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Abstract

Many modern spoken dialog systems use
probabilistic graphical models to update their
belief over the concepts under discussion, in-
creasing robustness in the face of noisy input.
However, such models are ill-suited to prob-
abilistic reasoning about spatial relationships
between entities. In particular, a car naviga-
tion system that infers users’ intended desti-
nation using nearby landmarks as descriptions
must be able to use distance measures as a fac-
tor in inference. In this paper, we describe
a belief tracking system for a location iden-
tification task that combines a semantic belief
tracker for categorical concepts based on the
DPOT framework (Raux and Ma, 2011) with
a kernel density estimator that incorporates
landmark evidence from multiple turns and
landmark hypotheses, into a posterior proba-
bility over candidate locations. We evaluate
our approach on a corpus of destination set-
ting dialogs and show that it significantly out-
performs a deterministic baseline.

1 Introduction

Mobile devices such as smart phones and in-car in-
fotainment systems have generated demand for a
new generation of location-based services such as
local business search, turn-by-turn navigation, and
social event recommendation. Accessing such ser-
vices in a timely manner through speech is a crucial
requirement, particularly on the go when the user is
unable to resort to other modalities e.g. where safety
regulations prohibit drivers from using buttons or a
touchscreeen while driving.

In such systems, a Point of Interest (POI)
or a destination such as a restaurant, store or a
public place is often specified. For example, a
car navigation system needs the user to input the
destination before giving directions. Similarly, a
photo tagging application must allow its users to
designate the location where a picture was taken.
While postal addresses can be used to unambigously
identify locations, they are often either unknown
or hard for users to remember. A more natural
(though potentially ambiguous) means of speci-
fying locations is to use landmarks such as “the
Italian restaurant near Red Rock
cafe on Castro Street” or “the bakery
near that mall with a Subway and
a 7 Eleven”. A location-based dialog system
that understands referring expressions using land-
marks could lead to more succinct dialogs, higher
recognition accuracy and a greater appearance of
intelligence to the user.

We present a system that performs belief track-
ing over multiple turns of user speech input to infer
the most probable target location. The user inter-
acts with the system through speech in order to spec-
ify a target location, and may include references to
one or more landmarks. Such a system must han-
dle two sources of uncertainty. First, ASR is notori-
ously error-prone and modern ASR engines provide
ranked lists of possible interpretations of speech in-
put rather than single hypotheses. Second, the suit-
ability of a particular landmark or its likelihood of
usage by the speaker depends on a number of factors
such as distance, size and prominence of the land-
mark, familiarity of the user and his expectation of
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common ground for understanding. These factors,
or at least the resulting variability, must be taken into
account when making inferences about target loca-
tions from landmark-based expressions.

The first source of ambiguity (speech understand-
ing) has been the target of research on belief tracking
(Mehta et al., 2010; Raux and Ma, 2011; Thomson
and Young, 2010). In previous work, the concepts
of interest are entities that are ontologically related
(i.e. with is-a or has-a relations), thus discrete prob-
abilistic graphical models such as DBNs have gen-
erally sufficed as representations. But these mod-
els are ill-suited for dense continuous spatial rela-
tions like the distance between any two locations on
a map. In this paper, we introduce a kernel-based
belief tracker as a probabilistic model for inferring
target locations from (uncertain) landmarks. The
kernel-based representation allows a natural way to
weigh the suitability of a landmark and the speech
understanding confidence. The output of this tracker
is combined with that of a Dynamic Probabilistic
Ontology Tree (DPOT) (Raux and Ma, 2011), which
performs ontological reasoning over other features
of the target location, to give a posterior distribu-
tion over the intended location. We evaluate our ap-
proach on a new corpus of location setting dialogs
specially collected for this work and find it to signif-
icantly outperform a deterministic baseline.

2 Related Work

In the context of a location-based dialog system,
Seltzer et al. (2007) describes a speech understand-
ing system designed to recognize street intersec-
tions and map them to a database of valid intersec-
tions using information retrieval techniques. Ro-
bustness is achieved by exploiting both words and
phonetic information at retrieval time, allowing a
soft-matching of the ASR result to the canonical in-
tersection name. Their approach is specifically tar-
geted at intersections, to the exclusion of other types
of landmarks. While intersections are frequently
used as landmarks in North America (where their
study was conducted), this is not always the case
in other cultures, such as Japan (Suzuki and Wak-
abayashi, 2005), where points of interests such as
train stations are more commonly used. Also, their
approach, which is framed as speech understanding,

does not exploit information from previous dialog
turns to infer user intention.

