on given
translation output which can be used to partition an n-best list of translations into a set of pairwise
system comparisons. Using this data, we explain how an SVM-based classification model can be
trained and how this classifier can be applied to combine translation output on the sentence level.
We describe our experiments for the ML4HMT-12 shared task and conclude by giving a summary
of our findings and by discussing future extensions and experiments using the proposed approach.

Keywords: Machine Translation, System Combination, Machine Learning.

77

1 Introduction
Research efforts on machine translation (MT) have resulted in many different methods and MT
paradigms, each having individual strengths and weaknesses. There exist approaches following
linguistic theory as well as data-driven methods relying on statistical processing with only little
linguistic knowledge involved. In recent years, there has also been a lot of research on the automatic
combination of machine translation output, resulting in so-called hybrid MT engines.

Regardless of the actual method implemented in a given machine translation system, creating
translation output usually requires several, often heterogeneous, features. These can be 1) simple
scores, e.g., for language model scores, parser or phrase table probabilities; 2) more complex data
such as hierarchical parse trees or word alignment links; or 3) even full parse forests or n-best lists.

Given this wide range of heterogenous features and their diversity, it is very difficult to get an
intuitive understanding of the inner workings of the MT engine in question; thus, further research
work on the combination of machine translation systems into better, hybrid MT systems seems to
be of high importance to the field. To overcome the aforementioned problem of incomprehensible
feature values, we propose a method based on Machine Learning (ML) tools, leaving the exact
interpretation and weighting of features to the ML algorithms.

The remainder of this paper is structured in the following way. After having set the topic in this
section, we briefly describe relevant related work in Section 2 before defining and explaining our
Machine-Learning-based hybrid MT framework in Section 3. We first give an overview on the
basic approach in Subsection 3.1 and then discuss the two most important components: the order
on translations is defined in Subsection 3.2 while the notion of joint, binarised feature vectors for
ML is introduced in Subsection 3.3. We discuss the experiments conducted for the ML4HMT-12
shared task in Section 4 and then conclude by giving a summary of our findings and by discussing
upcoming research in Section 5.

2 Related Work
Hybrid machine translation methods and system combination approaches have been receiving a lot
of research attention over the last decade. Several papers, including seminal work from (Frederking
and Nirenburg, 1994), support the general belief that it is possible to combine translation output
from different systems achieving an improvement over the individual baseline systems.

System combination on the phrasal level can be realised using so-called Confusion Networks.
Previous work on this approach are described in more detail in (Federmann et al., 2009; Federmann
and Hunsicker, 2011). The algorithm chooses one of the given MT systems as backbone or skeleton
of the hybrid translation, while all other translations are connected using word alignment techniques.
Together, the systems then form a network with different paths through the network resulting in
different translations.

Next to phrasal combination methods, there also are approaches that focus on preserving the
syntactic structure of the translation backbone, and hence perform Sentence-based Combination.
Here, several given black-box translations are re-scored or re-ranked in order to determine the best
translation for a given sentence in the source text. This is similar to Re-ranking Approaches in SMT.
See related work from (Avramidis, 2011), (Gamon et al., 2005), or (Rosti et al., 2007).

Finally, there are Machine-Learning-based Combination approaches which train classifiers to assess
the quality of given translation output. Recent work (He et al., 2010) applies such Machine Learning
tools to estimate translation quality and re-rank a set of translations on the sentence level.

78

3 Methodology

3.1 Classification-Based Hybrid MT
In this Section, we describe our architecture for hybrid machine translation. It is based on classifiers
trained using state-of-the-art Machine-Learning tools. Given a set of n translations from several
systems that are treated as “black boxes” and a development set including corresponding reference,
we perform the following processing steps to generate a hybrid translation for some given test set:

1. Compute a total order of individual system output on the development set using some order
relation based on quality assessment of the translations with automatic metrics. This can also
be defined to include results from, e.g., manual evaluation;

2. Decompose the aforementioned system ranking into a set of pairwise comparisons for any two
pairs of systems A, B. As we do not allow for ties in our system comparisons, the two possible
values A> B, A< B also represent our Machine-Learning classes +1/−1, respectively;

3. Annotate the translations with feature values derived from NLP tools such as language
models, part-of-speech taggers, or parsers;

4. Create a data set for training an SVM-based classifier that can estimate which of two given
systems A, B is better according to the available features;

