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Abstract

We present work on understanding natural lan-
guage in a situated domain, that is, language
that possibly refers to visually present enti-
ties, in an incremental, word-by-word fashion.
Such type of understanding is required in con-
versational systems that need to act immedi-
ately on language input, such as multi-modal
systems or dialogue systems for robots. We
explore a set of models specified as Markov
Logic Networks, and show that a model that
has access to information about the visual con-
text of an utterance, its discourse context, as
well as the linguistic structure of the utter-
ance performs best. We explore its incremen-
tal properties, and also its use in a joint pars-
ing and understanding module. We conclude
that MLNs offer a promising framework for
specifying such models in a general, possibly
domain-independent way.

1 Introduction

We speak situated in time and space. Speech by ne-
cessity unfolds sequentially in time; and in a conver-
sation, all speech but that of the opening utterance is
preceded by other speech belonging to the same con-
versation. In many, if not most, conversational situa-
tions speaker and addressee are co-located in space,
and their speech may refer to their shared situation.

Most current spoken dialogue systems attempt to
abstract from this fact, however. They work in do-
mains where physical co-location is not necessary,
such as information look-up, and they quantize time
into discrete turn units by endpointing utterances

(see discussion in (Aist et al., 2007; Schlangen and
Skantze, 2009)).

In this paper we present our current work on over-
coming these abstractions for the task of natural lan-
guage understanding (NLU). We have created a sta-
tistical model that can be trained on conversational
data and which can be used as an NLU module for
an incremental, situated dialogue system (such as
that described in (Buß et al., 2010)). We show that
this model beats baseline approaches by a wide mar-
gin, and that making available the full set of infor-
mation comprising visual context, discourse context,
and linguistic structure gives significantly better re-
sults than any subset of these information sources on
their own.

The paper is structured as follows: we first dis-
cuss related work and introduce some background,
and then describe in detail our set of experiments,
and present and analyse our results. We close with a
general discussion of this work and possible future
extensions.

2 Related Work and Background

The work in this paper builds on, connects and ex-
tends several strands of research: grounded seman-
tics (Roy, 2005), which worries about the connec-
tion between language and the situation in which
it is used, but often does not go beyond the word
level to include linguistic structure information and
does not work incrementally;1 statistical NLU (see
e.g. (Zettlemoyer and Collins, 2009; Liang et al.,

1But see (Spranger et al., 2010); for recent attempts that par-
tially overcome these limitations.

314



2011)), which tries to infer linguistic structures au-
tomatically, but normally stops at generating, not in-
terpreting semantic representations, and works with
(the text of) full utterances and not incrementally on
speech data; and incremental NLU, which is a less
intensely studied field, but where previous contri-
butions (such as (DeVault et al., 2009; Devault et
al., 2011; Aist et al., 2007; Schlangen and Skantze,
2009)) have not dealt with learned grounded seman-
tics.

We go beyond this earlier work in that we study
a model that is incremental, can use linguistic struc-
ture, and learns from conversational data a semantics
that connects the utterance to its visual and discourse
context. We have looked at individual components
of this before (grounded semantics in (Siebert and
Schlangen, 2008); incremental reference resolution
in (Schlangen et al., 2009); incremental general NLU

in (Heintze et al., 2010); interaction between incre-
mental parsing and reference resolution in (Peldszus
et al., 2012)), but use a more sophisticated model in
this work and show that tackling these tasks jointly
improves performance.

MLN
System

Context/World

Language/
RMRS

Context/
Discourse

Prediction:
action
object
result

Figure 1: NLU Data Flow

We apply Markov Logic Networks (MLNs,
(Richardson and Domingos, 2006)) as the machine
learning technique in our experiments. MLNs have
recently received attention in language processing
fields like co-reference resolution (Chen, 2009), se-
mantic role labeling (Meza-Ruiz and Riedel, 2009),
spoken (albeit neither situational nor incremental)
NLU (Meurs et al., 2008), and web information ex-
traction (Satpal et al., 2011). The framework of-
fers a convenient way of specifying factor functions
on sets of random variables for undirected graphical
models (Markov Random Fields, see (Kindermann
and Snell, 1980)), in such a way that the factors
correspond to weighted first order formulae and the
joint distribution of random variables corresponds to

probabilities of groundings of formulae. In this way,
MLNs offer a helpful bridge between symbolic rep-
resentation and stochastic inference. Weights of for-
mulae can be specified by hand or learned from data;
we used the latter capability.

