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Abstract

The question of how to compose meaning in distributional representations of meaning has re-

cently been recognised as a central issue in computational linguistics. In this paper we describe

three general and powerful tools that can be used to describe composition in distributional seman-

tics: quotient algebras, learning of finite dimensional algebras, and the construction of algebras from

semigroups.

1 Introduction

Vector based representations of meaning have wide application in natural language processing. While

these techniques work well at the word level, for longer strings, data becomes extremely sparse. The

question of how the principle of compositionality might apply for such representations has thus been

recognised as an important one (Widdows, 2008; Clark et al., 2008).

Context-theoretic semantics (Clarke, 2007) is a framework for composing meanings in vector based

semantics, in which the composition of the meaning of strings is described by a multiplication on a real

vector space A that is bilinear with respect to the addition of the vector space, i.e.

x(y + z) = xy + xz (x+ y)z = xz + yz (αx)(βy) = αβxy

where x, y, z ∈ A and α, β ∈ R. It is assumed that the multiplication is associative, but not commutative.

The resulting structure is an associative algebra over a field — or simply an algebra when there is no

ambiguity. Clarke (2007) gives a mathematical model of meaning as context, and shows that under this

model, the meaning of natural language expressions can be described by an algebra. The framework

is also applied to models of textual entailment, and logical and ontological representations of natural

language meaning.

In this paper, we identify three general techniques for constructing algebras.

• Using quotient algebras to impose relations on a free algebra, as described in (Clarke et al., 2010).

• Defining finite-dimensional algebras using matrices. Any finite-dimensional algebra can be de-

scribed in this way; we have investigated the possibility of learning such algebras using least

squares regression.

• Constructing algebras from a semigroup to give it vector space properties. We sketch a possible

method of using this technique, identified by Clarke (2007), to endow logical semantics with a

vector space nature.

This paper presents a preliminary consideration of these general techniques, and our goal is simply to

show that they are worthy of further exploration.
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apple 1.0 0.26 0.24 0.52 0.13 0.12 0.33 0.086 0.080

big apple 1.0 0.33 0.13 0.52 0.17 0.086 0.33 0.11

red apple 1.0 0.12 0.17 0.52 0.080 0.11 0.33

city 1.0 0.26 0.24 0.0 0.0 0.0

big city 1.0 0.33 0.0 0.0 0.0

red city 1.0 0.0 0.0 0.0

book 1.0 0.26 0.24

big book 1.0 0.33

red book 1.0

Figure 1: Cosine similarity values between phrases

see red apple see big city

buy apple visit big apple

read big book modernise city

throw old small red book see modern city

buy large new book

Figure 2: The corpus used to compute the vectors

that formed the generating set for the ideal.

2 Quotient Algebras

One commonly used bilinear multiplication operator on vector spaces is the tensor product (denoted ⊗),

whose use as a method of combining meaning was first proposed by Smolensky (1990), and has been

considered more recently by Clark and Pulman (2007) and Widdows (2008), who also looked at the

direct sum (which Widdows calls the direct product, denoted ⊕).

The tensor algebra on a vector space V (where V is a space of context features) is defined as:

T (V ) = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·

Any element of T (V ) can be described as a sum of components with each in a different tensor power

of V . Multiplication is defined as the tensor product on these components, and extended linearly to the

whole of T (V ).
Previous work has not made full use of the tensor product space; only tensor products are used,

not sums of tensor products, giving us the equivalent of the product states of quantum mechanics. Our

approach imposes relations on the vectors of the tensor product space that causes some product states

to become equivalent to entangled states, containing sums of tensor products of different degrees. This

allows strings of different lengths to share components. We achieve this by constructing a quotient

algebra.

An ideal I of an algebra A is a sub-vector space of A such that xa ∈ I and ax ∈ I for all a ∈ A
and all x ∈ I . An ideal introduces a congruence ≡ on A defined by x ≡ y if and only if x− y ∈ I . For

any set of elements Λ ⊆ A there is a unique minimal ideal IΛ containing all elements of Λ; this is called

the ideal generated by Λ. The quotient algebra A/I is the set of all equivalence classes defined by this

congruence. Multiplication is defined on A/I by the multiplication on A, since ≡ is a congruence.

Elements that are congruent with respect to the ideal have equivalence classes that are equal in the

quotient algebra. The construction is thus a way of imposing relations between vector elements: we

simply choose a set of pairs that we wish to be equal, and put their difference in the generating set Λ.

Clarke et al. (2010), showed how an inner product can be computed for elements of the quotient

algebra by taking the quotient of a finite dimensional subspace of the ideal and how a treebank could be

used to identify suitable elements to put into the generating set for the ideal in such a way that strings of

different lengths become comparable. Figure 1 shows similarities between adjective phrases computed

using vectors derived from the corpus in figure 2. The construction allows many properties of the tensor

product to carry over into the quotient algebra, for example the similarity of red book to red apple is the

same as the similarity of book to apple, as we would expect from the tensor product. Unlike the tensor

product, strings of different length are comparable, so for example, the similarity of apple to red apple

is non-zero. The benefit of using quotient algebras for compositional distributional semantics lies in

this ability to extend the favourable properties of the tensor product by imposing linguistically plausible

relations between vectors.
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3 Learning Finite-dimensional Algebras

Quotient algebras are useful constructions when we have a small number of relations which we wish

to impose on the tensor algebra. In highly lexicalised grammars, the number of relations we wish to

impose may become so large that the ideal generates the whole vector space, and is thus useless, since

the resulting quotient space will be trivial. An alternative to this is to restrict the space of exploration to

finite-dimensional algebras. In this case, we can explore the space of possible products in relation to the

set of relations we wish to hold; in other words, we can view this as an optimisation problem in which

we want to find the best possible product given the required relations.

