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Preface 

Indian Languages present taxing research challenges mostly attributed to their rich variation in 

morphology, heavy agglutination and relatively free word order. Most of the Indian languages are 

digitally under-resourced, and only limited linguistic analysis resources/tools exist for some languages. 

The objective of the workshop is to bring together MT and parsing researchers across the globe working 

on Indian languages to showcase their work and exploit the synergies to interconnect state-of-the-art 

Indian language MT and parsing research globally. 

We received good response from researchers worldwide and based on reviews from our strong program 

committee 4 papers were accepted for oral presentation (long papers) and 9 papers for poster 

presentation (short papers). A wide range of languages including Hindi, Bengali, Tamil, Telugu, Urdu 

were covered in the accepted papers. 

The workshop also hosted a dependency parsing shared task for Hindi. As part of the shared task, a part 

of the Hindi Treebank (HTB) containing gold standard morphological analyses, part-of-speech tags, 

chunks and dependency relations labeled in the computational Paninian framework was released. 

Evaluation was carried out over both gold standard and automatic parts of speech (also provided by us) 

for all the participating systems. Seven teams from both India and abroad participated in the shared task 

and submitted reports on their approaches.   

We thank the members of program committee for their valuable support and cooperation for the 

workshop. We also thank them for giving detailed reviews to the authors. Finally, we thank the 

organizers of COLING 2012 for giving us the opportunity to organize this workshop. 
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ABSTRACT 

Noun with genitive marker in Indo-Aryan language can variously be a child of a noun, a verb or a complex 
predicate, thus making it an important parsing issue. In this paper, we examine genitive data of Hindi and 
aim to automatically determine the attachment and relational label of the same in a dependency framework. 
We implement two approaches: a rule based approach and a statistical approach. The rule based approach 
produces promising results but fails to handle certain constructions because of its greedy selection. The 
statistical approach overcomes this by using a single candidate approach that considers all the possible 
candidates for the head and chooses the most probable candidate among them. Both approaches are applied 
on controlled and open environment data. A Controlled environment refers to the situation when the 
relational labels are attested to the input data except for the genitive data; while open environment refers to 
cases in which the input is only POS tagged and chunked. The rule based and statistical systems produce a 
high accuracy of 95% and 97% respectively for attachment and perform considerably well for labeling in 
controlled environment but poorly in open environment. 
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1 Introduction 

Nouns with genitive case marker occur in various syntactic contexts in Indo-Aryan languages. 
The default genitive case marker specifies a relation between two nouns: head and modifier as in 
raama kaa ghara (Ram’s house), pitala kaa bartana (utensil of copper) etc. where raama and 
pitala (copper) are modifiers that modify the head ghara (house) and bartana (utensil) 
respectively1 .  Genitive nouns are also found to occur in many other contexts. The most 
significant one is the relation that occurs between the genitive noun and verb as illustrated in (1). 

1. raama  ke    do    bete   hain 
Ram     gen  two  sons  be-3pl pr 
„Ram has got two sons.‟ 

The genitive in (1) is distinct from the one illustrated in (2) which is a regular noun-noun 
genitive.  

2. raama  ke    do    bete   skula     jaa rahe hain 
Ram     gen  two  sons  school   go   be-3pl pr 
„Two sons of Ram are going to school.‟ 

A genitive can occur with a complex predicate. Complex predicate in Hindi is a construction that 
is composed of a noun or an adjective and a light verb. For example, pratikshaa karnaa in (3) is a 
complex predicate because the construction is a multiword expression that denotes a single event. 
As noted in (3), the two arguments of the complex predicate are raama and sitaa, the latter one 
being cased marked for genitive. Here the genitive marked noun is the theme argument of the 
verb. 

3. raama  sitaa  kii   pratikshaa   kara   rahaa  thaa 
Ram     Sita   gen    wait           do    be-3sg pst 
„Ram was waiting for Sita.‟ 

The argument of a verb regularly takes a genitive in the context of a verbal noun2 form of a verb. 
In (4), raama is an argument of the verb jaa „go‟.  

 
4. raama   kaa   jaanaa   sambhava   nahii   hai 

                                                           
1
 The genitive case marker is kaa, which has allomorphic variations as kii  and ke. The allomorphic variation is governed 

by the grammatical features of the head noun as illustrated below: 

Genitive allomorph Head grammatical feature Example 

kaa Masculine, Singular, Direct Case raama kaa ghara 
„Ram‟s house‟ 

ke Masculine, Singular, Oblique Case  samwaadaataa ke sawaala kaa javaaba diyaa 
„Answered the question of Press‟ 

Masculine, Plural, Any Case congress ke vaade 
„Promises of congress‟ 

kii Feminine, Any brahaspatiwaara kii raata 
„Thursday‟s night‟ 

 

2
In Hindi, verbal noun form of a verb is derived by adding a suffix –ne  to the verb as in: jaa „go‟ jaanaa 

„going‟, likh „write‟ likhnaa „writing‟ etc. 
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Ram      gen   go-VN   possible      neg     be-3sg pr 
„It is not possible for Ram to go.‟ 

With a verbal noun form, the argument is marked with genitive case.  The same holds even when 
some participants intervenes the two as illustrated in (5). The argument raama is separated from 
jaanaa with two other participants, sitaa „Sita‟ and ghara „home‟.  

5. raama  kaa  sitaa   ke   saatha  ghara   jaanaa  sambhava  nahii   hai 
        Ram    gen  Sita    gen  with     home   go-VN   possible     neg     be-3sg pr 
       „It is not possible for Ram to go home with Sita.‟ 

Apart from the above cases, one significant occurrence of genitive is when the head is elided as 
illustrated in (6).  

6. yaha   khaanaa   kala           kaa    hai 
       This   food          yesterday   gen    be-3sg pr 
       „This food is yesterday‟s (food).‟ 

We have examined various distributions of genitive data in Hindi. Table 1 attempt to tabulate all 
the types of genitive that we have discussed in this section: 

CASE CONSTRUCTION TYPE EXAMPLE 

Case 1 Noun gen – Noun raama kaa ghara 
„Ram‟s house‟ 

Case 2 Noun gen – Verb raama kaa  eka betaa hai 
„Ram has one son‟ 

Case 3 Noun gen – Complex predicate raama sitaa kii  pratikshaa  kara rahaa thaa 
„Ram was waiting for Sita‟ 

Case 4 Noun gen – Verbal Noun raama kaa jaanaa 
„Ram‟s leaving‟ 

Case 5 Noun gen – Head elided yaha khaanaa  kala kaa hai 
„This (food) is yesterday‟s food‟ 

TABLE 1: Different type of genitive data in Hindi 

Thus, even though a genitive noun by default modifies a noun, it also occurs in other contexts 
including relation with verbs, with complex predicates and so on. This amounts to a great parsing 
issue of how to determine the correct relation for a genitive modifier in a sentence.  In the context 
of dependency parsing, the task is twofold: 1. Determining the attachment of the genitive 
modifier with its legitimate head; 2. Predicting the correct relation for the attachment.  The 
relation labels are adopted from those used in Hindi syntactic Treebank (Bharati et. al., 2009a).  
We implement two systems: (A) A Rule-Based system: which implements the cues as rules for 
predicting the correct attachment between genitive modifier and its head and (B) A Statistical 
system: which uses a single candidate approach; which considers all the possible candidates for 
the head and chooses the most probable candidate among them as the head. The rule based 
system has a drawback of making a greedy choice. The single candidate approach overcomes this 
drawback and shows to outperform the rule based system by achieving an accuracy of 97%, in 
contrast to the accuracy of 95% achieved by the rule based system. The results are quite 
encouraging and a lot of human labor and time can be saved if such data is automatically labeled 
for correct relation most of the time. 
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The paper is divided into the following sections. Section 2 talks about the related works. Section 
3 presents a brief overview of Hindi Treebank, an annotated corpus resource that we have used 
for the present work and presents a study on the distribution of genitives in Hindi Treebank. 
Section 4 talks about the automatic annotation approaches and describes the experimental setup. 
Section 5 and 6 discuss the implementation of the rule based and the statistical system for 
automatic labeling of the genitive data along with the data preparation, parameters and results of 
the corresponding systems. Section 6 concludes the paper.  

2 Related Works 

A syntactically annotated treebank is a highly useful language resource for any NLP task and the 
correctness of the annotated data is very important. Generally, building a treebank requires an 
enormous effort by the annotator. Some research has been done in the direction of semi-
automating the Treebank annotation (Lim et al., 2004). This, on one hand reduces the human 
effort by decreasing the number of intervention required by the annotator, and helps in 
maintaining consistent annotation in building a Treebank on the other.  

Gupta et al. (2008) attempts a rule based approach for the automatic annotation of the Hindi 
Treebank and labels a set of coarse grained kaaraka and non-kaaraka relations. It identifies 
genitives (r6) with an f-score of 82.1% for correct attachment and labeling. Hybrid approaches 
(Bharati et.al, 2009b) and statistical approaches have also been attempted for automatic parsing 
using Hindi Treebank. Malt Parser (version 0.4) (Nivre et al., 2007), and MST Parser (version 
0.4b) (McDonald et. al., 2005) have been tuned for Hindi by Bharati et al. (2008). Kosaraju et.al 
(2010) reports an accuracy of 87.03% for the correct attachment and labeling of the genitive data 
using the malt parser. Table 2 shows the results obtained using Malt parser: 

Label Accuracy 

r6 87.03 

k1 81.92 

k2 72.80 

pof 84.10 

TABLE 2: Results of the baseline system 

We use the above result as the baseline result for our experiments. 

3 Genitives in Hindi-Urdu Treebank  

This section presents a brief description of the Hindi-Urdu Treebank followed by the distribution 
of genitive data as attested in the Treebank. 

3.1 Brief description of Hindi-Urdu Treebank 

The Hindi-Urdu dependency Treebank is being developed following the analysis of the Paninian 
grammatical model (Bharati et al., 2009a).  As observed in Bhatt et al. (2009), “the model offers 
a syntactico-semantic level of linguistic knowledge with an especially transparent relationship 
between the syntax and the semantics.” At present there are 10799 sentences (of around 250 
thousand words) that are annotated with dependency relations.  The dependency relations are of 
two types: kaaraka and non-kaaraka. kaaraka relations indicate the roles that various 
participants play with respect to a verb. Every kaaraka relation has a well-defined semantics as 
described in the Paninian Grammar. There are six kaaraka relations: kartaa (k1), karmaa (k2), 
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karana (k3), sampradaana (k4), apaadaana (k5) and adhikarana (k7). Even though attempts are 
being made to relate these relations to richer semantic roles of VerbNet and FrameNet via 
Propbank (Bhatt 2009), kaaraka relations capture one very significant semantic-pragmatic 
information which is known as vivakshaa that can be translated as „speaker‟s choice‟. For 
example, the subject of the following sentence is marked as kartaa although it is a „theme‟ in 
terms of its semantic role: 

     kartaa 
7.  darwaazaa     khulaa 

 door            open-3p pt 
        „Door opened.‟ 

Semantics of these relations are given in details in Bhatt et. al (2009). In this approach, sentences 
are treated as a series of chunks with every chunk having a head and one or more optional 
modifier of the head. For example, the chunks of the following sentence are shown below. The 
head of each chunk is highlighted 

8. ((raama)) ((ek nayaa kurtaa)) ((pahana kara))((subaha))((sitaa ke)) ((ghara)) ((gayaa  hai)) 
 Ram         one new shirt          wear-3sg pr     morning   Sita gen   house   go-perf be-3p pr 
 „Ram went to Sita‟s house in the morning wearing a new shirt‟ 

The main verb is taken to be the head of the sentence and all other chunks are connected to the 
head through appropriate relations. Genitive modifiers (as sitaa ke „of Sita‟ in (8)) are generally 
attached to nouns and the relation is labeled as r6 (see section 3.2 for more details). A noun can 
occur in kaaraka relation with a verb if it has a direct syntactic relation with its head verb. For 
example, the relations will be the following for the above sentence:   

  

Relations other than 'kaaraka' such as purpose, reason, and possession are also captured using 
the relational concepts. For example, in the above sentence, the two verbs gayaa hai which is 
finite and pahana kara which is non-finite are related with a „vmod‟- relation and captures the 
information that the non-finite verb is dependent on the finite one. 

3.2 Distribution of Genitives in Hindi Treebank  

Genitive data is quite frequent in the Hindi Treebank. There are a total of 11505 cases of 
genitives in a corpus of 10799 sentences (of around 250 thousand words). We note that, as 
expected, Case 1 (noun genitive-noun) occurs most number of times (9123 out of 11505). As 
discussed in Surtani et. al. (2012), the relation is tagged with a label called r6 that represents the 
notion of sashthii sambanadha of the Paninian grammar. The symbol „r‟ indicates that it is not a 
kaaraka relation and the numeral 6 represents sashthii (sixth) relation. The label r6v (Case 2 in 
Table 1) indicates that the genitive modifier is related to verb and not with any noun as generally 
is the case with genitives. This label is semantically not very informative, which is the case even 
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with the r6 relation. On the other hand, the labels for Case 3, namely r6-k1 and r6-k2, represent 
both syntactic and syntactico-semantic level of information. The labels k1 and k2 convey that the 
noun is kartaa and karmaa respectively and the r6 part indicates that these kaaraka relations are 
physically represented by a genitive case marker. When the head noun is derived from a verb, the 
POS tag for such word is given VGNN. The tag implies that the word is a noun derived from a 
verb. Since, the verbal noun forms retain the verbal property3 the genitive modifiers of these 
nouns are tagged with kaaraka relation. Following examples indicate that the genitive can be 
kartaa (see (9)) or karmaa (see (10)) 

9. party     kaa   kahanaa   hai… 
party    gen    say-VN    be-3pr sg 
„It is what Party has to say that…‟ 

10. aatankiyon   ke   maare  jaane    kii      sankhyaa… 
terrorists      gen  being  killed    gen     number 
„The number of terrorists being killed …‟ 

From the treebank, we come to know that the genitive karmaa (k2) of a verbal noun is much rarer 
than the genitive kartaa (k1) as recorded in the following table in Case 4. Table 3 presents 
distribution of different genitive types in Treebank. We have listed those relations which have at 
least 5 occurrences for genitive noun in the Treebank. 

CASE Construction Type Relation Label No. of occurrence % 

Case 1 Noun gen – Noun r6 9123 79.65 

Case 2 Noun gen – Verb r6v 16 0.14 

Case 3 Noun gen – Complex 
predicate 

r6_k1 337 2.94 

r6_k2 1595 13.93 

Case 4 Noun gen – Verbal Noun k1 370 3.23 

k2 13 0.11 

TABLE 3: Distribution of genitive data in Hindi Treebank 

In the default order of genitive construction in Hindi, the genitive modifier precedes its head. 
But, Hindi being a free word-order language, we come across cases in the Treebank, where the 
genitive modifier occurs after the head, which we term here as „Marked order‟. We study the 
occurrence of „Marked order‟ data in Treebank and notice that such data is very rare in the 
Treebank. There are 37 instances of „Marked order‟ data out of total of 11505 cases (approx 0.32 
% of times) of genitives in Treebank. 

Since the occurrence of marked order data is very less, we neglect it and consider only the data in 
default order for our experiments. A genitive noun is contiguous with its head if the position of 

                                                           
3 A verbal noun licenses all participants of the base verb and the vibhaktii or case markings on the 
participants are also retained except for kartaa and karmaa which is generally expressed by genitive case 
marker. Thus the verbal noun form of the verb socha „think‟ is sochnaa „thinking‟ licenses the participants 
as illustrated below: tumharaa isa vishaya para aisaa sochnaa galata nahii thaa.  The karta is marked with 
genitive case as in tumharaa, but the adhikarana kaaraka (or subject matter) is expressed with 7thcase 
ending as would have been the case, when the verb form occurs as in: tuma ne isa vishaya para jo sochaa 

wo galata nahii thaa. 
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the head is next to the genitive noun. Table 4 presents the contiguity statistics of the genitive 
data. The Non-contiguous case with an intervening candidate specifies that a noun, a verbal noun 
or a verb (i.e. a legitimate head candidate) falls between the head and the genitive modifier. The 
case is Non-contiguous with no intervening candidate if the genitive modifier is not contiguous 
with its head and no head candidate occurs in between the genitive noun and the head.  

CASE Construction 
Type 

Relation 
Label 

No. of 
occurrence 

Contiguous Non-
Contiguous 

(With 
intervening 
candidate) 

Non-
Contiguous 
(Without 

intervening 
candidate) 

Case 
1 

Noun gen – 
Noun 

r6 9123 8642 
(94.73) 

453 (4.96%) 28 (0.33) 

Case 
2 

Noun gen – 
Verb 

r6v 16 10 
(66.66%) 

3 (14.28%) 3 (19.04%) 

Case 
3 

Noun gen – 
Complex 
predicate 

r6_k1 337 310 
(91.98%) 

21 (6.2%) 6 (1.8%) 

r6_k2 1595 1429 
(89.58%) 

144 (9.06%) 22 (1.36%) 

Case 
4 

Noun gen – 
Verbal Noun 

k1 370 289 
(78.34%) 

48 (12.96%) 33 (8.7%) 

k2 13 7(48.15%) 4 (44.44%) 2 (7.4%) 

Total   11454 10687 673 94 

TABLE 4: Contiguity statistics 

The occurrence of contiguous data in the Hindi Treebank is quite high. This motivates us to build 
a Rule based system for the automatic annotation of the genitive data. The next section discusses 
the systems for automatic labeling of the genitives. 

4 Automatic labeling of Genitive data 

Manual development of Treebank is a time consuming and labor intensive task.  Attempts have 
been made by Gupta et.al (2008), Lim et.al (2004) to automate some part of the task so that data 
development becomes fast. Our attempt is to predict the correct attachment for a genitive noun 
and mark the relation label between the genitive noun and its head. A survey of genitive data in 
Hindi Treebank motivates us towards developing a rule based system for automatic annotation of 
the Hindi genitive data. The system performs quite well because of the contiguous nature of the 
genitive data in Hindi. Although it is handling most of the cases in the data, it is unable to handle 
certain constructions especially the ones that are non-contiguous. The main reason for this can be 
attributed to the greedy selection made by the rule based system as it chooses the first liable 
candidate, the one that satisfies the rules, as the head of the genitive marked chunk. Thus, it fails 
to consider all the competing head candidates and choose the best candidate from them. To 
overcome this issue, we use a single candidate approach which chooses the most probable head 
from all the competing candidates. We have implemented both the systems in two environments:  

(i) Controlled Environment: In this scenario, all the other dependency relations, except for 
the genitive are marked in the sentence. The system uses this information to predict the 
correct attachment and the syntactic-semantic label between the genitive child and its head.  
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(ii)  Open Environment: In this situation, the input data is only POS tagged and chunked. The 
system has no information about the relational labels of other chunks. 

The information about the kaaraka label and complex predicate is essential for predicting the 
correct labels of Case 3 (Noun gen-Complex Predicate). But identifying these labels is a parsing 
issue in itself. Thus, the accuracy of labeling the head-modifier drops down significantly in the 
open environment as this information is in this environment. Similarly, the systems are unable to 
predict the correct syntactico-semantic labels for Case 4 (Noun gen-Verbal noun) in both the 
environments. Next sections discuss the rule based and the statistical approaches for automatic 
parsing of the genitive construction. 

5 Rule Based System 

A survey of the genitive data in Hindi Treebank provided us with syntactic cues for determining 
the legitimate head of the genitive modifier and the corresponding relation between the two. This 
motivates us to developing a rule based system by implementing these cues as rules for automatic 
annotation of the Hindi genitive data. We make the following observations from the data that we 
have studied in section 3.2: 

a. A genitive marked noun can only take a noun, a verbal noun or a verb as its head. 
Therefore, the remaining POS categories are not the probable candidates for head of a 
genitive modifier. 

b. The case of head nouns modified by a genitive noun is the most frequent and regular 
one in the treebank. 

c. The head of the genitive modifier is mostly contiguous to the modifier. As illustrated in 
Table 4, the head occurs next to the genitive noun 94.73% of the time. 

d. The genitive case marker gets its grammatical features from its head. Therefore, there is 
a grammatical agreement in the features of the head and the genitive case marker. 

e. A genitive noun cannot have a pronoun (as the head of the noun chunk) as its head. 
f. Once a noun identified as part of complex predicate, a genitive noun modifier of that 

noun will regularly be in r6_k*. However, it is difficult to determine the correct kaaraka 
relation from the surface cues alone. 

g. The number of occurrences of genitive modifiers with a direct verb (i.e. r6v) is few 
compared to other kinds of genitive construction. 

h. Genitives that modify verbal noun indicate different kaaraka relations (see table 3) 

5.1 Data 
The rule based system is tested on the default order test data of 11454 genitive instances. Since 
„Marked order‟ data is very less in the Treebank, such data is ignored in the present experiment. 
We have also not included data for genitive modifiers that modify non-finite verb because of 
non-representativeness of such data in the Treebank.  

5.2 Implementation 
A set of rules have been crafted and implemented for identifying the right attachment and 
syntactico-semantic label for each attachment in the test data.  The rules basically verify whether 
an NP chunk with a genitive case marker within is followed by a Noun phrase, a Verb phrase or a 
Verbal noun phrase.  

1) The system assigns the relations r6, r6v and k* respectively if the Noun phrase with genitive 
case marker is followed by a Noun phrase, Verb phrase or a Verbal Noun phrase. In case 
the genitive modifies a complex predicate (i.e. the head of the modifier occurs with „pof‟ 
relation with a light verb), the genitive noun is labeled with r6_k*.  
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2) The agreement of the following morphological features of the child and the head are 
matched. All these features must agree for the candidate to be the liable head of the child: 

 a. Gender: Gender can be masculine (m) or feminine (f). It takes value 'any' in case it 
can be of any of the forms. 

 b. Number: Number can be singular (sg) or plural (pl).  
 c. Person: It can be 1st Person (1), 2nd person (2) or 3rd person (3). 
 d. Case: Case can either be direct (d) or Oblique (o). This feature is handled differently 
for pronoun4. 

3) Head as Pronoun: A genitive marked noun phrase cannot take pronoun as the head. 

The rule based system implements these rules to predict the attachment and the label between the 
head and genitive noun. The system matches the rules for the genitive modifier and the candidate 
chunk and assigns the candidate chunk as the head of the genitive modifier only if all the rules 
are matched. The corresponding relational label is then assigned to the head-child pair. 

5.3 Result and Observation 

The experiments were performed in both the controlled and the open environments. The results 
are presented below. 

TABLE 5: Result of the rule based system 

The rule based system predicts the head of the genitive modifier with an accuracy of 95.12% in 
both the controlled and the open environment. As already discussed, the correct syntactico-
semantic label in the open environment is predicted with low accuracy. As shown in Table 5, the 
system is unable to predict the label in Case 3 and Case 4 in open environment and Case 4 in 
controlled environment, since prediction of kaaraka relation becomes a parsing issue in itself. 
Though, the kaaraka relations in a sentence can also be predicted with a considerable accuracies, 
as already shown in Table 2, we do not consider them for our calculations. The accuracy of the 
system for the labeled attachment drops down to 92.23% in controlled environment and with 
76.7% in open environment.   

                                                           
4
 In case of nouns, the child noun and its genitive marker occur as different tokens. The genitive marker 

obtains its grammatical case information from the head of the genitive marked noun. But in case of 
pronouns, the pronoun root form is inflected with the genitive case marker to form a single token. Therefore, 
it always occurs in oblique (o) form and thus, has not been considered for grammatical agreement.  

CASE Relation 
Label 

Number of 
occurrence 

Attachment Labeling 

Controlled Env. Open Env. 

   Frequency Accuracy Freq Acc Freq Acc 

Case 1 r6 9123 8771 96.14 8771 96.14 8771 96.14 

Case 2 r6V 16 13 81.25 13 81.25 13 81.25 

Case 3 r6_k1 337 316 93.88 316 93.88 0 0 

r6_k2 1595 1464 91.8 1464 91.8 0 0 

Case 4 k1 370 323 87.82 0 0 0 0 

k2 13 8 61.54 0 0 0 0 

Total  11454 10895 95.12% 10564 92.23% 8784 76.7% 
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The result is encouraging because, our Treebank has highest number of representation of Case 1 
data. If such data can automatically be labeled for correct relation for most of the time, a lot of 
human labor and time can be saved. Table 5 indicates that the performance for genitive modifier 
– noun construction is exceptionally good, achieving an accuracy of 96.14%; while for other kind 
of construction, we achieve a mediocre score because of the high percentage of the non-
contiguous occurrences between the genitive noun and its head. The algorithm used in the rule 
based system is a greedy one in the sense that it will pick up the first context that all the rules 
satisfy without verifying other contexts. For example, given the following sentence, raama kaa 
ghara jaanaa  „Ram‟s going home‟, the system will connect raama „Ram‟ with ghara „home‟ 
and assign an r6 label without considering the possibility of raama‟s being connected to jaanaa 
„go‟ which would be the right attachment in this case. Thus, a rule based system fails to consider 
all the candidates for the head of the modifier. Therefore, a model that considers all the candidate 
heads and selects the most probable head from all the competing candidates should work better 
for handling this issue. A single candidate approach is tried out for this which is discussed in the 
next subsection. 

Label r6 r6v r6_k* k* 

r6 9102 0 12 9 

r6V 3 13 0 0 

r6_k1 10 5 316 6 
r6_k2 93 24 1464 14 

k1 44 1 2 323 
k2 5 0 0   8 

TABLE 6: Confusion Matrix of the rule based system 

Table 6 represents the number of times each case is labeled by the rule based system. The 
columns specify the label given by the system. Although, the Case 1 is attached correctly only 
8771 times (as shown in table 5), it is given the label r6 9102 times (as shown in Table 6). This is 
because the attachment of the child is with the wrong NP chunk.   

6 Statistical System 

As discussed in the previous subsection, the rule based system fails to perform well on the non-
contiguous data because of its greedy selection. Therefore, we need a model that considers all the 
possible candidates for the head of the genitive marked NP and then choose the most probable 
head among all the candidates. We use a single candidate approach (Yang et.al (2005), Niyu et.al 
(1998)) using an SVM classifier for predicting the most probable head for the attachment.   

6.1 Single Candidate Approach:  

The single-candidate approach is a machine learning method, which chooses the most probable 
candidate from a set of all possible candidates. So, given the child (i.e. the genitive marked NP) 
and n candidates for heads (C1, C2,…,Cn), the model obtains the probability that candidate Ck  is 
the head of the child in context of all other candidates. The single-candidate model assumes that 
the probability that Ck is the head is only dependent on the child and the candidate Ck, and is 
independent of all the other candidates. � ℎ �  �   ℎ� , �1, �2, . . , �� =  � ℎ �  �   ℎ� , � ) 

The single candidate approach is used with an SVM classifier to predict the correct head (Ck).   
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6.2 SVM Classifier: 

Support vector machines, (Vapnik, 1995), are computational models used for the classification 
task in a supervised learning framework. They are popular because of their good generalization 
ability, since they choose the optimal hyperplane i.e. the one with the maximum margin and 
reduce the structural error rather than empirical error. We have used the LIBSVM library 
(Chang and Lin, 2011) for our task.  

6.3 Data Preparation:  

In the single-candidate model, an instance has the form {child, head}, where child is the genitive 
modifier and head is a legitimate head candidate. For training, instances are created for each 
child occurring in an annotated text. Specifically, given a child and its head candidates, a set of 
negative instances (labeled “0”) is formed by pairing child and each of the candidates that are not 
the head of the genitive modifier. In addition, a single positive instance (labeled “1”) is formed 
by pairing child and the correct head. Table 7 illustrates the generation of the training instances. 
In this way, a total number of 38556 instances are created with 11454 positive and 27102 
negative instances. 

Example: [dhonii kaa]/NP   [tossa]/NP  [jeeta kara]/VGNF   [pehle ballebajii]/NP  
       Dhoni-gen            toss           win 3pr.non-fin     first    batting                

         [karnaa]/VGNN  [sahii siddha huaa]/VGF 
      do-VN                  right proved be-perf 
      „Dhoni‟s winning the toss and electing to bat first proved to be right.‟ 

Instance Label 

{ dhonii kaa, tossa } 0 

{ dhonii kaa, jeeta kara } 0 

{ dhonii kaa, pehle ballebajii } 0 

{ dhonii kaa, karnaa } 1 

{ dhonii kaa, sahii siddha huaa } 0 

TABLE 7: Example of single-candidate training instances 

6.3 Feature Selection 

Following features have been used in our experiments for training and testing. Since the 
experiments are carried out in both the controlled and the open environments, therefore the 
feature vectors formed in these two experiments are different in terms of the information 
available. The differences in the features used in these environments are also discussed below. 

1) Distance: Distance is defined as the number of candidates between the child and the head 
chunk. It takes an integer value. 

2) Grammatical Features: Grammatical feature includes gender, number, person and case as 
already discussed in the rule based system. It takes value 1 when all the grammatical 
features for head and child match. Else, it gets a value -1. 

3) Pronoun: Whether the head candidate is a pronoun or not. This feature also takes an integer 
value. 

4) Chunk Type: This feature specifies the type of chunk and takes values 1, 2, 3 and 4 for 
noun phrase (NP chunk), complex predicate (NP-pof chunk), verbal noun phrase (VGNN) 
and verb phrase (VGF) respectively in case of controlled environment and 1, 2 and 3 for 
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noun phrase (NP chunk), verbal noun phrase (VGNN) and verb phrase (VGF) respectively 
in open environment since the complex predicate information is not available in the open 
environment. 

A feature vector comprising of these 4 features is formed for each instance of the training and the 
testing data. The relative significance of each feature for the learning model is presented Table 8. 
The feature for which the performance of the learning model is affected the most, when it is 
removed from the feature vector, is a more important feature for the model. A feature is pruned at 
each iteration and the corresponding performance of the model is recorded. We find the relative 
significance of each feature by pruning one feature each time. The removal of the distance 
feature from the model reduces its accuracy to 63.67% from the baseline accuracy of 96.86% and 
hence is most important feature for the model. 

Features Distance Agreement Pronoun Chunk Type 

Accuracy 63.67% 92.13% 96.86% 96.70 

TABLE 8: Relative Significance of features in statistical model 

6.4 Training and Testing 

While training, the feature vector for each instance is computed and is given input to the SVM 
classifier along with its label. The classifier learns a model (optimal hyperplane) from the 
training data. Both the training and the testing data are scaled before the experiment. Grid search 
is used to find the optimal parameters for learning the model. The total number of instances 
generated by the single candidate approach is 38556, with 11454 positive instances and 27102 
negative instances. We use K-fold cross validation keeping k=5, i.e. dividing the data into 5 
folds, where 1 fold is held out for testing while the rest are used for training the model in each 
iteration. While testing, the model predicts the label of instance, 1 if model predicts that the 
candidate is the head of the genitive marked NP chunk; -1 otherwise. Since k-fold cross 
validation technique is used, the model is tested on the complete dataset and we obtain the label 
for each instance.  

6.5 Result and Observation 

The results of statistical system for prediction of attachment and the syntactic-semantic label for 
both the environments are presented below in Table 9. The accuracy of the model in controlled 
environment is 96.86% as compared to 95.12% in rule based system.  

TABLE 9: Result of the statistical system 

CASE Relation 
Label 

Number of 
occurrence 

Attachment Labeling 

Controlled 
Env. 

Open Env. Controlled 
Env. 

Open Env. 

Case 1 r6 9123 97.57 97.70 97.57 97.70 

Case 2 r6V 16 87.5 87.5 87.5 87.5 

Case 3 r6_k1 337 95.25 93.76 95.25 0 

r6_k2 1595 94.17 93.23 94.17 0 

Case 4 k1 370 93.24 92.70 0 0 

k2 13 84.61 76.92 0 0 

Total  11454 96.86% 96.76% 93.75% 77.94% 
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The accuracy of attachment of the model in the controlled environment is 96.86% as compared to 
95.12% in rule based system. The accuracy is reduced by 0.10% in the open environment as the 
information about the complex predicate is not available. The accuracy of predicting the 
attachment for Case 3 goes down from 95.25 to 93.76 and 94.17 to 93.23 for r6-k1 and r6-k2 
cases respectively when we move from a controlled to an open environment. The overall 
accuracy for predicting the correct label is 93.75% in a controlled environment and 77.94% in an 
open environment. 

6.6 Model Parameters 

We use grid search to find the optimal parameters for the training model. It uses the non-linear 
radial basis kernel and the validation folds and the number of iterations are restricted to 5 and 
300 respectively. One fold is held out for validation at each iteration while the rest are used for 
training. Two model parameters, namely C and gamma are varied and their optimal value is 
predicted. C value, that decides the weight for the rate of misclassification is varied in the range 
of 2-5 to 25 and gamma, a parameter of the radial basis kernel is varied from 2-4 to 1. 

7 Conclusion and Future Work 

This paper presents a detailed study of genitive data in the Hindi Treebank. Occurrence of 
genitives in varied syntactic context is a unique feature of Indo-Aryan languages. We examined 
the Hindi dependency Treebank and noted down various syntactico-semantic relations in which a 
genitive modifier occurs. We observed that relations vary from a simple syntactic label r6 to 
deeper semantic labels-k1, k2. We have attempted to trace syntactic contexts which can be used 
for predicting the relations automatically. The motivation is to automate the process of labeling 
genitive data. We have implemented two systems, a rule based system and a statistical system for 
automatically identifying the attachment of genitive marked noun with its head and the label 
between them. The statistical model uses the single candidate approach and outperforms the rule 
based system for the non-contiguous data. The statistical system produces an overall accuracy of 
97% in contrast to the rule based system that gives an 95% accuracy for the correct attachment of 
the genitive. Both the systems perform better than the baseline system presented in Table 2. The 
output can be verified by the human annotators thus making the Treebank development semi-
automatic for the genitive data. Since, it is largely the r6 relation that occurs between two nouns 
and since for other relations also, the syntactic contexts to a great extent can be identified, the 
task of automated labeling of genitive data appears very promising in the context of dependency 
Treebank development.  

As a part of the future work, we will  integrate our system with the MALT parser or MST parser. 
The genitive parsing module can be used over the MALT/MST parser output as a post-
processing module. This would be a promising attempt for improving the parsing accuracy of 
genitives in Hindi. 
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ABSTRACT 

In this paper, we propose a rule-based approach for the identificat ion of semantic sub-graphs 
from Tamil sentences. In order to achieve the goal of semantic sub-graph identification and 
construction, we use a semantic graph based representation called Univ ersal Networking 
Language (UNL), which is a directed acyclic graph representation. To identify and build the 
semantic sub-graphs, we classify the ru les based on morpho-semantic features which include 
word associated features and context based features. The rules are performed in two stages; one 
while build ing the simple UNL graphs and one after the simple UNL graphs construction. We 
have identified 18 rules for sub-graph identification and construction.  

Keywords: Nested graphs, Universal Networking Language, Semantic Graph representation  
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1. Introduction 

Semantic interpretation and representation of natural language texts is an important task 
of natural language processing. A number o f semantic representations have been used to 
represent natural language using conceptual representations. Graph based semantic 
representations such as semantic networks (Masterman, 1961) is a declarative graphic 
representation consisting of definit ional, assertional, implicational, executable, learning and 
hybrid networks.  Silv io (1961) proposed correlational nets based on the relations such as part -
whole, case relations, instance, subtype and dependence relations. Yet  another graph 
representation that Hays (1964) proposed dependency graphs based on minimal syntactic units 
and conceptual graphs (Sowa, 1976) represents relations using inferences of first order logic. 
Similar semantic graph representation which contains semantic relat ions and attributes is 
Universal Networking Language (UNL) relations (UNDL, 1997) consists of 46 relat ions include 
agent, object, place, time, conjunction, disjunction, co-occurrence, content, quantity etc. represent 
semantics of natural language.  Our work focuses on the identificat ion of sub -graphs of semantic 
graphs for which we use UNL representation. The detailed study on UNL is described in section 
3. Identify ing sub-graphs from a semantic graph though a difficu lt task is necessary to obtain the 
boundaries between complex semantic entities and which in turn helps in understanding the 
complete meaning conveyed by a natural language sentence.  

In this paper, we focus on identifying sub-graphs and building a nested graph structure 
for different types of natural language sentences  in morphologically rich and relatively free word 
order languages. In this paper, we describe the identification of semantic sub-graphs from Tamil, 
a morphologically rich and relat ively free word order language. Here, we define two set of rules 
one based on word associated features and another based on context oriented features to build a 
hyper-graph or nested UNL graph (NG) structure to represent sub-graphs of different phrases and 
clauses of sentences. We build the nested graph structure in two stages; one, the identification of 
sub-graphs while building simple graphs (SG) and second, the identification of sub-graphs after 
the simple graph (SG) construction. The paper is organized as follows. Section 2 discusses the 
related works carried out using nested graph structure. Section 3 discusses the nested UNL 
graphs and the rules defined for sub-graph identification and construction. The evaluation and 
performance of the defined rules are investigated in section 4. Finally, section 5 concluded with 
future enhancements.    

2. Related Work 

Since we are focusing on the identification and construction of nested UNL graphs, first we 
discuss UNL in detail and the other similar semantic graph representations in this section. UNL 
(UNDL, 2011) is an electronic language designed to represent semantic data extracted from 
natural language texts. UNL consists of Universal words (UWs) represents concepts, relations 
represent the semantic relat ionship between concepts and attributes represents mood, aspect, 
tense etc. UNL representation is a directed acyclic graph representation in which nodes are 
concepts and links are relations exist between the concepts.  

(Blanc, 2000) described the French UNL Deconverter in which the issues in representing the 
semantic characteristics of predicative concepts have been discussed.  Dikonov (2008) d iscussed 
the representation of UNL graphs by segmenting complex graphs into simple graphs by applying 
rules based on propositions. Coreferential links are also considered in segmenting the UNL 
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graphs. (Jain &Damani, 2008) described the identification of scopes by relative positions in a 
phrase structure tree. The author classified the relations into cumulative and others. In the same 
vein, this paper also focuses on the identification of sub-graphs of UNL semantic graphs. 

Similar to the graph based semantic representation discussed above Chein et  al (1997) 
presented a general framework for nested graphs provided with morphis m which is a mapping 
between two graphs that induces reflexive and transitive relations for defining nested conceptual 
graphs in preorder. The simple conceptual graphs have been generalized by reasoning of objects 
based on projection operation. A survey on frequent sub-graph discovery has been described by 
(Krishna et al, 2011) in which the popular graph mining algorithms have been compared. The 
author also discussed the essential factors of various graph algorithms for d iscovering the sub -
graphs.  

 In this paper, we focus on the identification and construction of semantic UNL nested 
graphs from Tamil sentences. Unlike other sub-graph identifications for languages such as 
French and English, we use the word associated features and context based features such as UNL 
semantic relat ions instead of parsing the sentences. However, the other approaches for UNL 
nested graph identification explored some UNL relations, we also exp lore more UNL relations in 
the sub-graph identification.    