Figure 1 shows data flow in our task. We use com-
binations of situated context, previous context, and
linguistic information as evidence to an MLN, and
infer what action is to be taken, what object is to be
acted upon, and specifications of the manner of exe-
cution.

3 Experiments

We will now describe our experiments with using
Markov Logic Networks for situated incremental
natural language understanding.

3.1 Data and Task
For our experiments, we used task-oriented con-
versational data from the Pentomino domain
(Fernández et al., 2007); more specifically, we
worked with the corpus also used recently in
(Heintze et al., 2010) and (Peldszus et al., 2012).
This corpus was collected in a Wizard-of-Oz study,
where the user goal was to instruct the computer to
pick up, delete, rotate or mirror puzzle tiles on a
rectangular board (as in Figure 2), and place them
onto another one. For each utterance, the corpus
records the state of the game board before the utter-
ance, the immediately preceding system action, and
the intended interpretation of the utterance (as un-
derstood by the Wizard) in the form of a semantic
frame specifying action-type and arguments, where
those arguments are objects occurring in the descrip-
tion of the state of the board. The language of the
corpus is German.

Figure 2: Example Pentomino Board

For this study, we were interested in the potential
contribution of linguistic structure to the NLU task.
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To this end, we produced for each utterance an in-
cremental sequence of parses and corresponding se-
mantic representations (as RMRS structures (Copes-
take, 2007), i.e. underspecified semantic representa-
tions), using the parser described in (Peldszus et al.,
2012). These representations were not further man-
ually checked for appropriateness, and hence do not
necessarily represent ground truth.

As in (Peldszus et al., 2012), we discarded ut-
terances without clear semantic alignments. One
major difference from them is that we do include
the 661 utterances that used pronouns to refer to
pieces, leaving us with 1687 utterances, 5.43 words
per utterance (sd 2.36), with a vocabulary of 237 dis-
tinct words. These were transcribed utterances and
not automatic speech recognition output, so our re-
sults represent an upper-bound on real world perfor-
mance.

The task that we wanted our model to tackle can
then be stated as follows: given information about
the current state of the world (i.e., the game board),
the previous system action, and about the (possibly
still not-yet completed) utterance, predict an inter-
pretation for the utterance, in the form of such a
frame. The elements of the frame may be speci-
fied separately; as argued in (Heintze et al., 2010),
this is the most appropriate format for incremental
processing since it provides a rough alignment be-
tween parts of the utterance and parts of its inter-
pretation. Figure 3 illustrates such a desired output
from the model. In more general terms, what we
want our model to learn then is how, in a given dis-
course context, language connects to the world. To
explore what information contributes to this, we will
systematically vary in our experiments what is avail-
able to the learner.

3.2 Representation

As mentioned above, Markov Logic allows the spec-
ification of knowledge bases through first order for-
mulae. A straightforward representation of the game
board would simply assert salient properties of the
individual objects such as their colour, shape, po-
sition, etc.; for the topmost object in Figure 2 this
could be colour(yellow) ∧ shape(g) ∧ pos(2, 1).
However, in pre-experiments on held-out data, we
found that a more parsimonious representation ac-
tually worked better, in which there is only one

n word interpretation
1 rotate action:rotate
2 the ...
3 yellow argument:yellow objects
4 piece argument:yellow pieces
5 next ...
6 to ...
7 the ...
8 yellow argument:yellow pieces

by yellow objects
9 plus argument:yellow piece

next to unique yellow plus
10 clockwise option:clockwise

Figure 3: Incremental interpretation of a 10-word utter-
ance. Only changes to the frame are shown, e.g. when
predictions about different frame elements are made. For
illustration, sets of objects are represented by descrip-
tions; in the system, these would be sets of object identi-
fiers.

abstract property that only implicitly does a typ-
ing into different features of the objects; again, for
the topmost piece from the figure this would be
piece(p)∧ property(p, yellow)∧ property(p, g)∧
property(p, row0)∧property(p, col1). This repre-
sentation follows a Davidsonian form of represent-
ing the relations between predicates.

The properties of the objects that we represented
in this way were colour, shape, its row and column,
horizontal percentage from the center and vertical
percentage from the center.

