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Abstract
This paper describes our submission,
cmu-heafield-combo, to the WMT
2010 machine translation system combi-
nation task. Using constrained resources,
we participated in all nine language pairs,
namely translating English to and from
Czech, French, German, and Spanish as
well as combining English translations
from multiple languages. Combination
proceeds by aligning all pairs of system
outputs then navigating the aligned out-
puts from left to right where each path is
a candidate combination. Candidate com-
binations are scored by their length, agree-
ment with the underlying systems, and a
language model. On tuning data, improve-
ment in BLEU over the best system de-
pends on the language pair and ranges
from 0.89% to 5.57% with mean 2.37%.

1 Introduction

System combination merges the output of sev-
eral machine translation systems into a sin-
gle improved output. Our system combina-
tion scheme, submitted to the Workshop on Sta-
tistical Machine Translation (WMT) 2010 as
cmu-heafield-combo, is an improvement
over our previous system (Heafield et al., 2009),
called cmu-combo in WMT 2009. The scheme
consists of aligning 1-best outputs from each sys-
tem using the METEOR (Denkowski and Lavie,
2010) aligner, identifying candidate combinations
by forming left-to-right paths through the aligned
system outputs, and scoring these candidates us-
ing a battery of features. Improvements this year
include unigram paraphrase alignment, support for
all target languages, new features, language mod-
eling without pruning, and more parameter opti-
mization. This paper describes our scheme with
emphasis on improved areas.

2 Related Work

Confusion networks (Rosti et al., 2008) are the
most popular form of system combination. In this
approach, a single system output acts as a back-
bone to which the other outputs are aligned. This
backbone determines word order while other out-
puts vote for substitution, deletion, and insertion
operations. Essentially, the backbone is edited
to produce a combined output which largely pre-
serves word order. Our approach differs in that
we allow paths to switch between sentences, effec-
tively permitting the backbone to switch at every
word.

Other system combination techniques typically
use TER (Snover et al., 2006) or ITGs (Karakos
et al., 2008) to align system outputs, meaning
they depend solely on positional information to
find approximate matches; we explicitly use stem,
synonym, and paraphrase data to find alignments.
Our use of paraphrases is similar to Leusch et al.
(2009), though they learn a monolingual phrase
table while we apply cross-lingual pivoting (Ban-
nard and Callison-Burch, 2005).

3 Alignment

System outputs are aligned at the token level using
a variant of the METEOR (Denkowski and Lavie,
2010) aligner. This identifies, in decreasing order
of priority: exact, stem, synonym, and unigram
paraphrase matches. Stems (Porter, 2001) are
available for all languages except Czech, though
this is planned for future work and expected
to produce significant improvement. Synonyms
come from WordNet (Fellbaum, 1998) and are
only available in English. Unigram paraphrases
are automatically generated using phrase table piv-
oting (Bannard and Callison-Burch, 2005). The
phrase tables are trained using parallel data from
Europarl (fr-en, es-en, and de-en), news commen-
tary (fr-en, es-en, de-en, and cz-en), United Na-
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tions (fr-en and es-en), and CzEng (cz-en) (Bojar
and Žabokrtský, 2009) sections 0–8. The German
and Spanish tables also use the German-Spanish
Europarl corpus released for WMT08 (Callison-
Burch et al., 2008). Currently, the generated para-
phrases are filtered to solely unigram matches;
full use of this table is planned for future work.
When alignment is ambiguous (i.e. “that” appears
twice in a system output), an alignment is chosen
to minimize crossing with other alignments. Fig-
ure 1 shows an example alignment. Compared to
our previous system, this replaces heuristic “arti-
ficial” alignments with automatically learned uni-
gram paraphrases.

Twice that produced by nuclear plants

Double that that produce nuclear power stations

Figure 1: Alignment generated by METEOR
showing exact (that–that and nuclear–nuclear),
stem (produced–produce), synonym (twice–
double), and unigram paraphrase (plants–stations)
alignments.

4 Search Space

A candidate combination consists of a string of to-
kens (words and punctuation) output by the under-
lying systems. Unconstrained, the string could re-
peat tokens and assemble them in any order. We
therefore have several constraints:

Sentence The string starts with the beginning of
sentence token and finishes with the end of
sentence token. These tokens implicitly ap-
pear in each system’s output.

