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Introduction

The Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR (WMT10) took place
on July 15 and 16 in Uppsala, Sweden, immediately following the 48th conference of the Association
for Computational Linguistics (ACL).

This is the sixth time this workshop has been held. The first time was in 2005 as part of the ACL 2005
Workshop on Building and Using Parallel Texts. In the following years the Workshop on Statistical
Machine Translation was held at HLT-NAACL 2006 in New York City, USA, at ACL 2007 in Prague,
Czech Republic, at ACL 2008 in Columbus, Ohio, USA, and at EACL 2009 in Athens, Greece.
MetricsMATR was previously held in conjunction with AMTA 2008 in Honolulu, Hawaii, USA.

The focus of our workshop was to evaluate the state of the art in machine translation for a variety of
languages. Recent experimentation has shown that the performance of machine translation systems
varies greatly with the source language. In this workshop we encouraged researchers to investigate
ways to improve the performance of machine translation systems for diverse languages.

Prior to the workshop, in addition to soliciting relevant papers for review and possible presentation we
conducted a shared task that brought together machine translation systems for an evaluation on previously
unseen data. The shared task also included a track for evaluation metrics and system combination
methods.

The results of the shared task were announced at the workshop, and these proceedings also include an
overview paper that summarizes the results, as well as provides information about the data used and any
procedures that were followed in conducting or scoring the task. In addition, there are short papers from
each participating team that describe their underlying system in some detail.

Like in previous years, we have received a far larger number of submission than we could accept for
presentation. This year we have received 24 full paper submissions. 15 full papers were selected for oral
presentation and one for poster presentation.

We received 7 short paper submissions for the evaluation task, 9 short paper submissions for the system
combination task, and 30 short paper submissions for the translation task. Due to the large number of
high quality submission for the full paper track, shared task submissions were presented as posters. The
poster session gave participants of the shared task the opportunity to present their approaches.

The invited talk was given by Hermann Ney (RWTH Aachen).

We would like to thank the members of the Program Committee for their timely reviews. We also would
like to thank the participants of the shared task and all the other volunteers who helped with the manual
evaluations.

Chris Callison-Burch, Philipp Koehn, Christof Monz, Kay Peterson, and Omar Zaidan

Co-Organizers
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Abstract

We present a word alignment framework
that can incorporate partial manual align-
ments. The core of the approach is a
novel semi-supervised algorithm extend-
ing the widely used IBM Models with
a constrained EM algorithm. The par-
tial manual alignments can be obtained
by human labelling or automatically by
high-precision-low-recall heuristics. We
demonstrate the usages of both methods
by selecting alignment links from manu-
ally aligned corpus and apply links gen-
erated from bilingual dictionary on unla-
belled data. For the first method, we con-
duct controlled experiments on Chinese-
English and Arabic-English translation
tasks to compare the quality of word align-
ment, and to measure effects of two differ-
ent methods in selecting alignment links
from manually aligned corpus. For the
second method, we experimented with
moderate-scale Chinese-English transla-
tion task. The experiment results show an
average improvement of 0.33 BLEU point
across 8 test sets.

1 Introduction
Word alignment is used in various natural lan-

guage processing applications, and most statistical
machine translation systems rely on word align-
ment as a preprocessing step. Traditionally the
word alignment model is trained in an unsuper-
vised manner, e.g. the most widely used tool
GIZA++ (Och and Ney, 2003), which implements
the IBM Models (Brown et. al., 1993) and the
HMM model (Vogel et al., 1996). However, for
language pairs such as Chinese-English, the word
alignment quality is often unsatisfactory (Guzman
et al., 2009). There has been increasing interest on
using manual alignments in word alignment tasks.

Ittycheriah and Roukos (2005) proposed to use
only manual alignment links in a maximum en-
tropy model. A number of semi-supervised word
aligners are proposed (Blunsom and Cohn, 2006;
Niehues and Vogel, 2008; Taskar et al., 2005; Liu
et al., 2005; Moore, 2005). These approaches use
held-out manual alignments to tune the weights
for discriminative models, with the model param-
eters, model scores or alignment links from un-
supervised word aligners as features. Also, sev-
eral models are proposed to address the prob-
lem of improving generative models with small
amount of manual data, including Model 6 (Och
and Ney, 2003) and the model proposed by Fraser
and Marcu (2006) and its extension called LEAF
aligner (Fraser and Marcu, 2007). The approaches
use labelled data to tune parameters to combine
different components of the IBM Models.

