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Abstract

We developed a string-to-tree system for
English–German, achieving competitive re-
sults against a hierarchical model baseline.
We provide details of our implementation of
GHKM rule extraction and scope-3 parsing
in the Moses toolkit. We compare systems
trained on the same data using different gram-
mar extraction methods.

1 Introduction

Over the last few years, syntax-based rule extraction
has largely developed along two lines, one originat-
ing in hierarchical phrase-based translation (Chiang,
2005; Chiang, 2007) and the other in GHKM (Gal-
ley et al., 2004; Galley et al., 2006).

Hierarchical rule extraction generalizes the estab-
lished phrase-based extraction method to produce
formally-syntactic synchronous context-free gram-
mar rules without any requirement for linguistic an-
notation of the training data. In subsequent work, the
approach has been extended to incorporate linguis-
tic annotation on the target side (as in SAMT (Zoll-
mann and Venugopal, 2006)) or on both sides (Chi-
ang, 2010).

In contrast, GHKM places target-side syntactic
structure at the heart of the rule extraction process,
producing extended tree transducer rules that map
between strings and tree fragments.

Ultimately, both methods define rules according
to a sentence pair’s word-alignments. Without any
restriction on rule size they will produce an expo-
nentially large set of rules and so in practice only

a subgrammar can be extracted. It is the differing
rule selection heuristics that distinguish these two
approaches, with hierarchical approaches being mo-
tivated by phrasal coverage and GHKM by target-
side tree coverage.

The Moses toolkit (Koehn et al., 2007) has in-
cluded support for hierarchical phrase-based rule ex-
traction since the decoder was first extended to sup-
port syntax-based translation (Hoang et al., 2009).
In this paper we provide some implementation de-
tails for the recently-added GHKM rule extractor
and for the related scope-3 decoding algorithm. We
then describe the University of Edinburgh’s GHKM-
based English-German submission to the WMT
translation task and present comparisons with hier-
archical systems trained on the same data. To our
knowledge, these are the first GHKM results pre-
sented for English-German, a language pair with a
high degree of reordering and rich target-side mor-
phology.

2 GHKM Rule Extraction in Moses

A basic GHKM rule extractor was first developed
for Moses during the fourth Machine Translation
Marathon1 in 2010. We have recently extended it
to support several key features that are described in
the literature, namely: composition of rules (Gal-
ley et al., 2006), attachment of unaligned source
words (Galley et al., 2004), and elimination of fully
non-lexical unary rules (Chung et al., 2011).

We provide some basic implementation details in
the remainder of this section. In section 4 we present

1http://www.mtmarathon2010.info
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Figure 1: Sentence pair from training data.

experimental results comparing performance against
Moses’ alternative rule extraction methods.

2.1 Composed Rules

Composition of minimal GHKM rules into larger,
contextually-richer rules has been found to signif-
icantly improve translation quality (Galley et al.,
2006). Allowing any combination of adjacent min-
imal rules without restriction is unfeasible and so
in practice various constraints are imposed on com-
position. Our implementation includes three con-
figurable parameters for this purpose, which we
describe with reference to the example alignment
graph shown in Figure 1. All three are defined in
terms of the target tree fragment.

Rule depth is defined as the maximum distance
from the composed rule’s root node to any other
node within the fragment, not counting preterminal
expansions (such asNE → Nikitin). By default, the
rule depth is limited to three. If we consider the
composition of rules rooted at theS-TOP node in
Figure 1 then, among many other possibilities, this
setting permits the formation of a rule with the target
side:

S-TOP→ das ist der Fall von PN-NK

since the maximum distance from the rule’s root
node to another node is three (toAPPRor to PN-NK).
However, a rule with the target side:

S-TOP→ das ist der Fall von NE Nikitin

is not permitted since it has a rule depth of four
(from S-TOP to either of theNE nodes).

Node count is defined as the number of target tree
nodes in the composed rule, excluding target words.
The default limit is 15, which for the example is
large enough to permit any possible composed rule
(the full tree has a node count of 13).

Rule size is the measure defined in De-
Neefe et al. (2007): the number of non-part-of-
speech, non-leaf constituent labels in the target tree.
The default rule size limit is three.