The utterance itself forms another source of in-
formation about the situation. In the simplest form,
it could be represented just through assertions of
the words which are part of it, e.g. word(rotate) ∧
word(the) ∧ word(yellow) ∧ . . . . As mentioned
above, we were interested in whether a more de-
tailed linguistic analysis could provide more useful
information to a model of situated semantics; we
represented this information by extracting some of
the relations of the RMRS representation for each ut-
terance (-prefix) and converting them to a slightly
simpler form. Figure 4 shows the RMRS representa-
tion of an example utterance and the corresponding
simplified representation that we derive from it (la-
bels as defined by RMRS and quotes required by and
the MLN are removed for simplicity). We represent
words as RMRS EPs (elementary predicates); i.e., by
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their lemma and with additional identifiers as argu-
ments, which can be used to relate the EP to other
RMRS structure. In the variants of the model that
only look at words, the other arguments can sim-
ply be ignored in the MLN template. The final ar-
gument for EP is the board identifier, which remains
unchanged during an utterance.

RMRS
a33:yellow(e34)
a19:NN(x14)
ARG1(a49,x14)
ARG2(a49,x53)
a49:nextto(e50)
BV(a52,x53)
RSTR(a52,h60)
BODY(a52,h61)
a52:def()
ARG1(a72,x53)
a72:yellow(e73)
a58:plus(x53)

MLN
EP(a33,yellow,e34,1)
EP(a19,NN,x14,1)
RMRS(ARG1,a49,x14,1)
RMRS(ARG2,a49,x53,1)
EP(a49,nextto,e50,1)
RMRS(BV,a52,x53,1)
EP(a52,def,,1)
RMRS(ARG1,a72,x53,1)
EP(a72,yellow,e73,1)
EP(a58,plus,x53,1)

Figure 4: RMRS and MLN for yellow piece next to the
yellow plus

Finally, the previous system action and, during
learning but not testing, the interpretation that is
to be predicted needs to be represented. This is
done through predicates action(), argument() and
option() for the interpretation of the current utter-
ances and corresponding predicates for that of the
previous one.

To summarise, each problem instance is hence
represented as a conjunction of predicates encoding
a) the (world) situational context (the state of the
game board), b) the discourse context (in the form
of the previous action), and c) the (possibly as-yet
partial) utterance, linguistically analysed.

3.3 Model and Decision Rule
The actual model is now formed by the MLN tem-
plates that specify the relations between the predi-
cates; in particular those between those representing
the available information (evidence) and the predi-
cates that represent the information that is to be pre-
dicted (or, in MLN terminology, whose most likely
values are to be inferred). Figure 5 illustrates graph-
ically how our model makes these connections, sep-
arately for each frame element that is to be predicted.

These graphs show that for action and
option, we assume an influence both of the words

Action

Argument

Option

PrevAction PrevOptionEP

RMRS

Property

EP

EP

Property

EP

Figure 5: MLN relations between predicates

present in the utterance (denoted by EP; see above)
and of the previous value of these slots on the cur-
rent one. The previous context that is used for train-
ing and evaluation is taken from the corpus anno-
tation files. The structure for argument is some-
what more complicated; this is where the linguis-
tic information coming from the RMRSs comes into
play, and also where the connection between lan-
guage and properties of the visual scene is made.
The actual template that defines our MLN is shown
in Figure 6.

1 EP (a1, a2,+w, a3, b) ⇒ Action(+a, b)
2 PrevAction(+a, b) ⇒ Action(+a, b)
3 EP (a1, a2,+w, a3, b)) ⇒ Option(+o, b)
4 PrevOption(+o, b) ⇒ Option(+o, b)
5 EP (a1, a2,+w, a3, b)) ∧ Property(p,+pr, b)

⇒ Argument(p, b)
6 EP (a1, a2, w1, a3, b) ∧RMRS(+t, a4, a3, b)

∧RMRS(+t, a4, a5, b) ∧ EP (a5, a6, w2, a5, )
∧Property(p,+pr, b) ⇒ Argument(p, b)

Figure 6: The MLN template specifying our model

Our MLN system gives us probability distribu-
tions over all possible groundings of the frame pred-
icates, but as we are interested in single best candi-
dates (or the special value unknown, if no guess
can be made yet), we applied an additional deci-
sion rule to the output of the MLN component. If
the probability of the highest candidate is below a
threshold, unknown is returned, otherwise that can-
didate is returned. Ties are broken by random se-
lection. The thresholds for each frame element /
predicate were determined empirically on held-out
data so that a satisfactory trade-off between letting
through wrong predictions and changing correct re-

317



Type Class Acc.
Action majority put 33.55
Argument majority tile-3 20.98
Option majority na 27.08
Frame majority take, tile-3, na 3.67
Action Contextual 42.24

Table 1: Majority class and Action contextual baselines

sults to unknown was achieved.