3. Nested UNL Graphs representation 

The UNL representation is said to be a hyper-graph, when it consist of several 
interlinked or subordinate sub-graphs. These sub-graphs are represented as hyper-nodes and 
correspond to the concept of dependent (subordinate) clauses, and a predicate. They are used to 
define the boundaries between complex semantic entit ies being represented. A scope is a group 
of relations between nodes that behave as a single semantic entity in a UNL graph. For instance, 
in the sentence "John killed Mary when Peter arrived", the dependent clause "when Peter 
arrived" describes the argument of a t ime relation and, therefore, should be represented as a 
hyper-node (i.e., as a sub-graph) as represented below: 

 

FIGURE 1 UNL graph representation with nested sub-graphs for  

“John killed Mary when Peter arrived” 

Scopes are used to segregate subordinate clauses such as adverbial clauses, adjectival clauses and 
nominal clauses. Scopes focus on identifying relations that exist between different types of 
subordinate clauses and does not focus on the relations exist between words. Sub-graphs are 
identified only when the semantic unity is formed by the interlinked nodes and are semantically 
ambiguous.  
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A hypergraph can be defined as a generalizat ion of a graph in which an edge can connect 
to any number of vertices. The set of vertices of a hypergraph that is connected by an edge is 
normally associated in some way and can be considered as sub-graphs. Hypergraphs can be 
formed when nodes of one sub-graph edge may originate/ terminate from/to a sub-graph 
considered as a single entity. Therefore, hypergraph has better expressive power than an ord inary 
graph. UNL representation is a directed acyclic graph representation in which the set of nodes 
interlinked by edges can represent a single semantic entity which is formally defined by UNDL 
as scopes (or) hyper-nodes (or) hyper-graphs as mentioned earlier. 

Let the graph G = {N1, N2 …… Ni} where the set {N1, N2 …… Ni} consists of nodes 
connected by relations {R1, R2 ….. Rj}. From graph G, the hidden nested graphs (NG) are 
identified by a set of rules. The rules are based on morphological suffixes, POS and semantic 
informat ion associated with word and the context. The pseudo code is for rules are given in 
Figure 2. 

3.1. Rules for Nested Graph Identification 

Balaji (2011) presented a rule-based approach for building the UNL graphs of Tamil 
sentences using morpho-semantic features. The 53 rules defined in their approach were utilized 
for converting Tamil sentences into simple UNL graphs.  In this paper, we incorporate a new set 
of 18 ru les for sub-graph identificat ion with the existing set of 53 rules originally proposed by 
Balaji (2011). We explore new rules based on word and context based features for the 
identification of sub-graphs during two stages one while constructing simple UNL graphs  and 
one after simple UNL graph construction has been completed. The rules defined by us are 
categorized based on two stages where they are used and have been listed below. 

The rules are performed in two stages.  

Stage 1: identify sub-graphs while constructing simple UNL graphs (SG) using features 
such as lexical and word based information conveying semantic relations between nodes 
in SGs. Sub-graphs that fall under this category are the different phrase types. 

Stage 2:  identify sub-graphs (NG) after the construction of simple graphs (SG) by 
preserving the context level informat ion in the nodes and the relations connected 
between the nodes of SGs. Sub-graphs that fall under this category are the d ifferent 
clause types.  

As discussed earlier, ru les are classified based on word associated features such as morphological 
suffix, POS, UNL semantic constraints and in certain cases the word itself which may convey 
UNL semantic relations, and the context based features such as UNL semantic relations. These 
rules set are utilized in the identification and construction of nested sub -graphs.  

1) Let the nodes Ni and Njwhere i~=j, be connected with UNL relations (R) such as and, 
mod, pos. Then the UNL graph R(Ni , Nj) can be a sub-graph (NG). In the UNL representation, 
hyper-nodes are indexed by ":XX", where XX is a two-digit hyper-node index called scope-id. 

Example 1:azakiya poonga (beautiful park). This example has the node Ni as “azakiya” and 
node Nj as “poonga”. The nodes Ni and Nj are connected by “mod” relation and marked with 
scope-id as nested graph (NG). In  Fig 3, the scope identifier is assigned to the headword 
“poonga” of simple UNL graph. Similarly, the nested graphs are identified using other relations.   
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FIGURE 2 Pseudo code for Nested UNL Graph Identification and Construction 

 

 
FIGURE 3 Simple UNL graph representation for  

“azakiya poonga” with scope id (:01) assigned to the headword of the graph 
 

2) Rule set defined above is to identify simple graphs that can be a sub-graph (i.e. node 
connected to another node can be a sub-graph) as described with an example. The next rule is to 
identify the nested graphs of types  

a)  node (N) connected to a sub-graph (SG) and vice versa NSG (or) SGN 
b) Sub-graph(SG) connected to another sub-graph (SG) SGSG1 

 
a) NSG (or) SGN 

Let the Graph (G) be represented as G (V, E) where V-Vert ices and E-
Edges 
Notations: 
Simple UNL graph – SG, Nested UNL sub-graph – NSG, Scope Identifier - 
SCPid 
Morphological suffix – MS 
Parts of Speech – POS 
UNL Relations – UNLR 
Rules – R 
Input: Natural Language Sentence 
Output: Nested UNL Graphs 
Stage1:  
Refer (Balaji et al, 2011) for building simple UNL graphs.  
If(R (MS) | |R (POS)) {   
(POS ϵ  Adject ive, Adjectival Noun, MS ϵ  Adjectival Suffix, Genitive 
case) 
 Set SCPid for SG; 
 NSG ← SCPid (SG); (SG consists of Concept-Relation-Concept 
(i.e. V-E-V)) 
} else if (R (Connectives)) {  
(Connectives ϵ  Postpositions, Conjunctions) 
 Set SCPid for SG; 
 NSG ← SCPid (SG); 
} 
Stage2: 
if (UNLR (modifier | |  conjunction | |  possessor)) {  

Set SCPid for SG; 
 NSG ← SCPid (SG); 
}  
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Example 2: azakiya poongavil sandhiththaan (met in a  beautiful park). This example clearly 
illustrates the need of nested graphs. The verb “sandhi” is connected to “poonga” by “plc” 
relation. The graph obtained with “plc” relation gives only the partial meaning of the sentence. 
In order to obtain the complete meaning of the sentence in a graph, we can represent in two 
ways. One is by simply connecting the nodes with the appropriate UNL relations in a sentence 
and another is by representing the sentence in which shows the exact meaning of the sentence. 
Both Fig 4 and 5 shows simple graph and nested graph representations respectively.  

 

 

FIGURE 4 Simple Graph representation of “azakiya poongavil sandhiththaan” 

 

 

FIGURE 5 Nested Graph representation of “azakiya poongavil sandhiththaan” 

b) SG  SG1 

A sub-graph is connected to another sub-graph when the UNL relat ions conveyed by the lexical 
endings such as “aal” and some natural language words, normally referred as connectives 
(mostly postpositions and conjunctions in Tamil) such as “maRRum”, “paRRi”, “enpathu” etc. 
Different clauses such as adverbial, adjectival and nominal clauses are formed based on the 
connectives and the semantic sub-graphs are identified using these connectives.  

Example3: azakiya  poonga maRRum periya  aaRu – beautiful park and big river 

Figure 6 shows the sub-graph to sub-graph representation. When representing as a simple 
semantic graph, the headwords of both the sub-graphs “poonga” and “aaRu” are connected with 
the UNL relation “and” in which the word “maRRum” indicates “and” relation.  

    

 

FIGURE 6 Nested graph representation of “azakiya poonga maRRum periya aaRu” 
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4. Evaluation 

We investigate our rule -based approach which consists of 18 ru les for identifying and 
constructing nested graphs using 500 sentences. Among the total of 500 sentences, 160 sentences 
contain adverbial clauses, 140 are adject ival clauses and 200 are nominal clauses. In addition to 
the different types of clauses, different phrase types are also taken into consideration for 
evaluating the set of rules. The output graphs are evaluated in an ad hoc manner. Table -1 shows 
the analysis and performance of nested rules for different types of sentences. Table-1 also shows 
the actual number of sub-graphs (in percentage) present under each category of sentences and the 
number of sub-graphs (in percentage) identified by our rules in each category of sentences. 
However, the rule-based approach produces better results, additional ru les are required to 
improve the performance of our approach. Moreover, in order to identify the sub -graphs 
automatically and make it domain independent, we are also focusing on machine learning 
approaches for the identification and construction of nested UNL graphs. 

Table-1: Performance Evaluation of Nested UNL Graphs  

Category of sentences Precision  Recall 

Adverbial clauses 0.55 0.34 

Adjectival clauses 0.66 0.37 

Nominal clauses 0.64 0.45 

The reason behind the low recall is the number of sub-graphs correctly identified is 
comparatively low when compared to the number of sub-graphs actually present in the corpus. 
The complex sentences can have the possibility to have incorrectly mapped concepts. This is 
because some ru les may conflict each other.  To improve the performance of our approach and to 
increase precision and recall, more number of disambiguation rules are needed.  

5. Conclusion 

In this paper, we described rules for identifying sub-graphs of UNL semantic graphs. The 
rules are classified into d ifferent categories – one is the identificat ion of sub-graphs while 
constructing simple graphs and another is the identification of sub-graphs after simple graph 
construction. The features considered for defining the rules are word associated features such as 
morphological suffixes and POS, and context  associated informat ion such as UNL relations. The 
defined rules are tested with health domain corpus and it produces significantly better results. 
Further, we enhance the identification of sub-graphs using machine learning approach so as to 
achieve the task to be domain independent. 
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ABSTRACT

This paper describes various challenges encountered while developing an 
automatic  Named Entity  Recognition  (NER) using Conditional  Random 
Fields (CRFs) for Tamil. We also discuss how we have overcome some of 
these challenges. Though most of the challenges in NER discussed here are 
common to many Indian languages, in this work the focus is on Tamil, a 
South Indian language belonging to Dravidian language family. The corpus 
used in this work is the web data. The web data consisted of news paper 
articles, articles on blog sites and other online web portals.

KEYWORDS: Named Entity Recognition, NER, Challenges, Features, post-processing
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1 Introduction

This  Named Entity Recognition (NER) refers to automatic identification of named entities in a 
given text document.  NER refers  to the recognition and classification of proper nouns in the 
given document.  NER can be viewed as labeling task. Given a text document, named entities 
such as Person names, Organization names, Location names, Product names are identified and 
tagged.  Identification  of  named  entities  is  important  in  several  higher  language  technology 
systems such as information extraction systems, machine translation systems, and cross-lingual 
information access systems. 

Named Entity Recognition was one of the tasks defined in MUC 6. Several techniques have been 
used for Named Entity tagging.  A survey on Named Entity Recognition was done by David 
Nadeau  (2007).  The  techniques  used  include  rule  based  technique  by  Krupka  (1998),  using 
maximum entropy by Borthwick  (1998),  using  Hidden Markov Model  by Bikel  (1997)  and 
hybrid approaches such as rule based tagging for certain entities such as date, time, percentage 
and maximum entropy based approach for entities like location and organization (Rohini et al.,  
2000) There was also a bootstrapping approach using concept based seeds (Niu et al., 2003)   and 
using  maximum  entropy  markov  model  (Finkel  et  al.,  2004).  Alegria  et  al,  (2006),  have 
developed NER for Basque, where NER was handled as classification task. In their study, they 
have used several classification techniques based on linguistic information and machine learning 
algorithms.  They observe  that  different  feature  sets  having linguistic  information give  better  
performance.

Lafferty (2001)  came up with Conditional  Random Fields  (CRFs),  a  probabilistic  model  for 
segmenting  and  labeling  sequence  data  and  showed  it  to  be  successful  with  POS  tagging  
experiment. Sha and Pereira (2003) used CRFs for shallow parsing tasks such as noun phrase  
chunking. McCallum and Li (2003) did named entity tagging using CRFs, feature induction and 
web enhanced lexicons. CRFs based Named Entity tagging was done for Chinese by Wenliang 
Chen (2006). CRFs are widely used in biological and medical domain named entity tagging such 
as  work by Settles  (2004) in biomedical  named entity recognition task and Klinger's  (2007) 
named entity tagging using a combination of CRFs. The Stanford NER software (Finkel et al.,  
2005), uses linear chain CRFs in their NER engine. Here they identify three classes of NERs viz.,  
Person, Organization and Location. Here they have used distributional similarity features in their  
engine, but this utilizes large amount of system memory.

In Indian languages many techniques have been used by different  researchers.  Named Entity 
recognition for Hindi, Bengali, Oriya, Telugu and Urdu (some of the major Indian languages)  
were addressed as a shared task in the NERSSEAL workshop of IJCNLP. The tagset used here  
consisted of 12 tags. In this shared task different research groups had participated.  The groups  
had used techniques such as SVM, CRFs, MEMM, and rule based approaches. Vijayakrishna & 
Sobha (2008) worked on Domain focused Tamil Named Entity Recognizer for Tourism domain 
using CRF. It handles nested tagging of named entities with a hierarchical tag set containing 106 
tags.  They  considered  root  of  words,  POS,  combined  word  and  POS,  Dictionary  of  named 
entities as features to build the system.  Pandian et al (2007) have built a Tamil NER system 
using contextual cues and E-M algorithm.
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The NER system (Gali et al., 2008) build for NERSSEAL-2008 shared task which combines the  
machine learning techniques with language specific heuristics. The system has been tested on 
five languages such as Telugu,  Hindi, Bengali,  Urdu and Oriya  using CRF followed by post  
processing  which  involves  some  heuristics.  Ekbal  &  Bandyopadhyay  (2009)  had  developed 
Named Entity Recognition (NER) systems for two leading Indian languages, namely Bengali and 
Hindi using the Conditional Random Field (CRF) framework. The system makes use of different 
types of contextual information along with a variety of features that are helpful in predicting the 
different  named entity  (NE)  classes.  They have  considered  only the  tags  that  denote  person 
names,  location  names,  organization  names,  number  expressions,  time  expressions  and 
measurement expressions.

Shalini & Bhattarcharya (2010) developed an approach of harnessing the global characteristics of 
the  corpus  for  Hindi  Named  Entity  Identification  using  information  measures,  distributional 
similarity,  lexicon, term co-occurrence and language cues. They described that combining the 
global  characteristics  with the  local  contexts  improves  the  accuracy.  The work  proposed  by 
Kumar, et al. (2011) to identify the NEs present in under-resourced Indian languages (Hindi and  
Marathi) using the NEs present in English, which is a high resourced language. The identified 
NEs are then utilized for the formation of multilingual document clusters using the Bisecting k-
means clustering algorithm.

In this paper we discuss various challenges we faced while developing a NER system. The paper 
is further organized as follows. Section 2, describes the base NER system using CRFs. In section 
3, the various challenges are discussed. Section 4 describes experiments and results. Section 5 
concludes the paper.

2 NER system using CRFs  

The basic goal of our work is to develop a practical NER system that can be used reliably on the 
web data. For an automatic system to be used in real time it should be robust. In HMM as the 
current label depends on the previous one it suffers from dependency problem. It also needs a 
large  training  corpus  otherwise  it  has  a  data  sparsity  problem.  MEMM  have  labeling  bias 
problem because the probability transition from any given state must sum to one, and hence it has 
bias  towards  states  with  outgoing  transitions.  Here  we  have  chosen  CRFs  because  of  its 
advantages over HMM and MEMM. CRFs are one best suited technique for sequence labeling 
task.

2.1 NER Tagset

We have used a hierarchical tagset consisting 106 tags. This hierarchical tagset which consists of 
mainly three  classes  Entity Names (ENAMEX),  Numerical  and Time expressions (NUMEX, 
TIMEX). In implementation part we had taken 22 second level tags from the hierarchical tagset. 
Entities may be referenced in a text by their name, indicated by a common noun or noun phrase  
or represented by a pronoun. Person, organization, Location, Facilities, Cuisines, Locomotives,  
Artifact, Entertainment, Organisms, Plants and Diseases are the eleven types of Named entities. 
Numerical  expressions are categorized as Distance, Money,  Quantity and Count. Time, Year,  
Month,  Date,  Day,  Period  and  Special  day  are  considered  as  Time expressions.  This  is  the 
standard tagset used widely in Indian Language research community in the national projects such 
as CLIA and IL-IL MT. Figure 1, shows the partial tagset that has been used in this work.
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FIGURE 1 – Sample of the NER tagset 

2.2 Our NER engine

Capitalization, suffix, prefix, dictionary patterns, first word, frequent word, digit are the widely 
used features for NE identification. These features vary for each language. Dictionary patterns 
and gazetteer list varies for every languages and it contains only the frequent named entities. The  
main goal of our engine is to identify NEs with only basic features such as word, pos and chunk.  
Current  word combined with POS of preceding two words and current  word combined with 
succeeding two words is taken as features. The features used are linguistically inspired. Features 
used in our system are as follows.

• Word – individual words

• Part of speech tag – pos tag of words

• Combination of word and POS 

• Chunk – noun phrase, verb phrase

• Combination of word, POS and chunk

The criteria for the feature selection are explained as follows: POS tag plays a vital role in the  
task of NE identification and it denotes whether the entities are proper or common nouns or 
cardinal numbers. The part of speech information helps to identify the relationship between the 
current, preceding and succeeding words. Phrase chunking is used to find the noun phrases where 
the named entities have occurred. Combination of features such as word, POS and chunk in the  
window of five boost the NER engine to learn the context of named entity.
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3 Challenges in NER 

In the last decade we find that more research interest and work has been done in the area of NER 
in Indian languages by the research community, yet challenges exist. Indian languages belong to 
several language families, the major ones being the Indo-European languages, Indo-Aryan and 
the Dravidian languages. Tamil belongs to Dravidian Language family.  The challenges in NER 
arise due to several factors.  In this section we describe some of the main challenges faced by us 
while developing the system.

3.1 Agglutination

All  Dravidian  languages  including  Tamil  have  agglutinative  nature.  Case  Markers  attach  as 
postpositions to proper or common nouns to form a single word. 

1. Ta:  Koyilil       vituwi   ullathu

En: Temple -NN+PSP     hostel -NN       be-VM

(there is hostel in the temple)

    In the above example, the case marker “il” suffixed to the common noun “koyil”. 

2. Ta: Kerala mannar  marthandavarmanukku  

En: Kerala-NN king- NN marthandavarman- NNP+PSP

therivikkappattathu

     informed-VM

(informed to the king marthandavarman of kerela)

Where, the case marker “kku” is attached to the proper noun ‘marthandavarman’.

As the case markers suffixed to the noun increases, the number of NEs in the training corpus also 
increases. So it is difficult for the machine to learn distinct NE patterns.

3.2 Ambiguity

In the corpus we find lot of ambiguity between common and proper nouns. For example the 
common names such as roja (rose) in Tamil, thamarai (lotus), malar (flower) in dictionaries can 
also be the names of person and in such cases it should be considered as NE.  From the example 
sentences given below, the problem of ambiguity can be understood easily.

3. Ta: ‘Thiya  sakthi  thaiva  sakthiyai       vella     mudiyathu’

En:  Evil   power   god     power+acc  conquer    cannot

      (Evil power cannot overcome the power of god)
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Ta:‘Sakthi  thanathu   tholigalutan    koyilukku   cenral’

En: Sakthi      her         with friends     temple      go+past

          (Sakthi went to temple with her friends)

In this example ‘Sakthi” is the ambiguous word having two meanings, one as person name and 
other as power, or energy.

4. Ta: ‘velli  suriyak  kudumbathil   irandavathaka    amainthulla  oru    kolakum’

En: Venus solar     family            second place       be-form        one    planet

(In the solar system Venus is the second planet from the sun)

Ta: ‘velli   vilai   thidirena  kurainththathu’

En: Silver   rate   suddenly  reduced

      (silver rate suddenly declined)

Here “velli” has two meanings one name of planet and other as “silver”.

5. Ta: ‘anbu   sakalathaiyum  thankum’

En:   love        all                bear

        (Love bears all things)

Ta: ‘anbu      pattap       patipai    mudithan’

En: Anbu    graduation   study     complete+past

      (Anbu completed graduation)

Here “anbu” has two meanings “love” and as name of person.

In example 4, the word “velli” is an interesting example, where both types are NEs, but 
belonging to different categories. The first one belongs to category “celestial” and second 
belongs  to  “artifact”.  Similarly  words  such  as  “thamarai”  belong  to  different  NE 
categories “flower” and “person name”.

3.3 Nested Entities

In some cases if the proper noun is considered separately, it belongs to one NE type but if we 
consider the same NE as a nested entity it belongs to another NE type. For instance, 

6. Ta: Kanchi    sankaracharyar

En: kanchi     sankaracharya
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“kanchi” refers to a location individually,  in the case of nested entity it refers to the 
person “sankaracharyar” who lives in  “kanchi”.

Ta: andal    sannathi   

En: andal    temple

In general we observe that longer length entities are formed with the combination of two 
or more individual named entities. 

7. Ta: indira   ganthi    palkalaikallagam - Organization

En: Indira   Gandhi   University

Ta: indira    ganthi  - Person name

En: Indira   Gandhi

8. Ta: krishna    jeyanthi – Special day

En: Krishna   jayanthi (birthday)

Ta: krishna – Person name

En: (Krishna)

9. Ta: chithirai    ther   thiruvilla  - Entertainment event 

En: Chithirai   boat  festival

Ta: chithirai – Month name

En: Chithirai

3.3.1 Spell Variation

One of the major challenges in the web data is that we find different people spell the same entity  
with differently. With the advent of advancement of technology, people having access to internet 
have increased, and hence people creating content has increased. Some of the examples of spell  
variation are 

lakshmi, latchmi, lacmi -  lakshmi (Person)

nagarkoyil, nagarkovil - Nagarkovil( Place)

roca, roja -  Rose (Person )

vaajpai, vaajpayee - vajpayee(Person) 

sriperumpathur, ciriperumbathur  - sriperumbudur(Place)
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In the contemporary Tamil writings we observe that people avoid usage of Sanskrit alphabets and 
instead use a different alphabets, due to we find different spell variations. “ja”, “ha” are two 
common Sanskrit letters that are avoided in writing.

3.3.2 Name variations

A name variation  is  different  from spell  variation.  Here  the  names of  places  or  persons are 
changed due to either government notifications or localization by the public or by Anglicization. 
Here the names are different. For instance, “Chennai”, “Madras”.  Some of the other examples 
are 

thanjai , thanjavur  

mumbai, bambay  

thiruchi, thiruchirappalli  

uthagai, ooty  

kovai, coimbatore

3.4  Capitalization

In  English and some other  European languages Capitalization is considered  as the important 
feature  to  identify  proper  noun.  It  plays  a  major  role  in  NE  identification.  Unlike  English 
capitalization concept is not found in Indian languages.  

3.5 Noise in the data

The data obtained from the web or other online resources consists of lots of noise, which affects  
the processing of the text. Web pages are coded using mark-up programming languages, and the  
content  is  embedded  inside  these  mark-up  tags.  The  mark-up  tags  and  other  programming 
language codes add noise to the text. This codes and mark-up tags have to be removed from the  
web page to obtain clean text.  At the outset, this cleaning seems to be a trivial task, but in some 
instances of web pages which do not follow proper set standards, removing the mark-up tags 
becomes difficult. Though this data cleaning task is not research problem, it’s an engineering  
issue, but still it’s very important to obtain clean data for further processing.

4 Experiments, Results and Discussions

The corpus is collected from various on-line tourism sites. The corpus consists of tourism and 
general domain. The corpus is divided into training and testing sets in the ratio of 70% and 30%.  
The  corpus  consists  of  93K  words.  Table  1,  shows  the  corpus  statistics.  The  corpus  is 
preprocessed  for  POS,  and  chunking.  The  preprocessing  is  done  using  automatic  tools. 
Automatic POS (Arulmozhi and Sobha, 2006) and chunking (Vijay and Sobha, 2006) tools are 
built using machine learning techniques. The performance of these tools is in the range of 92% - 
95%. 

Corpus No.  Of 
Words

No. of NEs Out-of Vocabulary NEs
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Training 65022 12970  --

Testing 28270   5684 2035 (35.78%)

Total 93292 18654

TABLE 1 – Corpus statistics

CRFs is trained with the training data to build the language model by using the features explained 
in section 2. Named entities in the Test data are identified and results are evaluated manually.  
Table 2, shows the evaluation results. 

NE Type Precision % Recall % F-score %

Person 82.52 81.30 81.92

Location 76.79 64.81 70.29

Numeric 
Expressions

69.76 81.16 75.03

Time 
Expressions

40.08 34.25 36.94

Other 
Categories

51.34 29.71 37.64

Over All 64.09 58.08 60.36

TABLE 2 – Base NE system evaluation results using CRF

SVM and CRF are both graphical learning methods and also we find that SVM is being used 
recently by the research community. Hence this has motivated us to choose SVM for comparison 
with CRF. We used Yamcha SVM classifier tool for NE classification and applied the same  
features in our base NE system using CRF. Table 3, shows the evaluation results for SVM. 

NE Type Precision % Recall % F-score %

Person 81.81 78.68 80.22

Location 75.43 59.51 66.53

Numeric 
Expressions

70.81 78.38 74.40

Time 38.82 29.44 33.49
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Expressions

Other 
Categories

55.75 27.79 37.09

Over All 64.52 54.76 58.34

TABLE 3 – Base NE system evaluation results using SVM

Precision is a measure of the accuracy provided that a specific class has been predicted. It  is 
defined by Precision = tp/(tp + fp) where tp and fp are the numbers of true positive and false 
positive predictions for the considered class. Recall is a measure of the ability of a prediction 
model to select instances of a certain class from a data set. Recall = tp/(tp+fn) where tp and fn are  
the numbers of true positive and false negative predictions for the considered class, tp + fn is the 
total number of test examples of the considered class.  The F-measure is the harmonic mean of 
precision and recall.

The above table clearly shows that in comparison with SVM, the recall score increases by 3% 
and f-measure range increases by 2% for Base NE system using CRF. The system performance is 
affected by the factors explained in section 3. Further, in this section, we explain the experiments 
performed to overcome some of the issues described in section 3. 

To overcome the problem of agglutination for languages such as the one considered in this work,  
considering the root word instead of  the actual  word will  be beneficial.  We have performed 
experiments by taking the root words instead of the actual word. The evaluation results for the  
test data by taking the root words instead of the actual word is shown in the table 4.  Use of root 
word has helped in improved identification of entities such as person names. Generally these 
entities occur with different case markers, by providing the root words for learning the system 
learns better.

NE Type Precision 
%

Recall % F-score %

Person 83.44 84.72 84.08

Location 72.57 72.26 72.42

Numeric Expressions 72.22 83.93 77.66

Time Expressions 37.63 35.95 36.77

Other Categories 54.30 43.74 48.41

Total 64.01 64.13 63.86

TABLE 4 – Evaluation results – when root words taken instead of actual words
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Other major issue, we observe is, especially in the Time expressions, the special day NE category 
consists  of  either  month name or  person  name NE embedded within it.  This  makes the NE 
identification system to tag both separately instead of one single entity.  This makes the Time 
expressions  NE identification  harder.  To  overcome this  issue  of  nested  entities,  use  of  post 
processing heuristic rules is reliable and convenient. This post processing has helped to improve 
Time expression detection. We have used linguistic and heuristic rules for post processing. The 
constraints we applied were based on the Part-of-speech tag , noun phrase chunk and a set of key-
terms in tourism documents. We explain below some of the post-processing heuristic rules used 
in this work.

Rule 1:  To attain the Entertainment tag

-2 NNP|NNPC|NNC|NN+B-NP=1

-1 NNP|NN+B-NP=1 ENTERTAINMENT

0 urchavam(NN) =1

The term “urchavam” indicates festivals held in temple. If  the current token is  “urchavam”,  
previous  POS is  a  noun category(NNP,NNPC,NNC,NN)  followed by beginning  noun-phrase 
chunk(B-NP) and second previous POS from current token is a noun category followed by B-NP 
then the nested named entity is tagged as Entertainment.

-2  NNP|NNPC|NNC|NN=0

-1 NNP|NNPC|NNC|NN=1 ENTERTAINMENT

  0 urchavam(NN) =1

If the current token is  “urchavam”, previous POS is a noun category and second previous POS 
from  current  token  is  not  a  noun  category  then  the  nested  named  entity  is  tagged  as 
Entertainment.

Rule 2: To solve the ambiguity exists between Person and Location tag. 

-2 NNP|NNPC|NNC|NN+B-NP=1

-1 NNP|NN+B-NP=1 PLACE

  0 koyil|kovil|sannathi+NN =1

The term “koyil|kovil|sannithi”  means  temple. If  the current token is  “koyil|kovil|sannathi”,  
previous POS is a noun category followed by beginning noun-phrase chunk and second previous 
POS from current token is a noun category followed by B-NP then the nested named entity is 
tagged as Location.

-2 NNP|NNPC|NNC|NN=0

-1 NNP|NNPC+B-NP=1 PLACE

 0 koyil+NN=1

If  the current  token is  “koyil|kovil|sannathi”,  previous POS is a noun category followed by 
beginning  noun-phrase  chunk  and  second  previous  POS  from  current  token  is  not  a  noun 
category then the nested named entity is tagged as Location.
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Rule 3: To disambiguate the Person and Special-day tag. 

-1 NNP|NNPC+PERSON=1 SPECIAL-DAY

  0 jeyanthi+NN=1

The  term  “jeyanthi”   denotes   Birthday  or  day  of  celebration.  If  the  current  token  is  
“jeyanthi”and the previous POS is a noun category  then the nested named entity is tagged as  
Special-Day.

Rule 4: To get the Period tag

-1  QC=1 PERIOD

  0        varutam|nAlY|ANtukalY|nAtkalY|mAwanworYum|nUrYrYANtu=1

 The  term “varutam|nAlY|ANtukalY|nAtkalY|mAwanworYum|nUrYrYANtu”   indicates  year|
day|years|days|every month|century in English. If the current token is  one among the key-terms 
specified in rule 4 and the previous POS specifies   cardinal number  then the nested named entity 
is tagged as Period.

Rule 5: To obtain the Distance tag. 

-1 QC=1 DISTANCE

0  Ki.mi=1

The term “Ki.mi.”  denotes  Kilo meter in English.  If  the current  token is  “Ki.mi.”  and the  
previous POS specifies   cardinal number  then the nested named entity is tagged as Distance.

Rule 6: To get the Time tag. 

0 kalai|malai|iravu =1 TIME

1  QC =1

The term “kalai|malai|iravu” specifies morning|evening|night in English. If the current token is  is 
one among the key-terms specified in rule 6 and the next POS specifies   cardinal number  then  
the nested named entity is tagged as Time.

-1 QC=TIME

 0 mani

The term “mani” time in English. If the current token is “mani” and the previous POS specifies 
cardinal number then the nested named entity is tagged as Time.

In table 5, we show the evaluation results obtained after including the heuristic rules in the NE 
recognition system

NE Type Precision 
%

Recall % F-score %

Person 83.16 82.22 82.69

Location 74.20 64.48 69.00

34



Numeric Expressions 74.43 84.97 79.35

Time Expressions 66.40 56.29 60.93

Other Categories 57.20 33.53 42.28

Total 71.07 64.29 66.85

Table 5 - Evaluation results – after the application of heuristic rules (post processing) to 
overcome nested entity problem.

In the table 6, we show the evaluation results for the experiment where we have combined both 
the root word and the post processing. We find there is significant improvement in the results.

NE Type Precision 
%

Recall % F-score %

Person 84.37 86.07 85.22

Location 73.36 73.10 73.23

Numeric Expressions 76.74 87.28 81.62

Time Expressions 63.57 59.13 61.27

Other Categories 58.38 46.98 52.06

Total 71.28 70.51 70.68

TABLE 6 – Evaluation results – after the application of root word and heuristic rules (post 
processing)

To overcome the issue of spell variations and name variations, one approach can be use lexicons  
(or lists) containing equivalence NEs, for different variations.  Other approach can be use of spell 
checker,  by preprocessing the corpus prior with a spell  checker engine and identify different 
variations, having threshold to consider equivalence classes.

Conclusion

In the paper we show that with the basic minimal features we obtain reasonable results. In the  
base system we don't make use of extra features and smoothing or post processing techniques. 
Then we have  described  about  are  various challenges  encountered  while  developing  the NE 
system. In the paper we discuss how these challenges can be overcome by using morph features, 
smoothing and other features, show improved results. Our NER system is developed efficiently 
so that it can handle different NE tags and unknown named entities. This is an ongoing work. We 
plan to further identify more semantic features from the corpus in the NE identification.
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ABSTRACT 

Machine Translation (MT) for low-resource language has low-coverage issues due to Out-Of-
Vocabulary (OOV) Words. In this research we propose a method using sublexical translation to 
achieve wide-coverage in Example-Based Machine Translation (EBMT) for English to Bangla 
language. For sublexical translation we divide the OOV words into sublexical units for getting 
translation candidates. Previous methods without sublexical translation failed to find translation 
candidate for many joint words. In this research using WordNet and IPA transliteration algorithm 
we propose to translate OOV words with explanation. The proposed method is better than 
previous OOV words handling. Our proposal improved translation quality by 20 points in human 
evaluation. 
KEYWORDS : Example-Based Machine Translation, Out-Of-Vocabulary Words, WordNet, Word 
Sense Disambiguation 
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1 Introduction 

Since significant amount of the web contents are in English1, it is very important to have a 
Machine Translation (MT) system for monolingual speakers of different languages. Bangla is the 
native language of around 230 million speakers worldwide, mostly from Bangladesh and West 
Bengal of India. To improve the information access to those Bangla speaking monolingual 
people, it is important to have good English to Bangla Machine Translation (MT) system. 
However, Bangla is a low-resource language due to the lack of language resources like Bangla 
WordNet and authorized parallel corpus, which makes the development of the MT system very 
challenging. More specifically, we are concerned about translating Out-Of-Vocabulary (OOV) 
words. Because MT systems for low-resource language has high probability of handling OOV 
words. English has rich language resources like automated parser, tokenizer and WordNet. 
WordNet is a large lexical database of English (Miller, 1995). On the other hand Bangla is a low-
resource language due to the lack of language resources like Bangla WordNet and authorized 
parallel corpus. In this situation, to utilize the available language resources for English, we 
consider using English as source language (SL) and Bangla as target language (TL).  

There were several attempts at building English-Bangla MT systems. The first available free 
MT system from Bangladesh was Akkhor Bangla Software2. The second available online MT 
system was apertium based Anubadok3. These systems used Rule-Based approach and did not 
handle OOV Words considering low-resource scenario. Most recently from June 2011, Google 
Translation4 started offering MT service for Bangla language, having issues in translating OOV 
Words. 

We considered Example-Based MT (EBMT) approach by improving the translation quality 
using WordNet. For using WordNet in to generalize the example-base we used chunk-string 
templates (CSTs) (Salam et. al, 2011a). CSTs consist of a chunk in the source language 
(English), a string in the target language (Bangla), and the word alignment information between 
them. CSTs are generated from the aligned parallel corpus and WordNet, by using English 
chunker. For clustering CSTs, we used <lexical filename> information for each words, provided 
by WordNet-Online5. Translaing OOV words using WordNet did not quantify the translation 
quality improvement (Salam et. al, 2012). In EBMT, it has been proposed to perform a fuzzy 
match on the corpus based on semantic distance (Sato and Nagao, 1990). Generalized templates 
proven to be useful for EBMT to achieve wide-coverage (Gangadharaiah, 2011). Using Chunks 
also helps for low-resource EBMT (Kim, 2010) . 

However, previous approaches did not consider sublexical translation techniques together with 
WordNet to find the translation candidates of OOV words. In this paper, sublexical is part of the 
word which has independent meaning. For example, “bluebird” has two sublexical units: “blue” 
and “bird”.  

In this research using WordNet and IPA transliteration algorithm we propose to translate OOV 
words with explanation. The proposed method is better than previous OOV words handling.  

This method is effective to find translation candidates in Example-Based Machine Translation 
(EBMT) for English to Bangla language. To improve the translation quality, we implemented the 
proposed method in EBMT.  

                                                           
1 http://www.netz-tipp.de/languages.html 
2 http://www.akkhorbangla.com 
3 anubadok.sourceforge.net 
4 http://translate.google.com/#en|bn| 
5 http://wordnetweb.princeton.edu/perl/webwn 
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To find semantically related English words from WordNet for the OOV word, we need to 
select the correct WordNet synset. In this research, in order to translate OOV words with better 
quality, we introduced word-sense-disambiguation technique to choose the semantically closest 
WordNet synset. Using the WordNet synset and English-Bangla dictionary, we proposed an 
improved mechanism to translate the OOV word. If no Bangla translation exists, the system uses 
IPA-based-transliteration. For proper nouns, the system uses the transliteration mechanism 
provided by Akkhor Bangla Software. Based on the above methods, we built an English-to-
Bangla EBMT. Proposed solution improved translation quality by 20 points in human evaluation. 

2 Background  

We used EBMT approach for low-resource language using chunk-string templates (Salam et. al., 
2011a). The Figure 1 shows the EBMT architecture. During the translation process, at first, the 
input sentence is parsed into chunks using OpenNLP Chunker. The output of Source Language 
Analysis step is the English chunks. Then the chunks are matched with the example base using 
the Matching algorithm as described in section IV. This process provides the CSTs candidates 
from the example-base. It also marks the OOV Words. In OOV Word Translation step, we try to 
choose the translation candidate for those OOV Words with the help of WordNet. Our improved 
WSD technique helps the system to choose the correct WordNet system for better translation of 
the OOV word. Finally in Generation process WordNet helps to translate determiners and 
prepositions correctly to improve MT performance (Salam et. al, 2011b). Finally using the 
generation rules we output the target-language strings. Based on the above MT system 
architecture, we built an English-to-Bangla MT system. 

 

FIGURE 1 – EBMT Architecture 
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The dotted rectangle in Figure 1 identified the new contribution area of this 
research. Here we used EBMT based on chunk-string templates (CSTs), which is 
especially useful for developing a MT system for high-resource to low-resource 
language. CSTs consist of a chunk in the source language (English), a string in the target 
language (Bangla), and the word alignment information between them. From the 
English-Bangla aligned parallel corpus CSTs are generated automatically. 

English Bangla Align 

Bangla is the native language of 

    1       2  3      4           5         6 

around 230 million people worldwide  

     7      8      9       10        11 

বিবিযা প িাংলাপ ছেপ
রা়প ০পবিবল়  িা প
–এরপিাতভা াপ 

11 1  

2  7  8  9 10 6 
4 

TABLE 1 – Example word-aligned parallel corpus. 

Table 1 shows sample word-aligned parallel corpus. Here the alignment information contains 
English position number for each Bangla word. For example, the first Bangla word “বিবিযা ” 
is aligned with the 11th word in the English sentence. That means “বিবিযা ” is aligned with 
“worldwide”. 

The example-base of our EBMT is stored as CSTs. We produced CSTs from the parallel corpus. 
Table 2 shows the initial CSTs for the parallel sentence given in Table1. In Table 2, c is a chunk 
in the source language (English), s is a string in the target language (Bangla), and t is the 
alignment information calculated from the original word alignment. 

CST# English Chunk (C) Bangla (S) T 

CST1 [NP Bangla/NNP ] িাংলা 1 

CST2 [VP is/VBZ ] ছে 1 

CST3 [NP the/DT native/JJ language/NN] িাতভা া 2 

CST4 [PP of/IN ]  –এর 1 

CST5 [NP around/RB 230/CD  

million/CD people/NNS ]  

রা়প ০ বিবল় পিা   1 2 

3 4 

CST6 [ADVP worldwide/RB] বিবিযা  1 

TABLE 2 – Example of initial CSTs. 

In the next step CSTs are generalized by using WordNet to increase the EBMT coverage. To 
generalize we only consider nouns, proper nouns and cardinal number (NN, NNP, CD in 
OpenNLP tagset). For each proper nouns we search in WordNet. If available we replace that 
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NNP with <lexical filename> returned from the WordNet. For example WordNet return 
<noun.communication>  for “Bangla”.  For cardinal number we simply CDs together to 
<noun.quantity>. We show example generalized CSTs produced using WordNet in Table 3. 

CST# English Chunk (C) Generalized Chunk 

CST1 [NP Bangla /NNP ] [NP<noun.communication>/NNP] 

CST5 [NP around/RB 230/CD 

million/CD people/NNS] 

[NP around/RB 

<noun.quantity> people/NNS ]  

TABLE 3 – Combined- CSTs examples. 