Landmarks have been integrated in route direc-
tions (Pierre-emmanuel Michon, 2001; Tversky and
Lee, 1999) with significant use at origin, destination
and decision points. Further, landmarks have been
found to work better than street signs in wayfind-
ing (Tom and Denis, 2003). The multimodal system
described in (Gruenstein and Seneff, 2007) supports
the use of landmarks from a limited set that the user
specifies by pointing at the map and typing landmark
names. While this allows the landmarks (and their
designations) to be of any kind, the burden of defin-
ing them is on the user.

Spatial language, including landmarks, has also
been the focus of research within the context of
human-robot interaction. (Huang et al., 2010;
MacMahon et al., 2006) describe systems that trans-
late natural language directions into motion paths or
physical actions. These works focus on understand-
ing the structure of (potentially complex) spatial lan-
guage and mapping it into a representation of the
environment. Issues such as imperfect spoken lan-
guage understanding have not been investigated in
this context. Similarly, this vein of spatial language
research has traditionally been conducted on small
artificial worlds with a few dozen objects and places
at most, whereas real-world location-based services
deal with thousands or millions of entities.

3 Hybrid Semantic / Location Belief
Tracking

Our belief tracking system consists of two trackers
running in parallel: a DPOT belief tracker (Raux and
Ma, 2011) and a novel kernel-based location tracker.
The final inference of user intentions is produced by
combining information from the two trackers. The
general idea is to rerank the user goals given spatial
information provided by the location tracker.

3.1 Semantic Belief Tracker

We perform belief tracking over non-landmark con-
cepts such as business name and street using a Dy-
namic Probabilistic Ontology Tree (DPOT) (Raux
and Ma, 2011). A DPOT is a Bayesian Network
composed of a tree-shaped subnetwork representing
the (static) user goal (Goal Network), connected to
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Figure 1: Top view heat map of spatial distribution with landmarks Subway and 7 Eleven over potential target
places in Mountain View, CA

a series of subnetworks representing the evidence
gathered from each successive dialog turn (Evidence
Networks). Details of the model and an efficient in-
ference method for posterior probability computa-
tions can be found in (Raux and Ma, 2011).

In the context of this paper, the purpose of the
semantic tracker is to update a list of the most
likely target locations using attributes of that
location provided by the user (see Figure 2). In
a local business database, such attributes include
Business Name, Street, Category (e.g.
Japanese restaurant or convenience store), etc.
The structure and parameters of the Goal Network
encode probabilistic ontological relations between
the attributes (e.g. a Mcdonalds would be described
as a fast-food restaurant with high probability)
that can be exploited during inference. These can
be derived from expert knowledge, learned from
data, or as is the case in our experimental system,
populated from a database of local businesses (see
section 4). After each user utterance, the DPOT
outputs a ranked list of user goal hypotheses (an ex-
ample goal hypothesis is [Category=italian
restaurant,Street=castro street]).
Each hypothesis is converted into a query to the

backend database, and the posterior probability of
the hypothesis is split equally among all matching
entries. This results in a ranked list of database
entries corresponding to the system’s belief over
potential target locations, with potentially many
entries having the same probability.

3.2 Kernel-based Location Tracker

Landmark concepts extracted by the Natural Lan-
guage Understanding module (NLU) are passed to
the location tracker, which maintains a distribution
over coordinates of potential target locations. Each
such landmark concept is treated as evidence of spa-
tial proximity of the target to the landmark and the
distribution is accordingly updated. Any location in
the database can serve as a landmark observation,
including major POIs such as train stations or pub-
lic facilities. If the name of a generic chain store
with multiple locations such as Subway is used for
the landmark, then an observation corresponding to
each individual location is added to the tracker.

For each observed landmark `, the location
tracker constructs a 2-dimensional Gaussian kernel
with mean equal to the longitude and latitude of the
landmark (µ` = (long`, lat`)) and a fixed covari-
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Figure 2: Overview of the hybrid semantic / location belief tracking approach; the database entry in shade is the
underlying true target place to which the provided landmark is close

ance matrix ⌃` for each landmark:

�`(t) =
1

2⇡|⌃|1/2
exp(�1

2
(t � µ`)

T⌃�1
` (t � µ`))

This kernel density determines the conditional prob-
ability that the target is at coordinates t =
(longt, latt) given the fixed landmark `. The covari-
ance matrix ⌃` and hence the shape of the kernel
can be adjusted for different landmarks depending
on considerations such as the familiarity, size and
prominence of the landmark (a large historic monu-
ment is likely to be used as a landmark for locations
much further away than a small corner grocery store)
etc.