3.4 Parameter Training Procedure, Baselines,
Metrics

All results reported below were obtained by aver-
aging results of a 10-fold validation on 1489 Pento
boards (i.e., utterances + context). We used a sep-
arate set of 168 boards for small-scale, held-out
experiments. For learning and inference we used
the Alchemy system (Domingos et al., 2006), us-
ing the discriminative training option (Singla and
Domingos, 2005).2 Inference was performed on the
Action, Argument, and Option predicates; a sin-
gle answer was derived from the distributions deliv-
ered by alchemy in the way described in the previous
section.

To be able to assess our results, we devised two
kinds of baselines for the full utterance. The sim-
plest is just the majority class. Table 1 shows ac-
curacy when choosing the majority class, both for
the frame elements individually (where this baseline
is quite high) and for the most frequent full frame
(which, unsurprisingly, only reaches a very low ac-
curacy). Action can be predicted with somewhat
more accuracy if not the overall most frequent value
is chosen but that given the previous action (i.e.,
when Action is conditioned on PreviousAction).
The accuracy for this method, where the conditional
distribution was determined on the 1489 boards and
tested on the remaining 168 boards, is shown in the
Table under “action contextual”.

We give our results below as f-score, slot accuracy
and frame accuracy based on comparison to a gold
representation. To compute the f-score, we count a
prediction of unknown as a false negative (since for
our test utterance a value should always have been
predicted) and a wrong prediction as a false posi-

2http://alchemy.cs.washington.edu/

tive; i.e., a frame with one correct slot and the rest as
unknown has perfect precision, but only 1/3 recall.
Slot accuracy counts the number of slots that are
correct, and frame accuracy only counts fully cor-
rect frames. Hence, these metrics are successively
more strict. Which one most accurately predicts per-
formance of the model in the context of a dialogue
system depends on properties of the further compo-
nents: if they can act on partial frames, then an f-
score that start highs and continually improves as the
utterance goes on is desired; if not, then what’s rel-
evant is when in the utterance high frame accuracy
can be reached.

Using the best model variant, we further com-
pare two parsing/NLU feedback strategies, where the
feedback is to provide aid to the syntactic/RMRS

parser as to which parses to prune (as in (Peldszus
et al., 2012)). If a candidate parse does not resolve
to anything, then the parse score is degraded. (Peld-
szus et al., 2012) use a rule-based reference resolu-
tion component to provide this feedback signal. We
explore what the effects are of exchanging this for
a learned feedback strategy using our MLN model.
This model, however, does not provide discrete ref-
erent sets, but instead gives a probability distribution
over all possible pieces. We therefore simply mul-
tiplied each parse by the probability of the highest
probable piece, so that low probabilities effectively
result in pruning a parse.

On the incremental level, we followed Schlangen
et al. (2009) by using a subset of their incremental
metrics, with a modification on the edit overhead:
first correct: how deep into the utterance do we
make the first correct guess?
first final: how deep into the utterance do we make
the correct guess, and don’t subsequently change our
minds?
edit overhead: ratio of unnecessary edits / sentence
length, where the only necessary edit is that going
from unknown to the final, correct result anywhere
in the sentence)

We also follow their assumption that as the sen-
tence progresses incrementally, the earlier the frame
prediction can be made, the better. This is an impor-
tant part of our threshold decision rule, because we
also assume that no decision is better than a bad de-
cision. A comparison between first correct and first
final would reveal how well this assumption is real-
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W E R P FScore Slot Frame
5 5 5 5 92.18 88.88 74.76 1

{86.76} {81.61} {61.21}
5 5 5 81.06 72.59 34.36

{68.20} {58.61} {19.19}
5 5 5 91.63 88.03 72.68 2

{86.47} {80.69} {58.18}
5 5 75.44 65.72 22.55
5 5 5 72.29 61.61 24.56
5 5 18.15 12.10 0.0
5 5 72.34 61.67 24.63
5 18.32 12.21 0.0

5 5 5 90.68 85.68 63.75 4

5 5 68.94 56.26 0.0
5 5 90.67 85.68 63.89 3

5 69.10 56.39 0.0
5 5 72.29 61.61 24.56
5 18.15 12.10 0.0

5 72.30 61.63 24.69
18.15 12.10 0.0

Table 2: Comparison of combinations using World, EPs
(words), RMRS and Previous context. Number in brack-
ets are for tests on automatically transcribed speech.

ized. A good model would have the two numbers
fairly close together, and the prediction would be
best if both were lower, meaning good predictions
earlier in the sentence. The edit overhead further
sheds light on this distinction by showing what per-
centage of the time edits were made unnecessarily
throughout a sentence.