Finally we get the CSTs database which has three tables: initial CSTs, generalized CSTs and 
Combined-CSTs. From the example word-aligned parallel sentence of Table 1, system generated 
6 initial CSTs, 2 Generalized CSTs and 4 Combined-CSTs. 

3 Handle Out-of-Vocabulary Problem  

As in our assumption, the main users of this EBMT will be monolingual people; they cannot read 
or understand English words written in English alphabet. However, with related word translation 
using WordNet and Transliteration can give them some clues to understand the sentence meaning. 
As Bangla language accepts foreign words, transliterating an English word into Bangla alphabet, 
makes that a Bangla foreign word. For example, in Bangla there exist many words, which 
speakers can identify as foreign words. 
 Figure 2 shows the OOV or Unknown Words translation process in a flow chart. Proposed 
system first tries to find semantically related English words from WordNet for the OOV word. 
From these related words, we rank the translation candidates using WSD technique and English-
Bangla dictionary. If no Bangla translation exists, the system uses IPA-based-transliteration. For 
proper nouns, the system uses transliteration mechanism provided by Akkhor Bangla Software.  
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FIGURE 2 – Steps of handling OOV words 

3.1 Find Sublexical Translations 

For sublexical matching our system divide the OOV word into sublexical units and then find 
possible translation candidates from these sublexical units. For this the system use following 
steps: 

(1) Find the possible sublexical units of the OOV. For example, the OOV “bluebird” gets divided 
into “blue” and “bird”. 

(2) Extract sublexical translations and restrain translation choices. 

(3) Remove less probable sublexical translations 

(4) Output translation candidates with the POS tags for the sublexical units of the OOV. 

From the set of all CSTs we select the most suitable one, according to the following criteria: 
1. The more exact CSTs matched, the better; 
2. Linguistically match give priority by following these ranks, higher level is better: 
•Level 4: Exact match.  
•Level 3: Sublexical unit match, <lexical filename> of WordNet and POS tags match 
•Level 2: Sublexical unit match, <lexical filename> of WordNet match 
•Level 1: Only POS tags match. 

•Level 0: No match found, all OOV words. 
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3.2 Find Candidates from WordNet  

Due to small English-Bangla parallel corpus availability, there is high probability for the MT 
system to handle OOV words. Therefore, it is important to have a good method for translating 
OOV words.  When the word has no match in the CSTs, it tries to translate using English 
WordNet and bilingual dictionary for English-Bangla.  

 Input of this step is OOV or unknown words. For example “canine” is a OOV in our system. 
Output of this process is the related OOV words translation. 

3.2.1 Find Candidates from WordNet  

The system first finds the synonyms for the OOV word from the WordNet synsets. Each synset 
member becomes the candidate word for OOV. WordNet provide related word for nouns, proper 
nouns, verbs, adjectives and adverbs. Synonymy is WordNet’s basic relation, because WordNet 
uses sets of synonyms (synsets) to represent word senses. Synonymy is a symmetric relation 
between word forms. We can also use Entailment relations between verbs available in WordNet 
to find OOV candidate synonyms.  

3.2.2 Find Candidates Using Antonyms 

WordNet provide related word for nouns, proper Antonymy (opposing-name) is also a symmetric 
semantic relation between word forms, especially important in organizing the meanings of 
adjectives and adverbs. For some OOV we can get the antonyms from WordNet. If the antonym 
exists in the dictionary we can use the negation of that word to translate the OOV word. For 
example, “unfriendly” can be translated as “not friendly”. In Bengali to negate such a word we 
can simply add “ া” (na) at the end of the word. So, “unfriendly” can be translated as “িধব ্ণ া”প
(bondhuttopurno na). It helps to translate OOV words like “unfriendly”, which improves the 
machine translation quality. 

Hyponymy (sub-name) and its inverse, hypernymy (super-name), are transitive relations between 
synsets. Because there is usually only one hypernym, this semantic relation organizes the 
meanings of nouns into a hierarchical structure. We need to process the hypernyms to translate 
the OOV word.  

3.2.3 Find Candidates Using Hypernyms 

For nouns and verbs WordNet provide hypernyms, which is defined as follows: 

Y is a hypernym of X if every X is a (kind of) Y. 

 For example “canine” is a hypernym of noun “carnivore”, because every dog is a member of 
the larger category of canines. Verb example, “to perceive” is an hypernym of “to listen”. 
However, WordNet only provides hypernym(s) of a synset, not the hypernym tree itself. As 
hypernyms can express the meaning, we can translate the hypernym of the unknown word. To do 
that, until any hypernym’s Bangla translation found in the English-Bangla dictionary, we keep 
discovering upper level of hypernym’s. Because, nouns and verbs are organized into hierarchies, 
defined by hypernyms or is-a-relationships in WordNet. So, we considered lower level synset 
words are generally more suitable then the higher level synset words.  

 This process discovers the hypernym tree from WordNet in step by step. For example, from 
the hypernym tree of “dog” from WordNet, we only had the “animal” entry in our English-
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Bangla dictionary. Our system discovered the hypernym tree of “dog” from WordNet until 
“mammal”. Following is the discovered hypernym tree: 

dog, domestic dog, Canis familiaris 

=> canine, canid 

=> carnivore  => placental, placental mammal 

 => mammal  => vertebrate, craniate => chordate 

 => animal => ... 

This process search in English-Bangla dictionary, for each of the entry of this hypernym tree. So 
at first we used the IPA representation of the English word from our dictionary, then using 
transliterating that into Bengali. Then system produce “a kind of X” - এক রছ র X  [ek dhoroner 
X]. For the example of “canine” we only had the Bengali dictionary entry for “animal” from the 
whole hypernym tree. We translated “canine” as the translation of “canine, a kind of animal”, in 
Bangla which is “কযা াই , এক রছ র ু” [kjanain, ek dhoroner poshu].  

 Similarly, for adjectives we try to find “similar to” words from WordNet. And for Adverbs 
we try to find “root adjectives”. 

 Finally, this step returns OOV words candidates from WordNet which exist in English-
Bangla dictionary.  

 Using the same technique described above, we can use Troponyms and Meronyms to 
translate OOV words. Troponymy (manner-name) is for verbs what hyponymy is for nouns, 
although the resulting hierarchies are much shallower. Meronymy (part-name) and its inverse, 
holonymy (whole-name), are complex semantic relations. WordNet distinguishes component 
parts, substantive parts, and member parts.  

3.3 Rank Candidates  

To choose among the candidates for the OOV word, we need to rank all the candidates. Here we 
used following technique for this. 

3.3.1 Selecting Adequate WordNet synset for OOV  

 Especially polysemous OOV words need to select the adequate WordNet synset to choose 
the right candidate. The system perform Google search with the input sentence as a query, by 
replacing the OOV word with each candidate words. We add quotation marks in the input 
sentence to perform phrase searches in Google, to find the number of in documents the sentence 
appear together. If the input sentence with quotation mark returns less than 10 results, we 
perform Google search with four and two neighbour chunks. Finally, the system ranks the 
candidate words using the Google search hits information.  

 For example, the input sentence in SL is: This dog is really cool. The system first adds 
double quotation with the input sentence: “This dog is really cool”, which returns 37,300 results 
in Google. Then the system replaces the OOV “dog” from discovered hypernym tree. Only for 
"This animal is really cool.", returned 1,560 results by Google. That is why “animal” is the 
second most suitable candidate for “dog”. 
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 However, other options "This domestic dog is really cool." or "This canine is really cool." 
etc. returns no results or less than 10 results in Google. So in this case we search with neighbour 
chunks only.  

For example, in Google: 

"This mammal is" returns 527,000 results;  

"This canid is" returns 503,000 results; 

"This canine is" returns 110,000 results; 

"This carnivore is" returns 58,600 results;  

"This vertebrate is" returns 2,460 results;  

"This placental is" returns 46 results;  

"This craniate is" returns 27 results;  

"This chordate is" returns 27 results;  

"This placental mammal is" returns 6 result;  

 Finally the system returns the OOV candidates: mammal, canid, canine, carnivore, 
vertebrate, placental, craniates, chordate, placental mammal. 

3.4 Final Candidate Generation 

In this step, we choose one translation candidate. If any of the synonyms or candidate word exist 
in English-Bangla dictionary, the system translates the OOV word with that synonym meaning. If 
multiple synonyms exist then the entry with highest Google search hits get selected. 

English-Bangla dictionary also contains multiple entries in target language. For WSD analysis in 
target language, we perform Google search with the produced translation by the system. The 
system chooses the entry with highest Google hits as final translation of the OOV word. For 
example, for OOV “dog”, animal get selected in our system. 

However, if there were no candidates, we use IPA-Based-Transliteration.  

3.4.1 IPA-Based-Transliteration  

When OOV word is not even found in WordNet, we use IPA-Based transliteration using the 
English IPA Dictionary (Salam et. al., 2011b). Output for this step is the Bangla word 
transliterated from the IPA of the English word. In this step, we use English-Bangla 
Transliteration map to transliterate the IPA into Bangla alphabet.  

Mouth  
narrower  
vertically 

[i ː]  / ি  
sleep /sliːp/ 

[I]   / ি  
slip /slIp/ 

[ʊ]  /    
book /bʊk/ 

[uː]উ/    
boot /buːt/ 

  
[e]পএপ/ ে  

ten /ten/ 
[ə]  /    
after /aː ftə/ 

[ɜː] আ /    bird 
/bɜːd/ 

[ɔː] প্ 

bored /bɔːd/ 
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Mouth  
wider  

vertically 

[æ]এয্ / ্য  
cat /kæt/ 

[^] আ /   
cup / k^p/ 

[ ː] আ /    
car  / c ːr/ 

[ ] অ 
hot /h t/ 

English-Bengali IPA mapping for vowels 

[Iə] য়া/ি য়  
beer /bIər/ 

[eI] এই/ ে ই 
say /seI/ 

  

[ʊə] য়া/   য়   
fewer /fjʊər/ 

[ɔI] অ়/় 

boy /bɔI/ 

[ə ʊ] ও /  ে   

no /nəʊ/  

eə য়া/   য়  
bear /beər/ 

[aI]   ই /  আই 
high /haI/ 

[aʊ] আউ /  উ 
cow /kaʊ/  

English-Bengali IPA mapping for diphthongs 

[p]  
pan /pæn/ 

[b]পিপ 
ban /bæn/ 

[t]পট 
tan /tæn/ 

[d]পড 
day /deI/ 

[ʧ] চ  
chat /ʧæt/ 

[ʤ] জ 
judge /ʤ^ʤ/ 

[k]পক 
key /kiː / 

[g] গ 
get /get/ 

[f]প  
fan /fæn/ 

[v]পভ 
van / væn/ 

[θ] থ 
thin /θIn/ 

[ð]প  
than /ðæn/ 

[s]  
sip /sIp/ 

[z]পজ 
zip / zIp/ 

[∫] শ 
ship /∫Ip/ 

[ʒ] স 
vision /vIʒ^n/ 

[m]পিপ 
might 
/maIt/ 

[n]প  
night 
/naIt/ 

[ŋ]  /ঙ 
thing /θIŋ/ 

[h]প  
height /haIt/ 

[l]পল 
light /laIt/ 

[r]পর 
right /raIt/ 

[w]প় 
white 

/hwaIt/ 

[j]ইছ় 
yes /jes/ 

English-Bengali IPA mapping for consonants 

FIGURE 3– English-Bengali IPA mapping 

From English IPA dictionary the system can obtain the English words pronunciations in IPA 
format. Output for this step is the Bengali word transliterated from the IPA of the English word. 
In this step, we use following English-Bengali Transliteration map to transliterate the IPA into 
Bengali alphabet. Figure 3 shows our proposed English-Bengali IPA chart for vowels, 
diphthongs and consonants. Using rule-base we transliterate the English IPA into Bangla 
alphabets. The above IPA charts leaves out many IPA as we are considering about translating 
from English only. To translate from other language such as Japanese to Banglawe need to create 
Japanese specific IPA transliteration chart. Using the above English-Bangla IPA chart we 
produced transliteration from the English IPA dictionary. For examples: pan(pæn): যা ; 
ban(bæn): িযা ; might(maIt): িাইট. 

 However, when unknown word is not even found in the English IPA dictionary, we use 
transliteration mechanism of Akkhor Bangla Software. For example, for the word “Muhammod” 
which is a popular Bangla name, Akkhor transliterated into “ি াম ” in Bangla.  

48



 

 

 

 

 

 

 

 

 

 

FIGURE 4– Akkhor phonetic mapping for Bengali alphabets 

4 Exeriment 

We did quality evaluations for the proposed EBMT with unknown words, by comparing with 
baseline EBMT system. Quality evaluation measures the translation quality through human 
evaluation. 

Baseline system architecture has the same components as described in Fig. 1, except for the 
components inside dotted rectangles. Matching algorithm of baseline system is that not only 
match with exact translation examples, but it can also match with POS tags. The Baseline EBMT 
use the same training data: English-BANGLA parallel corpus and dictionary, but does not use 
CSTs, WordNet and unknown words translation solutions. 

Currently from the training data set of 2000 word aligned English-Bangla parallel sentences, 
system generated 15356 initial CSTs, 543 Generalized CSTs and 12458 Combined-CSTs. As this 
research is focused for low-resource language, we trained our MT system with 2000 word 
aligned parallel corpus and small dictionary. 

The development environment was in windows-OS using C Sharp language. Our test-set 
contained 336 sentences, which are not same as training data. The test-set includes simple and 
complex sentences, representing various grammatical phenomena. We have around 20,000 
English-Bangla dictionary entries.  

Translation Quality Grade Baseline EBMT % EBMT with Sublexical %  
Perfect    A 

22.67 36.00 

Good   B 
25.33 32.00 

Medium  C 
19.67 20.00 

Poor   D 
32.33 12.00 

Total   100% 100% 

TABLE 4 – Human evaluation of EBMT system using same testset. 
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Quality evaluation measures the translation quality through human evaluation. Perfect 
Translation means there is no problem in the target sentence, and exact match with test-set 
translation. Good Translation means not exact match with test-set reference, but still 
understandable for human. Medium means there are several problems in the target sentence, like 
wrong word choice and wrong word order. Poor Translation means there are major problems in 
the target sentence, like non-translated words, wrong word choice and wrong word order. Our 
phonetic transcription component helped to improve such poor translation into medium 
translation quality. Table 4 shows the human evaluation of current system. Around 20 points of 
poor or medium translations produced by “Baseline EBMT” was improved using the proposed 
sublexical word translation mechanism. 

# OOV context EBMT sublexical 

1 WordNet is 
a.. 

দজালপ ছে..প(shobdojal hocche..)  

WordNet is a..(A) 

2 Sublexical 
units of a 
word .. 

ছদরপ উ -আবভ াব ক অং .. (shobder 
upoabhidhanik onghsho) 

Sublexical units of a word .. (A) 

ৃ This is a 
bluebird.. 

এটাপ ল াবি ..প(eta nilpakhi..) 

This is a bluebird.. (A) 

TABLE 5 – Comparison of produced translations of OOV words 

Table 5 shows the sample produced translations of OOV words. The “OOV context” column 
shows the OOV word with context where the underlined word is OOV word. “EBMT sublexical” 
shows the OOV translation produced by our proposed mechanism. Column 3 shows the OOV 
translation produced in Bengali alphabet, then the transliteration in brackets, then the English 
meaning of the produced translation and finally the quality of translation using the above grades. 

Conclusion 

We proposed a method using sublexical translation to achieve wide-coverage in Example-Based 
Machine Translation (EBMT) for English to Bangla language. Our experiment showed the 
method is effective to handle the OOV problem in EBMT. Proposed solution improved 
translation quality by 20 points in human evaluation. In future, we want to experiment the 
proposed method with other low-resource Indian languages having larger training data. 
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ABSTRACT 

Treebank is a basic language resource for training and testing 

syntactic parser which forms a key module in various NLP systems 

like machine translation system. This paper reports an ongoing 

research of building dependency treebank for Kashmiri 

(KashTreeBank) and discusses some main annotation issues. The 

paper is based on the pilot annotation of 500 sentences.  

KEYWORDS: Corpus, Annotation, Dependency, V2 Phenomenon   

1. Introduction 

Treebank is a set of corpora annotated with skeletal syntactic 

information, such as POS tags for words level and syntactic tags for 

beyond word level (Kristin Jacque, 2006). It is essentially a machine 

readable repository of syntactic structures of a language. 

KashTreeBank
1
 is a small scale Kashmiri dependency treebank, 

based on Paninian Computational Grammar-PCG (Bharati, et al. 

1994). Sanchay (See Singh 2006) has been used for syntactic 

annotations. The present treebank is in the initial stage of 

development in which annotation of 2361 sentences has been taken 

up. So far, POS annotation of 888 sentences has been completed, out 

                                                           
1 KashTreeBank is a personal effort on part of the researcher which was initially 
conceived as a summer school project in IASNLP 2011. 
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of which 500 sentences are further annotated at chunk & inter-chunk 

dependency level, manually by using the afore mentioned interface.  

2. Kashmiri and Resource Poor Scenario 

‘Kashmiri’ is one of the 22 scheduled languages as per the 8th 

schedule of the Indian constitution. It is mainly spoken in the greater 

region of “Kashmir”. There are 6 million Kashmiri speakers (see 

Ethnologue, 2006). Kashmiri is a Dardic language (Grierson, 1915), 

classified with its sister language Shina, under a separate group 

within Indo-Aryan family. It is inflectionally rich language with 

extensive V2 phenomenon & pronominal clitics. It is mainly written 

in modified Persio-Arabic script with writing convention from right 

to left. It is the only language in Dardic group which has a written 

tradition. Since, it has been never used as an official language or the 

medium of instruction; the text is produced in limited domains, 

predominantly, in literature. Very little computational and language 

resources are available for Kashmiri. It is only 3-4 years back that 

some initial efforts started in this direction at LDC-IL and 

University of Kashmir (ldcil.org & kashmirizaban.com). These 

efforts resulted in some basic language resources.  

3. Corpus 

The treebanks are usually based on contemporary newspaper texts, 

which have the practical advantage of being relatively easily 

accessible. For example, the Wall Street Journal part of the Penn 

Treebank (See Marcus et al. 1993). This has been very influential as 

a model for treebanks across the world but newspaper corpus is not 

readily available for Kashmiri as it is for English. However, for the 

current work, the use of newspaper corpus was avoided in initially 

for the only reason that it comprises of very lengthy sentences which 

were very hard to annotate in the beginning. Therefore, 500 

sentences corpus was created by manually inputting the text from 

54



the short stories. The idea was that these stories consist of relatively 

shorter sentences (4 to 30 Words in length) which would be easier to 

annotate, hence, to prepare a basic guideline would be an easy job. 

Later on, 1861 sentences from a newspaper “Sangarmaal” (political 

domain) were added to the existing corpus.   

4. Framework and The Grammar Formalism  

For the current work, PCG has been used for syntactic annotation 

which is actually a variant of dependency grammar (Kiparsky & 

Staal, 1969). This model helps to capture the syntacto-semantic 

relations in a sentence. Sentence is considered as a series of 

modifier-modified relations with a primary modified, main verb, the 

root of the dependency tree. The elements which modify main verb 

are its arguments or adjuncts that participate in the action specified 

by the verb. The relations of these participants with the verb are 

called karaka. Since, Kashmiri is an inflectionally rich language; 

there are clear cut markers or postpositions (vibaktis) on the 

arguments and adjuncts that participate in an action/event. Such 

syntactic cues can be very instrumental in identifying the relation of 

an argument or adjunct with its root, the main verb. There is almost 

one-to-one relation between the karakas & the case 

markers/postpositions in many constructions. Such correspondences 

between karaka & vebhakti along with TAM features are very 

helpful in syntactic annotation and handling relatively free word-

order (Bharati et al. 1993). 

5. Some Important Annotation Issues 

Initially, Hindi annotation guideline was used to experiment with 

Kashmiri corpus and to frame a rough Kashmiri annotation 

guideline. Though, it covered most of the dependency relations 

occurring in the corpus but there were many remaining issues 

related to V2 phenomenon, discontinuity in complex predicates, 
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distinction between coordinating and subordinating conjuncts, 

pronominal clitics, handling of discourse elements, etc which were 

resolved after initial pilot annotation of 500 sentences. These issues 

are briefly explained below with the help of some representative 

dependency trees:  

I. V2 Phenomenon and Discontinuous Verb Group 

      1. asi    A:s   doshvun’  bA:tsan      tam’-sInz    seyThaa       

          we   had    both    husband-wife      it’s          immense   

          nikhath     gA:mIts   

           hatred        went 

          We both husband wife had developed immense hatred of it.  

In this example, shown in Fig.1, tense auxiliary “A:s” (آس/FRAGP) 

and main verb “gAmIts” (گٲمٕژ/VGF) are discontinuous (non-

contiguous) with three intervening NPs. The auxiliary verb occurs 

mostly at second position and the main verb at sentence final 

position of the sentence. It is called V2 phenomenon which is 

similar to German and Yiddish. Since the root of the sentence is 

finite verb group, the main issue was whether to posit AUX or VM 

as the root of the sentence; given the discontinuity in finite verb 

group (VGF). Initially, FRAGP tag (used to handle discontinuity in 

Hindi treebank) was used for AUX and it was treated as a root of the 

sentence. The relation between FRAGP & VGF was shown by 

arbitrary FRAGof arch (see Fig.1) Later on, the decision to posit 

FRAGP (AUX) as head vis-à-vis root of sentence was revised and 

VGF (VM) was taken as head. This decision was made in 

consonance with the theory behind PCG which holds that only 

content words can be heads.  
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II. Complex Predicates and their Discontinuity  

2. zA:hir   chu   ki   Akis     aasi     akh  kitaab  pasand                              

obvious  is   that  one  will-have one  book     like          

               tI     beykis     aasi       byaakh   kitaab   pasand.  

               and   other   will-have   other     book      like 

        It is obvious that one likes one book and other likes other book. 

Identification of complex predicates (CP) and their extraction is 

already a complex problem in syntactic parsing but it is more 

complicated in Kashmiri where both discontinuous and continuous 

CPs occurs. The noun/adjective/verb part of CP occurs apart from 

the light verb which takes second position due to V2 phenomenon. 

While annotation, the noun/adjective/verb part is being attached to 

the light verb (VGF) with relation label, Part-of (Pof), as shown in 

Fig.3, the nominal part of the CP “pasand” (پسَنٛد/NP) is attached to 

the light verb “aasi” (  آسہ/VGF) by (Pof) arch. 

III. Coordinating and Subordinating Conjuncts 

In shown in Fig.3, no distinction is maintained between coordinating 

and subordinating or embedding phenomena as both relations are 

represented by the (ccof) archs in the tree. However, it is important 

to maintain the distinction by positing separate relations (ccof for 

coordination & ccsof for subordination). Coordination conjunct 

(CCP) is taken as head of the sentence as shown in Fig.3 as well as 

Fig.2, joining the roots (verb groups) of the two independent clauses 

by (ccof) relations.  

IV. Pronominal Clitics 

3. Yami-is           yi         behtar      zon-un      ti      thovn-as  

               For-whom whatever   better      know-3C  that    kept-3C      
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               lekhith.  

               written 

For whom whatever he deemed better he kept that in his/her destiny.  

Pronominal clitics are the characteristic feature of Kashmiri. Certain 

pronominal arguments are dropped from the argument structure but 

are gets cliticised as verbal inflection shown in Fig.2, the light verb 

lekhith thovn-as (َلیکھتھ تھونس) is inflected for second person 

pronominal clitic (–as) and completes the argument structure even 

without the presence of free pronominal arguments. So it is not 

important to posit dummy argument, instead a feature of clitic can 

be added to the light verb head.   

 

 

FIGURE.1 Simple Sentence showing V2 Phenomenon  
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FIGURE.2 Sentence showing Pronominal Clitic  

 

FIGURE.3 Sentence Showing Discontinuous Complex Predicate, 

Coordination and Sub-ordination 
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4. Conclusion 

In this paper we explored some annotation issues raised during the 

pilot phase of annotation for KashTreeBank. We have used the 

already developed dependency annotation scheme of Hindi-Urdu to 

Kashmiri and found to a greater extent it could capture almost all the 

phenomenon of Kashmiri that occurred in 500 sentences except 

some phenomenon peculiar to Kashmiri as discussed above. The 

output of this work is a dependency annotation guideline for 

Kashmiri treebank. The guideline will be applied to the newspaper 

corpus, some part of which has been already annotated according 

with BIS POS annotation scheme. Since, POS annotation of the 

current 500 sentences has been carried out on the basis of ILMT 

scheme; the Kashmiri dependency guideline needs many changes 

before applying to the newspaper corpus in future. 
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ABSTRACT 

This paper addresses diagnostic evaluation of machine translation (MT) systems for 
Indian languages, English to Hindi translation in particular. Evaluation of MT output is 
an important but difficult task. The difficulty arises primarily from some inherent 
characteristics of the language pairs, which range from simple word-level discrepancies 
to more difficult structural variations for Hindi from English, such as reduplication of 
words, free word order etc.  The proposed scheme is based on identification of 
linguistic units (often referred to as checkpoints). We use the diagnostic evaluation tool 
DELiC4MT to analyze the contribution of various PoS classes for different categories. 
We further suggest some additional checkpoints based on named entities, ambiguous 
words, word order and inflections that are relevant for the evaluation of Hindi. The 
evaluation of these checkpoints provides a detailed analysis and helps in monitoring 
how an MT system handles these linguistic phenomena as well. This also provides 
valuable feedback to MT developers as to where the system is performing poorly and 
how the output can possibly be improved.  The effectiveness of the approach was tested 
on 5 English to Hindi MT systems and it was observed that the system-level DELiC4MT 
scores correlate well with the scores produced by the most commonly used automatic 
evaluation metrics (BLEU, NIST, METEOR and TER) while providing finer-grained 
information. 

KEYWORDS: diagnostic evaluation, automatic evaluation metrics, linguistic checkpoints 
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1 Introduction 

Evaluation of MT systems has received a lot of attention over the last decade or so, yet 
no generally ideal automatic metric could be designed so far. The problem becomes 
even more pronounced when the source and target languages are distant, (e.g. they 
belong to different language families). The MT community is very much in need of a 
suitable evaluation methodology for evaluating translation quality. This is particularly 
true with respect to Indian languages. In the last 15 years or so, MT into Indian 
languages (especially Hindi) has gained tremendous research interest in India and 
elsewhere. Many English to Hindi and Indian Languages to Indian Languages MT 
systems have been designed, for example AnglaBharati (Sinha et al., 1995), 
Anusaaraka2 (Chaudhury et al., 2010), Anuvadaksh3, Google4, Sampark5, MaTra6 
(Ananthakrishnan et al., 2006), to name just a few.  

However, the issue of evaluating the output of these MT systems has remained rather 
unexplored. The state-of-the-art methods for automatic MT evaluation are represented 
by BLEU (Papineni et al., 2002) and closely related NIST (Doddington, 2002), METEOR 
(Banerjee and Lavie, 2005; Lavie and Agarwal, 2007) and TER (Snover et al., 2006). 
These metrics have been widely accepted as benchmarks for MT system evaluation. 
However, the research community is also aware of the deficiencies of these metrics 
(Callison-Burch et al., 2006). Globally, these automatic MT evaluation metrics (BLEU, 
NIST, TER, METEOR, etc.) are being studied with great interest for different language 
pairs. But their direct applicability to Hindi, or other Indian languages for that matter, 
needs proper investigation. Indian languages are characteristically different from 
English and other related European languages for which these metrics are mostly used. 

There have been some efforts in this direction for Indian languages (Chatterjee and 
Balyan, 2011; Gupta et al., 2010; Ananthakrishnan et al., 2007; Chatterjee et al., 2007; 
Moona et al., 2004). Barring these few exceptions, the subject has not been studied 
deeply. Most of these approaches, however, either cover human evaluation, or consider 
modification of existing automatic metrics (like BLEU and METEOR) to make them 
more suitable for Indian languages. None of these works has been targeted towards 
diagnostic evaluation (Zhou et al., 2008; Naskar et al., 2011; Popović, 2011), which not 
only provides quantitative analysis, but also qualitative feedback of the machine 
translated text. It also provides feedback and detailed analysis of how an MT system 
performs for different linguistic features like verbs, nouns, compounds etc. 

Our final aim is to come up with an approach for diagnostic evaluation of MT that can 
be adapted to Indian languages. In the present work the experiments have been carried 
out with the DELiC4MT (Toral et al., 2012) toolkit as it is language independent. The 
experiments have been carried out to adapt the tool for Hindi, which can be later 
extended to evaluation of other Indian languages as well. To the best of our knowledge 

                                                             

2  http://anusaaraka.iiit.ac.in/ 

3  http://tdil-dc.in 

4  http://translate.google.com/ 

5 http:// sampark.iiit.ac.in/sampark/web/index.php/content 

6  http://www.cdacmumbai.in/matra/ 
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this is a pioneering work in the direction of diagnostic evaluation with respect to Indian 
languages.  

The rest of the paper is organized as follows. Related work on diagnostic evaluation is 
discussed in Section 2.  Section 3 gives a brief overview of the diagnostic evaluation 
tool, DELiC4MT, which has been used for this study. In Section 4, the various linguistic 
checkpoints considered for the study of English and Hindi have been discussed. Section 
5 discusses the experimental setup and compares the results obtained on the English-
Hindi test set using DELiC4MT and automatic evaluation metrics. This is followed by 
conclusions and avenues for future work. 

2 Related work 

Although diagnostic evaluation of MT has been occasionally addressed in the literature 
in the last few years, no widely accepted solution seems to have emerged till date.  A 
framework proposed by Vilar et al. (2006) analyzes the errors manually. The scheme 
covers five top-level classes: missing words, incorrect words, unknown words, word 
order and punctuation errors. Farrús et al. (2010) classified errors at orthographic, 
morphological, lexical, semantic, and syntactic level. Some automatic methods for error 
analysis using base forms and PoS tags have been proposed in (Popović et al., 2006; 
Popović and Ney, 2011). The proposed methods have been used for estimation of 
inflectional and reordering errors. Popović and Burchardt (2011) present a method for 
automatic error classification. Popović (2011) describes a tool that classifies errors into 
five categories based on the hierarchy proposed by Vilar et al. (2006). Popović (2012) 
describes RGBF, a tool for automatic evaluation of MT output based on n-gram precision 
and recall. Fishel et al. (2012) quantifies translation quality based on the frequencies of 
different error categories. Xiong et al. (2010) used a classifier trained with a set of 
linguistic features to automatically detect incorrect segments in MT output. 

EAGLES (1996) distinguishes a type of evaluation whose purpose is to discover the 
reason(s) why a system did not produce the results it was expected to. Working on 
these lines Zhou et al. (2008) proposed diagnostic evaluation of linguistic checkpoints. 
Naskar et al. (2011) proposed a framework for diagnostic MT evaluation which offers 
similar functionality as proposed in (Zhou et al., 2008) but is language independent.  

3 DELiC4MT: A Diagnostic MT Evaluation Tool 

DELiC4MT7 (Diagnostic Evaluation using Linguistic Checkpoints for Machine 
Translation) is an open source tool for diagnostic evaluation of MT. It allows evaluation 
of MT systems over linguistic features. The various steps involved for diagnostic 
evaluation using DELiC4MT are: text analysis and KAF conversion, word alignment 
extraction, defining kybots and evaluation. The tool makes extensive use of already 
available NLP tools and representation standards. The evaluation pipeline proceeds as 
follows. 

                                                             

7  http://www.computing.dcu.ie/~atoral/delic4mt(under the GPL-v3 license). 
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 The source and target sides of the gold standard (test set) are processed by 
respective PoS taggers (Treetagger8 for English and a shallow parser for Hindi) and 
converted into KYOTO Annotation Format (KAF) (Bosma et al., 2009) to represent 
textual analysis.   The test set is word aligned using GIZA++

 9(Och and Ney, 2003), and identifiers of 
the aligned tokens are stored.   Kybot10 (Vossen et al., 2010) profiles specifying the linguistic checkpoints to be 
extracted are run on the KAF text and the matching terms are extracted.   The evaluation module takes kybot output, KAF text, word alignments and the 
output of an MT system (plain text, no word alignment is performed on it) as 
inputs. It calculates the performance of the MT system over the linguistic 
checkpoint(s) considered.   

The details of the tool regarding KAF files and kybot profiles can be found in Toral et 
al. (2012). 

4 Linguistic Checkpoints 

A linguistic checkpoint is a linguistically-motivated unit e.g., it can be an ambiguous 
word, a verb-particle construction, a noun-noun compound, a PoS n-gram etc. The level 
of detail and the specific linguistic phenomena included in the taxonomy can vary 
depending on what the users want to investigate as part of the diagnostic evaluation. 
However, the taxonomy of automatic diagnostic evaluation should be widely accepted. 
The categories that are out of scope for current NLP tools to recognize have been 
ignored in this study. In light of the above consideration, we adopted the taxonomy 
introduced by Lata et al. (2012), Baskaran et al. (2008) and the IIIT Tagset11 (Bharati et 
al., 2006) for Hindi. The taxonomy includes typical checkpoints at word level. Some 
examples of the representative checkpoints at different levels for English and Hindi 
languages have been presented in the following subsection. 

4.1 English to Hindi Checkpoints 

The implementation of the English to Hindi checkpoint taxonomy can take into account 
various checkpoints at word and phrase level. However, only 8 word level categories 
have been considered for this study. The taxonomy is shown in Table 1. In practice, any 
tag used by parsers (e.g. NP, VP, PP, etc.) can be added as a new category easily; 
though currently these have not been implemented in the system. The system currently 
works for word level PoS-based checkpoints only. However we also propose to use 
phrase-level and other checkpoints related to named entities (NE) and ambiguous 
words for English, which are currently not implemented in the system.  

                                                             

8  http://www.ims.unistuttgart.de/projekte/corplex/TreeTagger/ 

9  http://code.google.com/p/giza-pp/ 

10
 http://kyoto.let.vu.nl/svn/kyoto/trunk/modules/mining_module/ 

11
 http://shiva.iiit.ac.in/SPSAL2007/iiit_tagset_guidelines.pdf 
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The NE checkpoint is important as we found that the existing English to Hindi MT 
systems do not handle NEs properly. Typically, they provide literal translations of the 
words, leading to poor translation quality.  

Checkpoint Level Category 

 

PoS based 

 

Word 

Noun, Verb, Modal, Pronoun, Adverb, Possessive 

Pronoun, Adjective, Preposition 

 

Phrase 

Noun Phrases, Prepositional Phrases, Verb Phrases, 

Noun Compounds, Verb Particle Constructions 

Named Entity 

Ambiguous word 

TABLE 1 – Linguistic checkpoints for English to Hindi translation 

4.2 Hindi to English Checkpoints 

Using only PoS-based linguistic checkpoints might not be as helpful in evaluating the 
translation quality as compared to using checkpoints that deal with inflections, word 
order etc.  For Hindi, the proposed linguistic checkpoints belong to the following 
categories: PoS-based, inflectional, NE, ambiguous word, word order, re-duplicated 
words and extra, missing or incorrect postpositions. The measures suggested by 
(Popović and Ney, 2011) could be used for determining the inflectional errors for 
nouns, adjectives and verbs and the word order problems. The approach suggested by 
(Popović and Ney, 2011) for missing, extra or incorrect words could be applied for 
postposition related problems.  

5 Evaluation  

5.1 Experimental setup 

The test set considered for this study consists of 1,000 sentences from the tourism 
domain. DELiC4MT has been used for diagnostic evaluation of five English to Hindi MT 
systems: Google Translate (MT1), Bing Translator12 (MT2), Free-translations13 (MT3), 
MaTra2 (MT4) and Anusaaraka (MT5). GIZA++ was used for word alignment. Since the 
test set is very small, an additional parallel corpus comprising of 25,000 sentences from 
the same domain was used to avoid data sparseness during word alignment. The test set 
was appended to the additional corpus and the word alignments were generated. 
Finally the word alignments for the test set sentences were extracted. Treetagger was 
used to PoS-tag the English dataset, while the Hindi dataset was PoS-tagged using the 
PoS tagger developed by IIIT, Hyderabad14. For linguistic checkpoints we have 
considered linguistic units at word level only. Simple PoS-based checkpoints (noun, 

                                                             

12 http://www.bing.com/translator/ 

13 http://www.free-translator.com/ 

14 http://sivareddy.in/downloads 
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verb, adjective, etc.) have been considered at the word level. The experimental results 
are discussed in 5.2.  

5.2 Results and Discussion 

The checkpoint-specific diagnostic evaluation scores for word level checkpoints across 
the MT systems using DELiC4MT are shown in Table 2. In addition to the diagnostic 
evaluation scores the table also shows the number of instances obtained for the 
checkpoints. Checkpoint-specific best scores are shown in bold. Checkpoint-specific 
statistically significant improvements are also reported in Table 2 and these are shown 
as superscripts. For representation purposes, we use a, b, c, d and e for MT1, MT2, MT3, 
MT4 and MT5 respectively. For example, the MT2 score 0.3568d,e for noun checkpoint 
in Table 2 indicates that the improvement provided by MT2 for this checkpoint is 
statistically significant over MT4 (d) and MT5 (e). 

Checkpoint Instances MT1(a) MT2(b) MT3(c) MT4(d) MT5(e) 

Noun 4538 0.3792b,d,e 0.3568d,e 0.3776b,d,e 0.2552 0.2925d 

Pronoun 276 0.5539d 0.5000 0.5539d 0.4059 0.5490d 

Possessive 
Pronoun 184 0.3464d,e 0.3333d,e 0.3464d,e 0.0196 0.1699d 

Adjective 1859 0.3785b,d,e 0.3574d,e 0.3772b,d,e 0.2061 0.2699d 

Adverb 663 0.4347d 0.4288d 0.4327d 0.2402 0.4103d 

verb 2580 0.2656d,e 0.2584d 0.2656d,e 0.1789 0.2402d 

Preposition 2667 0.6655d,e 0.6555d,e 0.6646d,e 0.5434 0.6217d 

Modal 128 0.3913 0.3696 0.3913 0.3478 0.4239 

Total / 

Average 

Scores 

12895 0.4269 0.4075 0.4262 0.2746 0.3722 

System 

Scores 

(Weighted) 
 

0.4218 0.4055 0.4208 0.2925 0.3579 

TABLE 2 – DELiC4MT scores for word-level checkpoints for MT systems 

The following observations were made for evaluation of word-level checkpoints:  

 MT1 outperforms all the MT systems in all the categories except modals.   MT3 performs almost at par with MT1.   Among the word-level checkpoints verbs seem to be the most problematic 
checkpoint for all the systems except for MT4 and MT5 which perform the worst 
for possessive pronouns category.   MT5 performs best for the modals category in comparison to the rest of systems.  
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 All the systems perform poorly on possessive pronouns compared to pronouns in 
general.   All the systems perform best on prepositions followed by the pronouns category.  MT1, MT2 and MT3 systems perform better for adverbs as compared to modals, 
whereas MT4 and MT5 perform just in the reverse manner for these categories. 

The performance of all the MT systems was also evaluated using automatic evaluation 
metrics: BLEU (Papineni et al., 2002), NIST (Doddington, 2002), METEOR (Banerjee 
and Lavie, 2005) and TER (Snover et al., 2006). The automatic evaluation metric scores 
for all the systems are shown in Table 3.  