The probability density of the location t being the
target is then given by a weighted mixture model:

Pr(t|L) =
X

`2L

w`�`(t) (1)

where L is the set of candidate landmarks returned
by the NLU (see Section 4.1) up to the current turn
and w` is set to the confidence score of ` from the

NLU. Thus candidate landmarks that have higher
confidence in the NLU will contribute more strongly
to the total likelihood. Since Pr(t|L) is a den-
sity function, it is unnormalized. In Figure 1, we
show the kernel tracker distribution for a dialog state
where Subway and 7 Eleven are provided as
landmarks.

The kernel density estimator is a simple approach
to probabilistic spatial reasoning. It is easy to imple-
ment and requires only a moderate amount of tuning.
It naturally models evidence from multiple speech
hypotheses and multiple provided landmarks, and
it benefits from accumulated evidence across dia-
log turns. It can also potentially be used to model
more general kinds of spatial expressions by using
appropriate kernel functions. For example, ‘Along
Castro street’ can be modeled by a Gaussian
with an asymmetric covariance matrix such that the
shape of the resulting distribution is elongated and
concentrated on the street. While ‘Two blocks
away from ...’ could be modeled by adding
an extra “negative” density kernel that extends from
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Figure 3: Overview of the Destination Setting System

the center of the landmark to a distance two blocks
away.

3.3 Combining the Two Trackers

At each turn, the updated results from the Seman-
tic and Location tracker are combined to give a
single ranked list of likely target locations. In
Figure 2, this process is illustrated for a dia-
log turn where two possible concepts are identi-
fied � a category attribute [Category:italian
restaurant] and a landmark [Landmark:red
rock coffee company]. These are passed to
the DPOT tracker and the location tracker respec-
tively. The output of the DPOT is used to retrieve
and score matching database entries. The score for
each entry is reweighted by the kernel density esti-
mator measured at the coordinates of the location 1:

Pr(eij) = (
pi

Ni
)⌫ ⇥ Pr(eij |L) (2)

where Ni is the number of matching database en-
tries retrieved from ith goal hypothesis (having joint
probability pi) and eij is the jth such entry (j 2
[1..Ni]). The exponent ⌫ for the posterior term is
introduced to account for scale difference between
the semantic score and the kernel density.

The set of candidate entries can then be reranked
according to Eq 2 and returned as the output of the
combined belief tracker.

Figure 4: Structure of the Goal Network for the experi-
mental system.

4 Evaluation

4.1 Experimental System

The architecture of our experimental system is
shown in Figure 3. The web client, shown in Figure
5, runs in the participant’s web browser and displays
the target location of the current scenario using the
Google Map API. The user’s goal is to convey this
target location to the system through speech only.

The system backend consists of a database of
2902 businesses located in Mountain View, Cali-
fornia with their name, street, street number, busi-
ness category, latitude and longitude provided. The
grammar rules for the NLU and the probability ta-
bles in the DPOT are populated from this database.

The web client captures the user speech and sends
it to our server with a push-to-talk interface based
on the WAMI toolkit (Gruenstein et al., 2008). The
server uses a commercial cloud-based ASR service
with generic acoustic and language models, which
were not adapted to our task. The n-best list of hy-
potheses from the ASR is sent to our robust natural

1The scores are renormalized to between 0 and1.
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language understanding module for parsing.
Our NLU uses a hybrid approach combining

a weighted finite-state transducer (WFST) with
string matching based rescoring of the output. The
WFST incorporates out-of-grammar word loops
that allow skipping input words at certain points
in the parse2. This parser robustly maps free form
utterances (e.g. “Okay let’s go to that
Italian place near, uh..., Red
Rock Cafe, on Castro”) to semantic frames
(e.g. [Category=italian restaurant,
Street=castro street, Landmark=red
rock coffee company]).

The NLU confidence score is computed based on
the number of words skipped while parsing, and
how close the important concept words match the
canonical phrases found in the database. For in-
stance, “Red Rock Cafe” matches the canoni-
cal name “Red Rock Coffee Company” with
high confidence because rare words (Red, Rock)
are identical, and differing but common words
(Cafe, Coffee, Company) have a low weight
in the score. The string matching score is based
on the term-frequency/inverse document frequency
(TF-IDF) metric commonly used in information re-
trieval. In our case, the weight of different terms
(IDF) is estimated based on their frequency of occur-
rence in different database entries (i.e. how uniquely
they describe a matching entry). We use the sec-
ondstring open-source library (Cohen et al., 2003)
for string matching. For any ASR hypothesis, the
NLU is likely to generate several parses which are
all merged in a global list of candidate parses.