5. Train an SVM-based classifier model using, e.g., libSVM, see (Chang and Lin, 2011);

Steps 1–5 represent the training phase in our framework. The availability of a development set
including references is required as this is needed to allow the definition of an ordering relation which
subsequently defines the training instances for the SVM-based classifier. After training, we can use
the classifier as follows:

6. Apply the resulting classification onto the candidate translations from the given test set. This
will produce pairwise estimates +1/−1 for each possible pair of systems A, B;

7. Perform round-robin system elimination to determine the single best system from the set of
candidate translations on a per sentence level;

8. Using this data, synthesise the final, hybrid translation output.

Steps 6− 8 represent the decoding phase in which the trained classifier is applied to a set of unseen
translations without any reference text available. By computing pairwise winners for each possible
pair of systems and each individual sentence of the test set, we determine the single best system on
the sentence level. The methodology is explained in more detail in (Federmann, 2012b,c).

3.2 A Total Order on Translations
In order to rank the given source translations, we first need to define an ordering relation over
the set of translation outputs. For this, we consider manual judgements wherever available and,
as a fallback, also apply three renowned evaluation metrics which are the de-facto standards for
automated assessment of machine translation quality:

1. The Meteor score, on the sentence and on the corpus level, see (Denkowski and Lavie, 2011);
2. The NIST n-gram cooccurence score on the corpus level, see (Doddington, 2002); and
3. The BLEU score which is the most widely used evaluation metric, see (Papineni et al., 2002).

79

While both the BLEU and the NIST scores are designed to have a high correlation with judgements
from manual evaluation on the corpus level, the Meteor metric can also be used to meaningfully
compare translation output on the level of individual sentences. We make use of this property when
defining our order ord(A, B) on translations, as described in (Federmann, 2012c).

3.3 Using Joint, Binarised Feature Vectors
Many Machine-Learning-based approaches for system combination use classifiers to estimate the
quality of or confidence in an individual translation output and compare it to other translations
afterwards. This means that the feature vector for a given translation A is computed solely on
information available from features of A, not considering any other translation B as additional source
of information, or formally:

vecsingle(A)
def
=

f1(A)
...

fn(A)

 ∈ Rn (1)

We aim to explicitly model pairwise feature comparisons of translations A, B, storing binary values
to model if a given feature value fx(A) for system A is better or worse than corresponding feature
value fx(B) for the competing system B. Effectively, this means that, in our approach, we compare
translations directly when constructing the set of training instances. Equation 2 shows the formal
definition of a so-called joint, binarised feature vector:

vecbinarised(A, B)
def
=

f1(A)> f1(B)
...

fn(A)> fn(B)

 ∈ Bn (2)

The reason to store binary features values fx ∈ B lies in the fact that these can be processed more
efficiently during SVM training. Also, previous experiments (Federmann, 2012a; Hunsicker et al.,
2012) have shown that the usage of actual feature values fx ∈ R in the feature vector does not
give any additional benefit so that we decided to switch to binary notation instead1. Note that the
order in which features for translations A, B are compared does not strictly matter. For the sake of
consistency, we have decided to compare feature values using simple A> B operations, leaving the
actual interpretation of these values or their polarity to the Machine Learning toolkit.

3.4 Creating Translations Using a Classifier
Given an SVM classifier trained on joint, binary feature vectors as previously described, we can
now create hybrid translation output. A schematic overview is depicted in Figure 1. We compute
the best translation for each sentence in the test set, based on the +1/−1 output of the classifier for
a total of n(n−1)

2
unique comparisons.

For each sentence, we create a lookup table that stores for some system X the set of systems which
were outperformed by X according to our classifier. To do so, we consider each pairwise comparison
of systems A, B and, for each of these, compute the corresponding feature vector which is then

1Also note that by using, e.g., combined feature vectors, which are comprised of feature values f1–n(A) followed by
features f1–n(B), the amount of training data required for meaningful training of a machine learning classifier would need to
be increased.