MT1 MT2 MT3 MT4 MT5 

BLEU 9.72 7.41 9.69 2.17 4.67 

NIST 4.15 3.83 4.14 2.14 2.98 

TER 81.15 83.07 81.30 88.81 88.96 

METEOR 0.274 0.257 0.273 0.165 0.206 

TABLE 3 – Automatic Evaluation Metric scores for MT systems 

According to all the automatic evaluation metrics MT1 performs best followed by MT3, 
MT2, MT5 and MT4 (the only exception being MT4 ranked higher than MT5 by TER) as 
is also found by DELiC4MT. However, the point to be noted here is that with automatic 
evaluation metrics we do not get any additional information about the systems’ 
performance other than the system-level scores but DELiC4MT does provide that 
information. 

Table 4 shows the Pearson correlation coefficients between the scores obtained from 
DELiC4MT and the automatic evaluation metrics. It can be seen from table 4 that 
DELiC4MT scores have high correlation with the automatic measures. DELiC4MT scores 
have the highest correlation with NIST followed by METEOR, BLEU and TER. This 
entails that, in addition to evaluating on linguistic checkpoints, DELiC4MT can also 
measure performance of MT systems at system-level. It provides system-level scores for 
all the MT systems in accordance with other automatic evaluation metrics.  

BLEU NIST TER METEOR DELiC4MT 

BLEU 1.000 .988** -.954* .989** .974** 

NIST  1.000 -.935* .999** .996** 

TER   1.000 -.948* -.901* 

METEOR    1.000 .992** 

DELiC4MT     1.000 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 

TABLE 4 – Pearson correlation coefficients between DELiC4MT scores and automatic 
evaluation metrics 
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Concluding Remarks and Future Work 

The paper presents a study on diagnostic evaluation of MT for Indian languages. The 
main objective of the work was to assess the applicability of the diagnostic evaluation 
tool DELiC4MT, for Indian languages in general, and Hindi in particular. The linguistic 
checkpoints considered for this study were PoS-based (word level only).  In total 8 
word level checkpoints were considered for the study. The paper has presented a 
detailed analysis of the results obtained for 5 English to Hindi MT systems using 
DELiC4MT. The translations obtained from these MT systems were also evaluated using 
some of the most commonly used automatic evaluation metrics. As far as the MT 
systems are concerned, Google proved to be the best among the 5 systems according to 
both automatic evaluation metrics and diagnostic evaluation metrics. It was also 
observed that the system-level DELiC4MT scores correlate well with all other automatic 
evaluation metric scores with Pearson correlation coefficients above 0.9 for all cases. 
We have also proposed the use of additional phrase level checkpoints and also 
checkpoints that can provide feedback related to NEs and ambiguous words.  

This work is just a first step towards the development of evaluation measures for Indian 
languages based on linguistic units which provide feedback on specific translation 
problems. The work offers a number of possibilities for future work, both for improving 
the existing measures by adding more sophisticated and meaningful linguistic 
checkpoints and also exploring the use of other existing toolkits for handling translation 
errors based on inflections, word order etc. The authors plan to carry out further work 
in this direction. 
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ABSTRACT 

Sanskrit literature has many nuggets that could be applied to modern linguistic applications. One 
such nugget is the concept of sangati. Sangati expresses continuity and proper positioning of 
piece of text which is similar to the modern Rhetorical Structure Theory (RST). We propose two 
discourse parsers namely sangati based discourse parser and RST-Sangati  based discourse 
parser. The proposed discourse parsers are extensions of the existing RST based discourse parser. 
We have used Naive Bayes probabilistic classifier for discourse relation and sangati labelling. 
We have tested our discourse parsers using 500 Tamil tourism domain specific documents and 21 
RST- Discourse Tree (RST-DT) English documents. We have compared the performance of both 
the proposed discourse parsers and observed that when RST and sangati are used in union,  the 
performance of the discourse parser is  better. Also, we have done a performance comparison 
with two existing discourse parsers and have shown better performance.  

Keywords: sangati, Discourse parser, Rhetorical Structure Theory, Universal Networking 
Language 
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1. Introduction 

With the massive increase in documents in World Wide Web (WWW), the knowledge 
present in those documents needs to be managed properly. Rhetorical Structure Theory (RST) is 
a well known text representation technique that represents the knowledge present in the text using 
semantic relations known as discourse relations (Mann et al, 1988).  RST captures the coherence 
between the text using the discourse relations. Similar to RST, in Sanskrit literature, a concept 
known as sangati exists which expresses continuity between texts. Using sangati and RST, in 
this paper, we propose two discourse parsers namely, sangati based discourse parser and RST-
Sangati based discourse parser. Both the discourse parsers are extensions of our previous work 
on RST based discourse parser (Subalalitha et al, 2011).  Consequently, we have compared RST 
and sangati and have observed that RST and sangati complement each other and provide better 
performance when used together.  

In RST, given a text document, a graphical structure/tree structure is constructed, where 
nodes represent texts and edges represent the discourse relations. The text connected by discourse 
relations falls into two categories namely Nucleus and Satellites. Nucleus expresses the salient 
part of the text, whereas the satellite contains the additional information about the nucleus. The 
Nucleus, Satellite and the discourse relation form the smallest discourse unit known as 
Elementary Discourse Unit (EDU). We denote the pattern or the structure formed by a nucleus, 
satellite and the discourse relation, as NRS sequence in this paper. Figure 1 shows the Nucleus, 
Satellite and the discourse relation connecting them (NRS sequence) for an English sentence 
given in Example 1. 

Example 1: If you come to my school tomorrow, you can meet my teacher 

 

FIGURE 1- NRS sequence for Example 1    

 On the other hand, sangatis are defined as the content that induces the desire to know 
what is being said next in text (Madhava Charya, 1989). Sangatis are typically used in the 
explanation of s̄tra -based texts. s̄tras express content in crisp, short statements;  adhikaran̅a 
(sub-topic) is the organization of a set of related s̄tras. A set of adhikaran̅as form a p̄da 
(section), and a set of p̄das form an adhȳya (chapter). s̄tras being cryptic in nature need to be 
explained. The explanation is normally organized at the level of adhikaran̅a. An adhikaran̅a is 
said to have five components, namely, subject of discussion, doubt/ambiguity in understanding 
the subject, sangati for this discussion, opponent’s view and the proponent’s (proposed) view.  
Of these, sangati is explained at various levels. At the s̄tra level in terms of how this s̄tra  is 
related to the previous s̄tra; at the adhikaran̅a level as to how this s̄tra is relevant to the 
adhikaran̅a, at the p̄da level as to how it is relevant to that p̄da and so on. Similarly, sangati is 
discussed between adhikaran̅as, and between p̄das as well. Examples of sangatis include 
upodgh̄ta, apav̄da, ̄ḳepa and pr̄sangika. Figure 2 illustrates, upodgata sangati describing 
text on cancer. upodgh̄ta links the introductory part of any text, to its respective explanatory 
part of the text.  
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FIGURE 2-Usage of upodgh̄ta sangati 

 This paper is organized as follows. Section 2 discusses the work related to discourse 
parsing. Section 3 illustrates the power of sangatis in representing text and about the proposed 
sangati based discourse parser; explains the comparison of RST and sangati and describes the 
RST-Sangati based discourse parser. Section 4 provides the evaluation of the discourse parsers. 
Conclusions and reference section follow section 4.  

2 Related Work 

 Many techniques have been proposed for discourse parsing. Marcu et have come up 
with an unsupervised approach that identifies five discourse relations namely, Contrast, 
Explanation, Evidence, Condition and Elaboration al (Marcu et al, 2002).  They have used 
discourse markers and frequently co-occurring word pairs to identify the discourse relations. 
Hassan et al have designed a rule based discourse parser for Arabic language and they have used 
cues to identify the discourse relations (Hassan et al, 2008). Using cue phrases, many discourse 
parsing techniques have been proposed in various languages namely, Mandarin (Songren, 1985), 
Spanish (Lorraine, 1986),  Thai (Sithipoun et al, 2010), and Bengali (Dipankar Das et al, 2010). 
Recently, Hugo Hernault et al have come up with a discourse parser named HILDA that labels 
discourse relations using Support Vector Machines (SVM) (Hernault et al, 2010). It has also been 
claimed that HILDA is computationally more efficient than the earlier techniques on discourse 
parsing proposed by Reitter (Reitter, 2003) Baldridge et al (Baldridge et al, 2005). HILDA uses 
lexical and syntactic features trained by the SVM classifier. SVM has been used both as a binary 
classifier as well as a multi class classifier for discourse parsing.  

 As stated previously, the discourse parser discussed in this paper is the extension of our 
previous work on language independent discourse structure framework using Universal 
Networking Language (UNL) (Subalalitha et al, 2011). UNL is a computer language that enables 
computers to process information and knowledge across the language barriers. Given a sentence, 
UNL represents it as graph, with nodes as concepts and UNL relations as edges which is known 
as Enconversion (Enconversion Specifications, 2009). There are 46 UNL relations identified by 
UNDL. Obj (Object), agt (Agent), plc (Place) are few UNL relations. For instance, for the 
sentence shown in Example 2, the agent concept, “Ram (iof>person)” and the verb concept, “kill 
(icl> action)” are connected by the UNL relation, “agt” and the object concept, “Ravana 
(iof> person)” is connected to the verb concept by the UNL relation, “obj”. 

Example 2: Ram killed Ravana  

 In the existing RST based discourse parser, the NRS sequences are identified by 
exploring the similarities that exist between UNL relations and discourse relations relations 
(Subalalitha et al, 2011). Also by using UNL, the discourse structure formed, becomes language 
independent which is first of its kind. This paper proposes a similar language independent 
discourse parser that identifies sangatis using UNL. The details of sangatis and how they are 
used to build a discourse structure is discussed in the next section.  
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3.  RST-Sangati: A comparison: 

 While comparing RST based discourse relations with sangati, both representations are 
unique in their own way.  Table 1 shows the list of sangatis considered along with their English 
meaning and explanation. Also, discourse relations that are similar and equivalent are listed. Like 
discourse relations certain sangatis are multi nuclear which is mentioned in the table. 

S.No Sangati 
Equivalent and Similar Discourse Relations 

Equivalent 

Discourse 
Relation 

Similar 

Discourse 
Relation 

Explanation 

1 
Upodgh̄ta 
( Introduction) 

Preparation - 
upodgh̄ta sangati gives an 
introduction of the text. 
Preparation discourse relation 
prepares the reader to expect and 
interpret the text to be presented. 

2 
apav̄da 
( Exception) 
(multi nuclear) 

- Contrast 
apav̄da sangati  indicates an 
exceptional Scenario.  
Contrast discourse  relation may 
indicate an exceptional scenario but 
not always 

3 
̄ḳepa 
( Objection) 
(multi nuclear) 

- Contrast 
̄ḳepa sangati  indicates an 
objectional  statement.  
Contrast discourse  relation may 
indicate an objectionable statement but 
not always 

4 
pr̄sangika 
( Related) 
(multi nuclear) 

- - 
pr̄sangika  is a unique sangati and 
does not have an equivalent or similar 
discourse relation 

5 
utt̄na 
( Arises) 
(multi nuclear) 

- 

 

Antithesis 
utt̄na sangati  indicates a new issue 
related to the text.  
Antithesis  discourse  relation may 
indicate a new issue but not always 

6 
sthiri̅karạa 
( Strengthen) - Justification 

sthiri̅karạa sangati  indicates a 
strengthening  text supporting the topic 
in focus new issue related to the text.  
Justification  discourse  relation may 
indicate a supporting reasons but the 
supporting reason may not be  a 
strengthening reasoning  always 

7 ̄tideś́ika 
( Transference) 
(multi nuclear) 

- - 
̄tideś́ika is a unique sangati and does 
not have a similar or equivalent 
discourse relation. 

8 pratyavasthana 
( Re-instate) - -  

pratyavasthana is a unique sangati and 
does not have a similar or equivalent 
discourse relation. 
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TABLE 1- A comparison between sangatis and Discourse Relations 

It can be observed from the Table 1 that, most of sangatis are unique and specific to a 
scenario. A discourse relation can be mapped to one more scenarios. For instance, the scenario 
linked by an Elaboration discourse relation may be an explanation, additional information or it 
may be a strengthening statement to the scenario.  Whereas, distinct sangatis  are available to 
handle the different scenarios handled by the  Elaboration discourse relation. For instance, if the 
additional information of a scenario is just an added information but related to the scenario, it can 
be linked by pra̅sȧgika sangathi. If the explanatory text denotes an example or a counter 
example, it can be linked by ḍ̣̣anta and pratyudharạa  sangatis. If the explanatory text 
describes the speciality of the scenario, it can be linked by viśẹa  sangati. On the other side, there 
are unique RST based discourse relations as well.  This paper considers the list of RST based 
discourse relations considered by Mann et al (1988).  It is observed that, there are many discourse 
relations that handle various scenarios which is not possible with sangatis. Concession, 
Evaluation, Background are some of the unique discourse relations. Also apart from the list of 
sangatis discussed here, there are more number of sangatis that need to be explored. For clausal 
level discourse analysis, discourse relations are more effective than sangatis. Whereas, sangatis 
go well beyond clause level. So for an efficient and complete discourse parsing, discourse 
relations and sangatis need to be used in union. The next section discusses how these sangatis are 
identified.   

3. 2 Identifying Sangatis: 

 The sangati based discourse parser makes use of only UNL to identify the sangatis 
whereas, the RST-Sangati  based discourse parser makes use of  both UNL and RST based 
discourse relations to identify sangatis. This section illustrates about the sangati based discourse 
parser.  

3.2.1 Sangati Based Discourse Parser: 

           The UNL components such as semantic constraints and UNL relations are used in 
combination to identify the sangatis. This is similar to the identification of RST based discourse 
relations done in the existing work (Subalalitha et al, 2011). For example, in the sentences given 

9 ḍ̣̣anta  
( Example) 

- Elaboration 
ḍ̣̣anta sangati  indicates an example 
Scenario  
Elaboration  discourse  relation may 
indicate an example scenario but not 
always. 

10 
pratyudharạa  
(Counter 
Example) 

- Contrast 
pratyudharạa sangati  indicates an 
counter  example scenario  
Contrast discourse relation may 
indicate a counter example scenario 
but not always. 

11 
Anantara 
(Follows) 
(multi nuclear) 

Sequence - 
anantara sangati links the texts in 
sequence similar to the Sequence 
discourse relation 

12 
viśẹa  
(Special Case) 

- 

 

Elaboration 
viśẹa sangati  explains a speciality.  
Elaboration discourse relation may 
describe a specialty but not always. 
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in the Example 3, the pra̅sȧgika sangathi is identified from the UNL relations and UNL concept 
similarity that exists between the UNL graphs constructed for each sentence. 

Example 3: I went to Chennai last Friday. Travelling to Chennai during Fridays is terrific.  

 The rules for identifying sangatis using UNL components are given in Table 2. The 
rules provide the seed feature set for seven sangatis. The additional features for each sangati are 
learnt using Naive Bayes Probabilistic classifier whose details is given in the next section. 

S.No. Sangati Rules 
1 upaj̄vya Presence of iof, nam and met  UNL relations in Satellite along with UNL 

concept/ semantic constraint similarity between Nucleus and Satellite UNL 
graphs  

2 ̄tideś́ika  UNL graph similarity between the nuclei in terms of concepts, except the 
main subject. 

3 anantara Presence of Seq UNL relation in one of the nuclei UNL graphs. Also used 
as default relation for tourism documents. 

4 viśẹa Presence of Cue such as “speciality”, “uniqueness” in satellite UNL 
graph+ UNL relation “pos” in nucleus UNL graph. 

5 pra̅sȧgika Presence of identical UNL relations and with UNL concept/ semantic 
constraint similarity between two nuclei UNL graphs.  

6 upodgh̄ta Presence of UNL concept that is connected to the verb frequently in the 
document UNL graph which becomes the nucleus and the rest of the text 
becomes the satellite. 

7 ḍ̣̣anta Presence of iof UNL relation in the UNL graphs in the satellite UNL 
graphs  along with UNL concept/ semantic constraint similarity between 
the nucleus and satellite UNL graphs. 

TABLE 2- Rules for identifying sangatis using UNL  

3.2.2 Learning with Naïve Bayes Probabilistic classification 

 For a set of text documents, sangati representation of the texts is constructed using the 
seed features listed in Table 2, which forms the training set. Learning of new features using 
Naive bayes probabilistic classifier is discussed below. For a sangati Si, the nuclei and satellites 
connected by it are used as the context. Let Sedu denote the set of sangatis listed in table 2. 

a) For each sangati Siϵ Sedu, all the nuclei sub graphs connected by Si are extracted from the 
training set.  

b) The nuclei sub graphs extracted at step 1 contains a set of UNL relations in them. These 
UNL relations are considered as the context window from which the additional features 
could be learnt. For instance, if m number of nuclei sub graphs is extracted for sangati 
Si, m number of series of UNL relations is extracted. These series indicate possible 
additional features that could signal sangati Si apart from the seed feature(s) listed in 
table 2.  

c) Let us denote the additional features as fi, where i ranges from 0 to m. Bayesian 
probabilities P (fi/Si )  are computed for all features.     

d) Total Probability,                                               and the average probability , 

Probavg =Probtot /m are calculated. 

 mi

i

SifiP
0

tot )/(Prob
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e) The features whose probabilities are more than the Probavg are chosen as additional 
features that could signal the sangati Si. 

f) In the testing phase, the classifier tries to match the features present in the nuclei sub 
graphs with the seed features and the additional features learnt and identify the sangati. 

3.3 RST-Sangati   Based Discourse Parser 

 The RST-Sangati based discourse parser identifies both sangatis and RST based 
discourse relations using UNL and RST.  The rules for identifying sangatis using UNL and RST 
are given in Table 3. 

S 
No 

Sangati Rules 

1 upaj̄vya Presence of Elaboration and Means or Re-instate discourse relations in  the 
satellite UNL graph  along with UNL concept/ semantic constraint similarity 
between the nucleus and satellite UNL graphs. 

2 utt̄na Presence of Contrast and Antithesis discourse relations in NRS sequence 
along with UNL concept/ semantic constraint similarity. 

3 ̄tideś́ika  UNL graph similarity in terms of concepts, except the main subject concept 
between the nuclei UNL graphs. 

4 anantara Presence of Sequence discourse relation in one of the nucleus UNL graph. 
Also used as default relation for tourism documents. 

5 viśẹa Presence of Cue such as “speciality”, “uniqueness” in satellite UNL graph + 
UNL relation “pos” in nucleus UNL graph. 

6 pra̅sȧgika Presence of identical UNL/Discourse relations between the nuclei UNL 
graphs. 

7 upodgh̄ta Presence of UNL concept that is connected to the verb frequently in the 
document UNL graph which becomes the nucleus UNL graph and rest of the 
text becomes the satellite. 

8 ḍ̣̣anta Presence of Elaboration discourse relation in the satellite UNL graph along 
with UNL concept/ semantic constraint similarity between the nucleus and 
satellite UNL graphs. 

TABLE 3- Rules for identifying sangatis using RST and UNL 

Since the input documents are tourism domain specific, the rules also lean towards the 
same domain. Like sangati based discourse parser, these rules are used as seed feature set and 
more features for each sangati are learnt using Naive Bayes probabilistic learning. Finally, a 
language independent discourse structure using discourse relations and sangatis is given as 
output, which can be used as background for many NLP applications.  

4 Evaluation 

 We have tested our sangati based discourse parser and RST-Sangati   based discourse 
parser using 500 Tamil tourism domain documents as training data and freely available 21 RST-
Discourse Tree (RST-DT) files as test data. By using both Tamil and English text documents, we 
have shown the language independent quality of our discourse parsers. We have also made a 
comparison with RST based discourse parser. Table 4 lists the Precision, Recall and F-score of 
the RST, sangati and RST-Sangati discourse parsers.  
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Factors RST based discourse 
parser 

Sangati based 
discourse parser 

RST-Sangati  based 
parser. 

Precision 91.19% 74.62% 96% 
Recall 68% 57.3% 87.99% 

F-score 79% 64.84% 93.36% 

TABLE 4 -Precision, Recall and F-score of RST, sangati and  RST-Sangati   discourse parser 

It can be seen that, the RST –Sangati based parser shows higher precision, recall and f-
score values compared to RST based discourse parser and sangati based discourse parser. This is 
due to the fact that in RST based discourse parser, the  complex coherent relations  beyond clause 
level is not captured b the RST based discourse relations  and similarly in sangati based discourse 
parser, the simple coherent relations at clausal and sentence level is not captured by sangatis . 
Also, it can be observed that the RST based discourse parser shows better performance than 
sangati based discourse parser. This is due to the expository texts used as the corpus where more 
RST based discourse relations are observed than sangatis. It can be seen that, the proposed RST-
Sangati   based discourse parser identifies only eight sangatis that are specific to tourism domain. 
Also, the proposed discourse parser provides a very basic text representation model which needs 
to be enhanced by analyzing various genres of texts containing arguments and stories. 

Conclusions  

  A discourse parser that identifies NRS sequences based on RST and sangati has been 
presented in this paper. sangatis as per Sanskrit literature expresses continuity between s̄tra 
based texts. Sangatis are similar to discourse relations that connect coherent parts of the text. 
sangatis can connect more complex discourse units which is difficult with discourse relations. 
We have proposed two discourse parsers namely sangati based discourse parser which identifies 
only sangatis and a RST-Sangati based discourse parser which identifies both RST based 
discourse relations and sangatis. The sangati based discourse parsers uses only UNL to identify 
sangatis whereas, the RST-Sangati based discourse parser uses both UNL and discourse relations 
to identify sangatis. It is observed that RST and sangati complement each other well so better 
performance is obtained when they are used together than when used alone. The discourse 
structure built by the proposed discourse parser can be a back bone for many NLP applications 
such as QA, IR and IE systems.  
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ABSTRACT

This paper presents a clause boundary identification system for Malayalam sentences using the 
machine learning approach CRF (Conditional Random Field).Malayalam Language is 
considered as a 'Left branching language' where verbs are seen at the end of the sentence. Clause 
boundary identification plays a vital role in many NLP applications and for Malayalam language, 
the clause boundary identification is not yet explored. The clause boundaries are identified here 
using grammatical features.

KEYWORDS : Malayalam Language, CRF, Clause boundaries, Left branching Language 
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1 Introduction

The goal of clause identification is to divide sentences into clauses which typically contain a 
subject and a predicate. In NLP clause identification is considered as a shallow semantic parsing 
technique which can be useful in applications like Machine Translation, parallel corpora 
alignment, Information Extraction and speech applications. The clause boundary identification is 
done with the help of CRF  (Conditional Random Fields) which is a statistical machine learning 
technique. The clauses can be identified as Main clauses and subordinate clauses. There are 8 
types of subordinate clauses namely: Complementizer, Relative Participle, Relative, Temporal, 
Manner, Causality, Condition and Nominal. First three types of clauses are more syntactic while 
remaining five clauses are more semantic in nature. In our approach grammatical features are 
taken into consideration and Noun chunks are being identified instead of Nouns to study the 
sentence structure.Malayalam belongs to the category of relatively free order, agglutinative and 
morphologically rich languages. Hence the part-of speech-tagging provides more information. 
For the clause boundary identification we take into account the suffixes attached to the verb. In 
Malayalam language, the verbs are usually seen at the end of the sentence and the noun phrases 
take a position to the left of the verb. The subject in a sentence has possessive, nominative or 
dative marking.

Numerous techniques have been in use to identify the clause boundaries for different languages. 
Early experiments in the clause identification such as Eva Ejerhed’s basic clause identification 
system(Ejerhed, 1988) for text to speech system, Papageorgiou’s rule-based clause boundary 
system a preprocessing tool for bilingual alignment parallel text(Papageorgiou, 1997) . Leffa’s 
rule-based system reduces clauses to noun, adjective or adverb, which was used in 
English/Portuguese machine translation system(Leffa, 1998).There were hybrid clause boundary 
identifying systems which uses memory based learning and post process it using rule-based 
system by Orasan(Orasan, 2000). The clause identification was the shared task in CoNLL-
2001(Tjong et al., 2001).Carreras did a partial parsing of sentence, which makes a global 
inference on a local classifier and used a dynamic programming for choosing the best 
decomposition of sentence to clauses(Carreras et al., 2002). Carreras did a phrase recognition 
using perceptrons and an online learning algorithm(Carreras et al., 2003).Georgiana did a 
multilingual clause splitting experiment, where he used a machine learning technique and 
indicators of co-ordination and subordination with verb information( Puscasu , 2004).

Here we have used conditional random fields (CRF) for clause boundary detection. CRF is an 
undirected graphical model, where the conditional probability of the output are maximized for a 
given input sequences(McCallum et al., 2003).This is proved successful for most of the sequence 
labeling tasks, such as shallow parsing(Sha , 2003),named entity recognition task(McCallum et 
al., 2003). CRF was used for clause splitting task by Vinh Van Nguyen, where they have also 
used linguistic information and a bottom-up dynamic algorithm for decoding to split a sentence 
into clauses(Nguyen et al., 2007 ). In another experiment the clause identification was done using 
a hybrid method, where CRF and linguistic rules were used and cascaded by an error 
analyzer(Vijay et al., 2008). In Indian languages, some are Statistical approaches using machine 
learning techniques for Tamil language(Vijay  et  al., 2009) which was 75% accurate. 

Henceforth presented details are divided into the following sections. An introduction with related 
works was presented in section 1, section 2 describes our approach, where we give our method 
and the rules we have used. Section 3  is about the different  evaluation  and results obtained. 
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Section 4 comprises of Error Analysis and finally the conclusion and reference section is 
presented.

2 Our Approach

The clause identifier for Malayalam is built using CRF a machine learning technique. The CRF 
technique we have used grammatical rules as one of the major feature. The preprocessing of the 
sentences is done for part-of speech(pos) and chunking information and morphological 
information. The clause identifier has to learn the sentence structures. So here we have replaced 
the noun phrases in the sentence with a token np after preprocessing the sentence, retaining the 
morphological information of the head noun. In this Malayalam clause identifier-relative 
participle clause (RP), conditional clause (COND) and main clause (MCL) are identified. 

2.1 Conditional  Random Fields  (CRF) 

CRF  has two phases for clause boundary identification: 

1.Learning: Given a sample set X containing features {X1,........,XN} along with the set of values for 
hidden labels Y i.e. clause boundaries {Y1,...........,YN}, learn the best possible potential functions. 
2.Inference: For a given word there is some new observable x, find the most likely clause 
boundary y* 

for x, i.e. compute (exactly or approximately): 

y*=argmaxyP(y|x)                                            (1) 

For this, an undirected and acyclic graph formed which contains the set of nodes 

{Xi } U Y(V ε X), adopts the properties by Markov, is called conditional random fields (CRF). 
Clause Boundary Detection is a shallow parsing technique so, CRF is used for this. Now Let o = 
(o1,...,oT )be some observed input data sequence, such as a sequence of words in a text document, 
(the values on T input nodes of the graphical model). Let S be a set of FSM states, each of which 
is associated with a label, l (such as PERSON). Let s =(s1...sT) be some sequence of states, (the 
values on T output nodes).

Linear-chain CRF thus define the conditional probability of a state sequence given as follows

 

Where Z0 a normalization factor over all state sequences, fk (st-1,st,,o,t) −  is an arbitrary feature 
function over its arguments, and λk (ranging from −∞to∞) is a learned weight for each feature 
function. A feature function may, for example, be defined to have value 0 in most cases, and 
have value 1 if and only if st-1 is state #1 (which may have label OTHER), and st is state #2 
(which may have START or END label),and the observation at position t in o is a relative 
pronoun or a conditional marker. Higher λ weights make their corresponding FSM transitions 
more likely, so the weight λk in the above example should be positive since the word appearing is 
any clause marker (such as conditional or relative clause marker) and it is likely to be the starting 
of a clause boundary.CRF++ available in open source (Kudo  ,2005) is used in our approach.
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2.2 Features

The vital part in any machine learning technique is to identify a proper feature set. We have used 
two types of features word level and structural level. At the word level we have considered the

• lexical word,

• its part-of-speech and

• chunk.

Words with their appropriate morphological information was considered. In the clause type 
identification task words play a crucial part as word carries the information of the clause type. 
Part-of-speech information which provides the context and definition of the words in a sentence 
is also added as a column.In Malayalam, due to rich inflection, the part-of-speech tagging of the 
words contribute more information than in English. Chunking can be considered as the first step 
towards full parsing. Here we have taken a window of size five. The structural level features are 
the grammatical rules. The first column of the input represents the word, the second column is 
the part-of- speech tag and the next column is based on the morph analysis. The last column is 
based on the grammatical rules. It is described in the section below.

2.3 Rules for identifying  clauses 

2.3.1 Relative  Participle Clauses

The relative participle clause is identified by the relative participle verb in a sentence. The 
relative participle (RP) verb will occur in three tense and 'a' is the relative participle suffix  in 
Malayalam. 

Example 1:

innale  vanna  penkutti ente anujathi anu

yesterday come-past-RP girl my sister  copula-present

(The girl who came yesterday is my sister.)

Here the RP embedded clause is “innale vanna  penkutti”, ”the girl who came yesterday”.The RP 
is always followed by the NP that it modifies. The position of the embedded clause is not an 
issue.

Beginning of the RP clause is the first subject NP preceding the word containing the RP but 
excludes the subject NP.

The RP clause boundary is determined as per the 3 rules given below.

Rule 1. RP verb can be followed by a noun phrase (NP) and a postposition  (PSP). The noun 
phrase will be inflected with case markers depending on the PSP that follows.

Example 2:

avan  thottathil     ulla pookkaLe    patti   samsarichu.

he garden-LOC     be-RP flower-PL-ACC     about   talk-past

(He talked about the flowers in the garden.)
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Here the RP verb is ' ulla' . It is followed by ‘pookkaLe’ (NP) and 'patti' (PSP).

Rule 2.If the current token is NP and previous one is an RP verb and if the succeeding token is 
not PSP then current NP token is marked as clause end.

Example 3:

Aa        valiya      veedu     enikku        venam.

That     big-RP     house      I-DAT     want.

(I want that big house.)

Rule 3. The RP clause can also have RP verb followed by PSP without NP in between.

Example 4:

 Avide poya shesham ayaL  ivide  vannu.

There go-past+RP after she here come-PAST

(He came here after he went there.) 

The grammatical rules will work as follows

If the current token is np,the previous is RP verb and next word is not a PSP then the current np 
is marked as probable RP clause end.

-1 VM+RP=1

0 NP=1  RP clause end

1 PSP=0

If the current token is a PSP,the previous is a RP verb then current PSP is the probable RP clause 
end.

-1 VM+RP=1

0  PSP=1 RP clause end

If the current token is a Noun followed by a PSP and the previous is a RP verb then current PSP 
is the probable RP clause end.

-1 VM+RP=1

 0 NP=0

1 PSP=1 RP clause end

2.3.2 Conditional  Clauses

There are of two types of conditional clauses:  

(1) purely conditional and

(2) hypothetically conditional. 

The purely conditional clause will take the morpheme "-a:l" as the suffix of the verb. 

Example 5:

87



nee    nallavannam     padicha:l               tiirchayayum     passakum

you     well                  study-COND           surely              pass-FUT            

(If you study well,you will surely pass.)

Here the embedded clause is “nee nallavannam padicha:l”

The  hypothetical one will take “enkil” as clause conditional particle.

Example 6:

nii     atu    cheyyumenkil   njyan     varaam

you     it      do-FUT-COND    I        come-FUT-MOD 

(If you will do it,I will come.)  

Beginning of the clause is the first subject NP preceding the VP containing the conditional 
marker. 

The conditional clause ending is found with the rule given below.

If the current verb has a conditional marking suffix, then the current verb is marked for probable 
conditional clause end.

0 VM+CON=1 CON clause end 

Once the innermost clause start is identified the rules are being implemented  and then it is 
repeated until all the different clauses gets their boundaries. We have marked the RP clause start 
with the value 3 and clause end with -3.For Conditional it is 2 and -2 respectively.

An Example for RP clause handling can be considered.

 Example 7:

 Ushnakaattu veeshunna        karnatakayilninn      avan       wayanattil          ethi

 Hotwind    blow-PRES-RP      karnataka-LOC-PSP   he    wayanad-LOC   reach-PAST

 (From hotwind blowing karnataka, he reached wayanad.)  

We do the preprocessing for the part-of-speech and chunking information, and analyze the words 
with morphanalyser .On the preprocessed text the noun phrase is replaced with np and the head 
noun morphological information is maintained. The other outputs are altered for better 
representation in the input to the clause identifier engine. 

The altered input is shown below. 

np np n_nom  

vISunna   VM_RP    V_RP

karZNAtakayilZninnu PSP I-NP

np np n_nom 

np np n_nom

ethi VM_VGF VM_VGF

. SYM I-VGF
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To the altered input the column representing the rules described above is added. The numbers in 
the column represent the probable clause start and end marking. Here 3 stands for probable 
relative participle clause start and -3 to for probable RP clause end. Similarly 6 is for MCL start 
and -6 is for MCL end. 

np np n_nom  3

vISunna   VM_RP    V_RP

karZNAtakayilZninnu PSP I-NP  -3

np np n_nom  6

np np n_nom

ethi VM_VGF VM_VGF -6

. SYM I-VGF

Same procedure can be followed for Conditional clauses also.

Example 8:

Melle natannu kayariya:l ksheenam ariyilla

(If (you) walk slowly (you) will not feel tired.)

Here 2 stands for probable relative participle clause start and -2 to for probable RP clause end. 
Similarly 6 is for MCL start and -6 is for MCL end.

np np n_nom 2 {CON}          {CON}

np np n_nom o o o

kayarYiyAlZ VM_COND V_COND -2 {/CON} {/CON}

np np n_nom 6 {MCL} {MCL}

np np n_nom -6 {MCL} {MCL}

. SYM I-NP o o o

3 EVALUATION AND RESULTS

We have taken 3638 sentences from tourism corpus and training to testing ratio was about 80% 
to 20%.We have tagged the sentences for Relative Participle Clauses, Conditional and Main 
clauses. We trained 2837 sentences and tested the system with 801 sentences.We have used the 
tags {RP} and {/RP} to mark the RP clause start and end and similarly {CON},{/CON} for 
Conditional clause start and end and {MCL},{/MCL} for Main clause start and end 
respectively.The sentences was first preprocessed for POS and chunking information and the 
words were morphological analyzed. The data is present in column format, with the words 
forming the first column, pos tags forming the second column, chunking information forming the 
third column, Boolean entries which obey the linguistic rules forms the fourth column and finally 
the fifth column is the clause boundary information. The training data of CoNLL had clause 
information on the fourth column, since we had to add the linguistic feature to the CRF module 
we used the fourth column for Boolean entries. The Evaluation of the system is given in Table1.
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Clauses Actual Correct Tagged Recall Precision

RP(Open)  737  686 713 93.08 96.21

RP(Close) 578 380 483 65.74 78.67

CON(Open) 69 56 56 81.16 100

CON(Close) 76 67 68 88.16 98.53

MCL(Open) 287 209 314 72.82 66.56

MCL(Close) 514 478 543 92.99 88.03

Table1: Evaluation of the system.

4 ERROR ANALYSIS

For analysis of erroneous clause boundary marking done by the CRF, the training data was given 
for testing to the CRF system. From the results obtained it was noted that the RP clause end was 
not tagged properly when proper nouns with co-ordination marker was encountered.

Example 9:

avide     nilkkunna           balanum            krishnanum        aanu   ente  koottukar

there stand-RP          Balan  and            Krishnan   is      my   friends

(Balan and krishnan standing there are my friends.)

Also cases when 2 RP verbs where coming in succession.

Example 10:

avide     kaanunna     karangunna  silpam.

There    see-RP              rotate-RP        statue

(The rotating statue seen there.)

Conclusion

The system thus developed is the first automatic clause identifier in Malayalam .From the results 
it was shown that Conditional tags were more accurate. There was more number of RP tags in the 
starting of many sentences and it was observed that the correctness of RP opening tags was more 
than closing tags.RP opening tags had a precision of 96.21% and RP close tags had 78.67% 
precision. Reverse was the case for Conditional and MCL tags. Here we have tried using 
grammatical rules as one of the feature in Conditional Random Fields.
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ABSTRACT 

This paper presents the disambiguation of preposition in English to the corresponding post 
positions in Malayalam while translating text from English to Malayalam. Preposition in 
English will be replaced with post position in Indian Languages during translation. The 
polysemous nature of prepositions in English increases the difficulty in determining its exact 
meaning/function. This makes the task of mapping a preposition in English to an Indian 
language difficult, particularly for machine translation. Research or works on one to one 
mapping of English prepositions to Malayalam postpositions are not done for Malayalam. In 
this paper we illustrate the patterns of preposition mapping from English to Malayalam and 
present context disambiguation rules for determining the right mapping of different prepositions 
in English to postposition in Malayalam. 
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1. INTRODUCTION 
It has been observed that almost all postpositions in Malayalam function as case endings. 
Postpositions in Malayalam occur after the nominal. They perform similar to inflectional 
markers. But unlike inflectional markers, postpositions in Malayalam are free forms. Being 
invariants, they can stand alone or alongside another free or bound morpheme. Postpositions (PP) 
in Malayalam [1], [2], [3] are certain forms, which occur immediately after nouns and establish 
some grammatical relations between the nouns and the verbs of the sentences. In English, the 
semantic distribution of a single preposition will be varying in different context due to the 
influence of nouns and main verbs that follow. When an English preposition is translated into 
Malayalam, the following transformation takes place:  
(preposition) (object) � � (object) [(inflection)][(postpositional-word)].  

I played with Ram. � � ŋa:n ra:manre ku:te kaliccu (��� �����	 
��� 
���)  

In the example given above the object is modified with a suffix and postposition after it. It is not 
necessary that both suffix and the postpositional equivalent word occur simultaneously. They 
may occur independently or together. It will depend on the type of object and verb.  

The factors that determine the generation of appropriate postposition in Malayalam for a 
preposition in English is discussed in detail in this paper. 

The correspondence between English prepositions and Malayalam postpositions (inflections and 
postpositional words) is not direct. The reference object plays a major role in determining the 
correct preposition sense. Reference object will decide whether the preposition is used in a 
spatial sense or other sense. A noun phrase (NP) denoting a place gives rise to a spatial 
postposition. Similarly, an object referring to a time entity produces a temporal expression.  

For instance, a preposition with can have multiple mapping patterns in Malayalam, as shown 
below. 

Example (1) 

a.  [with = kont(�
���)] 

I wrote with the pen. 

ŋa:n pe:na kont1  eYuwi. 

��� ��� �
��� ����� 

(I) (pen)      (PP)          (Write PST) 

b.  [with = kute(����)] 

Radha went with Gopi. 

ra:dha  go:piyute  kute  pOyi. 

��� 
������� ���� 
��� 

(Radha)  (Gopi)                 (PP)     (go PAST) 

c.  [with = pakkal/vaSaM(���/���)] 

                                                 
1 One of the reviewer mentioned that ‘kontu’ is an instrumental case and not postposition, but in 
the paper “An Introduction to postposition in Malayalam for POS tagging” by Dr. S 
Radhakrishnan Nair mentioned that it is a postposition. 
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Sita has no money with her. 

si:wayute  pakkal/vaSaM  panamilla. 

������� ���/� ! �"��#$. 

(sita)               (PP)                      (money NEG) 

d.  [with = Ayi] 

 A bus collided with a car. 

  bass  ka:ruma:yi  kuttiyiticcu. 

�� ������	
 ���
	

�� 

 (bus)     (car PP)                (collide PAST) 

e.  [with = nZe(��	)] 

What is the problem with you? 

ninre praSnaM  entha:N ? 

����	 %�&�! �'�(? 