2005

2005nian     de      xiatian

The   summer   of    2005

Figure 1: Partial and full alignments

An interesting question is, if we only have par-
tial alignments of sentences, can we make use of
them? Figure 1 shows the comparison of par-
tial alignments (the bold link) and full alignments
(both of the dashed and the bold links). A partial
alignment of a sentence only provides a portion of
links of the full alignment. Although it seems to be
trivial, they actually convey different information.
In the example, if the full alignment is given, we
can assert 2005 is only aligned to 2005nian, not to
de or xiatian, but if only the partial alignment is
given we cannot make such assertion.

Partial alignments can be obtained from vari-
ous sources, for example, we can fetch them by
manually correcting unsupervised alignments, by
simple heuristics such as dictionaries of technical
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terms, by rule-based alignment systems that have
high accuracy but low recall rate. The function-
ality is considered useful in many scenarios. For
example, the researchers can analyse the align-
ments generated by GIZA++ and fix common
error patterns, and perform training again. On
another way, an application can combine active
learning (Arora et al., 2009) and crowdsourcing,
asking non-expertise such as workers of Amazon
Mechanical Turk to label crucial alignment links
that can improve the system with low cost, which
is now a promising methodology in NLP areas
(Callison-Burch, 2009).

In this paper, we propose a semi-supervised ex-
tension of the IBM Models that can utilize partial
alignment links. More specifically, we are seeking
answers for the following questions:

• Given the partial alignment of a sentence,
how to find the most probable alignment that
is consistent with the partial alignment.
• Given a set of partially aligned sentences,

how to get the parameters that maximize the
likelihood of the sentence pairs with align-
ments consistent with the partial alignments
• Given a set of partially aligned sentences,

with conflicting partial alignments, how to
answer the two questions above.

In the proposed approach, the manual partial
alignment links are treated as ground truth, there-
fore, they will be fixed. However, for all other
links we make no additional assumption. When
using manual alignments, there can be links con-
flicting with each other. These conflicting evi-
dences are treated as options and the generative
model will choose the most probable alignment
from them. An efficient training algorithm for
fertility-based models is proposed. The algorithm
manipulates the Moving and Swapping matrices
used in the hill-climbing algorithm (Och and Ney,
2003) to rule out inconsistent alignments in both
E-step and M-step of the training.

A similar attempt has been made by Callison-
Burch et al. (2004), where the authors interpo-
late the parameters estimated by sentence-aligned
and word-aligned corpus. Our approach is differ-
ent from their method that we do not require fully
aligned data and we do not need to interpolate two
parameter sets. All the training is done within a
unified framework. Our approach is also different
from LEAF (Fraser and Marcu, 2007) and Model
6 (Och and Ney, 2003) that we do not use these

additional links to tune additional parameters to
combine model components, as a result, it is not
limited to fully aligned corpus.

A question may raise why the proposed method
is superior over using the partial alignment links
as features in discriminative aligners? There are
three possible explanations. First, the method pre-
serves the power of the generative model in which
the algorithm utilizes large amount of unlabeled
data. More importantly, the additional information
can propagate over the whole corpus through bet-
ter estimation of model parameters. In contrast, if
we use the alignment links in discriminative align-
ers as a feature, one link can only affect the par-
ticular word, or at most the sentence. Second, al-
though the discriminative word alignment meth-
ods provide flexibility to utilize labeled data, most
of them still rely on generative aligners. Some
rely on the model parameters of the IBM Mod-
els (Liu et al., 2005; Blunsom and Cohn, 2006),
others rely on the alignment links from GIZA++
as features or as training data (Taskar et al., 2005),
or use both the model parameters and the align-
ment links (Niehues and Vogel, 2008). Therefore,
improving the generative aligner is still important
even when using discriminative aligners. Third,
these methods require full alignment of sentences
to provide positive (aligned) and negative (non-
aligned) information, which limits the availability
of data (Niehues and Vogel, 2008).

The proposed method has been successfully ap-
plied on various tasks, such as utilizing manual
alignments harvested from Amazon Mechanical
Turk (Gao and Vogel, 2010), and active learning
methods for improving word alignment (Ambati
et al., 2010). This paper provides the detailed al-
gorithm of the method and controlled experiments
to demonstrate its behavior.

The paper is organized as follows, in section
2 we describe the proposed model as well as the
modified training algorithm. Section 3 presents
two approaches of obtaining manual alignment
links, The experimental results will be shown in
section 4. We conclude the paper in section 5.

