
Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing (SANLP), pages 221–228,
COLING 2012, Mumbai, December 2012.

Error tracking in search engine development 

Swapnil Chaudhari
1
 Arjun Atreya V

1
 Pushpak Bhattacharyya

1
 Ganesh Ramakrishnan

1 

(1) Department of CSE, IIT Bombay 

{swapnil, arjun, pb, ganesh}@cse.iitb.ac.in 

ABSTRACT 

  

In this paper, we describe a tool that allows one to track the output of every module of a search 

engine. The tool provides the ability to perform pseudo error-correction by allowing the user to 

modify these outputs or tune parameters of the modules to check for improvement of results. 

Often it is important to see if certain surface level changes can help in the improvement of the 

result quality. This is crucial since it saves the immediate need to make changes in the system in 

terms of resource updation or development efforts. We describe query processing pipeline in 

sufficient detail and then show the efficacy of our tool for an example in Marathi along with 

giving a thorough error analysis for the example considered. We believe this paper will establish 

that such a tool is of significant importance for instant detection and correction of errors along 

with giving the readers an idea on how to develop the same.  

 

KEYWORDS: INFORMATION RETRIEVAL, TRACKER, ERROR TRACKING, ERROR ANALYSIS TOOL 

221



1 Introduction 

Information retrieval refers to searching relevant documents satisfying the user information need. 

User information need is typically captured in the form of a query. A search system consists of 

two parts viz. offline processing and online processing.  

Offline processing mainly consists of two parts – crawling and indexing. In crawling, documents 

from the web are fetched and stored. These documents have to be parsed and stored in optimal 

way in terms of both storage space and search time. For efficient retrieval of documents, an 

inverted index of terms in the documents is created.  

Online processing consists of converting the user’s information need in a format which facilitates 

the matching of query terms with terms in documents. Query expansion using feedback or 

thesaurus, semantic search, etc. are different ways of capturing user information need. A naive 

way to capture information need is to consider query terms as representative of user information 

need. These terms in the query have to be processed before they can be used to search 

documents. Processing of terms involves stop word removal, stemming and query formulation. 

Some of the search engines also do named entity recognition, multi word recognition or word 

sense disambiguation to enhance query processing. This processing is done in the form of a 

pipeline where output of one stage is fed as input to the next stage.  

Most of these modules need language based resources and processing. For example, named entity 

recognition requires applying machine learning techniques on a large corpus and extracting 

named entities out of it. The output of named entity recognition engine is used as dictionary for 

searching named entities in the query. All such modules cannot generate an exhaustive resource 

list and are vulnerable to errors. Errors in each module degrade the overall performance of the 

system. Evaluation forums like TREC (TREC, 1992), CLEF (CLEF, 2000), NTCIR (NTCIR, 

1999) and FIRE (FIRE, 2008) provide platform to evaluate the system performance in terms of 

precision, recall, MAP value, etc. However, these measures indicate end to end performance of 

the system and do not evaluate performance of individual module in the system. Since the 

architecture is pipelined, the error propagates and multiplies.  In such architecture, tracking the 

root cause of error is important. To facilitate this tracker was developed.  

Tracker is a tool which captures the input and output information of each stage of the pipeline 

and displays it to the assessor. This helps in identifying the root cause of the error. A relevance 

judgement tool is integrated in tracker to aid storing relevance judgments for each query.  

The roadmap of the paper is as follows. We describe query processing pipeline in the next section 

with an example case of Marathi. In section 3, we look at different types of errors that can occur 

in a search engine. Then we discuss at different functionalities in Tracker in section 4 followed 

by implementation details in section 5. Tracker was used by more than 100 developers and 

assessors across the country. Section 6 covers these user experiences about tracker.  