(you PP)     (problem)   (what QP)         

From the above said examples we notice that the preposition with in English can be mapped in 
Malayalam in multiple ways. This is one of the challenging tasks in machine translation. The 
different functions of the prepositions need to be disambiguated for their correct mapping in 
machine translation. In example (1) above, the mapping patterns between English preposition 
and Malayalam postpositions can be resolved by taking into consideration semantic type of the 
main verb and that of the nominal elements in the sentence. In (1a) we can see that ‘write’ is a 
verb that requires an instrument to carry out the action. So the agent is given the post position 
‘kont’. Similarly for (1b) the verb ‘went’ is a directed motion verb. Here this will map with the 
post position ‘kute’. In (1c), ‘have’ is a contain verb. We can map this with the PP 
‘vaSaM/pakkal’. In (1d) ‘collide’ is a correspond verb, this can be mapped with the PP ‘a:yi’. 
Here we pointed out the disambiguation of the preposition ‘with’ in English with the 
corresponding postposition equivalent in Malayalam in the translation context. This will be 
applicable to all Indian languages. The first step in disambiguation is identifying the class of 
verbs and the semantics of noun phrase (NP) coming as a subject and/object. Then map the 
preposition accordingly. A similar approach can be followed to other polysemic prepositions 
also.  

In section 4 we present some common patterns of mapping of prepositions from English to 
Malayalam with respect to selected prepositions. In section 5 we present the major strategies that 
can be used to handle different preposition mapping patterns that we present in section 4.  

2. RELATED WORKS ON POSTPOSITIONS 
There is not much works has been taken up for the disambiguation of postpositions in Malayalam 
in the computational aspect. Lilaatilakam of 14th century A.D is considered as the earliest work 
which describes Malayalam grammar. Gundert does not use the term ‘postpositions’ but 
identifies some ‘Noun Particles which are used with case suffixes. Caldwell has described 
various aspects of case system in Malayalam. Every postposition in his opinion affixed with a 
case will express a new case relation. The number of cases in Malayalam therefore depends upon 
the requirements of the speaker and the different shades of meaning he wishes to express. He 
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also points out that postpositions are in reality separate words and they retain traces of their 
original character as auxiliary nouns. Rev. George Mathan includes postpositions in 
taddhitaavyaya (derived connectives) ie, particles derived from nouns or verbs. Among the 150 
taddhitaavyayas which he listed, only a few are seemed to be postpositions. Raja Raja Varma 
defines postpositions (gati) as a particle which modifies cases. He differentiated between case 
affixes and postpositions and uses the term ‘misravibhakti’ (mixed case) to indicate cases with 
postpositions. He also observes that the postpositions are not originally particles (nipaata) but 
particles derived from nouns or verbs (avyayas). Seshagiriprabhu describes the case system of 
Malayalam elaborately. He defines postpositions as certain words added to the case affixes to 
indicate special meaning and he lists eighty postpositions and classified them on the basis of the 
case affixes. 
Similar work has been done for English-Hindi language pair as part of AnglaBharati Machine 
Translation system development by RMK Sinha et al. In that work the authors clearly mentioned 
the different prepositions in English and their effect on the target language as postpositions. The 
paper mainly focused on the language Hindi. For the language like Malayalam, an agglutinative 
language, some more factors must be taken in to consideration. 

3. AN OVERVIEW OF THE ENGLISH MALAYALAM MACHINE 
TRANSLATION SYSTEM(ANGLAMT)  

AnglaMT is a rule based machine translation system based on AnglaBharti technology 
developed by IIT Kanpur. It takes the English input sentences and passes through the 
preprocessor module for handling different formats like date, time, acronyms, abbreviations, etc. 
After preprocessing input text, the system will take all the syntactic and semantic information 
from the lexical database and processed further in the Morphological analyzer module. There 
after it goes through the rule base module. In rule base module, based on the information fetched 
from the morphological analyzer, the sentence gets parsed and generates an interlingua 
representation. It is generally known as PLIL (Pseudo Lingua for Indian Languages). PLIL will 
have the word order as that of target language. Here English is having subject-verb-object (SVO) 
pattern where as Malayalam is having the subject-Object-Verb (SOV) pattern. PLIL contain the 
root words of the source and target language along with their syntactic and semantic information. 
This PLIL is going to the text generator as input and text generator is adding the necessary 
suffixes and other target language dependant words. Depending on the complexity and multiple 
meaning for a word the system will generate alternate translations. This can be post edited 
manually as per the user requirement. 

4. FEATURES OF POSTPOSITIONS 
Postpositions in a Malayalam indicate case relations. It can be separated from noun phrases by 
coordinate conjunctions. They can be followed by case affixes. Normally they are disyllabic or 
polysyllabic and cannot take auxiliary verbs. Postpositions cannot be separated from noun 
phrases by morphemes other than coordinate conjunction. They cannot replace the present 
participial –e by temporal um + po:l. They are not having the grammatical inflection that is they 
are indeclinable. Prepositions will not be head of an endocentric construction and cannot be 
modified by adjectives. They occur only after nouns. They will be deleted in relativization. They 
cannot occur in the initial position of a sentence and cannot occur immediately after another 
postposition. They will be an immediate constituent of noun phrases. 

5. MAPPING PATTERNS OF COMMONLY USED PREPOSITIONS 
Consider some of the very commonly used prepositions to inorder to show the patterns of their 
mapping in Malayalam.  
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to: The preposition to in English can be mapped by different postpositions in Malayalam. The 
examples are listed in (2) to (6). 
(2) [to = e:kk] 
 The procession goes to Kottayam. 
  Ja:tha ko:ttayathile:kk po:kunnu. 
 ��� ������	
� �����. 
 (procession) (kottayam PP) (go PRS) 
(3) [to = o:t] 
 I have spoken to him already. 
 ŋa:n iwinakaM thanne avano:t saMsa:riccittunt. 

���  �����  ��) *����+ �!������,���. 

 (I)          (already)                      (he PP)           (speak PAST)      
(4) [to = atuthe:kk] 
 I am going to the king. 
 ŋa:n ra:ja:vinre atuthe:kk po:kukaya:N. 

��� ��-�����	 *���.�� ���
�
��(. 

 (I)        (king)            (PP)               (go PRS) 
(5) [to = e] 
 Please listen to him. 
 dayava:yi avane Sradhiykku. 

/����� *��� % 0��� 

 (please)     (him)      (listen) 
(6) [to = kk] 
 He is going to the meeting. 
 avan kutikka:Ycaykk po:kunnu. 
 *�� 
�����123�� ���
�)�. 
 (he)        (meeting+PP)     (go PRS) 

6. RULES FOR DISAMBIGUATION OF MULTIPLE PATTERNS OF 
PREPOSITIONS 

In this section we propose rules for the disambiguation of the above said (section 2) examples 
having multiple mappings of prepositions. The examples clearly show the difficulty in mapping 
English prepositions to Malayalam postpositions in machine translation. The two major factors 
that determine the meaning of a preposition are the semantic type of the main verb and that of the 
nominal elements that occur with the prepositions. The syntactic and semantic information are 
extracted from the bilingual lexical database in the system. The dictionary contains more than 
50000 entries. The structure of the dictionary entry is as given below: 

1. abdication 
2. 46 noun 
3. ~G abdication 
4. [activity] 
5. pariwyAgaM:2 
6. *** 

First line is the English root word, second line contains the POS category and its inflection 
information as a category number, third line is the English meaning, fourth line is the semantic 
information, fifth line is the Malayalam root word and its paradigm number that represents the 
inflection of a noun based on its case and number. 
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We present some of the sample rules that are used to disambiguate prepositions. We use the 
semantic category of verb and noun to disambiguate the multiple patterns of the prepositions. 
 
Disambiguation of to: As mentioned in section 2, the preposition to have different mappings in 
Malayalam. Rules for generating the correct mappings are illustrated below for the examples 
presented in section 2.  

 a. to-NP (place) = NP- e:kk (2) 

 b. to-NP(human) = NP-o:t (3) 

 c. verb(motion) to-NP = NP- atuthe:kk  (4) 

 d. verb(mental) to-NP = NP-e (5) 

 e.to-NP(activity/concept) = NP-kk (6) 

In a similar manner, rules for disambiguation of from, at, in, through, for, by, of and on are given 
below:  

 f. from-NP = NP-ninn  (7) 

 g. from-NP(place/time) = NP-muthal (8) 

 h. at-NP(human) = NP-ne:rkk (9) 

 i. at-NP(place) = NP-il (10)-(11) 

 j. in-NP(time) = NP-il (12) 

 k. in-NP(currency) = NP-a:yi (13) 

 l. in-NP(natural) = NP-ath (14)  

 m. through-NP(place) = NP-kuti (15) 

 n. through-NP(thing) = NP-ute (16) 

 o. for-NP(human) = NP-ve:nti (17) 

 p. for-NP(time) = NP-e:kk (18) 

 q. NP1-by-NP2 (time) = NP2-o:te (19) 

 r. NP1 (place)-by-NP2 (place) = NP2-vaYi (20) 

 s. by-NP(quantitative) = NP-kaNakkin (21) 

 t. of-NP(human_group) = NP-il (22) 

 u. of-NP(concept) = NP-ulla (23) 

 v. verb(resultive) of NP(illness) = NP-a:l(24) 

 w. on-NP(concept/activity/thing) = NP-il (25) 

 x. on-NP(topic) = NP-parri (26) 

The disambiguation methods discussed above are based on information about the type of verb 
and the noun in the relevant structure. In the above explained disambiguation rules, we can see 
that the case markers (genitive, dative, sociative, locative, instrumental, accusative and 
nominative) are handled appropriately based on the context. A sample example on how the above 
constraints can be formulated is illustrated in a tabular form (Table 1). 
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Table 1 

Verb 
category 

  mov mnt  

Verb form main main main main main 

Noun1 
category 

place human pst_hldr human activity 

Noun2 
category 

     

preposition to to to to to 

 e:kk o:t atuthe:kk e kk 

7. RESULTS 
All the examples illustrated above are taken from the output generated by the machine translation 
system developed by us. The performance of the system evaluated with a set of about 3000 
sentences. The sentences are selected randomly from the corpus collected in the tourism and 
health domain from different articles and from the internet. The sentences are translated using the 
MT system developed and then evaluated using the five point scale manually. The ranking points 
are described below: 

0 - No output provided by the engine concerned. 

1 - The translated output is not comprehensible. 

2 - Comprehensible after accessing the English text. 

3 - Comprehensible with difficulty. 

4 - The text is comprehensible. 

 

Figure 3. Analysis chart 
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Depending on the complexity of the sentence the output may contain all the possible alternate 
translations. This may vary from one sentence to hundreds of sentences. If the sentence is not 
grammatically correct and is extremely complex in nature, then the possibility of getting its 
translation is less. We have considered the first five translations for the evaluation. The 
evaluation done based on the methodology developed by C-DAC Pune. Fig. 4 below shows the 
sample output of the MAT system. 

Figure 4. Sample output of the MAT system 

The system will give more than 70% accuracy for the simple sentences and about 50-55% 
accuracy for the complex sentences.  The accuracy of the system customized for Malayalam is at 
par with the system that is originally designed for Indo-Aryan language family. 

Conclusions 

In this paper we have examined the contexts for the multiple meanings of the prepositions in 
English and their mapping patterns in Malayalam. On the basis of the semantic category of 
preceding and following nouns of the preposition and the category of verb, we have made an 
attempt to disambiguate the multiple meanings of selected prepositions. The work is 
implemented in the English Malayalam Machine Aided Translation system using AnglaBharati 
Technology developed by IIT Kanpur.  

However, it is difficult to find out the translation equivalence for some of the prepositions in 
English, when we try to do the translation process especially for machine translation. For 
comprehensive rule we need further finer semantic categorization of verbs and nouns. 

Abbreviations/Acronyms 

main: Main verb, mov: Motion verb, mnt: mental, Noun1: Noun after preposition, Noun2: 
Noun before preposition, pst_hldr: post_holder, PAST:Past, FUT: Future, det: Determiner, 
QP: Question Particle, PP: Postposition 
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ABSTRACT

The main goal of this paper is to develop an automatic anaphora resolution system for Tamil. 
Here we present the complete analysis of pronominals in Tamil discourse.  We have analysed 
manually the corpus which contain Tamil pronominal aval, avan, atu and its suffixes. Using the  
analysis we come up with set of features to identify the anaphoric pronouns and its antecedents.  
We used the machine learning algorithm, Conditional Random Fields to this problem. The results  
are encouraging. 

KEYWORDS : anaphora, pronoun, antecedent, pronominal, machine learning, conditional random 
fields. 
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1 Introduction

Anaphora resolution is an important  task in  natural language processing applications 
such as Information Retrieval, Information Extraction, Question Answering system, Text 
summarization etc. The process of finding the antecedent of an anaphor is anaphora resolution. 
Anaphora is the reference that point to the previous item. Antecedent is the entity to which the 
anaphor refers. The Tamil  pronominals are 'avan', 'aval' and 'atu' are  the third person singular 
pronouns. 'atu' is third person singular neuter pronoun. The relation that is established between a 
pronoun and its antecedent helps to provide more information that can be extracted. Here we use 
conditional random fields (CRFs) to resolve this task, the results are encouraging.

2 Previous Work

Anaphora resolution is one of the difficult problems in the field of NLP. It is an area  
well researched for many languages in the last few decades. There are several approaches used in  
resolving pronominal such as rule based, knowledge based and machine learning.

One of the early works in pronominal resolution is by Hobb's naive approach, which 
relies on semantic information (Hobbs. J,1978). Carter with Wilkas' common sense inference 
theory came up with a system (Carter. D,1987). Carbonell and Brown's introduced an approach 
of combining the multiple knowledge system (Carbonell. J.  G. & Brown. R .D, 1988). The 
initial approaches, where broadly classified as knowledge poor and rich approach.  Syntax based 
approach by Hobb (naive approach), centering theory based approaches (Joshi, A. K. & Kuhn. 
S, 1979; Joshi, A. K. & Weinstein.S, 1981) and factor/indicator based approach such as Lappin 
and Leass’  method of identifying the antecedent using a set of salience factors and weights 
associated to it. This approach requires deep syntactic analysis. Ruslan Mitkov introduced two 
approaches based on set of indicators, MOA (Mitkov’s Original Approach) and MARS 
(Mitkov’s Anaphora Resolution System) (Mitkov. R,1998). These indicators return a value based 
on certain aspects of the context in which the anaphor and the possible antecedent can occur. The 
return values range from -1 to 2. MOA does not make use of syntactic analysis, whereas MARS 
system makes use of shallow dependency analysis. 

There are very few works done in anaphora resolution with respect to Indian Languages. 
Some of the works done are VASISTH a rule based system which works with shallow parsing 
and exploits the rich morphology in Indian languages for identifying the antecedent for anaphors 
(Sobha.L & Patnaik.B.N, 1999). (Sobha.L, 2007) used salience measure for resolving 
pronominals in  Tamil. (Murthi.K.N, 2007) have looked into the anaphora  resolution in Tamil, 
using Machine Learning technique: Linear Regression and compared it with salience  factors. 
Dhar worked on “A method for pronominal anaphora resolution in Bengali (Dhar.A & Garain.U, 
2008; Sobha.L & Pralayankar.P, 2008) worked on  "Algorithm for Anaphor Resolution in 
Sanskrit".  Resolving Pronominal Anaphora in Hindi Using Hobb’s   Algorithm was done by 
Kamalesh Dutta. 

In ICON 2011, NLP tool contest on Anaphora Resolution for Indian Languages was 
held.  The tool  contest  considered the languages  such as  Bengali,  Hindi, Odiya,  Marathi  and 
Tamil. In each language different methods was approached by the participants.
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3 Anaphora In Tamil

Tamil belongs to south Dravidian family of languages. It has post-positions. It is 
nominative-accusative language like the other Dravidian languages. The subject of Tamil 
sentence is mostly nominative. There are constructions with certain verbs that require dative 
subjects and possessive subjects. Tamil has PNG (person, number and gender) agreement. A 
pronoun must agree in number, gender and person with antecedent. There are many types of 
anaphora. The types are pronominal anaphora, possessive anaphora, reflexive anaphora, 
demonstrative anaphora, relative anaphora. Generally anaphors have antecedents which we say 
as  anaphoric. Anaphors which is not having antecedent in the text or does not refer any text 
before is non-anaphoric. We have taken Tamil pronominals He - avan, She - aval, It – atu and its 
suffixes. Let us classify the Tamil pronominals as reflexive pronoun, possessive pronoun and 
non-possessive pronoun. They are given below.

Reflexive Pronominals:

Himself  avane
 he+e(clitic marker)

avaNAka
he+benefactive

Herself avaLe
 she+e(clitic marker)

avaLAka
he+benefactive

Itself atuve
It+e(clitic marker) 

atAka
It+benefactive

ate
It+e(clitic marker) 

The reflexive pronoun has two morphemes 'e' clitic marker and 'aaka' benefactive case 
marker.

Posessive Pronominals:

His avanutaiya
he+possessive

avanatu
he+possessive

avanin
he+possessive

Her avalutaiya
 she+possessive

avalatu
she+possessive

avalin she+possessive

Its  athanutaiya
It+posseseive

athanatu
It+posseseive

athanin
It+posseseive

athan
Its

Non-posessive Pronominals for (avan, aval):

avanukku  -  He+dat,  avaLukku  -  she+dat. Similarly aval, avaL and atu is suffixed 
with case markers such as accusative,locative sociative,ablative, instrumental  are considered to 
be non-possessive pronominal.

3.1 Examples for Tamil Pronominals

Example 1:
   In this example, anaphora and antecedent are residing in the same sentence.
    {piimani    cenru    ciRaippattu}  NF {pinpu     krishnan   avanaii     kaapaaRRinaar.}MCL
     Bhiman    went     caught prisoned     after        Krishnan   he+acc      rescued
     'Bhiman caught prison, after Krishnan rescued him.'
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In the above example  the antecedent  is piimani , which is subject and nominative. 
proper noun of previous clause. Even though krishnan is the nominative proper noun which is 
immediate to the anaphor avanai, krishnan cannot be the antecedent. A proper noun which is 
followed by a pronoun with or without case marker, cannot be the antecedent for the pronoun 
except in the case of example 8.

Example 2:
   In this example, there are two sentences 2.0 and 2.1. The anaphora is in 2.0 sentence and the 
antecedent is in previous sentence 2.1.
2.1 Intirajiti   RamarooTu   yutatil tooRRuppooi}NF {ivitatil         ampikaiyai            vazhipaaTu
     Indirajith      Ramar+soc   war+loc     lost            this place+loc   ampikay+acc       worshipped
     ceytaan.}MCL
     done+3msg
     'Indirajith lost in the war when fought with Ramar, he worshipped goddess in this place'.
2.0 {avani  pinnar   mooTcam        aTaintaan.}MCL
       He         after       wisdom       reached+3sgm
        'After he got wisdom'.

In the above example the antecedent is Intirajiti , which is subject and nominative 
proper noun in the previous sentence to the anaphor. Even though RamaroTu is a proper noun 
with sociative case marker, it cannot be the antecedent. The  proper noun Intirajiti  with 
nominative case marker is the most probable antecedent. avani.is the nominative anaphor.

Example 3:
3.3 {Raamanj    aluvalakattiLiruntu     viitirku    vantu,}NF {Siitaavaii   paartan.}MCL
        Raman          office+loc+ abl      home+dat   come            sita+acc    saw+3sgm
        'Raman came from the office and saw Sita'.
3.2 {avaLi tanakuu uTampu  cariyillai  enRu connataal}CON {avaLaii   maruthuvamanaikku
        She     her+dat    health   not good     is    told+ins              she+acc       hospital+dat
        azhaittu   cenraan.}MCL
        taken       went+3sgm
       ' He took her to hospital, because she said that she is not feeling well.'
3.1 {pookum   vazhiyil}RP{ Siitaavini    toozhi,   Giita       etiril            vanthaaL}MCL
        Going     way+loc           sita+gen     friend    geetha    opposite        came+3sgf
        'On the way Sita's friend Gita came.'
3.0 {pinnar viiTiRku     vantavuTan, avanj  avaLukkui  roTTiyum  paalum  tayaar       ceytu      
       After     home+dat     came           he    she+dat      roti+um    milk      made       prepared
       koTuttan.} MCL
       give+3sgm
      'After coming  home he prepared bread and milk  for her.'

In this example, in the 3.0  sentence there are two pronouns avan and avaLukku. 
Eventhough avaLukku refers Siitaavini , Gita is the nominative proper noun which could be the 
most probable antecedent according salience factor. Still ambiguity remains whether the 
antecedent is Gita or  Siitaavini . In  sentence  3.2  Raman is a subject , which is dropped. Hence 
avani  in the sentence 3.0 which refers to Raman which is in the 3.3 sentence. 
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Example 4:
4.1 Ramani   aluvalagathil  iruntu    viTTiRku       vanthu}NF {kuzhantaikaLotuj

      Raman      office+loc     from     home+dat       come               children+soc
      viLaiyaaTinaan.}MCL
       played+sgm
      'Raman came from office and played with children.'
4.0 {avani   avarkaLotuj    viLayaaTiviTTu} NF {avarkaLukkuj      inippu      koTuttaan.}MCL
        He         their+soc          played                           them                  sweet     gave+3sgm
       'After he played with them, he gave sweets to them.'

According to  the agreement of person, number and gender, here in this example 
particularly the number i.e singular or plural is distinguished between avan and avarkal. And also 
in the above example if we replace kuzhantaikaL as kuzhantai, the gender, number  variation is 
there.  For kuzhantaikaL  – neuter, plural, 3  and its possible pronoun is avarkaL.
           For kuzhantai         – neuter, singular, 3 and its possible pronouns are atan, atu, atarku..

3.2 Examples for 'atu'

Example 5: 
5.1 {Naakaraajar  muulastaanatil innum   oru naakami   uyiroTu irukkiRatu.} MCL
        Naakarajar     temple+loc        still      one snake       alive       be+3n.
       ‘Still a snake is alive in Nakarajar temple’.
5.0 {atui  atikkaTi paktarkaLukku kaaTchi     tarukiRatu}RP {enpatu kuRippTattakkatu.} MCL
         It       often      deovotee+dat   dharshan  give+3sn                is            remarkable
        ‘It is remarkable that it often gives its appearance to devotees’

In the above example the anaphor atu refers the antecedent which is animate and non-
human living being, a noun phrase in the previous sentence.

Example 6:
     {piRaku poonkuzhali,  ”cakravarttikku uTampu  cukamillai enRu collkiRaarkalei,}COM 
          After  poonkuzhali      king+dat           health        not good   be          told+3pl                
     {atui         unmaitaanee?” enraal.}MCL
        it             true?                said+3sgf
     ‘After that Poonkuzhali said , “Everybody is telling king is not well”, is it true?.’
      Anaphor - atui,  Antecedent - Immediate complement clause

From the analysis of  'atu', it refers noun phrase such as place, object, animals, events or 
reasons, or sometimes behaves as deictic. atu refers noun phrases but sometimes it does not 
refers noun phrase instead it refers an event, reasons, a statement etc ... when it is followed by, 
atu+adverb, atu+postposition etc. 

eg: atu kaarNamaaka
       It        because+ben
       'Because of it'.
Similarly, some  examples are, atu een?/ It why?, atu pola /It like, atu polave/It like+e(clitic 
marker).

 From these examples we concluded that the antecedent is a noun phrase, or verb phrase or 
combination of both. The noun phrase kind of antecedents are either subject with case markers 
nominative or dative or possessive in Tamil. The noun phrase antecedents are taken for our work 
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to resolve. The analysis of 'atu' reveals that its antecedents are mostly events or reasons which 
consists of  noun phrase and verb phrase. Also it refers noun phrase. From the analysis, we found 
a set of features to build a system for anaphora resolution. 

4 Our Methodology

 In this task we have taken five sentences above from the anaphor occurred sentence and 
applied the salience measures and few other text information as our features to train our system. 
In machine learning technique feature identification is very vital part to give best systems. The 
features we used are discussed below.

4.1 Features for anaphora resolution

The corpus is manually analysed and features were identified. The features are classified 
into six categories such as word, POS, chunk, syntactic information, clause, Named Entity 
Recognition. The syntactic information consists of word category,gender,number,person. The 
detailed features given in train and test file are sentence recency, subject emphasis, object, proper 
noun, case of noun phrase, case of anaphor, current clause where anaphor occurs, immediate 
clause and non-immediate clause of anaphor of the sentence, whether a proper noun followed by 
a pronoun? and NE.

Since from our analysis, the pronominal avan or aval always refers some person, 
ultimately a proper noun. avan or aval are the pronoun which are always traverse  backward 
from the current sentence and to other previous sentence to found the antecedent. During the 
traverse it may also refers the same person as pronoun like

(Antecedent)   NNP     NN (PRP)    NN(PRP)   PRP (anaphor)
                            Sita  avaluteya     avalukku    aval
  pacu/naakam/penna   athanuteya     atharkku    atu
  cow/snake/pen

Hence it is observed that subject or object which is  noun or proper noun in the sentence 
or clause could be the most probable antecedents for the pronoun.  From the analysis we can 
conclude that, in Indian languages, a nominative noun phrase, a possessive noun phrase with a 
nominative head and a dative noun phrase could be a subject of a sentence. So we have three 
types of subject nouns and in that, the most common  the  nominative noun. Hence nominative 
proper noun is given a very high score of 80 and the other two are given a score of 50 each. An 
NP with accusative case gets the next highest score of 40. NPs with other case markings (N. 
other) get a score of 30.The current sentence in which the pronoun occurs gets a score of 50 and 
this gets reduced by 10 for each preceding sentence.

S.no Features Definitions

1 Current Sentence Sentence under consideration

2 Current Clause Clause in which the anaphor occurs
3 Immediate clause Clause next to the current clause
4 Non-Immediate clause Neither an immediate nor a current clause
5 NNP/NN-Nom Any proper noun/noun nominative
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6. NNP/NN-Poss Any proper noun/noun possessive
7 NNP/NN-Dat Any proper noun/noun Dative
8 NNP/NN-acc Any proper noun/noun accusative
9 NNP followed by any pronoun 

with or without case marker?
 NNP followed by immediately by pronoun 
with any of the case marker?

Table 1 – Features

The example 7 illustrates the case where the pronominal occurring after the proper noun 
which is the subject of the sentence cannot have it as the antecedent for the pronominal. Only if 
such a pronominal is reflexive then it is possible to have the subject as the antecedent. This rule 
has exceptional case where the pronominal avanai or avalai acts as a reflexive. Example 8 
illustrates the exceptional case.

Example 7:
         KrishNan   avanai        azhaitaan.
         Krishnan    he+acc         called+3sgm
         'Krishnan called him'

         In this example avanai it never refers Krishnan, an immediate pronoun. 

Example 8:
          KrishNan  avanai      maaRRikoNTtaan
          Krishnan   he+acc     change+do+3sgm
          'Krishnan  changed  himself.'

In the case of reflexive sentence as in the above example, KrishNan is a nominative 
proper noun which is followed by anaphor avanai with accusative case marker,  refers KrishNan. 
Here krishnan talks about himself. So here avanai refers KrishNan.

5 Corpus

The corpora we have considered for this work is from the web. We have taken the web data 
from tourism domain which consists 10000 sentences. Annotation guidelines are formulated and 
tagged with the following guidelines. To annotate the corpus with anaphor and antecedents with 
index, we used an annotation tool, PALinkA. We have considered both anaphor and antecedent 
as markables. For annotations, first anaphor and antecedent should be marked as markables and 
if it is anaphoric, link is established between these two markables. Finally all the possible 
anaphor and antecedents are tagged with index. 

6 Machine Learning Algorithm

6.1 Conditional Random Fields

CRF++ is toolkits designed for generic purpose and are  applied to a variety of  NLP 
tasks. The machine learning method of CRFs was chosen to do our experiments, because of its 
flexibility to build linguistic rules. CRFs can contain number of feature functions. The advantage 
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of CRFs is that it can model not only sequential data, but also non-linear data. Since the task of 
extraction of antecedents is syntactic and semantic task, CRFs is appropriate for this purpose.

Our Algorithm:
Step1: Input the corpus.
Step2: Preprocess the corpus, tagged with POS, Chunk, word category, gender, number, person, 
suffix, case markers, Clause Information and Named Entity Recognition.
Step3: Tag the Anaphor and the Antecedent using PALinkA tool.
Step4: Identify the features and given to CRF.
Step5: Train and test both the Train corpus and Test corpus with the features identified in CRF.

7 Result and Discussion

7.1 Ten-fold Experiment:

                We have taken the tourism corpus from web of 10000 sentences. The total numbers of  
words are 93102 and we split this word corpus equally into 10 equal files. Randomly we have 
taken  8  files  for  Training  (74482  words)  and  2  (18620  words)  files  for  testing  with  all 
combinations of files. The first corpus consists of 945 pronouns. The training data consists of 
829 pronouns and the testing data consists of 116 pronouns. The results are given below.

S.no Total no 
anaphora in 
training

Total no 
anaphora in 
testing

System 
tagged 

System tagged 
correctly

Recall Precision

1 794 149 147 123 88.55% 83.67%

2 769 174 173 140 80.45% 80.92%

3 782 171 168 142 83.04% 84.52%

4 798 145 143 122 84.14% 85.31%

5 766 177 176 140 79.09% 79.84%

6 652 291 289 242 83.16% 83.73%

7 613 330 318 261 79.09% 82.07%

8 738 205 196 162 79.02% 82.65%

9 827 116 112 91 78.44% 81.25%

10 815 128 123 99 77.34% 80.48%

Average 80.63% 82.44%

Table 2 – Tenfold Experiment results

8 Conclusion and future work 

This work considered all kind of pronominals for resolution. This work requires further 
analysis and fine tuning of the features.  Still there are lot of challenges in anaphora in discourse 
structure. And resolution of pronominals is very much needed for all natural language processing 
applications.
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Charles University in Prague, Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics
Malostranské náměstí 25, Prague
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ABSTRACT
Various experiments from literature suggest that in statistical machine translation (SMT),
applying either pre-processing or post-processing to morphologically rich languages leads to
better translation quality. In this work, we focus on the English-Tamil language pair. We
implement suffix-separation rules for both of the languages and evaluate the impact of this
preprocessing on translation quality of the phrase-based as well as hierarchical model in terms
of BLEU score and a small manual evaluation. The results confirm that our simple suffix-based
morphological processing helps to obtain better translation performance. A by-product of our
efforts is a new parallel corpus of 190k sentence pairs gathered from the web.

KEYWORDS: English-Tamil Machine Translation, Parallel Corpora, Suffix Separation.
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1 Introduction

For any language pair, there are two main things that affect the performance of an SMT system:
(i) the amount of parallel data and (ii) the language differences, mainly the morphological
richness and word order differences due to syntactic divergence (Koehn et al., 2009). Indian
languages (IL) in general seriously suffer both of the problems especially when they are being
translated from/into English. There are very little parallel data for English and Indian languages,
and English differs from IL (e.g. Tamil) in both word order (English: SVO, Tamil: SOV) as well
as in morphological complexity (English: fusional, Tamil: agglutinative). While the syntactic
differences contribute to the difficulties for translation models, the morphological differences
contribute to data sparsity. We attempt to address both issues in this paper.

In Section 3, we propose morphological processing aimed at reducing data sparsity. In Section
4, we describe our English-Tamil parallel corpora collection and the system configurations we
use. In Section 5, we report the results and analyze them in Section 6.

2 Related Work

Research into SMT involving Tamil language is not very common, the main reason perhaps being
the lack of parallel corpora. Nevertheless there have been efforts for other Indian languages
such as Hindi (Udupa U. and Faruquie, 2004), (Ramanathan et al., 2008) and (Bojar et al.,
2008). The earliest work that appeared on English-Tamil SMT was (Germann, 2001) which
described building a small English-Tamil parallel corpus as well as an SMT system. So far,
the efforts for building English-Tamil parallel corpora are moderate and the readily available
parallel data amount just to a few thousand sentences. One of our goals in this work is to
perform experiments with a larger corpus that we collect on our own (see Section 4.1) from
various web sources.

The main focus of this work is to address morphological differences between English and
Tamil propose steps that improve the performance of SMT systems. Applying morphological
processing to SMT is not new, the idea goes back to (Lee, 2004) for Arabic-English or (Nießen
and Ney, 2004) for German-English. (Ramanathan et al., 2008) and (Ramanathan et al., 2009)
are the first to experiment an Indian language, namely in English-Hindi translation. We apply
similar techniques to English-Tamil pair.

3 Suffix Splitting

English and Tamil morphologies follow different inflectional patterns. While English morphology
can be adequately described with a few morphological suffixes, thousands of wordforms can
be built from a single root in Tamil. As expected, verbs and nouns are the main productive
parts of speech in Tamil. For example, a Tamil verb, in addition to the root bearing the lexical
information, can include suffixes corresponding to person, number, gender, tense, negativity,
aspect and mood. Most of the additional information which a Tamil word contains can be mapped
to individual functional words (including prepositions) in English. One type of coordination
deserves a special treatment because Tamil uses suffixes instead of coordination conjunctions:
‘Xum Yum’ in Tamil corresponds to ‘X and Y’ in English.

Our hypothesis is that separating morphological suffixes from the root and treating them as
separate tokens can yield better BLEU performance. We experiment with splitting morphological
suffixes on either or both English and Tamil.
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Figure 1: Various forms of Tamil noun root: ‘maram’ (‘tree’) and the verb root: ‘pati’ (‘study’).

3.1 Rules

For suffix separation, we identify a number of linguistic rules for both Tamil and English. Each
linguistic rule has a form of a regular expression in our system and operates on the wordform.
The rules for Tamil operate based on solely the word endings whereas the rules for English also
make use of the parts of speech (POS). For Tamil, we have identified 716 inflectional rules for
nouns and 519 rules for verbs. Since the number of the rules for Tamil is large, we use three
strategies to avoid repeated or often spurious splitting on a wordform: (i) a rule for separating
a large suffix (in the number of characters) takes precedence over a rule for a smaller suffix
(ii) at most one rule is applied to any wordform and (iii) no rule is applied for wordforms of
less than 5 characters after transliteration. At present, our Tamil suffix splitter only works with
transliterated data. So, the Tamil side of the parallel corpus must be transliterated from UTF-8

encoding to Latin. Once the suffix splitting is done, the corpus is transliterated back to UTF-8.

3.2 Suffix Splitting: Tamil

Only verbs and nouns are the major parts of speech (Lehmann, 1989) in Tamil that undergo
various morphological processes. Although Tamil is an agglutinative language (i.e. suffixes
bringing separate morphological features are concatenated one after another), instead of
splitting each morpheme into a separate token, we split only suffixes that are often a functional
word or a separate token in English. This approach avoids too much spurious splitting.

Tamil nouns mainly inflect for various case markers which mostly correspond to individual
functional words in English. For example, ‘palkalaikkazakaTTil’ (in the university) where the
locative case marker ‘TTil’ corresponds to the preposition ‘in’ in English. In the same way, the
verb suffixes are separated from the inflected verb.

The left part of Figure 1 shows various case inflections for the Tamil noun ‘maram’ (‘tree’). After
the suffix splitting, all the case markers will be separated from the root. Note that the Tamil
noun ‘maram’ (‘tree’) is not preserved in full in the declension. Instead, only the stem ‘mara’ is
recovered. The right part of Figure 1 shows some of the conjugations of verb ‘pati’ (‘to study’).
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For example: the gloss ‘he who studies’ tries to mimic a relative construct which is represented
as one word in Tamil. The pronominal information in ‘patikkiRavan’ (‘he who studies’) indicates
that the word refers to a masculine antecedent while the verbal part ‘patikkiRavan’ adds the
new information: that the person is studying. Syntactically, the word ‘patikkiRavan’ behaves as
a noun. After our suffix splitting, the verbal part will be separated from the nominal part.

Apart from major inflectional paradigms, we also implemented rules handling nouns + postposi-
tions and sandhis. It is very common in Tamil to concatenate postpositions to the preceding nouns.
But in the English translation, they correspond to separate prepositions or other functional
words. For example in ‘uLwOkkamillAmal’ (‘without an ulterior motive’), the suffix ‘illAmal’
will be separated from the original wordform to better match with the English translation. So
far 70 rules have been identified to split such combinations of nouns + postpositions.

One more phenomenon is the external sandhi, i.e. the situation when a stop consonant (k,c, T, p
in Tamil) is added to the end of a word if the following word starts with a stop consonant. For
example: in ‘aTaik kotukka’ (‘to give that’), ‘aTaic ceyya’ (‘to do that’), ‘aTaiT Tota’ (‘to touch
that’) and ‘aTaip patikka’ (‘to read that’), the English word ‘that’ is mapped to four different
forms in Tamil each differing by the last character. To avoid this data sparsity issue, we add a
simple rule that separates this external sandhi from Tamil wordforms.

3.3 Suffix Splitting: English

Although the English morphology is not as complex as Tamil, we perform a similar rule-based
suffix splitting for English. In English, we proceed in two steps: (i) tag the corpus using Stanford
tagger (ii) and apply suffix splitting rules on the tagged data. This process allows us to perform
suffix splitting only for certain word ending - tag combinations, thus avoiding spurious splitting.
Our suffix splitting for English uses 34 tag-suffix rules. The rule has the format ‘tag (T) - suffix
(S)’, which means that we will separate the suffix (S) from any wordform that has the tag (T).

Figure 2: Suffix separation in participial nouns

Figures 2 and 3 illustrate suffix separation for both Tamil and English. The alignment links
shown in the figures are not automatically aligned but actual translation links to demonstrate
the possibility of better alignment (thanks to the reduced sparsity) after the suffix separation.
Figure 2 shows how a participial noun ‘mannippavan’ (‘one who forgives’) can be splitted so
that many to one alignment is reduced. Figure 3 illustrates how the separated negative suffix
‘Ata’ and the postposition ‘il’ correspond directly to individual words in English.
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Figure 3: Separation of negative suffixes and postpositions

4 Experimental Setup

4.1 Data

(Germann, 2001) built a small English-Tamil parallel corpus (around 5000 sentences in total) by
hiring translators. A focused effort to build a parallel corpus for English and Indian languages
including Tamil was initiated by the EILMT1 consortium project. This attempt too was a manual
effort and the parallel corpora were constructed for the health and tourism domain. Recently,
(Post et al., 2012) released manually constructed parallel corpora for six Indian languages by
crowd-sourced translation.

We feel that there is a decent amount of parallel English-Tamil data available in the web that
are largely unnoticed and we thus collect our own corpus quickly and at no cost for translation.

We mainly collect parallel corpora from three sources: (i) www.wsws.org (News - news website)
(ii) www.cinesouth.com (Cinema - Tamil cinema articles) and (iii) biblephone.intercer.net
(Bible). The above three sources are either multilingual or contain exclusive English and Tamil
contents. To collect the News corpus, we downloaded only URLs that have matching file names
on both English and Tamil sides. The collection of Cinema corpus was simple: all the English
articles had a link to the corresponding Tamil translation on the same page. The collection of
Bible corpus followed a similar pattern.

After downloading the English URLs and the corresponding Tamil URLs, we stripped all the
HTML tags. At this stage, the Bible corpus was already sentence aligned. The News and Cinema
articles had similar paragraph structures but they were not sentence aligned. We used hunalign
(Varga et al.) to sentence align them.

Table 1 summarizes the data sizes. Apart from the development set (1000 sentences), we
partition the remaining data into the training portion (90%) and testing portion (10%). The
table also includes the statistics of word tokens of both English and Tamil corpora. The corpus
All combines everything into one big corpus. The Tamil side is encoded in UTF-8.

The domain difference between the corpora is reflected in the average sentence length (English,
before suffix separation) of 15 for the Cinema compared to 26 and 25 for News and Bible,
respectively. The corpora also vary in terms of language style: the style in Bible is very
different from that of News and Cinema.