The procedure on the incremental level is simi-
lar to the full utterance procedure, except that for
incremental evaluation the f-score, slot accuracy,
and frame accuracies were calculated word for word
against the final gold representation.

3.5 Results

Since we were interested in the relative contributions
of our different kinds of information sources (visual
context, discourse context, words, linguistic struc-
ture), we trained and tested variant of the model de-
scribed above that had access to only parts of the full
information (by removing the appropriate predicates
from the MLN template). We report results in Table 2
for these different variants; here just as results after
the final word of the utterance, i.e., we’re not yet

Feedback Predictor FScore Slot Frame
HC HC 38.2
HC Full 92.26 88.94 74.69
none Full 92.18 88.88 74.76
Full Full 92.29 89.01 74.96

Table 3: Feedback strategies comparison for hard-coded
(HC), automatic (MLN) and no feedback (none)

looking at the incremental performance. For easier
reference, some lines are indexed with their rank ac-
cording to frame accuracy. The tope three lines also
contain a bracketed entry which represents automat-
ically transcribed utterances (also trained on manu-
ally transcribed data as in (Peldszus et al., 2012)).

First, it should be pointed out that the full model
(which has access to all information types) performs
rather well, giving a fully correct interpretation for
74% of all frames. As the somewhat higher f-score
indicates, some of the loss of frame accuracy is not
due to wrong predictions but rather to staying unde-
cided (choosing unknown)—a behaviour that could
be advantageous in some applications.

The next line shows that much of the informa-
tion required to reach this accuracy comes not from
the visual context or an analysis of the language but
from the discourse context; without access to it, ac-
curacy drops to 22%. However, the advantage of
having access to discourse context only really comes
out when access to the utterance is given as well
(rows indexed with 3 and 4, and 1 and 2). The model
that just goes by previous context can only achieve
an accuracy of 24%

Connecting discourse context to language alone
only brings accuracy to around 65% (rows 3 and 4);
only when the visual context is provided as well can
the best accuracy be reached. This is a pleasing re-
sult, as it shows that the model is indeed capable
of making the desired connection between language
and world; as none of it was not explicitly given,
which words and linguistic structure linked to which
properties was completely learned by the discrimi-
native training.

For the automatically transcribed results, all ver-
sions take a hit especially with regards to frame ac-
curacy. These also show that previous context and
linguistic structure contribute to increased perfor-
mance.
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action 1-6 7-8 9-14
first correct (% into utt.) 4.43 9.17 6.80
first final (% into utt.) 29.47 31.57 28.47
edit overhead 4.28
argument 1-6 7-8 9-14
first correct (% into utt.) 12.12 11.14 8.08
first final (% into utt.) 38.26 36.10 30.84
edit overhead 5.72
option 1-6 7-8 9-14
first correct (% into utt.) 7.62 27.75 26.73
first final (% into utt.) 45.13 56.68 59.36
edit overhead 13.96

Table 4: Incremental Results for Action, Argument, and
Option with varying sentence lengths

3.5.1 Feedback Results

Table 3 shows the various feedback strategies. HC
refers to the hard-coded version of feedback as in
(Peldszus et al., 2012). None means no feedback
was used, which is the setting of the parser as it was
used for the RMRS structures used in Table 2. MLN
refers using our learned model to provide feedback.
The column “Predictor” shows what model was used
to make the final prediction at the end of the utter-
ance. Overall, MLN performed much better on pre-
dicting the frame than the HC system (first row vs the
other rows); but one should keep in mind that much
of that improvement is presumably due to it having
access to discourse context.