2.2 Unaligned Source Words

Unaligned source words are attached to the tree
using the following heuristic: if there are aligned
source words to both the left and the right of an un-
aligned source word then it is attached to the lowest
common ancestor of its nearest such left and right
neighbours. Otherwise, it is attached to the root of
the parse tree.

2.3 Unary Rule Elimination

Moses’ chart decoder does not currently support
the use of grammars containing fully non-lexical
unary rules (such asNP → X1 | NN1). Unless the
--AllowUnary option is given, the rule extractor
eliminates these rules using the method described in
Chung et al. (2011).

2.4 Scope Pruning

Unlike hierarchical phrase-based rule extraction,
GHKM places no restriction on the rank of the re-
sulting rules. In order that the grammar can be
parsed efficiently, one of two approaches is usually
taken: (i) synchronous binarization (Zhang et al.,
2006), which transforms the original grammar to a
weakly equivalent form in which no rule has rank
greater than two. This makes the grammar amenable
to decoding with a standard chart-parsing algorithm
such as CYK, and (ii)scope pruning (Hopkins and
Langmead, 2010), which eliminates rules in order to
produce a subgrammar that can be parsed in cubic
time.

Of these two approaches, Moses currently sup-
ports only the latter. Both rule extractors prune
the extracted grammar to remove rules with scope
greater than three. The next section describes the
parsing algorithm that is used for scope-3 grammars.
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3 Scope-3 Parsing in Moses

Hopkins and Langmead (2010) show that a sentence
of lengthn can be parsed using a scope-k grammar
in O(nk) chart updates. In this section, we describe
some details of Moses’ implementation of their chart
parsing method.

3.1 The Grammar Trie

The grammar is stored in a trie-based data structure.
Each edge is labelled with either a symbol from the
source terminal vocabulary or a generic gap sym-
bol, and the trie is constructed such that for any path
originating at the root vertex, the sequence of edge
labels represents the prefix of a rule’s source right-
hand-side (RHSs, also referred to as a rule pattern).
Wherever a path corresponds to a complete RHSs,
the vertex stores an associative array holding the set
of grammar rules that share that RHSs. The asso-
ciative array maps a rule’s sequence of target non-
terminal symbols to the subset of grammar rules that
share those symbols.

Figure 2 shows a sample of the grammar rules that
can be extracted from the example alignment graph
of Figure 1, and Figure 3 shows the corresponding
grammar trie.

3.2 Initialization

The first step is to construct a secondary trie that
records all possible applications of rule patterns
from the grammar to the sentence under consider-
ation. This trie is built during a single depth-first
traversal of the grammar trie in which the terminal
edge labels are searched for in the input sentence. If
a matching input word is found then the secondary
trie is extended by one vertex for each sentence posi-
tion at which the word occurs and trie traversal con-
tinues along that path. A search for a gap label al-
ways results in a match. Edges in the secondary trie
are labelled with the matching symbol and the posi-
tion of the word in the input sentence (or a null po-
sition for gap labels). Each vertex in the secondary
trie stores a pointer to the corresponding grammar
trie vertex.

Once the secondary trie has been built, it is easy
to determine the set of subspans to which each rule
pattern applies. A set of pairs is recorded against
each subspan, each pair holding a pointer to a gram-

mar trie vertex and a record of the sentence positions
covered by the symbols (which will be ambiguous if
the pattern contains a sequence ofk > 1 adjacent
gap symbols covering more thank sentence posi-
tions).

After this initialization step, the secondary trie is
discarded.

3.3 Subspan Processing

The parsing algorithm proceeds by processing chart
cells in order of increasing span width (i.e. bottom-
up). At each cell, astack lattice is constructed for
each rule pattern that was found during initialization.
The stack lattice compactly represents all possible
applications of that pattern over the span, together
with pointers to the underlying hypothesis stacks for
every gap. A full path through the lattice corre-
sponds to a single application context. By selecting
a derivation class (i.e. target-side non-terminal la-
bel) at each arc, the path can be bound to a set of
grammar rules that differ only in the choice of target
words or LHS label.

Recall that for every rule pattern found during
initialization, the corresponding grammar trie ver-
tex was recorded and that the vertex holds an as-
sociative array in which the keys are sequences of
target-side non-terminal labels and the mapped val-
ues are grammar rules (together with associated fea-
ture model scores). The algorithm now loops over
the associated array’s key sequences, searching the
lattice for matching paths. Where found, the gram-
mar rule is bound with a sequence of underlying
stack pointers. The cell’s stacks are then populated
by applying cube pruning (Chiang, 2007) to the set
of bound grammar rules.