1English to Indian Languages Machine Translation (EILMT) is a Government of India funded project.
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Corpus
Sentences Training data Test data Dev data

Training Test Dev English Tamil English Tamil English Tamil

News 108,332 12,037 1000
2.9M 2.1M 328K 247K 27K 20K
3.4M 3.8M 386K 447K 32K 37K

Cinema 34,690 3854 1000
529K 353K 60K 40K 15K 10K
605K 610K 68K 69K 18K 18K

Bible 26,884 2987 1000
668K 352K 94K 50K 22K 12K
733K 731K 103K 103K 24K 24K

All 171,706 19,078 1000
4.1M 2.9M 459K 318K 23K 16K
4.8M 5.3M 534K 586K 27K 30K

Table 1: Corpus statistics. For each corpus, the upper and lower row correspond to the number
of tokens before and after the suffix splitting.

4.2 Systems Used

We use phrase-based and hierarchical (Chiang, 2005) MT systems as implemented by Koehn
et al. (2007) for our experiments. We use the default system settings for all experiments and
report results for individual datasets as well as for the entire training data, All.

4.3 Examined Configurations

Our experiments consist of the following settings for both phrase based and hierarchical systems:

• baseline: The default, no suffix splitting.

• targetmor : No change in English side of the data. Our suffix splitter is run on Tamil.

• source+targetmor : Both the English and Tamil suffix splitters are run on the respective
sides of the data.

For each settings, we report BLEU (Papineni et al., 2002) scores in three variations: BLEUsu f f _sep,
BLEUsu f f _re j and BLEUstem_onl y .

In the case of BLEUsu f f _sep evaluation, both the reference and hypothesis translations are suffix-
separated before the evaluation, allowing a better match with the reference but also risking
more false positives. The BLEUsu f f _re j evaluation corresponds to what Tamil readers would
like to see: the suffixes are rejoined (if they were separated) prior to evaluation. BLEUstem_onl y
ignores suffixes altogether, both hypothesis and reference translations contain only stem words.

Manual sentence level ranking: We use the WMT-style manual ranking technique (Callison-
Burch et al., 2010; Bojar et al., 2011) for a sample of 100 sentences from the test set of ‘All’
translated by each of the examined configurations. Without knowing which is which, we rank
hypotheses from best to worst for each sentence, allowing ties. The overall score for each system
is calculated by considering all pairwise comparisons implied by the rankings. We report three
flavours: (i) how often the system was ranked better or equal than other systems (‘≥ others’
= wins+t ies

wins+losses+t ies
), (ii) not favoring ties (‘> others’ = wins

wins+t ies+losses
) and (iii) ignoring ties

altogether (‘no ties’ = wins
wins+losses

).

5 Results

The results for phrase-based and hierarchical MT systems are given in Tables 2 and 3, respec-
tively. Comparing baseline scores for both the phrase-based and the hierarchical systems, the
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hierarchical system performs better or equally well across all the corpora.

System
BLEUsu f f _sep BLEUsu f f _re j

News Cinema Bible All News Cinema Bible All
baseline 10.97 8.54 12.87 12.45 6.15 7.13 6.10 7.44
targetmor 13.79 10.40 18.27 14.30 4.91 7.01 5.82 6.05
source+targetmor 13.69 10.56 18.30 14.15 4.74 7.23 5.79 5.98

Table 2: Results for phrase based SMT

System
BLEUsu f f _sep BLEUsu f f _re j

News Cinema Bible All News Cinema Bible All
baseline 10.98 8.62 14.59 13.09 6.20 7.41 6.92 7.78
targetmor 14.01 10.92 19.56 14.82 4.94 7.33 7.25 6.40
source+targetmor 14.17 8.84 19.29 15.12 4.85 5.87 6.79 6.43

Table 3: Results for hierarchical SMT

Evaluating suffixes separately (BLEUsu f f _sep), we see big jumps in the scores when the target or
both sides of the training data were splitted. Note that for BLEUsu f f _sep, the baseline system
output is subjected to suffix splitting, but only after the translation. In the baseline of both
Table 2 and 3, the BLEU score sharply increases for Bible than the News and Cinema when
we compare BLEUsu f f _sep and BLEUsu f f _re j . One reason could be, the increase in the number
of tokens (in the reference data) after the suffix separation of Bible (85.4%) is larger than
the News (71.6%) and Cinema (57.1%), in other words, the Bible has morphologically
more complex forms than the other two corpora. We also observe from Table 2 and 3 that
the BLEU differences between targetmor and source+targetmor is narrow compared to their
baseline counterparts in BLEUsu f f _sep evaluation. Rejoining the suffixes appears detrimental for
BLEUsu f f _re j (in both Table 2 and 3) but we feel that the observed loss is caused rather by the
properties of BLEU. This is because, even a small change in wordforms are treated as separate
tokens in the BLEU evaluation.

System
Phrase based Hierarchical

News Cinema Bible All News Cinema Bible All
baseline 7.60 8.08 7.87 8.96 7.68 8.40 9.17 9.40
targetmor 8.50 8.62 9.33 9.22 8.60 9.06 10.69 9.77
source+targetmor 8.36 8.98 9.17 9.13 8.60 7.70 10.43 9.73

Table 4: BLEUstem_onl y evaluation results

In the stem only evaluation (Table 4), splitting suffixes on the target side of the training data
helps in all cases except the Cinema domain translated with the phrase based system. The
target-only vs. both-sides splitting are incomparably close.

System
Phrase based Hierarchical

≥ others > others no ties ≥ others > others no ties
baseline 49.0 31.0 37.8 43.5 36.0 38.9
targetmor 62.5 44.5 54.3 60.5 51.5 56.6
source+targetmor 64.5 48.5 57.7 58.5 50.0 54.6

Table 5: Manual evaluation on 100 sentences (sentence-level ranking).
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In the case of manual evaluation (Table 5), the source+targetmor is ranked as the best in phrase
based system whereas in hierarchical system the targetmor performs better. Comparing different
evaluation systems, both targetmor and source+targetmor helps achieving better performance
than the baseline. But, as the results suggest, the targetmor performs only marginally better
than source+targetmor in general.

6 Observations & Error Analysis

From the previous section, we observed that morphological suffix splitting improves the perfor-
mance. Following are some of the observations and possible suggestions in general to improve
the performance further.

• Interpretation of automatic scores like BLEU deserves a great care as the results are
heavily affected by tokenization.

• Suffix splitting reduces only the sparsity problem. This does not solve the agreement
problem such as adding subject’s gender suffixes on the target side verb.

• Suffix splitting reduces the sparsity by allowing more one-to-one word alignments but
that could lead to complex reordering scenarios, see Figure 3.

• Coordination is one of the difficult phenomenon in Tamil. In most cases, both phrase-
based and hierarchical system translations produced the English style coordination instead
of adding coordination suffixes to all the conjuncts. This behaviour could be tweaked
by preprocessing English and adding fake tokens to serve as “placeholders” for Tamil
coordination suffixes.

• Both News and Cinema corpora are sentence aligned automatically using a sentence
aligner. Although a strict threshold has been set to eliminate improbable alignments,
there could be a minor percentage of misaligned sentences.

Conclusion

In this work, we described our experiments with separation of morphological suffixes in English
and Tamil to improve translation quality of phrase-based and hierarchical machine translation
systems. We demonstrated that suffix separation helps in reducing the data sparsity and
improves translation quality.

We also documented our efforts to collect parallel corpora for English and Tamil from web
sources, obtaining about 190,000 sentence pairs in total. To our knowledge, this is currently
the largest amount of data available for the English-Tamil language pair.
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Abstract: 
In this paper we attempt to study various case relations expressed by 

the case marker -ki/ku in Telugu. This paper represents a small 

fragment of our efforts at developing a parser  for  Telugu  based  on  

the  dependency  frame  work      a  la  Panini.    Though, traditionally 

the case marked by -ku/-ki is usually called as the dative case, 

there are a number of semantic/case relations it expresses. Our 

hypothesis is that it is possible to identify and thereby predict 

various functions performed by the case marker -ki/-ku in Telugu 

based on the semantic properties of the nouns and Verbs involved. 

Such linguistic  inputs  help  in  machine  learning  and  building  

parsers  for  Telugu  for computational purposes.  

 

1. Introduction:  Telugu, a major Dravidian language, spoken mostly in South India is 

a morphologically complex language. Various grammatical categories like case, gender, 

number and person are morphologically encoded and serve as strong cues for 

identifying the syntactico-semantic relations between the various parts of a sentence.   

Paninian framework which is based on dependency relations is considered the most 

suitable for analysing languages like Telugu (Rafiya Begum eT: al., 2008).  This paper 

confines itself to examining the dative suffix -ki/ -ku in Telugu, because this appears to 

be the most ambiguous of all the case markers exhibiting as many as 16 meaning 

relations.  Dative is the common denominator   used while referring to the relations 

realized by the suffix -ki/ -ku.  The  various  functions  performed  by  the  case  marker 

 -ki/ku  have  been  discussed  extensively  in  the  traditional  grammars  of  Telugu  

such  as Bala  Vyaakaranam  and Proudha  Vyaakaranam  and  in  the  modern  

grammars  (Arden  1927;  Campbell 1817;  Krishnamurti & Gwynn   1985;  Ramarao   

1975 ) as well. Nouns case marked for dative  have also been studied in the generative 

frame work proposed by Chomsky (Subbarao  & Bhaskara Rao  2004).  We propose to 

devise, an algorithm for the purpose of implementing a rule based procedure 

predicting the suffix -ki/-ku on the basis of the ontological properties  of the nouns to 

which these case markers are attached  to as well as those of verbs  in the sentence.  

 

The road map of the paper is as follows: Section 1 introduces the objectives of the 

study; Section 2 spells out the approach we have adopted while analyzing the data; 

Section 3 provides examples from the data under each head classified; Section  4 

provides the algorithm  while  Section 5  summarizes  the  results  in  the  form  of 

conclusion. 

 

123



2. Methodology: Dative nouns are considered for the interpretation of their 

semantic relation for the present purpose. The data are classified into several 

categories based on the semantic features of the nouns in the context of other nouns in a 

sentence.  A set of semantic features like [+/-animate], [+/-human], [+/-abstract], 

[+/-NST], [+/-Nouns of Cognition], [+ /- Nouns of Psych. State], [+/ - Nouns of Phys.  

state] etc.  are used for identifying the co-occurring n0uns. In the following sections we 

illustrate how we arrive at the various functions performed by the dative marker 

-ki/-ku based on our hypothesis. 

 

3.  Classification of Data: 

3. 1.   The data are classified into various sets on the basis of the above 

mentioned   criteria:  

Set 1:   In this set we consider examples where the dative noun, which is [+animate], 

co-occurs with a noun  that denotes psychological state indicated by the nouns, 

kopaM, ‘anger’, BayaM ‘fea’ AscaryaM ‘surprise’ asahyaM  ‘hatred’  prema ’love’  picci ‘lunacy’  
etc. The outcome is that the dative suffix denotes a psychological state.  

 
 1.    T: ravi-ki cIkati aMte BayaM.  

Ravi-to darkness means fear.   

Ravi  is afraid of darkness 

2.    T:     Ravi-ki BayaM vesiMxi.  

Ravi-to fear-3p. sg. nm feel-3p. sg. nm  

Ravi is scared 

Psychological nouns can occur either predicatively as in (1) or as objects as in example  

(2).  The  dative noun  in  both the  cases functions  as  an  experiencer.  Therefore only 

animate nouns can co-occur with nouns denoting psychological states and function 

as dative subjects.  

 

Set 2: Nouns case marked for dative co-occurring with nouns denoting somatic 

states like noppi ‘pain’,  jwaraM ‘fever’ jabbu ‘illness’,  Akali ‘hunger, xAhaM  ‘thirst’,  ruci ‘taste’ etc. 

also denote a    ‘physiological state’. Here too the Dative noun is an animate noun. 

Consider the following examples:  

3.   T: ravi-ki Akali vesiMxi.  

ravi-to hunger feel-pst-3p. sg. nm  

Ravi is hungry 

4.   T: ravi-ki jabbu cesiMxi.  

ravi-to illness do-pst-3p. sg. nm 

Ravi is sick 

5.   T: ravi-ki walanoVppi vacciMxi 

ravi-to headache come-pst-3p. sg. nm 

Ravi had a headache 
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6.   T: awani-ki kalYlYu kanipiMcataMlexu.  

he-to      eyes see-not-3p. sg. nm 

He cannot see 

7.   T: awani-ki cewulu AdataMlevu 

he-to hands    working-not-3p. pl. nh 

His hands are not working 

8.   T: nA-ku burra paniceyataMlexu 

I-to mind work-not-3p. sg. nm 

My mind is not working 

 

Set 3: Dative NPs when they combine with nouns that involve cognitive processes 

like acquiring of skills or learning and perceiving, denote a cognitive state. Normally, 

verbs of cognition like weVlusu ‘to know’, abbu ‘ to be acquired’,  vaccu which literally 

means ‘to come’  occur as verbs with these nouns. The animacy requirement on the part 

of the dative noun holds in this case as well.  

9.   T: nA-ku kAr drEviMg vaccu 

me-to    car    driving    know 

I know car driving 

10.  T: nAku vAlYlYu weVlusu 

me-to  they know 

I know them  

11.    T:  cinnanAti allari  awani-ki gurwuku vacciMxi  

 childhood pranks he-to remember come-pst-3p. sg. nm  

He recalled his childhood pranks 

 

In the above three sets, the dative NP functions as an experiencer.   Therefore,  it is 

possible to state  that  whenever  the  non-dative  noun indicates one of  

psychological, physiological  and cognitive  states the dative  noun always functions 

as an experiencer noun.  

 

Set 4: In this set we include all those non-dative nouns which are temporal by 

nature. The dative marker in this case expresses age or a chronological state.  

12.  T: ravi-ki iravE elYlYu 

Ravi-to twenty years  

Ravi is twenty years old 

13.  T:     I edAxi-wo mA pApa-ki paxelYlYu niMduwAyi 

this year-with our daughter-to ten years complete-fut-3p. pl. nh 

With this year, our daughter will be ten years old 

14.  T:      pUjAri-ki vayasu mIxapadiMxi 

Priest-to   age advance-pst-3p. sg. nm 

The priest became old 

However, the dative noun belonging to this set can also be an inanimate one as in 
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the following.  

15.  T: cArminAr-ki I mArc-ki   nAlugu vaMxala  yelYlYu niMduwAyi  

Charminar-to  march-to  two hundred years complete  

By this March,  Charminar will complete  four hundred years 

If the dative noun is an inanimate one as in (15),  it cannot be an experiencer noun.  

 

Set 5: The dative noun in this set co-occurs with nouns which are kinship terms 

like akka  ‘elder  sister’, anna  ‘elder  brother’,  awwa  ‘aunt’  etc.  The  dative  marker  here 

expresses kinship relation.’ 
16.  T: ravi     nA-ku     wammudu 

ravi I-to younger brother  

Ravi is my younger brother  

 

Though the first noun ravi is case marked for dative, it is possible to have 

genitive relationship between the two nouns as in the following:  

17.  T:      ravi   nA wammudu 

ravi my younger brother  

Ravi is my younger brother 

 

The dative marker -ki/-ku expresses   an adnominal relationship between the two 

nouns. In the presence of a predicate agu/avvu ‘be or happen’, the relationship 

expressed is more marked.  It  expresses  a  distant  relationship  and  not  an  immediate  

one  to  the individual’s   family (Cf.   Subbarao    and Bhaskararao  2004) . 

18.  T:      ravi nA-ku wammudu avuwAdu 

ravi I-to  younger brother become-3p. sg. m  

ravi is my younger brother (cousin ,  not a sibling)  

 

Set 6: Under this set, we include examples where the dative noun is [+animate] and 

its co-occurring noun  is  [+concrete].  Here, the  relationship  expressed  is  

possessive.  It  is possible  to  distinguish  between  alienable  and  inalienable  

possessions  based  on  the semantics of the non –dative  nouns.  

19.  T: nA-ku reVMdu kArlu unnAyi  

I-to two cars-have-3p. pl. nh 

I have two cars 

Alternatively  it is  also possible to say: 

20.  T: nA xaggira reMdu kArlunnAyi  

Me-near two cars-have-3p. pl. nh. 

I have two cars 

The possibility of substituting the dative case marker with locative indicates 

alienable possession.  Consider the following examples where such a substitution is 

not possible:  
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21.  T: vAdi-ki battawala uMxi 

He-to baldhead have-3p. sg. nm.  

He has a baldhead  

22. T:     *vAdi xaggara battawala uMxi 

he         near        bald head has-3p. sg. nm.  

He has bald head with him 

 

Substitution of one case marker for another in (22) is not possible because the 

noun possessed cannot be alienated from the possessor. Nichols (1992 as quoted in 

Subbarao   2004)  proposes  that  inalienable  possession  typically  include  kin  terms, 

part/wholes and or body parts .  

 

Set 7:   The   dative noun when it co-occurs with a noun marked for the semantic 

feature  [-Abstract] the dative marker expresses beneficiary relationship.  

23.  T:      ravi-ki uwwaraM vacciMxi  

ravi-to letter come-pst-3p. sg. nm.  

Ravi got a letter  

  24.  T: awaniki lAtarIlo paxi lakRalu vaccAyi 

He-to lottery-in ten lakhs come-pst-3p. pl. nh.  

He won ten lakh rupees in a lottery 

One common feature between this set and sets 1-3 is that the dative noun in all 

these sets is an animate noun. However the similarity ends here because the dative 

noun of this set unlike the other earlier sets is not an experiencer noun. It is rather 

the recipient or beneficiary of some concrete entity as in examples 23 and 24.  

 

Set 8: This set represents yet another combination of a dative noun and a 

non-dative noun wherein both the nouns are concrete nouns. The predicate is always 

a be-form verb uMdu in these sentences.  

25. T: A gaxi-ki reVMdu kitikIlu unnAyi  

That room-to windows has-3p. pl. nh.  

That room has two windows 

26. T: mA iMti-ki praharIgoda uMxi  

Our house-to compound-wall has-3p. sg. nm  

Our house has a compound wall 

The relationship between these two nouns is that of part and whole relation.  

 

Set 9: The dative marker -ki/-ku expresses the relationship of proportionality (a sort 

of x: y) when both the nouns are concrete nouns:  

27.  T:  rUpAyi-ki vaMxa pEsalu (uMtAyi).  

Rupee-to hundred paise be-3p. pl. nh.  

A rupee has hundred paise  
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28. T:      heVktAru-ki pAwika  baswAla   xigubadi    vaswuMxi.  

Hectare-to     twenty five bags     yield come-hab/fuT: / 3p/sg/nh. 

Each hectare gets a yield of twenty five bags 

So far, we have categorized the data on the basis of the semantic features of the 

dative nouns and the other nouns co-occurring with the dative. However since we 

have come across a number of examples wherein the semantics of the verb also plays a 

crucial role in determining the function of the dative noun, the semantics of the 

verb also is considered for the purpose of classifying the data.  

 

3. 2.  In the following sections we show the various functions performed by the 

dative marker on the basis of the semantic nature of the verb along with the 

semantic features of the nouns involved.  

Set1:  The     dative noun when it occurs  as  the  indirect  object  of  a ditransitive verb  

(eg. verbs of giving/taking)      becomes the beneficiary of the action indicated by 

the verb.  

29. T: nenu ravi-ki kAPI iccAnu  

I ravi-to coffee give-pst-1p/sg.  

I gave coffee to Ravi  

Here the dative expresses the function of sampradana the proto-typical role 

associated with the dative case  in the traditional grammars  (cf. 

Balavyakaranam). For a noun to become a beneficiary it is necessary that it is an 

animate one.  

Set 2:  Verbs  of  communication  like  ceVppu  ‘to  tell’,  weVliyajeyu   ‘to  inform’,  
vivariMcu   ‘to  explain’ require  that  the  indirect object  to be case marked for dative.  

30.  T:  nenu      amma-ki        parisWiwulu    vivariMcAnu  
I            mother -to     circumstances  explain-pst-1p/sg.  
I explained the circumstances to mother 

31.  T:      awanu nA-ku    abaxXaM   ceVppAdu  
 He          me-to   lie        tell-pst-3p. sg. m.  
He told me a lie  

 

Set3:   When the dative marked NP is a locative noun and the verb is one of motion/ 

movement, then the dative noun expresses goal or destination.  

 

32. T:  bAbu  skUl-ki         velYlYAdu  

Boy       school-to    go-pst-3p. sg. m.  

The boy went to the school 

33. T:       nenu   samayAniki     APIsu-ki    cerukunnAnu  

I           time-to           office-to      reach-pst-1p/sg.  

I reached office on time 
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However if the place name is specified, the locative noun is not marked for the dative:  

34. T: nenu repu     viSAKapatnaM / *viSAKapatnaM-ki    velYuwunnAnu  

I       tomorrow Visakhapatnam /*Visakhapatnam-to go-fut-1p/sg.  

I am going to Visakhapatnam tomorrow 

Set 4: If the dative noun is a generic noun of space (direction) it indicates direction as 

in the following:  

  35.  T:      pakka-ki wirugu 

Sideways-to turn 

turn aside 

36.  T: veVnak-ki malYlu  

Backwards-to turn.  

Turn back 

 

Set 5:   If the subject is a named entity i. e. a place name and the dative noun is either 

an animate or an inanimate noun and the verb is  'to be famous, well known, well 

noted’  etc. it indicates the meaning relation ‘this place is famous/well known/noted  

for X’.  
 

37.   T: kaMci pattu cIrala-ku prasixXi ceVMxiMxi  

Kanchi silk sarees-to famous-be-3p. sg. 

nm. Kanchi is famous for silk sarees 

38.  T: oVMgolu      giwwala-ki    prasixXi  ceVMxiMxi 

Ongole             bull-to              famous-   be-3p. 

sg. nm. Ongole is famous for bulls 

It is interesting to note that in the above examples, the non-dative noun is always 

a locative  noun.  

 

Set 6:  In this case the dative noun when it combines with event nouns like 

snAnaM ‘bath’ potI  ‘competition’ etc.  it functions as a purposive, indicating the meaning 

‘in order to’ perform the action denoted by the noun.  

39. T:      ravi snAnAni-ki veVlYlYAdu  

Ravi bath-to go-pst-3p. sg. m.  

Ravi went to bathe 

40. T: awanu  eVlakRanlalo    potIki sixXaM    avuwunnAdu  

He       elections-in   contest-to ready-be-prog-3p. 

sg.m.  He   is preparing to contest the elections 

 

Set 7:  When the dative noun is a temporal noun and the subject is either an animate 

or an inanimate noun it indicates temporal goal which brings in a change of state 

129



of the subject noun  as a result of the action indicated by the verb as in the following:  

41.  T: nenu repati-ki cerukuMtAnu 

Itomorrow-to reach-fut-1p/sg.  

I will reach by tomorrow 

42. T:      palYlYu repatiki magguwAyi  

Fruits tomorrow-to ripe-pst-3p. pl. nh.  

The fruits will ripen by tomorrow 

 

Set 8: In this set the dative noun which denotes a ‘Force of nature’   functions as a 

cause or reason:  

43. T: ceVtlu gAliki padipoyAyi  

Trees wind-to fall-pst-3p. pl. nh.  

Trees have been uprooted by the wind 

44. T:      puvvulu eVMda-ki vadilipoyAyi 

Flowers  sunlight-to wither-pst-3p. pl. nh.  

The flowers withered due to the sunlight 

 

The various steps  to be followed by a parsing mechanism are:  

1.  Take a sentence as the  input  

2.  Check for the Noun Phrase case marked for Dative in the sentence  

3.  Check whether the dative case marked noun is a +/- animate noun  

4.  Check for the Noun Phrase which is ˜Dative  
5.  Check the Ontological features of the ˜Dative nouns  
6.  Check the Ontological features of the verbs  

7.  Check the various combinations that a noun case marked for dative enters     

      into  with other nouns and verb in the sentence. 

The  above  steps  enable  us  to  determine  the  resultant  output  of  each  of  

these combinations  as  belonging  to  one  of  the  sixteen  states  mentioned  in  

Section  3 (as mentioned  in  the  various  Sets).  For example if the dative noun    

combines with a non-dative noun which is marked for the ontological feature 

[+Psych. St] the resultant state is a psychological state.  

 
 

4.    Algorithm: An algorithm for parsing the noun case marked for dative suffix  

       in Telugu is provided in the  flow-chart below:  
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5.  Conclusions:  

From the above discussion the following conclusions can be drawn:  It is possible to 

predict the various functions of the  -ki/-ku  based on  the semantic features of the 

verbs and nouns involved in the sentence. Identifying the contexts in which the 

dative nouns occur reveals that seventeen types of functions possible in Telugu.  

  

The  above  classification  along  with  a  well  specified  data  base  comprising  of  

a morphological analyzer, Parts of Speech Tagger, Chunker and a well defined 

lexicon specified for ontological features as we have used in the analysis will help in 

building a robust parser  for Telugu.  
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ABSTRACT 

In this paper we have addressed two dependency parsers for a free-word order Indian language, 
namely Bengali. One of the parsers is a grammar-driven one whereas the second parser is a data-
driven one. The grammar-driven parser is an extension of a previously developed parser whereas 
the data driven parser is the MaltParser customized for Bengali. Both the parsers are evaluated on 
two datasets: ICON NLP Tool Contest data and Dataset-II (developed by us). The evaluation 
shows that the grammar-based parser outperforms the MaltParser on ICON data based on which 
the demand frames of the Bengali verbs were developed but its performance degrades while 
dealing with completely unknown data, i.e. dataset-II. However, MaltParser performs better on 
dataset-II and the whole data. Evaluation and error analysis further reveals that the parsers show 
some complimentary capabilities, which indicates a future scope for their integration to improve 
the overall parsing efficiency. 

 
KEYWORDS: Dependency parser, MaltParser, Grammar-driven parser, ICON data, Treebank, 
Paninian Grammatical model, Demand Groups, Free-word order language, Bengali. 
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1 Introduction 

Most of the Indian languages including Bengali have relatively free-word order [Bharati et al., 
1995]. This characteristic makes the dependency parsing of Bengali a challenging task. There are 
two approaches used for dependency parsing, data driven dependency parsing and grammar 
driven dependency parsing approach [Nivre, 2006]. Data driven dependency parsing requires 
large amount of manually annotated parsed data. On the other hand grammar driven dependency 
parsing requires a set of linguistics rules. Systematic evaluation of these parsing approaches was 
not done until ICON, in 2009, conducted an NLP tool contest on development of dependency 
parsers for three Indic languages namely, Hind, Bengali, and Telugu [ICON 2009]. Training, 
development and test data was provided. Same shared task was repeated in ICON 2010. Both 
grammar driven and data driven approaches were reported.    

This paper presents our continued effort that started with participating in ICON 2009. A grammar 
driven parser [De et al., 2009] for Bengali was developed and achieved an unlabeled attachment 
score close to 90%. The linguistics rules were extracted from the ICON 2009 training data set 
and tested on ICON 2009 test set. This parser was not tested on any unknown dataset which was 
not used in extracting linguistics rules. This paper aims to fill up that gap by generating a new 
dataset consisting of tree banks for about 1500 sentences. Evaluation on this new dataset is done. 
Moreover, the previous parser was improved by adding and optimizing certain rules. Next, an off 
the shelf parser namely, MaltParser [Nivre et al., 2006a] is used to parse Bengali and a 
comparison between grammar driven and data driven approaches is brought out. 

2 The Grammar-driven Parser 

The Paninian Grammatical model, which is very effective for free-word order languages (e.g. 
Indian Languages) has been used for development of a grammar-driven parser. The approach is 
to simplify complex and compound sentential structures first, then to parse the simple structures 
so obtained by satisfying the Karaka demands of the Demand Groups (Verb Groups) and to 
rejoin such parsed structures with appropriate links and Karaka labels. The parsing algorithm is 
given below. 

Input: A sentence with all morphological and chunking information. 

Output: A dependency tree having the chunked phrases as nodes. 

Step-1: If the sentence is compound then divide the sentence to get two 

or more simple or complex sentences. Pass each of them to Step 2 

one by one.  

Otherwise pass the sentence to Step 2. 

Step-2: If the sentence is complex then divide the sentence to get two 

or more simple sentences. Pass each of them to Step 3 one by one.  

     Otherwise pass the sentence to Step 3. 

Step-3: Parse the simple sentence 

Step-4: Rejoin the parsed sentences divided in step 2 with proper links 

and labels. 

Step-5: Rejoin the parsed sentences divided in step 1 with proper link 

and label. 

Step-6: Return the parsed sentence. 
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The sentences which have coordinate conjuncts have been treated as compound sentences and 
handled in Step-1 of the algorithm. Consider the sentence below. 

S1.  (           )     (            ) 
    (Ram bhat khay) ebam (Shyam ruti khay) 
   (Ram rice eats) and (Shyam bread eats.) 

In the above sentence, two simple sentences shown within braces are joined with sentence label 
conjunct ebam (and) to form a compound sentence. Our approach is to identify these sentence 
label conjuncts and divide the sentence to make the parsing task easier. After parsing the two 
simple sentences the roots of the two sentences are linked with the conjunct with ‘ccof’ relation. 
The sentences having relative clauses are considered as complex sentences and handled in Step 2 
of the Algorithm. Consider the sentence below. 

S2.  (                       ) (            হ ) 
        (je chheleti  sekhane base  achhe)  (se   amar  bhai hay) 

(Who boy the there sitting is) (he  my brother is) 

The first part of the sentence is a relative clause which modifies se (he), je (who) and se (he) are 
grammatical markers of relative clause and main clause, respectively. With the help of the clause 
markers, a complex sentence is divided into multiple simple sentences which are then parsed in 
Step-3 and rejoined in Step-4. 

Simple sentences have been parsed with demand satisfaction approach. A Demand Frame or 
Karaka Frame of a verb is a tabular listing of the demands it makes i.e. the list of all possible 
Karakas it can take to form a meaningful sentence [Begum, 2008]. A mapping is also specified in 
the list between Karaka relations and Vibhaktis (post-positions, suffix). The mapping depends on 
the verbal semantics and the tense, aspect and modality (TAM) label. The basic frame or default 
frame of a verb is prepared for present indefinite form of the verb [Bhattacharya 1993]. Other 
TAMs may have their own transformation rules depending on which the basic frame is changed. 
The Demand Frame of a verb also specifies what Karakas are mandatory or optional for the verb 
and what Vibhaktis (post-positions) they take. Thus, for a given verb with some TAM label, the 
appropriate Karaka frame can be obtained using the basic frame and the corresponding 
transformation rules. The basic frame which is initially prepared for the present indefinite 
form of a verb may change with the change of the form of the verb i.e. TAM labels. We 
have prepared an exhaustive TAM list in Bangla and transformation rules, if exists, have 
been framed for each of them.  

For a given sentence after the word groups have been formed, the verb groups are 
identified [Biswas et al., 2010; De et al. 2011]. Then each of the source groups are 
tested against the Karaka restrictions in each Karaka frame (transformed according to 
TAM rules). When testing a source group against the Karaka restrictions of a demand 
group, vibhaki information is checked and if found satisfactory the source group 
becomes a candidate for the Karaka of the demand group. This can be shown in the 
form of a Constraint Graph (CG) [Bharati et. al. 2008 and 2009]. Nodes of the graph are 
the word groups and there is an arc from a verb group to a source group labeled by a 
Karaka, if the source group satisfies the Karaka restrictions in the Karaka chart. A 
restricted CG can be obtained by following certain rules involving gnp (gender, number, 
person) agreement, matching of lexical types, etc. The detailed of the parsing approach 
can be found in [De et al., 2009; Garain et al., 2012]  
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3 MaltParser for Bengali  

In this experiment we have customized freely available MaltParser [Nivre et al., 2006a] which 
follows a data-driven approach. During MaltParser optimization we follow same approach 
described by Nivre, (2009). MaltParser comes with a number of built in transition systems. So we 
evaluate different transition systems and found that stackswap transition system gave the highest 
accuracy for Bengali. In order to tune feature model we first added all possible features. Then we 
discarded those features for which the parsing accuracy increases. Finally, we end up with 
addition of following feature numbers:  

 Features 3 and 10, the coarse-grained part of speech of top and next.  Features 22 and 25, the part of speech of leftmost and rightmost dependencies of top.  Features 24, the form of rightmost dependencies of top.  The conjoined features (1&4, 4&11, 8&11) i.e. part of speech and form of stack top, part 
of speech of top and next, form of next and part of speech of next was also added. 

We used LIBSVM package [Chang and Lin, 2001] for classification task. 

3.1 Training Data 

To train MaltParser we need parsed Treebank in CoNLL format which is developed during this 
research. For this purpose we converted ICON SSF data into CoNLL format. Additionally, we 
have taken about 1555 sentences from a list of 9 stories and parse them automatically using the 
grammar-based Parser. Then the parsed Treebank (i.e. SSF format) was corrected thoroughly by 
a linguist. We call this dataset as DS-II. The combination of ICON and DS-II resulted in a 
Treebank consisting of about 2685 parsed sentences (29137 tokens) in SSF and CoNLL format. 
The CoNLL fields which we used for feature models are: ID, FORM, POSTAG, CPOSTAG, 
HEAD and DEPREL.   

4 Evaluation  

We evaluated the above parsers following the methods described in [Rimell et al. 2009] and 
[Nivre et al. 2010]. The first evaluation considers ICON (2009) data sets (i.e. both training and 
development data of 1130 Sentences). The grammar-driven parser uses this dataset to extract 
linguistic rules. The Malt Parser is trained with this data. Evaluation of the parsers is done using 
ICON 2009 test data (consisting of 150 Sentences). As expected, both the Malt Parser and the 
grammar driven parser achieved scores close to [Nivre, 2009; De et al., 2009], respectively.  
Table 1 shows the evaluation results of both parsers on ICON 2009 datasets. 

Table 1. Performance on ICON 2009 Data 

 MaltParser Grammar driven Parser 

LAS UAS LA LAS UAS LA 

Bengali-Coarse 67.75 82.08 63.83 84.29 90.32 85.95 
Bengali-Fine 57.67 82.64 60.13 79.81 90.32 81.27 
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Our second experiment considers the larger dataset adding DS-II (prepared by us) to ICON data. 
A list of 2600 sentences (i.e. 30359 tokens) is divided into 5 sets to facilitate a 5-fold cross 
validation. The ratio of training and test data is 4:1. Each set is used once as a test data. Malt 
Parser is retrained on this data but the grammar driven parser was not retrained. Table 2 shows 
the parsers accuracies (on coarse tag set) after the execution of the 5-fold cross validation. 
Baseline accuracy represents the performance  of  Malt Parser  with  default  properties  where  
final  accuracy  is achieved  after optimization of Malt Parser.  

Table 2 Parsing accuracy on Larger Dataset                           

 MaltParser Grammar driven Parser 

LAS UAS LA LAS UAS LA 
Baseline 52.50 71.01 56.11 

51.39 63.23 54.32 
Final(Optimized) 56.61 76.31 59.91 

If we compare the results in Table 1 and 2, the grammar driven parser performs well on ICON 
data but its performance degrades on the whole dataset. The major reason is that the linguistics 
rules were extracted from ICON data only. The demand frames of the verbs were constructed 
based on the examples found in ICON data. The degradation in performance shows that some 
verbs are missing in the verb list. Demand frames of some verbs are also incomplete. Another 
reason is the use of morphological information. ICON data is annotated with morphological 
information which was used by the grammar driven parser. But as the DS-II does not contain 
morphological information, parser itself attempts to extract this information. In some cases this 
additional processing adds errors.  

Training of MaltParser did not use the morphological information as available with ICON data. It 
makes use of POS tag, chunking information and dependency relations. On the bigger dataset its 
performance degrades but the amount of degradation is less compared to the degradation shown 
by the grammar-driven parser.    

4.1 Error Analysis 

A primary goal of this experiment is to point out the errors made by both data driven and the 
grammar driven dependency parsing model. Following [McDonald et al. 2011] we have 
performed a number of experiments to 
find out the reasons of most possible 
errors with respect to sentence length 
factor and linguistics properties of 
sentences. 

4.1.1 Length Factor 

Length factor is a well known factor. It 
is noticed that dependency parsing 
system tends to have lower accuracy 
for longer sentences. The main reason 
is that a longer sentence is a 
combination of two or more simple 
shorter sentences. Figure 1 shows the Figure 1 Parser Accuracy (LAS) and Sentence Length 
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accuracy i.e. the labelled attachment score (LAS) of both parsing model with respect to different 
sentence length, i.e. number of tokens. From the figure it is clear Malt Parser tends to perform 
better than the grammar driven Parser on shorter sentences, due to greedy inference algorithm 
which make fewer parsing decision. Otherwise system performance of both parsers is 
indistinguishable. Surprisingly accuracy of longer sentences (Sentence length >16) on both 
parsers seems to be improved. This is due to the low complexity properties of the sentences.  

4.1.2 Dependency Relation Wise Evaluation 

Table 3 presents accuracy of the parsers per dependency relation. Meaning of the dependency 
relation tags can be found in [ICON 2009]. The table lists down accuracies for 24 dependencies. 
It is observed that Malt Parser shows better recall whereas the grammar driven parser shows 
better precision. Malt Parser shows better recall for 13 out of 24 dependencies whereas the 
grammar driven parser shows better recall for only 8 dependency relations. However, if precision 
is concerned the grammar driven parser shows better performance for 17 dependency relations. 
The Malt parser shows better precision for only 5 dependency relations.   

Table 3. Dependency Relation-wise Performance Evaluation 

Deprel Gold 
MaltParser Grammar-driven Parser 

correct system recall Precision correct system recall precision 

ROOT 991 900 1000 90.82 90.00 826 1988 83.35 41.55 

Ccof 606 495 654 81.68 75.69 445 607 73.43 73.31 

k*u 8 2 4 25.00 50.00 0 0 0.00 NaN 

k1 848 559 1106 65.92 50.54 497 835 58.61 59.52 

k1s 125 50 92 40.00 54.35 65 188 52.00 34.57 

k2 808 476 1051 58.91 45.29 279 615 34.53 45.37 

k2s 30 2 25 6.67 8.00 4 4 13.33 100.00 

k3 15 0 6 0.00 0.00 4 7 26.67 57.14 

k5 33 11 11 33.33 100.00 11 11 33.33 100.00 

k7 102 11 23 10.78 47.83 7 10 6.86 70.00 

k7p 204 53 182 25.98 29.12 32 61 15.69 52.46 

k7t 215 99 166 46.05 59.64 60 82 27.91 73.17 

Nmod 87 6 17 6.90 35.29 6 6 6.90 100.00 

nmod__relc 34 0 1 0.00 0.00 8 8 23.53 100.00 

nmod_relc 1 1 7 100.00 14.29 0 10 0.00 0.00 

Pof 203 97 197 47.78 49.24 73 89 35.96 82.02 

r6 496 268 366 54.03 73.22 402 523 81.05 76.86 

Rad 72 17 29 23.61 58.62 3 3 4.17 100.00 

ras-k2 12 0 0 0.00 NaN 2 2 16.67 100.00 

Rd 2 0 4 0.00 0.00 0 4 0.00 0.00 

Rh 20 0 3 0.00 0.00 4 4 20.00 100.00 

Rs 10 0 0 0.00 NaN 2 2 20.00 100.00 

Rt 16 2 7 12.50 28.57 1 1 6.25 100.00 

Vmod 552 385 603 69.75 63.85 278 362 50.36 76.80 
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4.1.3 Sentence wise comparison 

We have tried to mark the sentences where the parsers show complementary results. Several 
cases of this type have been identified. The following is an example where the Malt parser 
produces the correct parse but the grammar-driven parser fails. 

S3.                            হ            । 
 Ganapatibabu  then   on forehead  hand  touched. 