80

A > B?
classification model

selection

feedback

7

C. Federmann • A Machine-Learning Framework For Hybrid Machine Translation • KI 2012

input
training data

from N systems
training data

from N systems
training data

from N systems

output

translation A1
translation A2
translation A3
translation A4
translation A5

translation B1
translation B2
translation B3
translation B4
translation B5

translation C1
translation C2
translation C3
translation C4
translation C5

translation B1
translation C2
translation A3
translation A4
translation B5

2

C. Federmann • A Machine-Learning Framework For Hybrid Machine Translation • KI 2012

Friday, September 28, 2012Figure 1: Schematic overview illustrating how an SVM classifier can be used to determine the single
best translation using round robin playoff elimination. This operates on the sentence level.

classified by the SVM classifier. Only systems winning at least once during these comparisons
end up as keys in our table. The cardinality of the resulting set of outperformed systems implicitly
represents the number of wins for a system X . There are three cases to consider:

1. There is exactly one top-ranked system which becomes the translation for the current sentence;
2. Two systems are top-ranked, so the decision depends on the comparison of these. As we do

not allow for ties in our comparisons, this is guaranteed to determine a single winner;
3. If more than two systems are top-ranked, we check if one of the systems outperforms the

others. In rare cases, this may not yield a winner and we have to fall back to a pre-defined
winner, usually the best system from training.

4 Experiments
We worked on a submission for language pair Spanish→English. For this language pair, translation
output from four different translation engines was made available by the organisers of the shared
task. For each of the systems both translation output and system-specific annotations could be
used. As our method relies on comparable features, we decided to extract features for all candidate
systems ourselves, hence constraining ourselves to only using the given translation output.

We created the data set for classifier training using the following selection of linguistic features:

- number of target tokens, parse tree nodes, and parse tree depth;
- ratio of target/source tokens, parse tree nodes, and parse tree depth;
- n-gram score for n-gram order n ∈ {1, . . . , 5};
- perplexity for n-gram order n ∈ {1, . . . , 5}.

These features represent a combination of (shallow) parsing and language model scoring and are
derived from the set of features that are most often used in the Machine-Learning-based system
combination literature.

We use the Stanford Parser (Klein and Manning, 2003) to process the source text and the correspond-
ing translations. For language model scoring, we use the SRILM toolkit (Stolcke, 2002) training a
5-gram language model for English. In this work, we do not consider any source language models.

81

-5 0 5 10 15

-14

-12

-10

-8

-6

-4

-2

 0

 2

ml4hmt12.training.small.features

Best log2(C) = -1 log2(gamma) = -3 accuracy = 71.7283%

C = 0.5 gamma = 0.125

"-"
 71.5

log2(C)

log2(gamma)

-5 0 5 10 15

-14

-12

-10

-8

-6

-4

-2

 0

 2

ml4hmt12.training.small.features

Best log2(C) = -5 log2(gamma) = -7 accuracy = 71.695%

C = 0.03125 gamma = 0.0078125

"-"
 71.5
 71

 70.5
 70

 69.5
 69

log2(C)

log2(gamma)

-5 0 5 10 15

-14

-12

-10

-8

-6

-4

-2

 0

 2

ml4hmt12.training.small.features

Best log2(C) = -5 log2(gamma) = -7 accuracy = 71.695%

C = 0.03125 gamma = 0.0078125

"-"
 71.5
 71

 70.5
 70

 69.5
 69

log2(C)

log2(gamma)

Figure 2: Optimisation grids for linear (left), polynomial (middle), and sigmoid (right) kernels. Note
how the decision boundary of the optimal area manifests itself from left to right.

Figure 2 shows the optimisation grids for linear (left), polynomial (middle), and sigmoid (right)
kernels. Note how the decision boundary of the optimal area manifests itself from left to right.
We ended up using a sigmoid kernel (C = 2, γ = 0.015625) and observed a prediction rate of
68.9608% on the training instances.

5 Conclusion
We have described our submission to the ML4HMT-12 shared task which is based on a Machine-
Learning-based framework for hybrid Machine Translation. Using so-called joint, binarised feature
vectors, we implemented an algorithm that applies an SVM-based classifier to generate hybrid
translations for the language pair Spanish→English. Combination is done on the sentence level.

Upcoming work will involve the refinement of our set of linguistic features and subsequent training
and tuning of a Machine Learning classifier to improve the proposed method on additional data. We
have already achieved promising baseline results in this respect and look forward to further test our
approach, e.g., for ML4HMT-12’s second language pair Chinese→English.

The total order on translation output described in Section 3 can be altered to also consider results
from manual judgements regarding translation quality. This has not yet been used for our submission,
but it would be an interesting extension of this paper.