The last three lines show that, as (Peldszus et
al., 2012) observed, providing feedback during pars-
ing does offer benefits; both HC-MLN and MLN-
MLN significantly improve over NONE-MLN (for f-
score: one-sided t(1489) = -3.313, p-value < 0.001,
and t(1489) = -3.67, p-value < 0.001, respectively;
significance-level Bonferroni corrected for multiple
comparisons; similar numbers for other metrics).
There was no significance when comparing HC with
MLN. This is an interesting result, indicating that
even though our model performs better at accurately
picking out referents, it provides a less useful feed-
back signal. This may be due to the way we com-
pute this signal; we leave further exploration to fu-
ture work.

3.5.2 Incremental Results

Table 4 shows the incremental results. Rows in-
volving first correct and first final represent aver-
age percentage into the utterance, where the utter-
ances were binned for lengths 1-6, 7-8, and 10-17
(“short”, “normal”, “long” utterances, respectively).
The boundaries of the bins were determined by look-
ing at the distribution of utterance lengths, which
looked like a normal distribution with 7 and 8-word
utterances having the highest representation. Our
model makes very early predictions (low first cor-
rect), but those predictions don’t always remain sta-
ble, and there is an edit overhead which leads to a
final correct decision only later in the sentence (first
final). For action and argument, the final deci-
sion is typically made within the first third of the ut-
terance. For option, it comes between the first and
second third of the sentence; this reflects typical ut-
terance structure, where the words that describe the
option (“spiegle es horizontal”; mirror it horizon-
tally) usually come later in the sentence.

A final way to show incremental progress is in
Figures 7 and 8 for sentences of “normal” length
(7-8 words). These show how accurate the pre-
diction was for each incremental step into the sen-
tence, both for the model with and that without ac-
cess to discourse context. Where first correct and
first final help identify specific points in the process-
ing of an utterance, for this graph each incremental
step is compared with the gold result. Figure 8, for
the model variant without access to discourse con-
text, shows that there is little impact on prediction
of action or option, but a significant and con-
stant impact on the quality of predicting argument
(i.e., of doing reference resolution); this is due to
some extent to the presence of anaphoric references
which simply cannot be resolved without access to
context.

Taken together, the incremental statistics help de-
termine an “operating point” for later modules that
consume NLU output. Under the assumption that the
ongoing utterance will be one of normal length (this
of course cannot be known in advance), the strength
with which a decision of the predictor can be be-
lieved at the current point into the utterance can be
read off the graphs.

Some discussion on speed efficiency: Using
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Figure 7: incremental accuracies
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Figure 8: incremental accuracies, no discourse context

MLNs did not introduce any noticeable speed effi-
ciency reduction in non-feedback models. In feed-
back models which used Auto, many more calls
to MLN were used, which greatly slowed down the
model.

3.6 Model Analysis
Examining the utterances that were not correctly in-
terpreted, we found that words dealing with the ar-
gument occured most frequently, specifically words
involving spatial language where the argument was
described in relation to another piece. This is some-
what disappointing, as we were hoping that RMRS

structure might help learn such constructions.
However, basic spatial expressions were learned

successfully, as can be illustrated by Figure 9. It
shows shows the probability distributions for the ut-
terances left and bottom right, on a 5x5 board we
generated for analysis, where each field was filled
with the same kind of piece of the same colour

(thus making these properties non-distinguishing).
The darker the gradient in the Figure the higher the
probability. The Figure shows that model success-
fully marks the fields closer to the left (or bottom-
right, respectively) as having higher probability. In-
terestingly, “left” seems to have some confusability
with “right” for the model, indicating perhaps that
it picked up on the general type of description (“far
side”). Further investigation of model properties is
left to future work, however.

left bottom right

Figure 9: probability gradient for left and bottom right

4 Conclusions

Markov logic networks are effective in expressing
models for situated incremental natural language un-
derstanding in a domain like Pentomino. We have
shown that various aspects of situated language use,
like previous context and the current state of the
world, all play a role in NLU. We have also shown
that semantic representations like RMRS can im-
prove performance, and we further verified that in-
cremental feedback between parser and NLU can im-
prove performance (Peldszus et al., 2012). MLNs
also provide an easy-to-read trained model which
can be easily analyzed. However, there is a trade-off
in that MLNs take some time to design, which still is
an intellectual task. Furthermore, inference in MLNs
is still not as efficient as other methods, which can
cause a slowdown in applications where very many
inference steps are required, such as the feedback
model.

In future work, we will further explore how to best
integrate linguistic information from the RMRSs,
specifically in spatial language; as well as look into
improvements in speed performance. Future work
will focus on interaction with live ASR. We will also
investigate using this setup for automatically trained
natural language generation.
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