Result from Malt Parser: 

1           _ NP NNP _ 5 k1 _ _ 
2       _ NP2 NN _ 5 k7t _ _ 
3        _ NP3 NN _ 5 k7p _ _ 
4 হ    _ NP4 NN _ 5 k2 _ _ 

5          _ VGF VM _ 0 ROOT _ _ 

6 ।  _ VGF SYM _ 0 ROOT _ _ 

 Result from the Grammar driven Parser: 

1           _ NP NNP _ 5 k1 
2       _ NP2 NN _ 5 k7t 
3        _ NP3 NN _ 0 ROOT 
4 হ    _ NP4 NN _ 0 ROOT 
5          _ VGF VM _ 0 ROOT 

6 ।  _ VGF SYM _ 0 ROOT 

The grammar driven parser fails to identify the root properly. 

Examples are there where the grammar driven parser produces correct result but the Malt parser 
fails. Here is one example that has a compound verb. 

S4.                                  হ                   । 
 (he)(then)(dressing)(gown)(wearing)(his)(residence)(at lawn)(walking was). 

Result (in correct) from Malt Parser: 
1    _ NP PRP _ 10 k1 

2     _ NP2 PRP _ 10 k7t 

3       _ NP3 XC _ 5 k2 

4      _ NP3 NN _ 5 k2 

5     _ VGNF VM _ 10 vmod 

6     _ NP4 PRP _ 7 r6 

7       হ  _ NP5 NN _ 8 r6 

8     _ NP6 NN _ 10 k1 

9         _ NP7 NN _ 10 pof 

10      _ VGF VM _ 0 ROOT 

11 । _ VGF SYM _ 0 ROOT 

Result (correct) from the Grammar-driven Parser: 
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1    _ NP PRP _ 10 k1 

2     _ NP2 PRP _ 5 k7t 

3       _ NP3 XC _ 5 k2 

4      _ NP3 NN _ 5 k2 

5     _ VGNF VM _ 10 vmod 

6     _ NP4 PRP _ 7 r6 

7       হ  _ NP5 NN _ 8 r6 
8     _ NP6 NN _ 0 k7p 

9         _ NP7 NN _ 10 pof 

10      _ VGF VM _ 0 ROOT 

11 । _ VGF SYM _ 0 ROOT 
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Conclusions 

This paper presents an evaluation of two parsers for Bengali. One parser is grammar driven and 
the second one is data driven. Evaluation shows that the grammar driven parser can be improved 
further if the demand frames for Bengali verbs can be made complete. Malt parser did not use 
any morphological information and use of this information as features could improve parsing 
efficiency. The parsers show some complimentary performance in terms of recall and precision 
and also in parsing different sentences. Integration of these two parsers can be done in future in 
order to improve the overall parsing efficiency. The present research has extended ICON data by 
adding about 1500 annotated sentences and this can be considered as a good NLP resource for 
future use. The evaluation results reported here will also serve as a useful finding for conducting 
future research in this area.           
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Abstract
We describe the parsing system used at the Charles University (CUNI) for the Hindi Parsing
Shared Task 2012. We used the publicly available Malt Parser, which is highly config-
urable. A substantial part of the paper describes the configuration that we selected. The
parser performs reasonably well in identifying the head nodes. The main weakness is in
labeling the dependency relations. We identify the most prominent error types, which
should help to improve the parsing accuracy in future.

Title and Abstract in Czech

CUNI: Výběr rysů a analýza chyb parseru založeného na
přechodech
Popisujeme systém pro syntaktickou analýzu použitý na Univerzitě Karlově (CUNI)
pro Hindi Parsing Shared Task 2012. Použili jsme veřejně dostupný nástroj Malt Parser,
který poskytuje mnoho možností konfigurace. Podstatná část článku se zabývá právě
konfigurací, kterou jsme zvolili. Parser dosahuje dobré úspěšnosti při identifikaci
rodičovských uzlů. Jeho hlavní slabinou je značkování závislostních vztahů. Popisujeme
nejběžnější druhy chyb, což by mělo pomoci v budoucnosti zvýšit úspěšnost parseru.
Keywords: parsing, dependency, SOV language, malt parser.
Czech Keywords: syntaktická analýza, závislost, jazyk SOV, malt parser.
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1 Introduction
Dependency parsing has gradually become standard way of parsing for many languages
during the past decade. There have been three multilingual shared tasks in dependency
parsing at CoNLL (2006, 2007 and 2009) and two focused on Indian languages, orga-
nized at ICON (2009 and 2010). This work on parsing Hindi loosely follows from our
contribution to ICON (Zeman, 2009).
2 Data
The data provided are split to three parts: training, development and test. During the
preparatory stage, we trained the parser on the training dataset and tested it on the de-
velopment dataset. Then the blind test data were released. We retrained the parser on
both the training and the development datasets, and applied it to the test data. Note that
at this stage, we did not have access to the gold-standard syntactic annotation of the test
data and we could not measure the accuracy on the test set. Later on, after the official
results were announced, the full test set was released.
From now on, we will refer to the original training data as dtrain, to the development data
as dtest, to the combination of dtrain+dtest as etrain and to the final test data as etest.

Tokens Sentences
dtrain 268096 12041
dtest 26416 1233
etrain 294512 13274
etest 39775 1828

Table 1: Size of the various datasets.
The data were provided in two file formats and two encodings of the Devanāgarī script.
We work exclusively with the CoNLL data format (Buchholz and Marsi, 2006) and the
UTF-8 encoding.
Two versions of morphological annotation were provided, corresponding to two tracks of
the shared task: Gold and Auto. As suggested by its name, the Gold version contains more
information and more accurate information. In the Auto version, values of some token
attributes were assigned using automated tools, and values of the (many!) remaining
attributes were empty because no automatic tool was available to assign them.
An example of one token from the Gold training data follows (including transliteration):
Index Token Lemma CPOS POS Features Head index Dep label
32 िकया कर VM v lex-कर|cat-… 0 main
32 kiyā kara VM v lex-kara|cat-… 0 main
Wherein the features consist of a long, vertical-bar-delimited list (here displayed as a
table):
lex cat gen num pers case vib tam chunkId chunkType stype voicetype
कर v m sg any या yA VGF head declarative’> active
voicetype
active
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The corresponding line of the same token in the Auto data is much simpler:
Index Token Lemma CPOS POS Features Head index Dep label
32 िकया _ VM _ _ 0 main
32 kiyā _ VM _ _ 0 main
Slightly more than 1% of the tokens in Hindi are attached non-projectively. As a distinct
feature of the Hyderabad treebank, there are special NULL nodes covering words deleted
from surface, e.g. in deficient coordinations, as in:
दीवाली के िदन जुआ खेले ं मगर NULL घर मे ं या होटल मे.ं
dīvālī ke din juā khelẽ magar NULL ghar mẽ yā hoṭal mẽ.
Diwali of day gambling play but [do-so] house in or hotel in
“They do gamble on Diwali but they do so in house or in hotel.”
The NULL nodes are present also in test input and it is not the task of the parser to
introduce them. Approximately 0.4% of all nodes are NULL nodes.
3 Parser
We use Malt Parser v. 1.7.11 (Nivre et al., 2007). It is a deterministic shift-reduce parser
where input words can be either put to the stack or taken from the stack and combined
to form a dependency. The decision which operation (transition) to perform is made by
an oracle based on various features of the words in the input buffer and the stack. The
default machine learning algorithm used to train the oracle is a sort of SVM (support
vector machine) classifier (Cristianini and Shawe-Taylor, 2000).
Malt Parser has participated in several CoNLL shared tasks in multilingual dependency
parsing (2006, 2007 and 2009), as well as in the ICON 2009 NLP tools contest in parsing
Indian languages. It achieves state-of-the-art accuracy (or close to it) for many languages,
provided its settings, algorithm and feature space are optimized for the given language
and dataset. Malt Parser is reasonably fast and it is open-source, freely available for
download.
Malt Parser provides several parsing algorithms. They differ in the data structures they
use, in the sets of transition operations they allow, and in the precedence of transition
types when converting a training tree to a sequence of transitions. The algorithms are as
follows: nivrestandard, nivreeager, covproj, covnonproj, stackproj, stackeager, stacklazy, pla-
nar, 2planar. We need one of the non-projective algorithms because there are occasional
non-projective dependencies in the data. Based on dtest scores, we selected the stacklazy
algorithm.
Malt Parser is also highly configurable with respect to the features considered when se-
lecting the next transition. Table 2 gives an overview of features that we used.
Training times depend on the number of features, thus it is much faster to train on the Auto
data than on the Gold data. Training Malt parser on the full etrain dataset takes about 2
hours in the Auto version and about 6 hours in the Gold version (tested on 2GHz 64bit Intel
Xeon processors with 29GB RAM dedicated to the Java Virtual Machine). Parsing etest
took between 30 (Auto) and 45 (Gold) minutes. For the sake of quick probing experiments
1http://www.maltparser.org/
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FORM LEMMA POS FEATS DEPREL
Stack: top 1 2 3 4
Stack: top − 1 5 6 7
Stack: top − 2 8 9
Stack: top − 3 10
Input: next 11
Lookahead: next 12 13 14 15
Lookahead: next + 1 16 17 18 19
Lookahead: next + 2 20 21 22
Lookahead: next + 3 23
Lookahead: next + 4 24
Tree: leftmost dep of top 25 26
Tree: leftmost dep of top − 1 27
Tree: leftmost dep of top − 2 28
Tree: rightmost dep of top 29
Tree: rightmost dep of top − 1 30
Tree: rightmost dep of top − 2 31
String: predecessor of top 32 33

Table 2: Feature pool for optimization with columns representing data fields and rows
representing tokens relative to the stack, input buffer / lookahead, partially built tree,
and input string. Features are numbered.
we also used the subset of the first 1000 training sentences. With such limited training
corpus, accuracy dropped about 12 percent points down and processing times dropped to
just a few minutes.
4 Results

Morphology UAS LA LAS
Auto 89.96 84.09 81.48
Gold 95.19 91.27 89.48

Table 3: The official results as measured by the organizers of the shared task. UAS =
unlabeled attachment score; LA = labeling accuracy; LAS = labeled attachment score.
5 Error Analysis
In our assessment of typical error patterns we will focus on the Gold track. The (unlabeled)
attachment score is very high, which implies that it is difficult to pull out frequent errors.
Nevertheless, there is some evidence that coordinations, commonly perceived as hard to
parse, still correlate with errors in our data.
If we break up tokens by their coarse part of speech, then the most successful classes
(in terms of finding their correct parent) will be PSP (postposition), VAUX (auxiliary
verb) and DEM (demonstrative), all scoring (almost) 100%. At the other end of the scale,
coordinating conjunctions (CC) only achieve 83%. The conjunction serves as the head
node of the coordination. The parser probably feels uncertain about the type of the subtree
of the conjunction, which makes it difficult to find the correct parent for the conjunction.
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Besides conjunctions, the second most difficult part of speech is RB (adverb of manner;
89%). If we look at word forms, again, conjunctions are most risky: और, िक, व.
Not surprisingly, attachments to the artificial root node are more difficult (96%) to recog-
nize that dependencies inside the tree. For tree-internal arcs, length 1 has 99% accuracy
and longer links decrease down to 92%.
While the parser rarely confuses parent selection, its weakness lies in labeling of the
dependencies. The nature of the label set used in the Hyderabad treebank excludes certain
combinations of dependencies under one parent; in particular, there should not be two
siblings both labeled k1. However, the parser has only limited means of learning such
constraints. We cannot define a feature that would tell whether we already labeled k1
anything anywhere in the current tree. Labels with the lowest precision and recall are k1
(87%), k2 (76%), k7 (80%), k7t (88%), pof (82%), r6 (92%) and ccof (93%; again, this is
coordination). Most of these are typical verb complements.
The most frequent label confusion occurred between r6-k2 (karma of a conjunct verb)
and r6 (possessive), presumably because both occur with the postposition का. Another
relatively frequent confusion is between k7p (location-place) and k7 (location other than
place).
6 Conclusion
We described our configuration of the Malt Parser used to parse Hindi part of the Hy-
derabad Dependency Treebank ver. 0.51. Feature engineering is the key to success in
discriminative parsing. One of the main advantages of Malt Parser is that many differ-
ent features can be used to describe tokens in the various data structures of the parser.
Later in the paper, we evaluated the output of the parser and identified the most frequent
error types. Future work should focus on two separate problems: 1. How to improve
attachment of coordinations, and 2. How to improve labeling accuracy. For example,
coordinations might improve by introducing features that would better port the phrase
type to the higher levels. As for dependency labels, a self-standing tagger applied during
post-processing could be tested.
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ABSTRACT

We describe  our  participation  in  the   MTPIL Hindi  Parsing Shared  Task-2012.  Our  system 
achieved the following results: 82.44% LAS/90.91% UAS (auto) and 85.31% LAS/92.88% UAS 
(gold). Our parser is based on the linear classification, which is suboptimal as far as the accuracy 
is concerned. The strong point of our approach is its speed. For parsing development the system 
requires 0.935 seconds, which corresponds to a parsing speed of 1318 sentences per second. The 
Hindi Treebank contains much less different part of speech tags than many other treebanks and 
therefore it was absolutely necessary to use the additional morphosyntactic features available in 
the treebank. We were able to build classifiers predicting those, using only the standard word 
form and part of speech features, with a high accuracy.

KEYWORDS : Dependency Parsing, Hindi Dependency Treebank, Linear Classification 

1 Introduction

In this paper we describe our participation in the MTPIL Hindi Parsing Shared Task-2012. We 
have  participated  in  both  auto and  gold tracks  and  achieved  the  following  results:  82.44% 
LAS/90.91% UAS (auto)  and 85.31% LAS/92.88% UAS (gold).  In the  gold track,  the input 
contains tokens with gold standard morphological analysis, part-of-speech tags, chunks and some 
additional features. In the auto track, the input contains tokens only with the part-of-speech tags 
from an automatic tagger. For both track the requirement was that the same approach/system is  
used. 

The Hindi dependency treebank, which was provided to the participants, was of an average size: 
the training data contained 12041 sentences (268,093 words) and the development data had 1233 
sentences (26416 words). However,  the training data contained 91 different dependency edge 
labels, which is much more than many other treebanks, e.g. English has 56 or German has 46. At 
the same time Hindi has 34 different parts of speech, whereas as other treebanks usually have 
more:  e.g.  English – 48 and German – 56. Therefore,  the additional features (morphological,  
chunk and sentence-level features) available in the treebank are of a very significant importance, 
since  the dependency edges  are  harder  to  predict,  because  there  are  so  many types  and  the 
information available, i.e. parts of speech, are not so diverse and thus less discriminative.

In this paper we will describe the system MDParser used for the participation. We will therefore 
provide details on the parsing and learning approaches used in the system, as well as discuss the  
features, especially the additional ones, that we have integrated into our models. We think it is  
also important to point out that we have no knowledge of Hindi, we were not able to read the 
script or analyse the quality of our output. Therefore that was more or less a blind unmodified 
application of our parser, which was primarily designed for English and German, to Hindi.
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2 Parsing Approach

Almost all dependency parsers can be roughly split into two groups: graph-based and transition-
based.  The graph-based parsers assign scores to all possible dependency edges and then search 
for  the  highest-scoring  dependency  graph.  Transition-based  systems  start  at  some  initial 
configuration and perform a sequence of transitions to some final configuration, such that the 
desired dependency graph is derived in the process. For languages like English and German both 
approaches seem to be quite similar as far as accuracies are concerned, however, the speed of 
transition-based systems is higher (Volokh and Neumann, 2012). Therefore we have developed a 
transition-based parser.

There are a lot of different transition-based algorithms, which are able to perform the task, and 
they  differ  in  many  properties.  Some  of  the  most  important  properties  are  the  efficiency, 
complexity,   projectivity,  determinism and incrementality.  We use an algorithm based on the 
Covington's parsing strategy  (Covington, 2000), which to our mind has particularly appealing 
properties.  It  is deterministic,  i.e. its decisions during the processing are always final and are 
never revised. It is incremental, i.e. there is no need for the whole input to be read in prior to the  
computation and only a small look-ahead is necessary for computations, on the contrary to some 
other  approaches,  which  consider  the  whole  sentence,  when  computing  the  solution.  The 
projectivity can  be allowed or  disallowed by changing  a  single  parameter  and  no additional  
solutions are necessary, as it is the case with some other  algorithms, which are able to process  
projective structures only (e.g. pseudo-projective parsing (Nivre et al., 2005). In case of the Hindi 
treebank, which contained a significant amount of non-projective edges, we have allowed non-
projectivity.  The complexity of Covington's parsing strategy is O(n2), which is worse than of 
some other algorithms in the field, which have linear complexity, e.g. Nivre's arc-standard and 
arc-eager algorithms (Nivre, 2006). However, the efficiency of the Covington's algorithm is still 
higher, because  the worst-case complexity occurs rarely and Covington's parsing strategy allows 
an extremely efficient feature extraction (Volokh and Neumann, 2012).

Since transition-based systems deliver their result after a series of transitions, it is important to  
know what the inventory of possible transition types is. According to this approach in every  
transition the system has to decide whether for a pair of words under consideration there is a 
dependency relation or not. This usually corresponds to two possible transitions in case there is a  
dependency relation, namely one when the left  word is the head of the right word (we will this 
transition right-arc) and another one when the right word is the head of the left word (we will call 
this transition left-arc). In case there is no dependency relation there are usually also two possible 
transitions: one changes  the left  word to some next word and the other one changes the  right 
word to the next word. Thus, overall there are four basic transition types.

However, since every dependency relation has to be subsequently labelled with a dependency 
type, there are a lot of additional transition types, which are responsible for the labelling process.  
There are two fundamental ways how the labelling is done in transition-based systems. The first 
one  is  to  treat  the  tasks  of  finding  dependency  edges  and  labelling  them as  separate  tasks. 
Therefore several models are trained in this case. The second one is to combine the tasks and use 
one model for both predicting the basic transitions and labelling the edges. Usually, many labels 
can be assigned only for left-arc or right-arc transitions, but not for both (e.g. suffixes are always  
to the right of their head or the conjunction is always to the right of the first conjunct, whereas  
the title is always to the left etc.). When labelling edges is an independent process, this kind of  
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information  is  lost,  unless  there  are  two models,  one  for  labelling  edges  of  each  direction. 
However, this means that there are overall three models and three classifiers, which makes the 
system much slower than when the second option is used and everything is done in one step. We 
have used the latter option in our system. This resulted in overall 99 possible transitions for our 
parsing algorithm.

3 Learning Approach

During the training phase a transition-based system uses the available gold standard in order to  
construct  the  correct  dependency  tree  and  at  the  same  time  it  learns  in  which  state  which 
transition is taken. In the application phase, when the gold standard is not available, the system 
uses this learned model in order to guide the algorithm during the computation of the result.

There  are  countless  classification  approaches,  which  can  be  applied  to  this  task.  The  most 
important properties of classifiers used for dependency parsing are: a) whether they are binary or 
support real multi-class classification,  i.e. do not simply apply a series of binary classifiers for 
solving a multi-class task and b) whether they are linear or non-linear.

Most classification approaches support only binary classification and multi-class classification is 
solved by constructing a complex classifier with one-vs-all or one-vs-one strategies. As already 
mentioned, dependency parsing not only is a multi-class classification task, but also has a very 
big number of classes, e.g. 99 in case of this shared task. Constructing a multi-class classifier out  
of binary classifiers is tedious and the application is slow. Therefore, it is better to use a real  
multi-class classification approach.

A linear classifier identifies the class by a linear combination of all features in a feature vector,  
which does not require a lot of computation. One can visualise its operation as dividing one class 
from another by drawing a line between them. Of course this assumes that  such line can be 
drawn, i.e. that the data is linearly separable. Usually this is not the case. A non-linear classifier 
often makes use of the method called kernel  trick  (Aizerman et  al.,  1964). According to this 
method a linear classifier solves a non-linear problem by mapping the original observations into a 
higher-dimensional  space,  where  the  linear  classifier  is  subsequently  used.  The  mapping  is 
achieved by applying a kernel function to the feature space. Wherever a dot product is used, it is 
replaced  with  the  kernel  function.  This  is  much  more  expensive,  but  guarantees  better  
separability. 

Considering these properties we have chosen a classification approach, which satisfies our needs 
most. The learning strategy MCSVM_SC (linear multi-class support vector machines (Keerthi et 
al., 2008) from the package LibLinear  (Lin et al., 2008) is to our mind particularly suitable for 
dependency parsing. It is particularly fast because it is a linear classifier, which supports real  
multi-class classification. 

4 Features 

Feature models are a major factor for both accuracy and efficiency of a parser. The more features  
are present in the training data the better the chance that the learner will find good discriminative 
features necessary for accurate predictions. However, the bigger the number of features the more 
intensive is the training and the slower the processing. The ideal scenario is thus that the training 
data should contain only a relatively small amount of very good features. 
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For many treebanks, e.g. English or German, word form and POS features are usually sufficient 
in order to achieve high accuracies. Hindi is different in this respect. The amount of different  
POS tags is much smaller and therefore a good system also has to make use of morphological 
and other features in order to compensate for that. The different auto and gold tracks visualise the 
gap  very  well:  the  performance  of  systems  which  have  the  additional  features  available  is 
significantly higher.

Therefore  it  was  obvious  that  we  want  to  use  these  features.  In  the  gold  track  it  was 
straightforward,  since  the  corresponding  features  are  available.  For  the  auto  track  we  have 
constructed classifiers, which are able to predict the following features: pers, cat, num, case, gen, 
tam, vib, stype and voicetype. The classifiers used the word form and POS information about the 
token, for which the features were predicted, as well as the same information for three words 
before and after this token. The features usually could be predicted with an accuracy of 97-98% 
for all of the above-mentioned functions.

As far as the model for parser is concerned here is the complete list of features we have used 
(except  for  the  already  mentioned  pers,  cat,  num,  case,  gen,  tam,vib,  stype  and  voicetype  
features):

1. wfj → returns the word form of the token j; 2. pj → returns the part of speech of the token j; 3. 
wfjp1  → returns the word form of the token j+1; 4. pjp1  → returns the part of speech of the 
token j+1; 5. wfjp2  → returns the word form of the token j+2; 6. pjp2  → returns the part of 
speech of the token j+2; 7. wfjp3 → returns the word form of the token j+3; 8. pjp3 → returns 
the part of speech of the token j+3; 9. wfi  → returns the word form of the token  i; 10. pi  → 
returns the part of speech of the token i; 11. pip1 → returns the part of speech of the token i+1; 
12. wfhi → returns the word form of the head of the token i; 13. phi → returns the part of speech 
of the head of the token i; 14. depi →   returns the dependency label of the head of the token i; 
15. depldi →  returns the dependency label of the left-most dependent of the token i; 16. deprdi 
→ returns the dependency label of the right-most dependent of the token i; 17. depldj →  eturns 
the dependency label of the left-most dependent of the token j; 18. dist  → returns the distance 
between the tokens j and i. For i=0 the feature returns 0, for the distance 1  the feature returns 1,  
for distances 2 or 3 the feature returns 2, for distances 4 or 5 the value 3 is returned, for distances  
6, 7, 8 or 9 the value 4 and for all other distances the value 5 is returned; 19. merge2(pi,pip1) → 
returns the concatenation of pi and pip1 features. 20. merge2(wfi,pi) → returns the concatenation 
of wfi and pi features; 21. merge3(pjp1,pjp2,pjp3) → returns the concatenation of pjp1, pjp2 and 
pjp3 features; 22. merge2(depldj,pj)  → returns the concatenation of depldj and pj features; 23. 
merge3(pi,deprdi,depldi)  → returns  the  concatenation  of  pi,  deprdi  and  depldi  features;  24. 
merge2(depi,wfhi)  →  returns  the  concatenation  of  depi  and  wfhi  features;  25. 
merge3(phi,pjp1,pip1)  →  returns  the  concatenation  of  phi,  pjp1  and  pip1  features;  26. 
merge3(wfj,wfi,pjp3)  →  returns  the  concatenation  of  wfj,  wfi  and  pjp3  features,  27. 
merge3(dist,pj,wfjp1) →  returns the concatenation of dist, pj and pjp1 features.

Indexes j and i refer  to the right and left  words,  respectively,  examined in each state of the  
Covington's algorithm. 

5 Performance

As we have  already mentioned our system has achieved  the  following results  in  the  tracks: 
82.44% LAS/90.91% UAS (auto) and 85.31% LAS/92.88% UAS (gold).
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These results are quite worse than  what  the top systems were able to achieve  (up to 93.99% 
UAS/87.84% LAS gold; 90.83% LAS/96.37% UAS auto). However, one should keep in mind 
that our parser is based on the linear classification, which is suboptimal as far as the accuracy is 
concerned. The strong point of our approach is its speed. For parsing development the system 
requires 0.935 seconds, which corresponds to a parsing speed of 1318 sentences per second. We 
have a used a machine with a dual-core 2.4 GHz processor for computing. The system supports 
multithreading and therefore both cores could be used. The speed with one thread only is 1.648  
seconds.

Furthermore, probably the lack of knowledge of the language also negatively affected the result, 
because we did not understand the meaning of many morphosyntactic features and labels, and 
thus  a  better  performance  probably  could  have  been  achieved  with  our  approach  if  applied 
properly.

6 Conclusion

We have applied our very fast parser MDParser to the Hindi Treebank. We were able to achieve 
a competitive result and a very good parsing speed. The MTPIL Hindi Parsing Shared Task-2012 
was a great opportunity for us test our system in a completely new scenario and demonstrate that 
it is truly multilingual, since we have had absolutely no knowledge of Hindi. Furthermore, it was 
the first time when we had to run the system in the non-projective mode, because the languages  
with which we worked before, did not contain enough non-projective edges and it has never been 
worth it to increase the search space in order to capture them so far. It was also the first time we  
have  worked  with  a  language  where,  beyond  the  usual  word  form  and  POS  features,  the 
morphosyntactic information was necessary in order to achieve good results. We were able to  
automatically predict those additional features using the standard word form and POS features 
with a very good accuracy.
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ABSTRACT 

The present paper describes a three stage technique to parse Hindi sentences. In the first 
stage we create a model with the features of head words of each chunk and their 
dependency relations. Here, the dependency relations are inter-chunk dependency 
relations. We have experimentally fixed a feature set for learning this model. In the 
second stage, we extract the intra-chunk dependency relations using a set of rules. The 
first stage is combined with the second stage to build a two-stage word level Hindi 
dependency parser. In the third stage, we formulate some rules based on features and 
used them to post-process the output given by the two-stage parser. 

1 Introduction 

Parsing a sentence can be considered as finding the dependency relations of some pair of 
words in a sentence. The words must be related in such a way that they form a leveled 
tree structure where nodes are words, edges are assigned between the pairs of words 
which are related and levels are name of relations. Leveled tree structures for a set of 
sentences are referred to as dependency Treebank. 

In Hindi dependency tree, the groups of words which are related by intra-chunk 
dependency relations occur as adjacent nodes. Each such group is referred to as chunk. 
The Hindi Treebank released in MTPIL – 2012 shared task contains the chunk 
information (boundary, tag, head) and dependency relations between the constituents of 
the chunk (intra-chunk dependency relations) and between chunks (inter-chunk 
dependency relations). 

Instead of considering each word as a node, we reduce Hindi dependency tree structure 
by considering each chunk as a node in a statistical parser. However, this tree structure 
does not contain the intra-chunk relations. Intra-chunk relations are identified using a 
rule based approach. 

We have compared this chunk level statistical parsing followed by the rule based intra-
chunk relation identification stage (two-stage technique) with the word level statistical 
parsing where each word is considered as a node. Finally, we have formulated some 
rules based on the list of Hindi specific constraints and used them to improve the 
relations assigned by the two-stage technique. Each stages of this three-stage parsing are 
evaluated using the official CoNLL-07 shared task evaluation script eval07.pl. 

2 Related Work 

Some work has been done on using Paninian framework for parsing Hindi sentences. 
Bharati et al. (2002) have developed a Hindi parser by translating Hindi grammatical 
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constraints to integer programming constraints. Bharati et al (2009) described a two-
stage constraint based hybrid approach to dependency parsing. In the first stage they 
have handled the intra-clausal dependencies and in the second stage they have handled 
the inter-clausal dependencies. They have also shown the affect of hard constraints (H-
constraints) and soft constraints (S-constraints) to build an efficient and robust hybrid 
Hindi parser. Their two-stage parser outperforms the data driven parsers. 

Some work has been done on the rule based postprocessing on the baseline data driven 
dependency parser. Ambati et al (2010) described transition-based approach to Hindi 
dependency parsing and analyzed the output of data driven Hindi parsers to observe the 
role of different morphosyntactic features in Hindi dependency parsing. They have 
shown 10 experiments for selecting the best feature for Hindi chunk level data driven 
dependency parsing using MaltParser. Gadde et al (2010) described a data driven 
dependency parsing which uses clausal information of a sentence for improving parser 
performance.  

Husain et al (2009) proposed a modular cascaded approach to data driven dependency 
parsing. Each module or layer leading to the complete parse produces a linguistically 
valid partial parse. They did this by introducing an artificial root node in the dependency 
structure of a sentence and by catering to distinct dependency label sets that reflect the 
function of the set internal labels at different layers. Output (partial parse) from each 
layer is accessed independently. 

3 Our Work 

Word level dependency Treebank contains a large number of relations and words 
(tokens). This big tagset can be divided into two parts namely inter-chunk tags and 
intra-chunk tags. We hypothesize that the statistical parser trained and tested on lesser 
tagset performs better than the parser trained and tested on larger tagset. We wish to 
establish this hypothesis with the help of word level and chunk level parsing 
experiments in the same experimental setups and system configurations. 

Finding the chunks of a sentence is a non-trivial task. Rather when chunks are given, the 
intra-chunk relations between the head and children nodes can be identified using a 
small set of rules. Therefore, we wish to identify the inter-chunk relations statistically 
and intra-chunk relations using rules. 

3.1 Flow chart 

The flow chart of the proposed three stage system is shown in Figure 1. Inputs to these 
three stages of this system are Feature set, Rule-set1, and Rule-set2, respectively. These three 
stages are executed serially in the system. 

3.2 First Stage 

In the first stage chunks are extracted from the training, development and test data to 
build the chunk level training, development and test data. This data contains head of the 
chunk, its features and dependency relation between chunk heads. The names of the 
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children of the chunk and their features are stored in a database named ChildDB. 

 

 

 

 

 Stage 1 

 

Stage 2 

 

 

  Stage 3 

 

 

Figure1: Flow chart of the proposed system 

A model is learned using the chunk level training data and the feature set calculated 
experimentally. Each chunk in this chunk level Treebank contains following attributes. 

1. HWORD: Head word of chunk. 
2. HROOT: Root of head word of chunk. 
3. HPOS: Part-of-speech tag of head word. 
4. CHUNK: Name of Chunk. 
5. HMORPH: Morphological features of head word: gender, number, person, case, 

suffix, type, and voice. 
6. DEPREL: Dependency relation of that chunk with another chunk. 

We have applied the Covington’s algorithm using the MaltParser of Nivre (2006, 2007, 
2009) for building the model and testing. In this algorithm, partially processed chunks 
are stored in stacks and unprocessed chunks are stored in buffer. The chunks in the 
buffer are annotated based on the features of processed and unprocessed tokens. We 
have experimentally selected following set of features for training the model. 

1. A set of HWORD features over stack and buffer of length 2. 
2. A set of HROOT features over stack and buffer of length 2. 
3. A set of HPOS features over stack and buffer of length 4. 
4. A set of CHUNK features over stack and buffer of length 1. 
5. A set of HMORPH features over stack and buffer of length 2. 
6. A set of HWORD features over dependents and head of length 1. 
7. A set of HPOS features over dependents and head of length 1. 
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8. A set of CHUNK features over dependents and head of length 1. 
9. A set of DEPREL features over dependents of length 1. 
10. A set of combinations of the HWORD and HPOS features of length 1. 

The data driven chunk level parser built using these features achieves accuracy of 
81.44% (Label Attachment Score). 

3.3 Second Stage 

The second stage takes as input the tree structures with the relations between chunk 
heads as given by the first stage parser and the features of the chunks as stored in the 
ChunkDB. The children and the head words are combined and their intra-chunk 
relations are identified using Rule-set1. There are two types of rules in Rule-set1 namely 
rules for identifying the relations between heads and children (head-child relation) and 
rules for identifying the relations between two children (child-child relation). The rules 
are in the following format. 

1. Head-child Rule: FH FC Rel 
2. Child-child Rule: FC1 FC2 Rel 

According to first type of rule, if feature of head is FH and feature of child is FC then 
child is related to head with Rel relation. Similarly, according to second type of rule, if 
feature of first child is FC1 and feature of second child is FC2 then first child is related to 
second child with Rel relation. We have identified 84 head-child rules and 61 child-child 
rules. The data driven chunk level parser followed by the rule based intra-chunk relation 
identification stage is referred to as two-stage parser. This parser achieves accuracy of 
89.36% (Label Attachment Score). 

3.4 Third Stage 

In the third stage, we analyze the mistakes in dependency relations assigned by the two-
stage parser. The development data is used for this analysis. Based on this analysis a set 
of Hindi specific constraints are identified for some verb roots. These constraints are 
used to correct the mistakes made by the above two-stages. The constraints are stored 
using demand frames. The demand frames we use in our task contain 4 fields namely 
relation name, necessity of the relation, features of the dependent node of that relation 
and features of the head node of that relation. 

A root of a head node can have a single demand frame with each row representing a 
dependency relation from a child. We build 12 demand frames for this rule based post-
processing task. A relation in the demand frame for Hindi verb घुसना is shown using 
Table 1. According to this demand frame, the noun chunk having postposition म is 
related to verb chunk घुस आया था with k7 dependency relation. 

Dependen-
cy relation 

Nece-
ssity 

Feature of 
Dependents Feature of Head 

k7 D cat-n|vib-0_म cat-v|vib-0_आ+या_था 
Table - 1: A relation in the demand frame for the Hindi verb घुसना. 
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K7: Adhikaran, D: Desirable, cat: lexical category, vib: vibhakti/suffix. 
 
Applying these constraints on the two-stage Hindi parser we build a three stage parser 
for Hindi and achieve accuracy of 89.45% (Label Attachment Score). 

4 Evaluation 

To find the optimal feature set we have experimented on the features in data driven 
parser. The same feature set is used for parsing both the chunk level and word level 
parsing. The chunk level parsing is then combined with the second and third stages to 
build the three-stage parser (Parser1). Again, the word level parsing is combined with 
the third stage to build a hybrid parser (Parser2). Parser1 and Parser2 are compared to 
find the effect of our approach. 

4.1 Experimental Setup 

The Hindi Treebank used in this task is provided by the organizers of the MTPIL -2012 
Shared Task. Three parts of the Treebank and their sizes are shown below. 

• Training corpus: 12041 sentences, 268,093 words 
• Development Corpus: 1233 sentences, 26416 words 
• Test Corpus:  1828 sentences, 39775 words 

We have used MaltParser of Nivre (2006, 2007, 2009) for training the models and using 
them for statistically annotating dependency relations between words or chunks in 
Hindi sentences. 

4.2 Parsing Performance 

The chunk boundary and the head words of chunk are annotated in the Treebank. We 
have used this information to build the chunk level Treebank. There are three evaluation 
tasks namely the performance of the chunk level parsing, the performance of the two-
stage parsing and the performance of the constraint based post-processing on the two-
stage parsing (three-stage parsing). We have shown these three results in first three 
columns of Table 2. 

 Chunk 
Level 

Parsing 

Two-
stage 

Parsing 

Three 
Stage 

Parsing 

Word 
Level 

Parsing 

Hybrid 
Parsing 

LAS 81.44 % 89.36 % 89.45 % 89.23 % 89.34 % 

UAS 91.77 % 95.08 % 95.17 % 94.83 % 94.98 % 

LA 84.26 % 91.19 % 91.25 % 91.17 % 91.23 % 

Table – 2: Three Stage Parser Evaluation Results. 
LAS: Label Attachment Score, UAS: Unlabeled Attachment Score, LA: Label Accuracy 

We have also used word level dependency relation tagged training corpus for training a 
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model. The performance of this model is tested on word level dependency relations in 
the test data. The performance of this model and that of the constraint based post-
processing on the word level parsing (hybrid parsing) are also shown in Table 2. 

Comparing the performances of three-stage parser and hybrid parser, we observed that 
the two-stage word level parsing performs better than the word level (single stage) 
statistical parsing. Finally, the constraint based post-processing stage applied on the 
two-stage parser achieves higher accuracy compared to the constraint based post-
processing stage applied on the statistical parser. 

4.3 Efficiency 

There are total 92 dependency relations among which 74 are inter-chunk relations and 
18 are intra-chunk relations. The word level data driven dependency parser uses 92 tags 
and 268,093 words of the training corpus to train the model. This parser uses 39775 
words to test the model. Here each word can be considered as nodes. 

On the other hand, the chunk level data driven dependency parser uses 74 tags and 
141431 chunks of the training corpus to train the model. This parser uses 11165 chunks 
to test the model. Here each chunk can be considered as nodes. 

The time taken by the word level and the chunk level data driven dependency parsers to 
train and test the models are shown in Table 3. The time taken to execute the second and 
third stages of our approach can be negligible. 
 

 Training Time Test Time 
Word Level 211:41:38 6:3:46 
Chunk Level 27:11:54 3:11:13 

Table – 3: Times taken by the word level and chunk level data driven dependency 
parsers in the form of (hour: minute: second). 

5 Conclusion 

A three-stage hybrid framework for parsing Hindi sentences is presented in this paper. 
In the first stage a data driven parser is used to identify the inter-chunk dependency 
relations. The head of each chunk is used as node in this tree structure. Children of each 
chunk along with the corresponding dependency relation are added into the tree in the 
second stage. This two-stage parsing system is efficient and performs better than the 
word level data driven dependency parser. In the third stage we correct the mistakes 
made by the two-stage parser using a set of Hindi constraints. Some more constraints 
can be included experimentally to achieve more accurate Hindi parser. 
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ABSTRACT

In this paper, we present our approach towards dependency parsing of Hindi language as 
a part of Hindi Shared Task on Parsing, COLING 2012. Our approach includes the effect 
of using different settings available in Malt Parser following the two-step parsing strategy 
i.e. splitting the data into interChunks and intraChunks to obtain the best possible  LAS1, 
UAS2 and LA3 accuracy. Our system achieved best LAS of  90.99% for  Gold Standard 
track and second best LAS of 83.91% for Automated data.

KEYWORDS : Hindi dependency parsing, two-stage parsing, MaltParser, interChunk, 
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1 Introduction
Hindi  is  a  morphologically  rich  and  relatively  free-word  order  language(MoR-FWO). 
Parsing is a challenging task for such MoR-FWO languages like Turkish, Basque, Czech, 
Arabic, etc. because of  their non-configurability. It has been suggested that these kind of  
languages  can  be  represented  better  using  dependency  framework  rather  than 
constituent framework (Hudson, 1984; Shieber, 1985; Mel’čuk, 1988, Bharati et al., 1995). 

Previous efforts on parsing MoR-FWO languages includes Nivre et al., 2007b; Hall et al. 
2007;  McDonald  and  Nivre,  2007  etc.  In  ICON 2010,  best  results  were  obtained  by 
(Kosaraju et al., 2010), which uses Malt parser with SVM classifier for labeling and using 
local morph-syntactic, chunk and automatic semantic information as features. Ambati et 
al. (2010) has explored two-stage approach of parsing Hindi. It divided the data into two 
parts namely, interChunks and intraChunks. The inter chunk part of the data contains only 
dependency relations between chunk heads of the sentences while the intra chunk data 
has the dependency relations between the tokens of a chunk. The dependency relation 
labels  for  interChunk  and  intraChunk  are  disjoint.  This  approach  helps  in  avoiding 
intraChunk relations to be marked as interChunk relations and vice-versa. Following this 
approach,  we  explored  different  parsing  algorithm  parameters  and  learner  algorithm 
settings of Malt Parser. 