2 Semi-supervised word alignment

2.1 Problem Setup

The IBM Models (Brown et. al., 1993) are a
series of generative models for word alignment.
GIZA++ (Och and Ney, 2003) is the most widely
used implementation of the IBM Models and the
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HMM model (Vogel et al., 1996). Given two
strings from target and source languages fJ

1 =
f1, · · · , fj , · · · fJ and eI1 = e1, · · · , ei, · · · eI , an
alignment of the sentence pair is defined as aJ

1 =
[a1, a2, · · · , aJ ], aj ∈ [0, I]. The IBM Models
assume all the target words must be covered ex-
actly once (Brown et. al., 1993). We try to model
P (fJ

1 |eI1), which is the probability of observing
source sentence given target sentence eI1. In sta-
tistical models a hidden alignment variable is in-
troduced, so that we can write the probability as
P (fJ

1 |eI1) =
∑

aJ
1
Pr(fJ

1 , a
J
1 |eJ1 , θ), where Pr(·)

is the estimated probability given the parameter set
θ. The IBM Models define several different set of
parameters, from Model 1 to Model 5. Starting
from Model 3, the fertility model is introduced.

EM algorithm is employed to estimate the
model parameters of the IBM Models. In E-step,
it is possible to obtain sufficient statistics from
all possible alignments with simplified formulas
for simple models such as Model 1 and Model 2.
Meanwhile for fertility-based models, enumerat-
ing all possibilities is NP-complete and hence it
cannot be carried out for long sentences. A solu-
tion is to explore only the “neighbors” of Viterbi
alignments. However, obtaining Viterbi align-
ments itself is NP-complete for these models. In
practice, a greedy algorithm is employed to find
a local optimal alignments based on Viterbi align-
ments generated by simpler models.

First, we define the neighbor alignments of a as
the set of alignments that differ by one of the two
operators from the original “center alignment”.

• Move operator m[i,j], that changes aj := i,
i.e. arbitrarily set word fj in source sentence
to align to word fi in target sentence.
• Swap operator s[j1,j2] that exchanges aj1 and
aj2 .

We denote the neighbor alignments set of
current center alignment a as nb(a). In
each step of hill-climbing algorithm, we find
the alignment b(a) in nb(a), s.t. b(a) =
arg maxa′∈nb(a) p(a

′|e, f), and update the current
center alignment. The algorithm iterates until
there is no update could be made. The statistics of
the neighbor alignments of the final center align-
ment will be collected for normalization step (M-
step). The algorithm is greedy, so a reasonable
start point is important. In practice GIZA++ uses
Model 2 or HMM to generate the seed alignment.

To improve the speed of hill climbing, GIZA++
caches the cost of all possible move and swap op-
erations in two matrices. In the so called Moving
Matrix M , the element Mij stores the likelihood
difference of a move operator aj = i:

Mij =
Pr(m[i,j](a)|e, f)

Pr(a|e, f)
· (1− δ(aj , i)) (1)

and in the Swapping Matrix S, the element Sjj′

stores the likelihood difference of a swap operator
between aj and aj′ :

Sjj′ =

{
Pr(S[j,j′](a)|e,f)

Pr(a|e,f)
· (1− δ(aj , aj′)) if j < j′

0 otherwise
(2)

The matrices will be updated whenever an oper-
ator is made, but the update is limited to the rows
and columns involved in the operator.

We define a partial alignment of a sentence
pair (fJ

1 , e
I
1) as αJ

I = {(i, j), 0 ≤ i < I, 0 ≤
j < J}, note that the partial alignment does not
assume 1-to-N restriction on either side, and the
word from neither source nor target side need to be
covered with links. If an index is missing, it does
not mean the word is aligned to the empty word.
Instead it just means no information is provided.
We use a link (0, j) or (i, 0) to explicitly represent
the information that word fj or ei is aligned to the
empty word.

In order to find the most probable align-
ment that is consistent the partial alignments,
we treat the partial alignment as constraints, i.e.
for an alignment aJ

1 = [a1, a2, · · · , aj ] on the
sentence pair fJ

1 , e
I
1, the translation probability

Pr(fJ
1 , a

J
1 |eI1, αJ

I ) will be zero if the alignment is
inconsistent with the partial alignments.