Acknowledgments
This work has been supported by the Seventh Framework Programme for Research and Technological
Development of the European Commission through the T4ME contract (grant agreement: 249119).

References
Avramidis, E. (2011). DFKI System Combination with Sentence Ranking at ML4HMT-2011. In
Proceedings of the International Workshop on Applying Machine Learning Techniques to Optimise
the Division of Labour in Hybrid Machine Translation (ML4HMT), Barcelona, Spain. META-NET.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A Library for Support Vector Machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27.

Denkowski, M. and Lavie, A. (2011). Meteor 1.3: Automatic Metric for Reliable Optimization and
Evaluation of Machine Translation Systems. In Proceedings of the Sixth Workshop on Statistical
Machine Translation, pages 85–91, Edinburgh, Scotland. ACL.

Doddington, G. (2002). Automatic Evaluation of Machine Translation Quality Using n-gram
Co-occurrence Statistics. In Proceedings of the Second International Conference on Human

82

Language Technology Research, HLT ’02, pages 138–145, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Federmann, C. (2012a). Can Machine Learning Algorithms Improve Phrase Selection in Hybrid
Machine Translation? In Proceedings of the Joint Workshop on Hybrid Approaches to Machine
Translation (HyTra), pages 113–118, Avignon, France. European Chapter of the ACL (EACL).

Federmann, C. (2012b). Hybrid Machine Translation Using Joint, Binarised Feature Vectors. In
Proceedings of the Tenth Biennial Conference of the Association for Machine Translation in the
Americas (AMTA 2012), pages 113–118, San Diego, USA. AMTA.

Federmann, C. (2012c). A Machine-Learning Framework for Hybrid Machine Translation. In
Proceedings of the 35th Annual German Conference on Artificial Intelligence (KI-2012), pages
37–48, Saarbrücken, Germany. Springer, Heidelberg.

Federmann, C. and Hunsicker, S. (2011). Stochastic Parse Tree Selection for an Existing RBMT
System. In Proceedings of the Sixth Workshop on Statistical Machine Translation, pages 351–357,
Edinburgh, Scotland. ACL.

Federmann, C., Theison, S., Eisele, A., Uszkoreit, H., Chen, Y., Jellinghaus, M., and Hunsicker, S.
(2009). Translation Combination using Factored Word Substitution. In Proceedings of the Fourth
Workshop on Statistical Machine Translation, pages 70–74, Athens, Greece. ACL.

Frederking, R. and Nirenburg, S. (1994). Three Heads are Better Than One. In Proceedings
of the Fourth Conference on Applied Natural Language Processing, ANLC ’94, pages 95–100,
Stroudsburg, PA, USA. ACL.

Gamon, M., Aue, A., and Smets, M. (2005). Sentence-level MT Evaluation Without Reference
Translations: Beyond Language Modeling. In Proceedings of the 10th EAMT Conference "Practical
applications of machine translation", pages 103–111. EAMT.

He, Y., Ma, Y., van Genabith, J., and Way, A. (2010). Bridging SMT and TM with Translation
Recommendation. In Proceedings of the 48th Annual Meeting of the ACL, ACL ’10, pages 622–630,
Stroudsburg, PA, USA. ACL.

Hunsicker, S., Yu, C., and Federmann, C. (2012). Machine Learning for Hybrid Machine Transla-
tion. In Proceedings of the Seventh Workshop on Statistical Machine Translation, pages 312–316,
Montréal, Canada. ACL.

Klein, D. and Manning, C. (2003). Accurate Unlexicalized Parsing. In Proceedings of the 41st
Meeting of the Association for Computational Linguistics, volume 1 of ACL ’03, pages 423–430,
Stroudsburg, PA, USA. ACL.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: A Method for Automatic
Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, ACL ’02, pages 311–318, Stroudsburg, PA, USA. ACL.

Rosti, A.-V., Ayan, N. F., Xiang, B., Matsoukas, S., Schwartz, R., and Dorr, B. (2007). Combining
Outputs from Multiple Machine Translation Systems. In HLT 2007: The Conference of the North
American Chapter of the ACL, pages 228–235, Rochester, New York. ACL.

Stolcke, A. (2002). SRILM - An Extensible Language Modeling Toolkit. In Proceedings of the
International Conference on Spoken Language Processing, pages 257–286.

83