2 Query processing pipeline 

Figure 1 illustrates query processing pipeline. A query given in Marathi is  

म ुंबईमधील क ुं वा रायगडमधील स ुंदर राष्ट्रीय उद्यान  

mumbaimadhil kiva raaygadmadhil sundar raashtriya udyaan 

222



in Mumbai or in Raigad beautiful national park 

beautiful national park in Mumbai or Raigad 

 

 

 

 

 

 

 

 

FIGURE 1- Query Processing illustrated with Marathi  

The stop word removal module removes stop words by doing a dictionary look up. In this query 

क ुं वा (kiva) (or) is a stop word in Marathi which gets removed in this stage. The resultant query 

after removing stop word is म ुंबईमधील रायगडमधील स ुंदर राष्ट्रीय उद्यान (mumbaimadhil 

raaygadmadhil sundar raashtriya udyaan). This is given as an input to the stemmer.  

The Marathi stemmer (Bapat et. al, 2010) is implemented as a Finite State Transducer in which 

we specify a word as a sequence of legal morphemes. Each morpheme corresponding to the root 

word is called the stem and this stem possesses features which are extracted by the means of a 

morphological parser. In this case, the suffix मधील (madhil) (in) is attached to words म ुंबई 

(mumbai) (Mumbai) and रायगड (raajgad) (Raigad). This suffix is removed by the stemmer and 

the words म ुंबईमधील (mumbaimadhil) (in Mumbai) and रायगडमधील (raaygadmadhil) (in 

Raigad) are reduced to their root forms म ुंबई (mumbai) (Mumbai) and रायगड (raaygad) (Raigad) 

respectively. The resultant query is म ुंबई रायगड स ुंदर राष्ट्रीय उद्यान (Mumbai raaygad sundar 

raashtriya udyaan). The Marathi stemmer stems the words with an accuracy of 95 percent. These 

stemmed words are used by the named entity recognition module to detect named entities in the 

query.  

The named entity recognition module detects named entities by searching through a dictionary of 

named entities. This dictionary is pre-computed from a large corpus. In this query, म ुंबई 

(mumbai) (Mumbai) and रायगड (raaygad) (Raigad) are two named entities. After detecting 

named entities, multi-words in the query are detected.  

The multi-word detection module takes an n-gram window to match the query terms against a 

dictionary of multi-words. This dictionary is precompiled from a large corpus. In this query, 

राष्ट्रीय उद्यान (raashtriya udyaan) (national park) is a multiword. After detecting the important 

terms in the query like named entities and multi-words, we form a Boolean query.  The terms in 

the query are given appropriate boosts based on their importance. The results retrieved are then 

presented to the user. The quality of these set of results is a function of the accuracy of individual 

modules. Diagnostics of each module is called for at this stage.  

223



3 Error analysis 

Each module can contribute to error and affect the overall performance of the system. The 

following section describes the different kinds of errors that can occur in each stage of pipeline. 

3.1.1 Types of errors and their impact on performance 

In the stop word removal stage, errors can be due to a stop word not being detected by the 

module. This can boost non-relevant results to the top of ranked list because of high count of stop 

word content in it. Another possible error is wrongly detecting an important word as stop word 

and removing it from the query. Stemming involves two kinds of errors viz. Wrong stem and no 

stem. A wrong stem may be due to over-stemming or under stemming.  Wrong stem results in 

change in meaning of the word used in the query. This can cause topic drift in results.  

E.g. Consider the query  

ग जरातचे लो  

gujaraatche loka  

of Gujarat people 

People of Gujarat 

In this case, over stemming ग जरातचे (gujaraatche) (of Gujarat) will give root ग जर (gujar) 

(Gujar) instead of correct root ग जरात (gujarat) (Gujarat). ग जर (gujar) (Gujar) is a caste while 

ग जरात (gujarat) (Gujarat) is a state name. The query formed after stemming is (gujar people) 

(Gujar people). Instead of getting information about people of Gujarat, the user will get results 

related to people belonging to Gujar caste.  

If the stemmer is not able to stem the word, it may return the original query term. In both cases, 

the error in stemming gets propagated to further stages. An error in stemming may cause error in 

detecting named entities and multi-words. In the above example, if ग जरातचे (gujaraatche) (of 

Gujarat) is not stemmed, then named entity ग जरात (gujarat) (Gujarat) will not be recognized. If a 

named entity is not recognized, we may lose the information about importance of that word. 