Repetition A token may be used at most once.
Tokens that METEOR aligned are alterna-
tives and cannot both be used.

Weak Monotonicity This prevents the scheme
from reordering too much. Specifically, the
path cannot jump backwards more than r to-
kens, where positions are measured relative
to the beginning of sentence. It cannot make
a series of smaller jumps that add up to more
than r either. Equivalently, once a token
in the ith position of some system output is
used, all tokens before the i− rth position in
their respective system outputs become un-

usable. The value of r is a hyperparameter
considered in Section 6.

Completeness Tokens may not be skipped unless
the sentence ends or another constraint would
be violated. Specifically, when a token from
some system is used, it must be the first (left-
most in the system output) available token
from that system. For example, the first de-
coded token must be the first token output by
some system.

Together, these define the search space. The candi-
date starts at the beginning of sentence by choos-
ing the first token from any system. Then it can
either continue with the next token from the same
system or switch to another one. When it switches
to another system, it does so to the first available
token from the new system. The repetition con-
straint requires that the token does not repeat con-
tent. The weak monotonicity constraint ensures
that the jump to the new system goes at most r
words back. The process repeats until the end of
sentence token is encountered.

The previous version (Heafield et al., 2009) also
had a hard phrase constraint and heuristics to de-
fine a phrase; this has been replaced with new
match features.

Search is performed using beam search where
the beam contains partial candidates of the same
length, each of which starts with the beginning of
sentence token. In our experiments, the beam size
is 500. When two partial candidates will extend
in the same way (namely, the set of available to-
kens is the same) and have the same feature state
(i.e. language model history), they are recom-
bined. The recombined partial candidate subse-
quently acts like its highest scoring element, until
k-best list extraction when it is lazily unpacked.

5 Scoring Features

Candidates are scored using three feature classes:

Length Number of tokens in the candidate. This
compensates, to first order, for the impact of
length on other features.

Match For each system s and small n, feature
ms,n is the number of n-grams in the candi-
date matching the sentence output by system
s. This is detailed in Section 5.1.
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Language Model Log probability from a n-gram
language model and backoff statistics. Sec-
tion 5.2 details our training data and backoff
features.

Features are combined into a score using a linear
model. Equivalently, the score is the dot product
of a weight vector with the vector of our feature
values. The weight vector is a parameter opti-
mized in Section 6.

5.1 Match Features

The n-gram match features reward agreement be-
tween the candidate combination and underlying
system outputs. For example, feature m1,1 counts
tokens in the candidate that also appear in sys-
tem 1’s output for the sentence being combined.
Featurem1,2 counts bigrams appearing in both the
candidate and the translation suggested by system
1. Figure 2 shows example feature values.

System 1: Supported Proposal of France

System 2: Support for the Proposal of France

Candidate: Support for Proposal of France

Unigram Bigram Trigram
System 1 4 2 1
System 2 5 3 1

Figure 2: Example match feature values with two
systems and matches up to length three. Here,
“Supported” counts because it aligns with “Sup-
port”.

The match features count n-gram matches be-
tween the candidate and each system. These
matches are defined in terms of alignments. A to-
ken matches the system that supplied it as well as
the systems to which it aligns. This can be seen in
Figure 2 where System 1’s unigram match count
includes “Supported” even though the candidate
chose “Support”. Longer matches are defined sim-
ilarly: a bigram match consists of two consecutive
alignments without reordering. Since METEOR
generates several types of alignments as shown in
Figure 1, we wonder whether all alignment types
should count as matches. If we count all types
of alignment, then the match features are blind to
lexical choice, leaving only the language model to
discriminate. If only exact alignments count, then

less systems are able to vote on a word order deci-
sion mediated by the bigram and trigram features.
We find that both versions have their advantages,
and therefore include two sets of match features:
one that counts only exact alignments and another
that counts all alignments. We also tried copies of
the match features at the stem and synonym level
but found these impose additional tuning cost with
no measurable improvement in quality.