Pr(fJ
1 |eI

1, a
J
1 , α

J
I ) =

{
0, aJ

1 is inconsistent withαJ
I

Pr(fJ
1 |eI

1, a
J
1 , θ), otherwise

(3)

Under the constraints of the IBM Models, there
are two situations that aJ

1 is inconsistent with αJ
I :

1. Target word misalignment: The IBM Models
assume one target word can only be aligned
to one source word. Therefore, if the target
word fj aligns to a source word ei, while the
constraint αJ

I suggests fj should be aligned
to ei′ , the alignment violates the constraint
and thus is considered inconsistent.

3



2005 the

summer

of

2005

Manual Alignment Link

(a)

2005 the

summer

Of

2005

Seed Alignment  Consistent Alignment  Center Alignment

(b)                    (c)

2005 the

summer

of

2005

Figure 2: Illustration of Algorithm 1

2. Source word to empty word misalignment:
Since one source word can be aligned to mul-
tiple target words, it is hard to constrain the
alignments of source words. However, if a
source word is aligned to the empty word,
it cannot be aligned to any concrete target
word.

However, we are facing the problem of con-
flicting evidences. The problem is not necessar-
ily caused by errors in manual alignments, but
the assumption of the IBM Models that one tar-
get word can only be aligned to one source word.
This assumption causes multiple alignment links
from one target word conflict with each other. In
this case, we relax the constraints of situation 1
that if the alignment link aj∗ is consistent with any
target-to-source links (i, j) that j = j∗, it will be
considered consistent. Also, we arbitrarily assign
the source word to empty word constraints higher
priorities than other constraints.

In EM algorithm, to ensure the final model be
marginalized on the fixed alignment links, and
the final Viterbi alignment is consistent with the
fixed alignment links, we need to guarantee that
no statistics from inconsistent alignments be col-
lected into the sufficient statistics. On fertility-
based models, we have to make sure:

1. The hill-climbing algorithm outputs align-
ment links consistent with the fixed align-
ment links.

2. The count collection algorithm rules out all
the inconsistent statistics.

With the constrained hill-climbing algorithm
and count collection algorithm which will be de-
scribed below, the above two criteria are satisfied.

2.2 Constrained hill-climbing algorithm
Algorithm 1 shows the algorithm outline of con-

strained hill-climbing. First, similar to the original
hill-climbing algorithm described above, HMM
(or Model 2) is used to obtain a seed alignment.
To ensure the resulting center alignment be con-
sistent with manual alignment, we need to split the

Algorithm 1 Constrained Hill-Climbing
1: Calculate the seed alignment a0 using HMM model
2: while ic(a0) > 0 do
3: if {a : ic(a) < ic(a0)} = ∅ then
4: break
5: end if
6: a0 := arg maxa∈nb(a0),ic(a)<ic(a0) Pr(f |e, a)
7: end while
8: Mij := −1 if (i, j) 6∈ αJ

I or (i, 0) ∈ αJ
I

9: loop
10: Sjj′ := −1 if (j, aj′) 6∈ αJ

I or (j′, aj) 6∈ αJ
I

11: Mi1j1 = arg maxMij ; Sj1j′
1

= arg maxSij

12: if Mi1j1 ≤ 1 and Sj1j′
1
≤ 1 then

13: Break
14: end if
15: if Mi1j1 > Sj1j′

1
then

16: Update Mi1∗,Mj1∗,M∗i1 ,M∗j1
and Si1∗, Sj1∗, S∗i1 , S∗j1 , set a0 := Mi1j1(a0)

17: else
18: Update Mj1∗,Mj′

1∗,M∗j1 ,M∗j′
1

and Sj′
1∗, Sj1∗, S∗j′

1
, S∗j1 , set a0 := Sj1j′

1
(a0)

19: end if
20: end loop
21: Return a0

hill-climbing algorithm into two stages, i.e. opti-
mize towards the constraints and towards the opti-
mal alignment under the constraints.

From a seed alignment, we first try to move the
alignment towards the constraints by choosing a
move or swap operator that:

1. has highest likelihood among alignments
generated by other operators, excluding the
original alignment,

2. eliminates at least one inconsistent link.

The first step reflects in line 2 through 7 in the
algorithm, where we use ic(·) to denote the total
number of inconsistent links in the alignment, and
nb(·) to denote the neighbor alignments.

We iteratively update the alignment until no ad-
ditional inconsistent link can be removed. The al-
gorithm implies that we force the seed alignment
to become closer to the constraints while trying
to find the best consistent alignment. Figure 2
demonstrates the idea, given the manual alignment
link shown in (a), and the seed alignment shown as
solid links in (b), we move the inconsistent link to
the dashed link by a move operation.