Similarly, if a multiword is not recognized, then information about importance as well as 

proximity of those query terms is lost. For example, consider the multi-word query राष्ट्रीय उद्यान 

(raashtriya udyaan) (national park). In this, if multi-word identification fails, then राष्ट्रीय 

(raashtriya) (national) and उद्यान (udyaan) (park) will be searched as two different entities. The 

word राष्ट्रीय (raashtriya) (national) can match with documents containing terms like राष्ट्रीय 
सीमा (raashtriya seema) (national border), राष्ट्रीय सुंस्था (raashtriya sansthaa) (national 

institute), राष्ट्रीय सुंग्रहालय (raashtriya sangrahaalay) (national museum), etc. and retrieve 

irrelevant results.  

An error in a module may be corrected by adding resources or might require re-engineering to 

solve the issue. Changing the module for each error and retesting the system after change is quite 

time consuming. One way to analyze this problem is pseudo error correction. This involves 

correcting the output of a particular module temporarily without making a change in the module 

for detecting errors in further modules. To facilitate monitoring the outputs of individual modules 

and pseudo error correction, tracker was developed. As per our knowledge, no such tool for a 

search engine exists. 

224



4 Tracker 

Tracker is an error analysis tool developed to assist developers and assessors to analyze each 

module of a search engine for errors and tune the system parameter to find the best parameters 

that suit the system. Tracker captures input and output of each module for a query and displays 

them to the assessor. The assessor can then manually judge the outputs as correct or incorrect. 

This helps in detecting errors in modules.  

For example, while processing the query म ुंबईमधील क ुं वा रायगडमधील स ुंदर राष्ट्रीय उद्यान 
(mumbaimadhil kiva raaygadmadhil sundar raashtriya udyaan), let us assume that stemmer is 

not able to remove the suffix मधील (madhil) (in) from words म ुंबईमधील (mumbaimadhil) (in 

Mumbai) and रायगडमधील (raaygadmadhil) (in Raigad). As a result, the named entity module 

will not be able to detect म ुंबई (mumbai) (Mumbai) and रायगड (raaygad) (Raigad) as named 

entities. By looking at the output of stemming stage, the assessor can conclude that stemmer 

should be further improved. However, even if we correct the stemmer, we are not sure whether 

named entity module will detect म ुंबई (mumbai) (Mumbai) and रायगड (raaygad) (Raigad) as 

named entities.  

To avoid delay in the detection of errors in subsequent modules, Tracker allows assessor to 

replace the output of a particular module with the correct output without actually modifying the 

module. Once the assessor submits the query again after modifying the stemmer output, the new 

corrected output will override the existing output and will be fed as input to next stage. This can 

be done incrementally to detect errors in all the modules. While doing this, tracker stores 

information about past changes and masks all the outputs of the modules which assessor wish to 

change. This information is stored till the assessor wish to clear it for that query.  Let us see some 

additional capabilities in tracker which makes development and bug detection faster. 

4.1.1 Capabilities of Tracker 

A relevance judgement tool1 is integrated with the tracker which allows the user to perform 

relevance judgement on a query. These judgements are stored in a database for future reference. 

The relevance judgements are pre-populated on the interface for subsequent firing of the same 

query. The result set for a query may change because of change in a module’s output. The 

assessor has to perform relevance judgements only for those URLs whose relevance judgement 

was not stored earlier. This saves time of re-judging the same page for a query. The tracker 

automatically calculates precision values at rank 5 and 10 using these judgements. These figures 

help the assessor in analyzing the effect of current change in module outputs on the precision 

values of the result set.  