For each candidate parse, the system generates
a set of dialog acts (one per concept in the parse)
which are input to the belief tracker with their confi-
dence score. Following the approach described in
section 3, dialog acts corresponding to the Land-
mark concept are sent to the kernel-based location
belief tracker, while all other concepts are sent to a
Dynamic Probabilistic Ontology Trees (DPOT) se-
mantic belief tracker, whose structure is shown in
Figure 4. We use a two-level tree. The value of
the root node (Id) is never directly observed and
represents the database entry targeted by the user.

2This module is implemented using the OpenFST library
(Allauzen et al., 2007)

The leaf nodes correspond to the relevant attributes
Name, Category, and Street. For any database
entry e, attribute a and value of that attribute va, the
conditional probability P (a = va|Id = e) is set to 1
if the value of a is va for entry e in the database, and
to 0 otherwise. For attributes such as Category,
which allow several possible values for each entry,
the probability is split equally among valid values.
After each user utterance, the network is augmented
with a new Evidence Network capturing the possi-
ble interpretations and their likelihood, as computed
by the NLU. The posterior probability distribution
over user goals is computed and rescored using the
kernel-based location tracker.

Finally, the Response Generator takes the highest
scoring target location from the belief tracker and
sends it back to the web client which displays it on
the map and also indicates what are the values of
the Name, Category, and Street concepts for
the top belief (see Figure 5). If the top belief lo-
cation does not match the goal of the scenario, the
user can speak again to refine or correct the system
belief. After the user has spoken 5 utterances, they
also get the choice of moving on to the next scenario
(in which case the dialog is considered a failure).

4.2 Data collection

To evaluate our approach, we ran a data collection
experiment using the Amazon Mechanical Turk on-
line marketplace. We defined 20 scenarios grouped
into 4 Human Intelligence Tasks (HITs). Figure 5
shows a screen shot of the web interface to the sys-
tem. In each scenario, the worker is given a target
location to describe by referring to nearby landmark
information. The target locations were chosen so as
to cover a variety of business categories and nearby
landmarks. The compensation for completing each
set of 5 scenarios is 1 US dollar. Before their first
scenario, workers are shown a video explaining the
goal of the task and how to use the interface, in
which they are specifically encouraged to use land-
marks in their descriptions.

At the beginning of each scenario, the target
location is displayed on the map with a call-
out containing a short description using either a
generic category (e.g. Italian restaurant,
Convenience store) or the name of a chain
store (e.g. Subway, Mcdonalds). The worker
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Figure 5: Screen capture of the data collection web interface where the target location is an Italian restaurant (in
green, underlying target place is [Ristorante Don Giovanni]) and after the first turn user input ‘Italian
restaurant’ with a system belief [Frankie, Johnnie & Luigi, Too] in blue returned without any land-
mark information provided so far

then interacts with the system described in section
4.1 until either the system’s top belief matches the
target location, or they decide to skip the scenario.

4.3 Data Statistics

Overall, 99 workers participated in the data col-
lection, providing 948 dialogs (2,869 utterances, 3
turns per scenario on average), which two of the
authors manually transcribed and annotated for di-
alog acts. 76% of the dialogs (46% of utterances)
contained a reference to a landmark. Other strate-
gies commonly used by workers to uniquely identify
a location include using a category or chain name
and a street, as well as explicitly mentioning the tar-
get business name (although workers were explicitly
discouraged form doing so). Figure 7 in appendix
provides one example dialog from the corpus.

Overall, the workers provided 203 unique land-
marks, of which 143 (70%) are in the database.

Workers were able to set the target destination
within 5 turns in 60.1% of the dialogs, which we
hereafter refer to as task successes. However, based
on the manual transcripts, 19.0% of the dialogs
could not have succeeded with the current system
because the workers used landmark or attributes that
do not appear in the database. Since the focus of this

study is robustness rather than coverage, we base our
evaluation on the remaining 768 dialogs, which we
split between a development set of 74 dialogs and
a test set of 694 dialogs. On this test set, the live
system has a task success rate of 70.6%. By inspect-
ing the log files, we noticed that runtime issues such
as timeouts prevented the system from getting any
belief from the belief tracker in 6.3% of the dialogs.

The mean Word Error Rate (WER) per worker on
the test set is 27.5%. There was significant variabil-
ity across workers, with a standard deviation 20.7%.
Besides the usual factors such as acoustic noise and
non-native accents, many of the errors came from
the misrecognition of business names, due to the fact
that ASR uses an open-ended language model that is
tuned neither to Mountain View, nor to businesses,
nor to the kind of utterances that our set up tends
to yield, which is a realistic situation for large scale
practical applications.