4 Experiments

This section describes the GHKM-based English-
German system submitted by the University of Ed-
inburgh. Subsequent to submission, a further set of
comparative experiments were run using a hierarchi-
cal phrase-based system and a hierarchical system
with target side syntactic annotation.

4.1 Data

We made use of all available English-German Eu-
ropean and News Commentary data. For the hi-
erarchical phrase-based experiments, this totalled
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1. NP-PD→ the case of Alexander Nikitin | der Fall von Alexander Nikitin
2. NP-PD→ the case X1 | der Fall PP-MNR1

3. NP-PD→ X1 case X2 | ART1 Fall PP-MNR2

4. PP-MNR → of X1 | von PN-NK1

5. PP-MNR → of X1 X2 | von NE1 NE2

Figure 2: A sample of the rules extractable from the alignment graph in Figure 1. Rules are written in the form
LHS → RHSs | RHSt .

Nikitin

Alexander

of ✸

case

✸

✸

✸

case

the of ✸

Figure 3: Example grammar trie. The filled vertices hold
associative array values.

2,043,914 sentence pairs. For the target syntax ex-
periments, the German-side of the parallel corpus
was parsed using the BitPar2 parser. If a parse
failed then the sentence pair was discarded, leav-
ing a total of 2,028,556 pairs. The parallel corpus
was then word-aligned using MGIZA++ (Gao and
Vogel, 2008), a multi-threaded implementation of
GIZA++ (Och and Ney, 2003).

We used all available monolingual German data
to train seven 5-gram language models (one each
for Europarl, News Commentary, and the five News
data sets). These were interpolated using weights
optimised against the development set and the re-
sulting language model was used in experiments.
We used the SRILM toolkit (Stolcke, 2002) with
Kneser-Ney smoothing (Chen and Goodman, 1998).

The baseline system’s feature weights were tuned
on thenews-test2008 dev set (2,051 sentence pairs)
using Moses’ implementation of minimum error rate
training (Och, 2003).

2http://www.ims.uni-stuttgart.de/tcl/
SOFTWARE/BitPar.html

4.2 Rule Extraction

For the hierarchical phrase-based model we used
the default Moses rule extraction settings, which
are taken from Chiang (2007). For target-annotated
models, the syntactic constraints imposed by the
parse trees reduce the grammar size significantly.
This allows us to relax the rule extraction settings,
which we have previously found to benefit transla-
tion quality, without producing an unusably large
grammar. We use identical settings to those used in
WMT’s 2010 translation task (Koehn et al., 2010).
Specifically, we relax the hierarchical phrase-based
extraction settings in the following ways:

• Up to seven source-side symbols are allowed.

• Consecutive source non-terminals are permit-
ted.

• Single-word lexical phrases are allowed for hi-
erarchical subphrase subtraction.

• Initial phrases are limited to 15 source words
(instead of 10).

By using the scope-3 parser we can also relax the
restriction on grammar rank. For comparison, we
extract two target-annotated grammars, one with a
maximum rank of two, and one with an unlimited
rank but subject to scope-3 pruning.

GHKM rule extraction uses the default settings3

as described in section 2.
Table 1 shows the sizes of the extracted grammars

after filtering for thenewstest2011 test set. Fil-
tering removes any rule in which the source right-
hand-side contains a sequence of terminals and gaps
that does not appear in any test set sentence.

3GHKM rule extraction is now fully integrated into Moses’
Experiment Management System (EMS) and can be enabled for
string-to-tree pipelines using theTRAINING:use-ghkm pa-
rameter.
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Experiment Grammar Size
Hierarchical 118,649,771
Target Syntax 12,748,259
Target Syntax (scope-3) 40,661,639
GHKM 27,002,733

Table 1: Grammar sizes (distinct rule counts) after filter-
ing for thenewstest-2011 test set

4.3 Features

Our feature functions include then-gram language
model probability of the derivation’s target yield, its
word count, and various scores for the synchronous
derivation. We score grammar rules according to the
following functions:

• p(RHSs|RHSt,LHS), the noisy-channel trans-
lation probability.