After we find the consistent alignment, we pro-
ceed to optimize towards the optimal alignment
within the constraints. The algorithm sets the cells
to negative if the corresponding operations are not
allowed. The Moving matrix only need to be up-
dated once, as in line 8 of the algorithm. Whereas
the swapping matrix need to be updated every it-
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eration, Since once the alignment is updated, the
possible violations will also change. This is done
in line 10.

If source words ik are aligned to the empty
word, we set Mik,j = −1,∀j, as shown in line 8.
The swapping matrix does not need to be modified
in this case because the swapping operator will not
introduce new links. Again, Figure 2 demonstrates
the optimization step in (c), two move operators
or one swap operator can move the link marked
with cross to the dashed line, which can be a bet-
ter alignment.

Because the cells that can lead to violations are
set to negative, the operators will never be picked
in line 11, therefore we effectively ensure the con-
sistency of the final center alignment.

The algorithm will end when no better update
can be made (line 12 through 14), otherwise, we
pick the new update with highest likelihood as new
center alignment and update the cells in the Mov-
ing and Swapping matrices that will be affected
by the update. Line 15 through line 19 perform
the operation.

2.3 Count Collection

After finding the center alignment, we collect
counts from the neighbor alignments so that the
M-step can normalize the counts to produce the
model parameters for the next step. All statis-
tics from inconsistent alignments are ruled out to
ensure the final sufficient statistics marginalized
on the fixed alignment links. Similar to the con-
strained hill climbing algorithm, we can manipu-
late the Moving/Swapping matrices to effectively
exclude inconsistent alignments. We just need to
bypass all the cells whose values are negative, i.e.
represent inconsistent alignments.

By combining the constrained EM algorithm
and the count collection, the Viterbi alignment is
guaranteed to be consistent with the fixed align-
ment links, and the sufficient statistics is guar-
anteed to contain no statistics from inconsistent
alignments.

2.4 Training scheme

We extend the multi-thread GIZA++ (Gao and
Vogel, 2008) to load the alignments from a mod-
ified corpus file. The links are appended to the
end of each sentence in the corpus file in the form
of indices pairs, which will be read by the aligner
during training. In practice, we first training un-
constrained models up to Model 4, and then switch

to constrained Model 4 and continue training for
several iterations, the actual number of training
order is: 5 iterations of Model 1, 5 iterations of
HMM, 3 iterations of Model 3, 3 iterations of
unconstrained Model 4 and 3 iterations of con-
strained Model 4. Because here we actually have
more Model 4 iterations, to make the comparison
fair, in all the experiments below we perform 6 it-
erations of Model 4 in the baseline systems.

3 Obtaining alignment links
Given the algorithm described in the Section 2,

we still face the problem of obtaining alignment
links to constrain the system. In this section, we
describe two approaches to obtain the links, the
first is to resort to human labels, while the second
applies high-precision-low-recall heuristic-based
aligner on large unsupervised corpus.

3.1 Using manual alignment links
Using manual alignment links is simple and

straight-forward, however the problem is how to
select links for human to label given that labelling
the whole corpus is impossible. We propose two
link selectors, the first is the random selector in
which every links in the manual alignment has
equal probability of being selected. Obviously,
the random selecting method is far from optimal
because it pays no attention on the quality of ex-
isting links. In order to demonstrate that by select-
ing links carefully we can achieve better alignment
quality with less manual alignment links, we pro-
pose the second selector based on disagreements
of alignments from two directions. We first clas-
sify the source and target words fj and ei into
three categories. Use fj as an example, the cat-
egories are:

• C1: fj aligns to ei, i > 0 in e → f ,1 but in
reversed direction ei does not align to fj but
to another word.
• C2: fj aligns to ei, i > 0, in f → e, but in

reversed direction (e → f ), fj aligns to the
empty word.
• C3: no word aligns to fj , in f → e, but in

reversed direction fj aligns to ei, i > 0.2

The criteria of ei are the same as fj after swap-
ping the definitions of “source” and “target”.

We prioritize the links αJ
I = (i, j) by looking at

the classes of the source/target words. The order of
1Recall that fj can align to only one word.
2This class is different from C1 that whether ei aligns to

concrete words or the empty word.

5



Order Criterion Order Criterion
1 fj ∈ C1 5 ei ∈ C2

2 fj ∈ C2 4 ei ∈ C1

3 fj ∈ C3 6 ei ∈ C3

Table 1: The priorities of alignment links

priorities is shown in Table 1. All the links not in
the six classes will have the lowest priorities. The
links with higher priorities will be selected first,
but the order of two links in a same priority class
is not defined and they will be selected randomly.