We apply this to the situation where we obtain a vector x̂ for each individual word and pair of

words in sequence. We then find the product that best fits these observed vectors. Given a set W =
{w1, w2 . . . wm} of words, we want to define a product ⊙ to minimise the difference between ŵi ⊙ ŵj

and ŵiwj , for 1 ≤ i, j ≤ m. Specifically, we can define this as minimising

∑

i,j

‖ŵiwj − ŵi ⊙ ŵj‖

If word vectors have n dimensions, then ⊙ is defined by an n3 dimensional vector, which we denote frst
for 1 ≤ r, s, t ≤ n, where (er ⊙ es)t = frst and e is the vector with 1 in every component, and vt is the

tth component of v.

We can view this as a linear model:

(ŵiwj)t = ǫijt +
n∑

r,s=1

(ŵi)r(ŵj)sfrst

where we have m2 statistical units to learn n2 parameters relating to the tth component of the vector

space. Since these parameters are independent for each value of t, each set of n2 parameters can be learnt

in parallel. We are currently exploring ways of learning these parameters. The form of the equation

above suggests the use of least squares, and we have performed some experiments using this method

using a corpus extracted from the ukWaC corpus (Ferraresi et al., 2008). We extracted a list of verb

adjective∗noun sequences, and used latent semantic analysis (Deerwester et al., 1990) to generate n-

dimensional vectors for the 160 most common adjectives and nouns, and pairs of these adjectives and

nouns. Our initial results indicate that the learnt parameters tend to get very large when using least

squares to find the parameters, leading to poor results; we plan to investigate other methods such as

linear optimisation.

Guevara (2010) proposed a related method of learning composition which used linear regression to

learn how components compose. His model is however much more restrictive than ours in that the value

of a component in the product depends only on that same component in the composed vectors, whereas

in our model, the value of the component can depend on all components in the composed vectors.

Baroni and Zamparelli (2010) took a similar approach, in which adjectives are modelled as matrices

acting on the space of nouns, and the matrices are learnt using least squares regression. The algebra

products we propose learning are more general than matrix products; in addition we do not need to

distinguish between words which are represented as matrices and words which are represented as vectors.

4 Constructing Algebras from Semigroups

Whilst the previous two techniques we have discussed are very general, and allow corpus data to be easily

incorporated into the composition definition, our implementations are currently a long way from being

able to represent the complexities of natural language semantics that is currently possible with logical

semantics. This has become the standard method of representing natural language meaning, originating

in the work of Montague (1973), however there is currently no way to incorporate statistical features of

meaning that are described by the distributional hypothesis of Harris (1968).
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Term Context vector

fish (0, 0, 1)
big (1, 2, 0)

Figure 3: Example context vectors for terms.

ni = (N , λx nouni(x))

ai = (N /N , λpλy adji(y) ∧ p.y)

Figure 4: Equations describing syntax and semantics

of adjectives and nouns.

In related work, Clark et al. (2008) described a method of composing meanings which they noted

was a generalisation of Montague semantics. However, their version of Montague semantics assumed a

particular model, and thus effectively mapped sentences to truth values. This omits much of the power

of Montague semantics in which sentences are mapped to logical forms which then provide restrictions

on the set of allowable models, allowing, for example, entailments to be computed between sentences.

We will sketch a method by which Montague semantics can be described within the context-theoretic

framework. We follow a standard method of representing logic in language, but instead of representing

words using logic, we represent an individual dimension of meaning of a word by a logical form — we

call this dimension a “aspect”. The general scheme is to represent aspects as elements of a semigroup,

from which we form an algebra. Words are then represented as weighted sums over individual aspects.

We define a set S of all aspects as the set of pairs (s, σ), where s is the syntactic type of an aspect

(for example in the Lambek calculus) and σ is the semantics of the aspect (for example described in

the lambda calculus). We can extend S by defining a product on such pairs reducing each element to a

normal form. This defines a semigroup: the Lambek calculus can be described in terms of a residuated

lattice, which is a partially ordered semigroup (Lambek, 1958), and the lambda calculus is equivalent to a

Cartesian closed category under β-equivalence (Lambek, 1985), which can be considered as a semigroup

with additional structure.

Given any semigroup S we can construct an algebra L1(S) of real-valued functions on S which are

finite under the L1 norm with multiplication defined by convolution:

(u · v)(x) =
∑

y,z∈S:yz=x

u(y)v(z).

For example, suppose we have context vectors for the terms big and fish as described in Figure

3. We represent the syntax and semantics of adjectives and nouns by elements ai and ni respectively

of a semigroup S (Figure 4), where we assume equivalence under β-reduction is accounted for. The

predicates adji and nounj correspond to aspects, in this case each dimension i of the three dimensions

in the context vectors has a corresponding adji and nouni. We may then represent the vectors for these

terms as elements of the algebra b̂ig = a1 + 2a2 and fîsh = n3, where we equate an element u of the

semigroup with the function in the algebra L1(S) which maps u to 1 and every other element to zero.

Then b̂ig fîsh = a1n3 + 2a2n3, where

ainj = (N,λx(nounj(x) ∧ adji(x))).

Note that the elements ai form a commutative, idempotent subsemigroup of S, so they have a semilattice

structure. In order for this structure to carry over to the vector structure in the algebra, we would need

a more sophisticated construction, such as a C∗ enveloping algebra; we leave the investigation of this

possibility to further work.

5 Discussion

We have presented our initial investigations into the application of three powerful methods of construct-

ing algebras to representing natural language semantics. Each of these approaches has potential use in

representing meaning; here we have only touched the surface of what is possible with each technique. We
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hope that with further work, these methods will lead to a true synthesis between logical and distributional

approaches to natural language semantics.
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