Since systems have different strengths and
weaknesses, we avoid assigning a single system
confidence (Rosti et al., 2008) or counting n-gram
matches with uniform system confidence (Hilde-
brand and Vogel, 2009). The weight on match
feature ms,n corresponds to our confidence in n-
grams from system s. These weights are fully tun-
able. However, there is another hyperparameter:
the maximum length of n-gram considered; we
typically use 2 or 3 with little gain seen above this.

5.2 Language Model
We built language models for each of the five tar-
get languages with the aim of using all constrained
data. For each language, we used the provided
Europarl (Koehn, 2005) except for Czech, News
Commentary, and News monolingual corpora. In
addition, we used:

Czech CzEng (Bojar and Žabokrtský, 2009) sec-
tions 0–7

English Gigaword Fourth Edition (Parker et al.,
2009), Giga-FrEn, and CzEng (Bojar and
Žabokrtský, 2009) sections 0–7

French Gigaword Second Edition (Mendonca et
al., 2009a), Giga-FrEn

Spanish Gigaword Second Edition (Mendonca et
al., 2009b)

Paragraphs in the Gigaword corpora were split
into sentences using the script provided with
Europarl (Koehn, 2005); parenthesized format-
ting notes were removed from the NYT portion.
We discarded Giga-FrEn lines containing invalid
UTF8, control characters, or less than 90% Latin
characters or punctuation. Czech training data
and system outputs were preprocessed using Tec-
toMT (Žabokrtský and Bojar, 2008) following the
CzEng 0.9 pipeline (Bojar and Žabokrtský, 2009).
English training data and system outputs were to-
kenized with the IBM tokenizer. French, Ger-
man, and Spanish used the provided tokenizer.
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Czech words were truecased based on automati-
cally identified lemmas marking names; for other
languages, training data was lowercased and sys-
tems voted, with uniform weight, on capitalization
of each character in the final output.

With the exception of Czech (for which we used
an existing model), all models were built with no
lossy pruning whatsoever, including our English
model with 5.8 billion tokens (i.e. after IBM to-
kenization). Using the stock SRILM (Stolcke,
2002) toolkit with modified Kneser-Ney smooth-
ing, the only step that takes unbounded memory is
final model estimation from n-gram counts. Since
key parameters have already been estimated at this
stage, this final step requires only counts for the
desired n-grams and all of their single token ex-
tensions. We can therefore filter the n-grams on
all but the last token. Our scheme will only query
an n-gram if all of the tokens appear in the union
of system outputs for some sentence; this strict fil-
tering criterion is further described and released
as open source in Heafield and Lavie (2010). The
same technique applies to machine translation sys-
tems, with phrase table expansion taking the place
of system outputs.

For each language, we built one model by ap-
pending all data. Another model interpolates
smaller models built on the individual sources
where each Gigaword provider counts as a distinct
source. Interpolation weights were learned on the
WMT 2009 references. For English, we also tried
an existing model built solely on Gigaword using
interpolation. The choice of model is a hyperpa-
rameter we consider in Section 6.

In the combination scheme, we use the log lan-
guage model probability as a feature. Another
feature reports the length of the n-gram matched
by the model; this exposes limited tunable con-
trol over backoff behavior. For Czech, the model
was built with a closed vocabulary; when an out-
of-vocabulary (OOV) word is encountered, it is
skipped for purposes of log probability and a
third feature counts how often this happens. This
amounts to making the OOV probability a tunable
parameter.

6 Parameter Optimization

6.1 Feature Weights

Feature weights are tuned using Minimum Error
Rate Training (MERT) (Och, 2003) on the 455
provided references. Our largest submission, xx-

en primary, combines 17 systems with five match
features each plus three other features for a total of
88 features. This immediately raises two concerns.
First, there is overfitting and we expect to see a
loss in the test results, although our experience in
the NIST Open MT evaluation is that the amount
of overfitting does not significantly increase at this
number of parameters. Second, MERT is poor at
fitting this many feature weights. We present one
modification to MERT that addresses part of this
problem, leaving other tuning methods as future
work.