The rest of the paper is divided into four sections. In section 2, we briefly discuss about  
the training and testing data, accompanied by a few statistics from the treebank, which  
guides the parameter selection for  our experiments. Section 3 contains the details of our 
experiments along with the results. In section 4 we present error analysis. Finally, we 
conclude the paper in section 5 with a summary and the future work.

2 Data
A subset of the dependency annotated Hindi Treebank (HTB ver-0.5) is released as part 
of the Hindi Parsing Shared Task-2012 (HPST-2012).  Morphological analysis, however, 
has not been validated for errors and inconsistencies. It was released for two evaluation 
tracks (gold standard and automatic). In the gold standard track, the input to the system 
consists of lexical items with gold standard morphological analysis, part-of-speech tags, 
chunks and the additional features listed above. In the automatic track, the input to the 
system contains only the lexical  items and the part-of-speech tags from an automatic  
tagger.  Some sentences have been discarded due to presence of  errors  in the data.  
Table 1 shows the training, development and testing data sizes for Hindi. For the testing 
phase  of  the  contest,  the  parser  was  trained  on  the  entire  released  data(training  + 
development).                                                      

Type Sent Count Token Count Avg. Sentence Length
Training 12041 268,093 22.27

Development 1233 26,416 21.42

Testing 1828 39,975 21.87

Table 1. Treebank Statistics
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3 Experiments and results
In our experiments we have used freely available Malt Parser (version 1.6.1) (Nivre et al.,  
2007). In this section we give an account of experiments performed in a series. Each 
experiment focuses on choosing the best option for a certain parameter/feature keeping 
the other  parameter/feature fixed.  In the subsequently following experiments the best 
parameter chosen from previous experiment is retained. 

Figure 1.

3.1 Feature model

Feature model is the template, which governs the learning from the given training data. 
We explored various configuration for feature model using insight from previously used 
feature models from similar tasks. We observed feature model  used by (Kosaraju et al., 
2010) performs best.

3.2 Two-stage(inter-intra chunk) approach:

Every sentence in data is divided in chunks.

e.g. (र�म न�) (स
त� क) (एक ल�ल ककत�ब) (द�) ।
                                      (raam erg.) (sita dat.)  (one red book) (gave).

                                      Ram gave a red book to Sita.

In the above example, the sentence is divided in 4 chunks marked by brackets. The 
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dependency labels for intraChunk relations are different from that of interChunk, forming 
two disjoint sets of dependency labels : interChunk labels(k1, k2, k7, etc.) and intraChunk 
labels(nmod_adj, lwg_psp, mod, etc.). 

Figure 2.

Theoretically,  the  parent  of  a  non-chunkhead  token  should  be  a  chunkhead  or  non-
chunkhead  token  of  the  same  chunk  and  the  relation  should  be  labeled  with  an 
intraChunk label. (in the example, the non-chunkHead tokens एक and ल�ल are connected 

with the chunkHead token ककत�ब also the relation label nmod_adj is an intraChunk label). 
The parent of the chunkhead must also be a chunkhead from another chunk. The relation 
should be marked with interChunk label.(in the given example, the chunkHead tokens द� 
,र�म,स
त� and  ककत�ब are attached with a chunkHead token also the relation labels are 
interChunk  labels).  However,  in  the  training  data,  there  are  few  noisy  cases  where 
intraChunk relations are marked as interChunk and vice-versa. The cases were very less 
in number and hence were ignored.

Dividing the data into inter and intra chunk, all the above constraints will be automatically  
handled. In the resulting intraChunk data, the chunks formed will behave as an individual 
sentence therefore the parser would not be able to make an inappropriate  arc.

3.3 Experiment with projectivity
MaltPaser has a default constraint to give only projectiive output. However, in the training 
data  we  find  approximately  1.1%  arcs  to  be  non-projective.  To  address  the  non-
projectivity in data, we use pseudo-projective algorithm as proposed by Nivre et al, 2005. 
We only incorporated the pseudo-projective algorithm in case of interChunk data as in 
intraChunk we found the arcs to be always projective. There are three options available 
with  the  pseudo-projective  algorithm  in  MaltParser.  We  performed  intermediary6 

experiments on all of these and got some interesting results.

Pseudo-projective  algorithm  replaces  all  the  non-projective  arcs  in  the  input  data  to 
projective arcs by applying a lifting operation. The lifts are encoded in the dependency 
labels  of  the  lifted  arcs.  In  order  to  apply  an  inverse  transformation  to  recover  the 
underlying (non projective) dependency graph, there is  a need to encode information 
about lifting operations in arc-labels. The encoding scheme can be varied according to 
marking_strategy and there are currently five of them: none, baseline, head, path and 
head+path(Nivre  et  al.  2005).  We performed intermediary experiments separately  on 
each  of  them  and  observed  that  head option  gives  the  best  result.  This  option 
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projectivizes input data with head encoding for labels.

Secondly,  there is  an option called  covered_root,  which is  mainly  used for  handling 
dangling punctuation. This option has five values: none, ignore, left, right and head. In 
our intermediary experiments, we found that ignore gave better results than others.

On the basis of lifting order, there are two ways to lift the non-projective arcs namely, 
shortest and  deepest. In the  deepest lifting order, most deeply nested non-projective 
arc is lifted first, not the shortest one. In our experiments we found that deepest has no 
effect in increasing the parsing accuracy rather there is a slight decrease in the accuracy 
as compared to shortest.

3.4 Experiment with features
We tried to experiment with the types of features that can be used in FEATS column in 
the  CoNLL-X format.  We considered  four  ways:  1)without  any  information  in  FEATS 
column 2) only tam4 and vib5 information, 3)tam and vib along with chunkType and 4)with 
all  the  information  present  by  default.  The  best  results  were  obtained  using  all  
information. All this could only be done for the Gold track as such information about the  
features is not provided for Automatic track. This is the major reason for the difference in 
the parsing accuracies between gold and auto data.

3.5 Experiment with algorithms
Kolachina et al., 2010 has shown that nivre_eager algorithm gives the best accuracy for 
Hindi. Our intermediary experiments also support the same. We also explored the root-
handling option which can be normal, strict and relaxed. Our experiments showed that 
relaxed  option  gives  the  best  accuracy.  In  relaxed option, root  dependents  are  not 
attached  during  parsing  (attached  with  default  label  afterwards)  and  reduction  of 
unattached tokens is permissible.

3.6 Experiment with prediction strategy

There are three types of prediction strategies available in MaltParser :

1. combined(default): Combines the prediction of the transition  and the arc label .
2. sequential: Predicts the transition and continues to predict the arc label if the 

transition requires an arc label.
3. branching: Predicts the transition and if the transition does not require any arc label 

then the non determinism is resolved, but if the predicted transition requires an arc 
label then the parser continues to predict the arc label.

We performed experiments with the above options and found that using branching there 
is an increase in the parsing accuracy.

4 tense aspect modality5 Vibhakti (post-postion)
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3.7 Experiment with SVM settings

In  our  experiments,  we  used  the  LIBSVM  learner  algorithm  following  the  SVM 
settings(s0t1d2g0.12r0.3n0.5m100c0.7e0.5) in experiments reported by Kolachina 
et al.(Kolachina et al., 2010) for Hindi. These settings gave a better result over the default 
SVM settings.

3.8 Results
We have trained MaltParser separately using Gold and Auto training data. For gold data, 
we trained two models, one for interChunk data with all settings obtained in the above 
experiments and other for intraChunk data with all the above settings except branching 
and projectivization. For both we used the same algorithm  “nivre_eager” and learner 
“LIBSVM”.  The  final  evaluation,  the  system  demonstrated  LAS  is  90.99%, UAS  is 
95.87% and LA is 92.58% respectively. For Automatic data, we didn’t split the data in two 
parts as the information on which the data is divided is missing in the testing files. Except  
this all the other settings are exactly similar as for the gold data. The final  LAS is 83.91%, 
UAS is 91.70% and LA is 86.77% respectively.

4 Error analysis

correct label system output label frequency

pof k2 139

k1 k2 123
k2 pof 112
k7 k7p 95

k7p k7 88

Table 2. Top 5 most frequent errors
The most frequent errors that the parser made contained the confusion between marking 
of k2, k1 and pof dependencies. The confusion between k1 and k2 is because of the 
absence of the case markers for disambiguation. As pof is the verbal form of noun, it is  
even difficult for humans to disambiguate between pof and k2. The confusion between k7 
and  k7p  is  also  frequent  because  of  their  closeness.  Some of  these  errors  can  be 
handled by post-processing.

5 Conclusions and future work

In this paper we experimented with different parameters of data-driven Malt Parser along 
with the two-stage preprocessing approach to build a high quality dependency parser for  
Hindi. In future, we would like to explore other data-driven parsers like MST.  Further 
experiments on combining parsers by stacking can also be performed.
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ABSTRACT

In this paper we present our experiments in parsing Hindi. We first explored Malt and MST 
parsers. Considering pros of both these parsers, we developed a hybrid approach combining the 
output of these two parsers in an intuitive manner. We report our results on both development 
and test data provided in the Hindi Shared Task on Parsing at workshop on MT and parsing in 
Indian Languages, Coling 2012. Our system secured labeled attachment score of 90.66% and 
80.77% for gold standard and automatic tracks respectively. These accuracies are 3rd best and 5th 

best for gold standard and automatic tracks respectively.

1 Introduction

Dependency parsing is the task of uncovering the dependency tree of a sentence, which consists 
of labeled links representing dependency relationships between words. Parsing is useful in major 
NLP applications like Machine Translation, Dialogue systems, text generation, word sense 
disambiguation etc. This led to the development of grammar-driven, data-driven and hybrid 
parsers. Due to the availability of annotated corpora in recent years, data driven parsing has 
achieved considerable success. The availability of phrase structure treebank for English has seen 
the development of many efficient parsers.

Unlike English, many Indian (Hindi, Bangla, Telugu, etc.) languages are free-word-order and are 
also morphologically rich. It has been suggested that free-word-order languages can be handled 
better using the dependency based framework than the constituency based one (Bharati et al., 
1995). Due to the availability of dependency treebanks, there are several recent attempts at 
building dependency parsers. Two CoNLL shared tasks (Buchholz and Marsi, 2006; Nivre et al., 
2007b) were held aiming at building state-of-the-art dependency parsers for different languages. 
Recently in two ICON Tools Contest (Husain, 2009; Husain et al., 2010), rule-based, constraint 
based, statistical and hybrid approaches were explored towards building dependency parsers for 
three Indian languages namely, Telugu, Hindi and Bangla. In all these efforts, state-of-the-art 
accuracies are obtained by two data-driven parsers, namely, Malt (Nivre et al., 2007a) and MST 
(McDonald et al., 2006).

We first explored Malt and MST parsers. Considering pros of both these parsers, we developed a 
hybrid approach combining the output of these two parsers in an intuitive manner. We report our 
results on both development and test data provided in the Hindi Shared Task on Parsing at 
workshop on MT and parsing in Indian Languages, Coling 2012. Our system secured labeled 
attachment score of 90.66% and 80.77% for gold standard and automatic tracks respectively. 
These accuracies are 3rd best and 5th best for gold standard and automatic tracks respectively.

In this paper, we give a brief introduction to the Shared Task in Section 2 and related work in 
Section 3. We describe our approach and settings in Sections 4 and 5 respectively. We present 
our results and analysis in Section 6. We conclude the paper with future work in Section 7.
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2 Shared Task

Hindi Shared Task on Parsing was organized at workshop on MT and parsing in Indian 
Languages, Coling 2012. As part of the shared task, a part of the Hindi Treebank (HTB) 
containing gold standard morphological analyses, part-of-speech tags, chunks and dependency 
relations labeled in the computational paninian framework was released.

2.1 The Task

The task is to assign labeled dependency structures by means of a fully automatic dependency 
parser. There are two evaluation tracks namely, gold standard and automatic. In the gold 
standard track, the input to the system consists of sentence tokens with gold standard 
morphological analysis, part-of-speech tags, chunks and the additional features. In the automatic 
track, the input to the system contains only the sentence token and the part-of-speech tags from 
an automatic tagger. In both the tracks, the parser must output the head and the corresponding 
dependency relation for each token in the input sentence.

The teams are provided with training and development data containing gold standard 
morphological analysis (lemma, coarse POS tag, gender, number, person, vibhakti, tense-aspect-
modality), part-of-speech tags, chunks, labeled dependency structures along with some additional 
features such as sentence type, sentence voice etc. 

2.2 Data

A subset of the dependency annotated Hindi Treebank (HTB ver-0.5) was released as part of the 
Shared Task. HTB ver-0.5 is a multi-layered dependency treebank with morphological, part-of-
speech and dependency annotations on sentences from news domain corpus acquired from ISI-
Kolkata, India. During annotation, the dependency relations are only marked between chunks in 
the sentence and the words are annotated with POS tags and morphological analysis. The 
annotations are stored in the Shakti Standard Format. The statistics of the data released for the 
task are as below

• Training Data – 12041 sentences, 268,093 words

• Development Data – 1233 sentences, 26,416 words

• Testing Data – 1828 sentences, 39,775 words

3 Related Work

In two ICON Tools Contest (Husain, 2009; Husain et al., 2010), different rule-based, constraint 
based, statistical and hybrid approaches were explored towards building dependency parsers for 
Indian languages. Ghosh et al. (2009) used a CRF based hybrid method. Nivre (2009), Ambati et 
al. (2009), and Kosaraju et al. (2010) used Malt Parser and explored the effectiveness of local 
morphosyntactic features, chunk features and automatic semantic information. Parser settings in 
terms of different algorithms and features were also explored. Zeman (2009) combined various 
well known dependency parsers forming a superparser by using a voting method. Yeleti and 
Deepak (2009) and Kesedi et al. (2010) used a constraint based approach. The scoring function 
for ranking the base parses is inspired by a graphbased parsing model and labeling. Attardi et al. 
(2010) used a transition based dependency shift reduce parser (DeSR parser) that uses a 
Multilayer Perceptron (MLP) classifier with a beam search strategy. 
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4 Approach

For the experiments reported in this paper we used two data-driven parsers namely, MaltParser 
(Nivre et al., 2007a), and MST (McDonald et al., 2006). 

4.1 Malt Parser

MaltParser is a freely available implementation of the parsing models described in (Nivre et al., 
2007a). MaltParser implements the transition-based approach to dependency parsing, which has 
two essential components:

• A transition system for mapping sentences to dependency trees

• A classifier for predicting the next transition for every possible system configuration

Given these two components, dependency parsing can be realized as deterministic search through 
the transition system, guided by the classifier. With this technique, parsing can be performed in 
linear time for projective dependency trees and quadratic time for arbitrary (possibly non-
projective) trees.

MaltParser comes with a number of built-in transition systems. Some of the well-known 
algorithms which gave best performance in previous parsing experiments are Nivre arc-eager, 
Nivre arc-standard, Covington non-projective, Covington projective. MaltParser also provides 
options for LIBSVM and LIBLINEAR learner algorithms.

4.2 MST Parser

MSTParser is a freely available implementation of the parsing models described in McDonald et 
al. (2006). It is a graph-based parsing system in that core parsing algorithms can be equated to 
finding directed maximum spanning trees (either projective or non-projective) from a dense 
graph representation of the sentence.

MST uses Chu-Liu-Edmonds Maximum Spanning Tree algorithm for non-projective parsing and 
Eisner's algorithm for projective parsing. It uses online large margin learning as the learning 
algorithm (McDonald et al., 2005a).

4.3 Our Approach

McDonald and Nivre (2007) compared the accuracy of MSTParser and MaltParser along a 
number of structural and linguistic dimensions. They observed that, though the two parsers 
exhibit indistinguishable accuracies overall, MSTParser tends to outperform MaltParser on 
longer dependencies as well as those dependencies closer to the root of the tree (e.g., verb, 
conjunction and preposition dependencies), whereas MaltParser performs better on short 
dependencies and those further from the root (e.g., pronouns and noun dependencies). Since long 
dependencies and those near to the root are typically the last constructed in transition-based 
parsing systems, it was concluded that MaltParser does suffer from some form of error 
propagation. Similar observations were made by Ambati et al. (2009) for Hindi.

In our approach, we tried to combine both Malt and MST to extract the best out of the both 
parsers. For this, we first tuned both Malt and MST for Hindi. Details of the settings can be 
found in Section 5. After we got the best models of Malt and MST, we extracted the output of 
both the parsers on the development data. We also made a list of long distance labels. We 
compared the output of Malt and MST. Whenever there is a mismatch between outputs of both 
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the parsers, we checked the dependency label given by the parsers. If MST marked it as a long 
distance label, then we considered MST’s output. Otherwise we considered Malt’s output. In this 
way, we gave more weightage to MST in case of long distance label for which it is best. 
Similarly, we gave more weightage to Malt in case of short distance labels, as Malt is best at 
short distance relations. Intuition behind this is that Malt is good at short distance dependencies 
and MST is good at long distance dependencies. The long distance dependency labels list which 
we used for our approach are “main”, “ccof”, “nmod__relc”, “rs”, “rsym”, and “vmod”.

5 Settings

We first developed our baseline models using Malt Parser and MST Parser. We CoNLL format 
of the data in wx-notation for our experiments.

5.1 Data Settings

In case of gold standard track, we explored different features provided in the FEATS column and 
found that only root, category, vibhatki, TAM and chunk information are useful. Gender, 
number, person and other information didn’t give any improvements. This observation is similar 
to previous work by Ambati et al. (2010) and Kosaraju et al. (2010). For automatic track, as the 
FEATS column is empty, we used the file provided as it is.

5.2 Parser Settings

For Malt, we explored different parser algorithms for Hindi and found that nivre arc-standard 
gave better performance over others. In case of learning algorithms, LIBLINEAR gave better 
performance compared to LIBSVM. Also, LIBLINEAR was very faster than LIBSVM learner. 

In case MST, we different options provided by the parser and found that non-projective 
algorithm and training-k=5, gave best results.

6 Results and Analysis

We considered Malt and MST as baselines. Out Approach performed better than these baselines 
in all the experiments. Performance of Malt, MST, and Our Approach on development and test 
data for both gold standard and automatic track are provided in Table 1 and Table 2 respectively. 
We used standard Labelled Attachment Score (LAS), Un-labeled Attachment Score (USA) and 
Labeled Score (LS) metrices for our evaluation.

Gold standard Automatic

LAS UAS LS LAS UAS LS

Malt 89.76 % 94.39 % 91.31 % 79.84 % 87.66 % 82.42 %

MST 95.99 % 89.54 % 91.19 % 75.08 % 90.55 % 77.13 %

Our 
Approach

95.54 % 90.85 % 92.52 % 81.46 % 89.45 % 83.62 %

TABLE 1 – Performance of different systems on development data.
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Gold standard Automatic

LAS UAS LS LAS UAS LS

Malt 89.38 % 93.86 % 90.93 % 79.18 % 87.11 % 81.86 %

MST 89.20 % 95.78 % 90.79 % 75.12 % 90.45 % 77.37 %

Our 
Approach

90.66 % 95.18 % 92.28 % 80.77 % 88.91 % 83.03 %

TABLE 2 – Performance of different systems on test data.

On the test data, Malt and MST gave LAS of 89.38% and 89.20% respectively for gold standard 
track. Using our approach, we could achieve LAS of 90.66%, which is 1.28% better than the 
baseline systems. Similarly, in automatic track, Malt and MST gave LAS of 79.18% and 75.12% 
respectively. Whereas our approach could achieve LAS of 80.77%, which is 1.59% better than 
the baseline systems.

Gold standard Automatic
Malt MST Our 

Approach
Malt MST Our 

Approach

Development 
Data

k1 85.65 % 82.56 % 85.71 % 66.38 % 55.77 % 66.85 %

k2 76.00 % 75.13 % 75.94 % 66.55 % 58.81 % 66.47 %

r6 91.58 % 88.46 % 91.48 % 68.97 % 51.61 % 69.20 %

main 79.93 % 97.73 % 91.12 % 71.60 % 95.46 % 81.23 %

ccof 90.64 % 91.37 % 91.32 % 81.62 % 85.23 % 84.58 %

nmod__
relc

34.95 % 51.28 % 51.28 % 22.44 % 25.00 % 25.80 %

rsym 91.79 % 96.30 % 96.36 % 83.50 % 93.92 % 93.87 %

Test 
Data

k1 85.62 % 83.43 % 85.72 % 65.89 % 56.92 % 65.88 %

k2 73.52 % 75.03 % 73.99 % 65.88 % 59.24 % 66.18 %

r6 89.99 % 87.88 % 89.99 % 66.89 % 52.21 % 66.76 %

main 78.22 % 97.16 % 89.93 % 71.80 % 95.13 % 81.75 %

ccof 88.96 % 91.08 % 90.77 % 80.06 % 84.38 % 83.34 %

nmod__
relc

42.85 % 48.64 % 48.64 % 26.42 % 27.23 % 28.45 %

rsym 91.12 % 96.49 % 96.51 % 82.71 % 92.53 % 92.66 %

TABLE 3 – Performance of different systems on short distance vs. long distance dependencies on 
development and test data.
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Table 3, gives an overview of how Malt, MST and our approach perform on short distance vs. 
long distance dependencies. We have taken three short distance dependencies (k1, k2, r6) and 
four long distance dependencies (main, ccof, nmod__relc, rysm). From Table 3, it is clear that 
our approach gives similar performance to Malt in case of short distance dependencies. In case of 
long distance dependencies like “main” and “ccof”, MST still gives the best accuracies. But, note 
that, our system give great improvements, nearly 10% for “main” and 2-3% for “ccof”, over Malt 
for these labels. In case of “nmod__relc”, and “rsym” our system gave better results over both 
Malt and MST. By obtaining similar performance on short distance dependencies and huge 
improvements on long distance dependencies (by taking MST output) over Malt, we could 
achieve better accuracies over both the parsers. Taking the fact that Malt is good at short distance 
dependencies and MST is good at long distance dependencies, into consideration, we developed 
our system, which outperformed both Malt and MST.

7 Conclusion and Future Work

In this paper, we first explored Malt and MST parsers and developed best models, which we 
considered as the baseline models for our approach. Considering pros of both these parsers, we 
developed a hybrid approach combining the output of these two parsers in an intuitive manner. 
As Malt is good at short distance dependencies and MST is good at long distance dependencies, 
we gave more weightage to Malt in case of short distance dependencies and gave more 
weightage to MST in case of long distance dependencies. We showed that a simple system like 
combining both MST and Malt in an intuitive way, can perform better than both the parsers. We 
reported our results on both development and test data provided in the Hindi Shared Task on 
Parsing at workshop on MT and parsing in Indian Languages, Coling 2012. Our system secured 
labeled attachment score of 90.66% and 80.77% for gold standard and automatic tracks 
respectively. These accuracies are 3rd best and 5th best for gold standard and automatic tracks 
respectively. 

In our current approach, we combined the output of both Malt and MST to get a better system 
over both the parsers. In future, we would like to combine both the models in a way similar to 
McDonald and Nivre (2007). In case of automatic track, we only, used the input provided. For 
our experience with gold standard track, and from the previous literature, we can say that chunk 
information and morphological information in the form of vibhakti and TAM plays an important 
role in Hindi dependency parsing. In future, we would like to experiment with the usefulness of 
these features in automatic track data by using automatic morphological analyser and chunker for 
Hindi.
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Abstract
In this paper, we describe our experiments on applying combination of Malt, MST and Turbo
Parsers for Hindi dependency parsing as part of a shared task at MTPIL 2012 Workshop, COLING
2012. We explore the usage and adoption of the recently released Turbo Parser for parsing Indian
languages. Various configurations of each parser are explored before combination in order to adjust
them for two different settings of the data (with gold-standard and automatic Part-Of-Speech tags).
We achieved a best result of 96.50% unlabeled attachment score (UAS), 92.90% labeled accuracy
(LA), 91.49% labeled attachment score (LAS) using voting method on data with gold POS tags. In
case of data with automatic POS tags, we achieved a best result of 93.99% UAS, 90.04% LA and
87.84% LAS respectively.

Keywords: Hindi Dependency Parsing, Voting, Blending and Turbo Parser.

1 Introduction
Parsing helps in understanding the relations between words in a sentence. It plays an important
role in a lot of applications like machine translation, word sense disambiguation, search engines,
dialogue systems etc. Parsers are mainly classified into two categories - grammar driven and data
driven. The combination of these approaches led to the development of hybrid parsers. In recent
years, there is a lot of interest in data driven dependency parsing due to the availability of annotated
corpora thereby building accurate parsers (Nivre et al., 2006; McDonald et al., 2005; Mannem and
Dara, 2011).

Majority of the Indian languages are morphologically rich in nature. They pose various challenges
like presence of large number of inflectional variations, relatively free word order and non-projective.
Previous research showed that some of these challenges can be better handled by using dependency
based annotation scheme rather than using phrase based annotation scheme (Hudson, 1984; Shieber,
1985; Bharati et al., 1995). As a result of this, dependency annotation for Hindi is based on Paninian
framework for building the treebank (Begum et al., 2008). Considering the above challenges and
due to the increase in the availability of the annotated data, there is a need to develop good quality
dependency parsers for Indian Languages.

In this paper, we explore the approaches related to the combination of different parsers. Since these
approaches are well studied in the literature, we will focus on providing a detailed analysis of the
various features used and also about the various errors caused by the dependency parsers.

The rest of the paper is organized as follows: we will describe the related work in this area in
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Section 2 and our approach is described in Section 3 . Section 4 lists the experiments conducted and
presents the results obtained. Section 5 ends the paper with conclusions and scope of future work in
this direction.

2 Related Work
There are previously two instances of the task on dependency parsing for Indian languages (Husain,
2009; Husain et al., 2010). The previous best performed systems on both the times used the transition
based Malt Parser (Ambati et al., 2009; Kosaraju et al., 2010) for their experiments exploring various
different features and also reported the results of MST parser (Ambati et al., 2009). Kolachina et al.
(2010) used the approach of blending within various configurations of the malt parser and (Zeman,
2009) used the voting approach of combining multiple parsing systems into a hybrid parser for this
task. Abhilash and Mannem (2010) used the bidirectional parser (Shen and Joshi, 2008). There,
the approach does a best first search for every sentence and selects the most confident relation at
each step with out following a specific direction (either from left-to-right or right-to-left). This
year also the shared task is on Dependency Parsing with significantly higher data than the previous
two parsing contests and this time it has been limited only to Hindi language excluding previously
explored Telugu and Bangla languages.

3 Our Approach
For this shared task on Hindi dependency parsing, we tried the combination of various parsing
systems using two different methods i.e., simple voting (Zeman, 2009) and blending method (Sagae
and Lavie, 2006).

In case of voting, once the outputs from all the parsing systems are obtained, each dependency
relation that has the maximum number of votes from the various systems are included in the output.
In case of a tie, the dependency relation predicted by the high accurate parser is picked in the final
output. The one drawback that is inherent in the voting method is that the dependency tree resulted
for each sentence may not be fully connected as we are including each dependency relation at a
time rather including the whole dependency tree. In order to mitigate this drawback, the concept of
blending has been introduced by (Sagae and Lavie, 2006) and it has been used in the winning team
of CONLL-XI Shared Task (Hall et al., 2007) and the software has been released as MaltBlender. In
this approach, a graph is built for the dependency relations obtained from the various outputs and
then it selects a maximum spanning tree out of it. The tool also provides various options for selecting
the weights for different parsers and these weights are determined by tuning on the development
data set.

In this work, we used Malt, MST and Turbo parsers for the parser combination using the above
mentioned two approaches. To the best of our knowledge, the process of adopting Turbo parser for
Indian languages has not been explored previously.

The number of features a dependency parser uses are typically huge. Selection of features has a lot
of impact on both the run-time complexity and also on the performance of a parser. We tried various
uni-gram and bi-gram features related to words, lemmas, POS tags, Coarse POS tags, vibhakti
(post-positional marker), TAM (tense, aspect and modality) and other available morphological
information. In addition to these features, we also used chunk features like chunk head, chunk
distance and chunk boundary information. Finally we also experimented with some clause-based
features like head/child of a clause, clausal boundary information. Turbo parser (Martins et al.,
2010) uses the concept of supported and unsupported features to mitigate the effect of having large
number of features to some extent.
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4 Experiments and Results

4.1 Data
The training and development data sets was released by the organizers as part of the shared task in
two different settings. One being the manually annotated data with POS tags, Chunks and other
information such as gender, number, person etc. whereas the other one contains only automatic POS
tags without any other information. Training set contains 12,041 sentences (2,68,093 words) and
development data set contains 1233 sentences (26,416 words). The size of the data set is significantly
higher when compared to the previous shared tasks on Hindi Dependency Parsing (Husain, 2009;
Husain et al., 2010).

The test data set contains 1828 sentences (39,775 words). For the final system, we combined the
training and development data sets into one data set and used this set for the training. We tried
different types of features as mentioned above and selected the best feature set by tuning it on the
development data set. The parser settings and feature set related to each parser are explained in the
section 4.2

4.2 Parser Settings

4.2.1 Malt

Malt parser provides two learning algorithms LIBSVM and LIBLINEAR. It also gives various
options for parsing algorithms and we have experimented on nivre-eager, nivre-standard and stack-
proj parsing algorithms. Finally, we chose nivre-standard parsing algorithm and LIBSVM learning
algorithm options by tuning it on the development data set.

4.2.2 MST

The setting that performed best for MST parser is second order non-projective with beam width
(k-best parses) of 5 and default iterations of 10. The tuning of MST parser in second order non-
projective is hard since it is computationally intensive.

4.2.3 Turbo

Turbo parser provides three settings for training: basic, standard and full. We experimented with
all three models for both data settings and consistently the Turbo parser in full mode performs the
better and it trains a second-order non-projective parser.

For the two different data settings, we used the same feature set used in (Martins et al., 2010). For
the gold-standard POS data setting, we added chunk based features as previously mentioned. We
also experimented with the clause based features but we didn’t get much performance gain using
them.

4.3 Evaluation Results
Table 1 lists the accuracy with gold-standard POS tags setting of the data using various parsers. It
also lists the accuracy obtained when the parsers are combined using simple voting method and an
intelligent blending method. It can be observed from the table that Turbo parser performs well in
all the evaluation metrics in terms of using a single parser whereas voting method performs well
overall. The results submitted for this data setting using Turbo parser was ranked second in terms of
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LAS, LS but first in UAS. If we take the voting results, then it will be ranked first in terms of all the
evaluation metrics when compared to the other systems submitted for this shared task.

Table 2 gives the accuracy for the test data with automatic POS tags. The results on this data setting
using Turbo parser are higher among all the methods we tried. It was ranked first among the systems
submitted in the shared task. The voting and blending systems did not perform well than Turbo
Parser because of the lower accuracies from Malt and MST. It can be inferred from the results that
the voting and blending systems benefit if the accuracies produced by the parsers are comparable to
each other. On the other hand if the difference is very high then it will hurt their performance.

With gold-standard Part-Of-Speech Tags
Method UAS LA LAS

Malt 93.32% 90.56% 88.86%
MST 94.88% 88.13% 86.45%
Turbo 96.37% 92.14% 90.83%
Voting 96.50% 92.90% 91.49%

Blending 96.34% 92.83% 91.49%

Table 1: Accuracies on gold-standard data. UAS, LA, LAS denote the Unlabeled Attachment score,
Labeled Accuracy score and Labeled Attachment score respectively.

With automatic Part-Of-Speech Tags
Method UAS LA LAS

Malt 81.23% 76.76% 73.69%
MST 91.02% 84.76% 82.55%
Turbo 93.99% 90.04% 87.84%
Voting 93.24% 89.01% 86.62%

Blending 93.47% 89.15% 87.05 %

Table 2: Accuracies on data annotated with automatic POS tags

4.4 Error Analysis
The presence of 20.4% non-projective sentences (469 arcs) in the test data reflects the complexity
of developing a good quality parser for Hindi. We observed the performance of the individual
parsers on these specific arcs, the accuracy has ranged from 27-28%. One trivial reason involves
the inherent complexity and other might be due to the less amount of training examples related to
non-projectivity.

The gold-standard data contains the chunk information marked for every word i.e., whether it
is the head or child of a particular chunk. The dependency relations within a chunk are called
intra-chunk dependency relations whereas across the chunks are called inter-chunk dependency
relations. Figure 4.4 shows the accuracies of the dependency labels (that are frequent in the data)
for inter-chunk dependency relations and these are ones that are hard to predict. It can be observed
in part (a) of the figure 4.4 that if the accuracies of the individual parsers are comparable then we
are getting a good result in the voting and blending approaches. In part (b), we can see a drop in the
accuracies on the voting and blending approaches since the difference in accuracies between the
parsers is high. The analysis of dependency labels on intra-chunk dependencies has not been shown
since there is not much difference in the accuracies between the parsing models.
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5 Conclusion
In this work, we applied combination of Malt, MST and Turbo parsers using voting and blending
approaches. We observed that the voting accuracy improves when the accuracies of the individual
parsers are comparable to each other. Our system achieved a best result of 96.50% UAS, 92.90%
LA, 91.49% LAS using voting method on data with gold POS tags. In case of data with automatic
POS tags, we achieved a best result of 93.99% UAS, 90.04% LA and 87.84% LAS. Our future work
involves in looking at the specific cases in case of non-projective errors and figuring out a way to
find out the syntactic and semantic cues to reduce the impact of these errors on the overall accuracy.
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ABSTRACT 

In this paper we present our work in the MTPIL-2012 dependency parsing task on Hindi using 
MaltParser. Here we have experimented with MaltParser by selecting different parsing 
algorithms and different features selection. Finally, we have achieved unlabeled attachment score 
(UAS) of 91.80%, labeled attachment score (LAS) 86.51% and labeled accuracy (LA) 88.47% 
respectively.  

 

KEYWORDS: Dependency parser, MaltParser, Hindi. 
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1 Introduction 

Dependency parsing is one of the core applications of Natural Language Processing. Dependency 
parsing is useful in other NLP application like Question Answering, Machine Translation, word 
Sense Disambiguation etc. Dependency parsing can be divided into grammar-driven dependency 
parsing and data-driven dependency parsing. In the grammar-driven dependency parsing the 
grammars or set of rules are extracted from a corpus by linguist. Where as in the data-driven 
approach a large manually annotated training data is required. 

In recent past ICON has organized a shared task competition in dependency parsing in Indian 
languages, namely Hindi, Bengali and Telugu [ICON 2009, 2010]. The ICON task consisted in 
training and evaluating of dependency parsers. Each shared task 2009 and 2010 had much lesser 
data to work with (20,000 words). Similarly, the MTPIL-2012 dependency parsing task also 
consisted in training and evaluating dependency parsers for Hindi. We have participated in this 
task using the freely available MaltParser [Nivre et al., 2006a] which follows the data-driven 
approach. In this experiment we have trained and evaluate Maltparser with default properties. 
And then step-by-step we tried to optimize those features for which the parsing accuracy 
increases. 

2 MaltParser for Hindi  

In this experiment we have customized MaltParser [Nivre et al., 2006a]. During MaltParser 
optimization we follow same approach described by Nivre, (2009). MaltParser comes with 
several parsing algorithms. We experimented with different parsing algorithms. The result shows 
that arc-standard projective system gave the highest accuracy for Hindi. Moving further we try to 
optimize those features for which parser accuracy increases. For this we first added all possible 
features. Then we discarded those features for which the parsing accuracy increases. Finally, we 
end up with following features:  

• Features 2 and 9, the top and next for lemma. 

• Features 3 and 10, the coarse-grained part of speech of top and next. 

• Feature 5 and 12, the top and next of morphological features. 

• Features 21, 25, 28 and 31, the part of speech features are added. 

• Features 27 and 30, the form of leftmost dependencies of next and predecessor of top. 

• The conjoined features (1&4, 1&8, 4&11) i.e. part of speech and form of stack top, form 
of top and next, part of speech of top and next was also added. 

We used LIBSVM package [Chang and Lin, 2001] for classification task. 

3 Training Data 

A set of training data and development data has been provided to all the participants. The training 
set contains 12041 sentences (268,093 words) and the development set contains 1233 sentences 
(26416 words). We combined both data to one training set. 
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4 Evaluation  

There are two evaluation tracks (gold standard and automatic) in the shared task and all the 
participating systems must participate in both the tracks. In the gold standard track, the input to 
the system consists of sentence tokens with gold standard morphological analysis, part-of-speech 
tags, chunks and the additional features listed above. In the automatic track, the input to the 
system contains only the sentence token and the part-of-speech tags from an automatic tagger. In 
both the tracks, the parser must output the head and the corresponding dependency relation for 
each token in the input sentence. 

Table 1 Performance on MTPIL-2012 Data 

 Baseline Optimized(Final) 

 LAS UAS LA LAS UAS LA 

Hindi-Gold 80.84 89.32 83.17 86.51 91.80 88.47 
Hindi-Auto - - - 32.34 38.25 32.93 

 

Table 1 shows the results for the final optimized model and the baseline model using MTPIL test 
data. We have found the largest improvement in LAS, with 5.67 percent, while the improvement 
in UAS and LA is 2.48 percent and 5.3 percent respectively for the gold track. We want to see 
the parser performance with minimal numbers of features in the training data. So we left the 
auto-track training data as it was. As it was expected the parsers performs poorly with UAS of 
38.25 percentages. 

5 Error Analysis                                          

A primary goal of this experiment is to 
point out the errors made by MaltParser. 
We have performed a number of 
experiments to find out most possible 
errors with respect to sentence length 
factor. We have also shown dependency 
relation wise performance for the gold 
track. 

5.1 Length Factor 

In this experiment we have performed 
several experiments on the gold track 
data to find out the parser performance 
with different sentence length i.e., 
number of tokens. It is a well known fact 
that dependency parsers tends to perform 
well on shorter sentences than longer ones. Figure 1 shows the accuracy i.e. the labeled 
attachment score (LAS) for the parser with respect to different sentence length. From the figure it 
is clear Malt Parser tends to perform better on shorter sentences. 

Figure 1 Parser Accuracy (LAS) and Sentence Length 
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5.2 Dependency Relation Wise Evaluation 

Table 2 presents more detailed analysis of results by reporting lower recall and precision for 15 
dependencies in the gold track evaluation. The lowest accuracy is reported for the label “rs” with 

recall 13.97 percent. 

Table 2 Dependency Relation-wise Performance Evaluation 

Deprel Gold Correct System Recall (%) Precision (%) 

k1s 328 210 274 64.02 76.64 

k2 1957 1461 1947 74.66 75.04 

k3 56 21 41 37.5 51.22 

k4 283 192 269 67.84 71.38 

k4a 67 28 49 41.79 57.14 

k5 156 108 214 69.23 50.47 

k7a 84 67 87 79.76 77.01 

k7p 566 397 541 70.14 73.38 

nmod__k1inv 161 119 169 73.91 70.41 

r6-k1 68 19 42 27.94 45.24 

r6-k2 306 224 283 73.2 79.15 

ras-k1 74 36 61 48.65 59.02 

rh 152 107 141 70.39 75.89 

rs 179 25 41 13.97 60.98 

vmod 493 345 472 69.98 73.09 

6 Conclusions 

This paper presents optimization and evaluation of MaltParser for Hindi. Due to large amount of 
training data the parser was able to achieve such high accuracy with default properties. It is 
interesting to see using different feature selection how parser performance can be improved 
further. The evaluation results reported here will be useful for future research in this area.  
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