• p(LHS,RHSt|RHSs), the direct translation
probability.

• plex (RHSt|RHSs) andplex (RHSs|RHSt), the
direct and indirect lexical weights (Koehn et al.,
2003).

• ppcfg(FRAGt), the monolingual PCFG proba-
bility of the tree fragment from which the rule
was extracted (GHKM and target-annotated
systems only). This is defined as

∏
n

i=1
p(ri),

wherer1 . . . rn are the constituent CFG rules
of the fragment. The PCFG parameters are es-
timated from the parse of the target-side train-
ing data. All lexical CFG rules are given the
probability 1. This is similar to thepcfg feature
used in Marcu et al. (2006) and is intended to
encourage the production of syntactically well-
formed derivations.

• exp(−1/count(r)), a rule rareness penalty.

• exp(1), a rule penalty. The main grammar and
glue grammars have distinct penalty features.

4.4 Decoder Settings

For the submitted GHKM system we used a max-
imum chart span setting of 25. For the other sys-
tems we used settings that matched the rule extrac-
tion spans: 10 for hierarchical phrase-based, 15 for
target syntax, and unlimited for GHKM.

We used the scope-3 parsing algorithm (enabled
using the option-parsing-algorithm 1) for
all systems except the hierarchical system, which
used the CYK+ algorithm (Chappelier and Rajman,
1998).

For all systems we set thettable-limit pa-
rameter to 50 (increased from the default value of
20). This setting controls the level of grammar prun-
ing that is performed after loading: only the top scor-
ing translations are retained for a given source RHS.

4.5 Results

Following the recommendation of
Clark et al. (2011), we ran the optimization
three times and repeated evaluation with each set
of feature weights. Table 2 presents the averaged
single-reference BLEU scores. To give a rough
indication of how much use the systems make of
syntactic information for reordering, we also report
glue rule statistics taken from the 1-best derivations.

There is a huge variation in decoding time be-
tween the systems, much of which can be at-
tributed to the differing chart span limits. To give
a comparison of system performance we selected an
80-sentence subset ofnewstest2011, randomly
choosing ten sentences of length 1-10, ten of length
11-20, and so on. We decoded the test set four times
for each system, discarding the first set of results (to
allow for filesystem cache priming) and then aver-
aging the remaining three. Table 3 shows the total
decoding times for each system and the peak virtual
memory usage4. Figure 4 shows a plot of sentence
length against decoding time for the two GHKM
systems.

5 Conclusion

We developed a GHKM-based string-to-tree system
for English to German, achieving competitive results
compared to a hierarchical model baseline. We ex-
tended the Moses toolkit to include a GHKM rule
extractor and scope-3 parsing algorithm and pro-
vided details of our implementation. We intend to
further improve this system in future work.

4The server has 142GB physical memory. The decoder was
run single-threaded in performance tests. For the hierarchical
system we used an on-disk rule table, which reduces memory
requirements at the cost of increased rule lookup time. For all
other systems we used in-memory rule tables.
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newstest2009 newstest2010 newstest2011 Glue Rule Apps
Experiment BLEU s.d. BLEU s.d. BLEU s.d. Mean s.d.
GHKM (max span 25) 15.2 0.1 16.7 0.1 15.4 0.1 3.1 0.3
Hierarchical 15.2 0.0 16.4 0.1 15.5 0.0 13.9 0.5
Target 14.6 0.1 16.0 0.1 14.9 0.1 8.4 5.0
Target (scope-3) 14.7 0.0 16.4 0.2 15.0 0.0 9.7 1.2
GHKM (no span limit) 15.0 0.3 16.6 0.1 15.2 0.2 1.9 1.3

Table 2: Average BLEU scores and standard deviations over three optimization runs. GHKM (max span 25) is the
submitted system. Also shown is the average number of rule applications per sentence for the 1-best output of the
three test sets, averaged over the three optimization runs.

System Max Time (s) VM (MB)
span

Hierarchical 10 122 5,345
Target 15 367 8,688
Target (scope-3) 15 1,539 19,761
GHKM 25 3,529 17,424
GHKM None 11,196 18,060

Table 3: Total decoding time and peak virtual memory
usage for the 80-sentence subset ofnewstest2011.
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