MERT is prone to local maxima, so we apply
a simple form of simulated annealing. As usual,
the zeroth iteration decodes with some initial fea-
ture weights. Afterward, the weights {λf} learned
from iteration 0 ≤ j < 10 are perturbed to pro-
duce new feature weights

µf ∼ U
[
j

10
λf ,

(
2− j

10

)
λf

]
where U is the uniform distribution. This sam-
pling is done on a per-sentence basis, so the first
sentence is decoded with different weights than
the second sentence. The amount of random per-
turbation decreases linearly each iteration until
the 10th and subsequent iterations whose learned
weights are not perturbed. We emphasize that
the point is to introduce randomness in sentences
decoded during MERT, and therefore considered
during parameter tuning, and not on the spe-
cific formula presented in this system description.
In practice, this technique increases the number
of iterations and decreases the difference in tun-
ing scores following MERT. In our experiments,
weights are tuned towards uncased BLEU (Pap-
ineni et al., 2002) or the combined metric TER-
BLEU (Snover et al., 2006).

6.2 Hyperparameters
In total, we tried 1167 hyperparameter configura-
tions, limited by CPU time during the evaluation
period. For each of these configurations, the fea-
ture weights were fully trained with MERT and
scored on the same tuning set, which we used to
select the submitted combinations. Because these
configurations represent a small fraction of the
hyperparameter space, we focused on values that
work well based on prior experience and tuning
scores as they became available:

Set of systems Top systems by BLEU. The num-
ber of top systems included ranged from 3 to

304



Pair Entry #Sys r Match LM Objective ∆BLEU ∆TER ∆METE
cz-en main 5 4 2 Append BLEU 2.38 0.99 1.50

de-en main 6 4 2 Append TER-BLEU 2.63 -2.38 1.36
contrast 7 3 2 Append BLEU 2.60 -2.62 1.09

es-en main 7 5 3 Append BLEU 1.22 -0.74 0.70
contrast 5 6 2 Gigaword BLEU 1.08 -0.80 0.97

fr-en main 9 5 3 Append BLEU 2.28 -2.26 0.78
contrast 8 5 3 Append BLEU 2.19 -1.81 0.63

xx-en main 17 5 3 Append BLEU 5.57 -5.60 4.33
contrast 16 5 3 Append BLEU 5.45 -5.38 4.22

en-cz main 7 5 3 Append TER-BLEU 0.74 -0.26 0.68

en-de main 6 6 2 Interpolate BLEU 1.26 0.16 1.14
contrast 5 4 2 Interpolate BLEU 1.26 0.30 1.00

en-es main 8 5 3 Interpolate BLEU 2.38 -2.20 0.96
contrast 6 7 2 Append BLEU 2.40 -1.85 1.02

en-fr main 6 7 2 Append BLEU 2.64 -0.50 1.55

Table 1: Submitted combinations chosen from among 1167 hyperparameter settings by tuning data
scores. Uncased BLEU, uncased TER, and METEOR 1.0 with adequacy-fluency parameters are shown
relative to top system by BLEU. Improvement is seen in all pairs on all metrics except for TER on cz-en
and en-de where the top systems are 5% and 2% shorter than the references, respectively. TER has a well
known preference for shorter hypotheses. The #Sys column indicates the number of systems combined,
using the top scoring systems by BLEU. The Match column indicates the maximum n-gram length con-
sidered for matching on all alignments; we separately counted unigram and bigram exact matches. In
some cases, we made a contrastive submission where metrics disagreed or length behavior differed near
the top; contrastive submissions are not our 2009 scheme.

all of them, except on xx-en where we com-
bined up to 17.

Jump limit Mostly r = 5, with some experi-
ments ranging from 3 to 7.

Match features Usually unigram and bigram fea-
tures, sometimes trigrams as well.

Language model Balanced between the ap-
pended and interpolated models, with the
occasional baseline Gigaword model for
English.

Tuning objective Usually BLEU for speed rea-
sons; occasional TER-BLEU with typical
values for other hyperparameters.

7 Conclusion

Table 1 shows the submitted combinations and
their performance. Our submissions this year im-
prove over last year (Heafield et al., 2009) in
overall performance and support for multiple lan-
guages. The improvement in performance we pri-
marily attribute to the new match features, which

account for most of the gain and allowed us to in-
clude lower quality systems. We also trained lan-
guage models without pruning, replaced heuristic
alignments with unigram paraphrases, tweaked the
other features, and improved the parameter opti-
mization process. We hope that the improvements
seen on tuning scores generalize to significantly
improved test scores, especially human evaluation.
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