Tracker also maintains a revision history for each query fired by the assessor. This history 

captures the changes done in different modules and corresponding precision values. This helps in 

summarizing what kind of changes can help to improve the system as a whole. Consider a 

scenario where the system was tested for around 100 queries. Out of these queries, 60% of the 

queries showed improvement after changing the output of stemmer. 20-30% showed 

improvement after modifying named entity recognition output and the rest didn’t show a 

significant change in results after modifying any output. In this case, stemmer and named entity 

                                                        
1
 A relevance judgement tool is an interface to help an assessor mark a retrieved URL as relevant, partially relevant, link-

relevant, irrelevant and error 

225



recognition modules should be improved. Such data can help prioritize tasks for development and 

help improve the system faster. 

5 Implementation Details 

Tracker is developed in Java. Tracker has a web interface which is linked to the results page of 

the search engine. The system maintains login information of the assessors to store relevance 

judgement of each assessor separately in a database. Relevance judgment is stored in a table with 

primary key as combination of the username of assessor, query and URL of the search result. 

When a query is fired, the input and output of each module is stored in an object. This object 

persists till expiry of session. The values captured in the object are displayed to the assessors on 

the tracker web interface. The assessor is allowed to modify the output of any module. The 

modified output is stored back in the object and used for overriding the output of the stages for 

which modification is done. The object stores change information till either session expires or 

user fires a different query. In the latter case, the object is used for storing information about new 

query. A separate table is created in database for maintaining revision history of the changes done 

for each query.  

Figure 2 shows a screen of the tracker interface used for tracking output. The first column 

specifies the level in module hierarchy, second denotes module name and the last column shows 

the output of the corresponding output. Since it is pipeline architecture, the output of one module 

directly forms input of other module and hence inputs are not explicitly shown. The assessors are 

allowed to edit one level at a time which enables tracking incremental changes. 

 

FIGURE 2- Tracker Web Interface 

226



Figure 3 shows how a revision history for each query is maintained. The boost values used for 

named entity, multi-word, title, content, etc. are part of system parameters which can be tuned 

using tracker. In this case change in stemmer, which is second module in the pipeline, causes 

significant rise in precision values. The third row in figure shows the effect of reducing named 

entity boost during query formulation. The fourth row depicts that change in title boost have no 

effect on precision values for this query. 

FIGURE 3- Revision History 

6 User experiences of Tracker 

Tracker was used by more than 100 developers and assessors all over India for tracing errors in 

multiple languages. A sample of overall feedback obtained is as follows: 

 Positive points: 

o Useful tool to track query processing 

o Easy to evaluate and check the system’s performance on varying boosts factors. 

o Revision History helps in comparing results. 

 Improvements Suggested: 

o Should be extended to calculate precision values up to 25 results. 

o Should be extended to support dynamic resource updation while tracking 

changes. 

Conclusion and perspectives  

In this paper, we have highlighted the importance of having an error analysis tool like tracker to 

track individual modules of a large scale system. Tracker facilitates detection of errors in 

different modules of the search engine. Pseudo error correction of outputs helps discovering 

further errors in the system without making a change in the module. With an example of Marathi 

retrieval system, we have shown the use of tracker and its effectiveness in error analysis and 

analyzing performance of the system for various system parameters. Tracker is independent of 

the language of search and portable across search systems. This idea can be extended for making 

error analysis tools for any large scale system based on pipelined architecture.  

Acknowledgments  

Thanks to DAIICT, Gujarat for their contribution in developing a relevance judgement tool that 

is integrated with the tracker. 

References 

Text REtrieval Conference (TREC) Home Page (1992). http://trec.nist.gov/ 

227



The CLEF Initiative (Conference and Labs of the Evaluation Forum) – Homepage (2000). 

http://www.clef-initiative.eu/ 

NTCIR HOME (1999). http://research.nii.ac.jp/ntcir/index-en.html 

FIRE - Forum for Information Retrieval Evaluation (2008). http://www.isical.ac.in/~clia/ 

Mugdha Bapat, Harshada Gune, Pushpak Bhattacharyya (2010). A Paradigm-Based Finite State 

Morphological Analyzer for Marathi. Proceedings of the 1st Workshop on South and Southeast 

Asian Natural Language Processing (WSSANLP), pages 26–34, the 23rd International 

Conference on Computational Linguistics (COLING), Beijing, August 2010. 

228