Concept precision of the top scoring NLU hypoth-
esis is 73.0% and recall is 57.7%. However, when
considering the full list of NLU hypotheses and us-
ing an oracle to select the best one for each turn,
precision increases to 89.3% and recall to 66.2%,
underscoring the potential of using multiple input
hypotheses in the belief tracker.
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Figure 6: Batch evaluation of the proposed (BT) and baseline approaches with and without landmark information.

4.4 Batch Results

To further analyze the performance of our approach,
we conducted a series of batch experiments on the
data collected with the runtime system. We first
tuned the parameters of the belief tracker ⌫ and ⌃l

(see section 3) on the development set (⌫ = 3 and
⌃l corresponds to a circular Gaussian with standard
deviation 500 meters).

We compare the tuned proposed belief tracking
system (labeled BT) with three other versions. First,
we define a deterministic baseline system which, at
each turn, updates its belief by overwriting each con-
cept’s value with the value found in the top NLU
hypothesis. Based on this (single) user goal hy-
pothesis, we query the database to retrieve match-
ing entries. If the current goal hypothesis con-
tains a Landmark concept, the baseline system se-
lects the matching entry that is closest to any loca-
tion matching the landmark name, by computing the
pairwise distance between candidate target locations
and landmarks.

We also compute the performance of both the
baseline and our proposed approach without us-
ing landmark information at all. In these versions,
the belief over the attributes (Name, Street, and
Category) is updated according to either the top
NLU hypothesis (baseline) or the DPOT model (BT)
and the first matching database entry is returned, ig-
noring any landmark information.

Figure 6 shows the task success of each of the four
versions on the test set. First, it is clear that land-
mark information is critical to complete the tasks in
this corpus since both systems ignoring landmarks

perform significantly worse than their counterparts.
Second, the belief tracking approach significantly
outperforms the deterministic baseline (83.0% vs
69.3%, p < 0.001 using sign test for matched pairs).

To further analyze the performance of the sys-
tem in different input conditions, we split the di-
alogs based on their measured concept accuracy (ex-
pressed in terms of concept F-measure). All dialogs
with an F-measure higher than the median (70.0%)
are labeled as high-accuracy, while the other half of
the data is labeled as low-accuracy. While both the
proposed approach and the baseline perform simi-
larly well for high-accuracy dialogs (task success of
resp. 96.0% and 92.8%, difference is not statisti-
cally significant), the difference is much larger for
low-accuracy dialogs (70.0% vs 45.8%, p < 0.001)
confirming the robustness of the landmark-based be-
lief tracking approach when confronted with poor
input conditions.

5 Conclusion

In this paper, we have explored the possibilities of
incorporating spatial information into belief tracking
in spoken dialog systems. We proposed a landmark-
based location tracker which can be combined with
a semantic belief tracker to output inferred joint user
goal. Based on the results obtained from our batch
experiments, we conclude that integrating spatial in-
formation into a location-based dialog system could
improve the overall accuracy of belief tracking sig-
nificantly.
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User: &Italian&restaurant&near&
ASR: %italian%restaurant%near%
NLU: %Category=Italian%Restaurant%

Category %Italian'Restaurant'
Target !Dominos!Pizza!

Category %Italian'Restaurant'
Target !Dominos!Pizza!

User: &Italian&restaurant&near&Kappo&Nami&Nami&
ASR: %italian%restaurant%near%camp%to%numa%numa%
NLU: %Category=Italian%Restaurant,%Street=Camp%Avenue%

%Category=Italian%Restaurant,%Landmark=Jefunira%Camp%

Category %Italian'Restaurant%%
Street %Camp'Avenue'
Target &No!match!

Category %Italian'Restaurant'
Landmark %Jefunira'Camp'
Target ! !Maldonado’s%

User: &Italian&restaurant&near&Tempta5ons&
ASR: %italian%restaurant%near%temptaAons%
NLU: %Category=Italian%Restaurant,%Landmark=TemptaAons%

Category %Italian'Restaurant'
Street %Camp'Avenue'
Landmark %Tempta5ons'
Target &No!match!

Category %Italian'Restaurant'
Landmark %Jefunira'Camp,'Tempta5ons'
Target &Don!Giovanni!

Baseline' DPOT+Kernels'

Example&Dialog�

Figure 7: Comparison between baseline and proposed method on an example dialog whose underlying true target is
an Italian restaurant called Don Giovanni.
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