3.2 Using heuristics on unlabelled data
Another possible way of getting alignment links

is to make use of heuristics to generate high-
precision-low-recall links and feed them into the
aligner. The heuristics can be number map-
ping, person name translator or more sophisticated
methods such as alignment confidence measure
(Huang, 2009). In this paper we propose to use
manual dictionaries to generate alignment links.

First we filter out from the dictionary the en-
tries with high frequency in the source side, and
then build an aligner based on it. The aligner out-
put links between words if them match an entry
in the dictionary. The method can be applied on
large unlabelled corpus and generate large num-
ber of links, after that we use the links as manual
alignment links in proposed method.

The readers may notice that GIZA++ supports
utilizing manual dictionary as well, however it is
different from our method. The dictionary is used
in GIZA++ only in the initialization step of Model
1, where only the statistics of the word pairs ap-
peared in the dictionary will be collected and nor-
malized. Given the fact that Model 1 converges to
global optimal, the effect will fade out after sev-
eral iterations. In contrast, our method impose
a hard constraint on the alignments. Also, our
method can be used side-by-side with the method
in GIZA++.

4 Experiments
4.1 Experiments on manual link selectors

We designed a set of controlled experiments to
show that the algorithm acts as desired. Particu-
larly, with a number of manual alignment links fed
into the aligner, we should be able to correct more
misaligned alignment links than the manual align-
ment links through better alignment models. Also,
carefully selected alignment links should outper-

form randomly selected alignment links.
We used Chinese-English and Arabic-English

manually aligned corpus in the experiments. Ta-
ble 2 shows the statistics of the corpora:

Number of Num. of Words Alignment
Sentences Source Target Links

Ch-En 21,863 424,683 524,882 687,247
Ar-En 29,876 630,101 821,938 830,349

Table 2: Corpus statistics of the corpora

First the corpora is trained as unlabelled data
to serve as baselines, and then we feed a portion
of alignment links into the proposed aligner. We
experimented with different methods of choosing
alignment links and adjust the number of links vis-
ible to the aligner. Because of the limitations of
the IBM Models, such as no N-to-1 alignments,
the manual alignment is not reachable from ei-
ther direction. We then define the best align-
ment that the IBM Models can express “oracle
alignment”, which can be obtained by dropping
all N-to-1 links from manual alignment. Also, to
show the upper-bound performance, we feed all
the manual alignment links to our aligner, and call
the alignment “force alignment”. Table 3 shows
the alignment qualities of oracle alignments and
force alignments of both systems. For force align-
ments, we show the scores with and without im-
plicit empty links derived from the manual align-
ment.3 The oracle alignments are the performance
upper-bounds of all aligners under IBM Model’s
1-to-N assumption. The result from Table 3 shows
that, if we include the derived empty links, the
force alignments are close to the oracle results.
Then the question is how fast we can approach the
upper-bound.

To answer the question, we gradually increase
the number of links being fed into the aligner. In
these experiments the seeds for random number
generator are fixed so that the links selected in
later experiments are always superset of that of
earlier experiments. The comparison of the align-
ment quality is shown in Figure 3 and 4. To show
the actual improvement brought in by the algo-
rithm instead of the manual alignment links them-
selves, we compare the alignment results of the
proposed method with directly fixing the align-
ments from original GIZA++ training. By fix-
ing alignments we mean that first the conventional

3We can derive empty links if one word has no alignment
link from the full alignment we have access to.
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Figure 3: Alignment qualities of Chinese-English word alignment, NN: Random selector without empty
links, WN: Random seletor with empty links, DF: Disagreement selector, FR: Directly fixing the align-
ments with random selector, FD: Directly fixing the alignments with disagreement selector. Each row
shows the precision, recall and AER when applying different number of manual alignment links. The
three rows are for Chinese-English, English-Chinese and heuristically symmetrized alignments (grow-
diag-final-and) accordingly.

GIZA++ training is performed and then we add the
manual alignment links to the resulting alignment.
In case that the 1-to-N restriction of the IBM Mod-
els is violated, we keep the manual alignment links
and remove the links from GIZA++.

We show the results as FR (dashed curves with
diamond markers) and FD (dashed curves with
square markers) in the plots, corresponding to
alignments selected from the random link selector
and the disagreement-based link selector. These
two curves serve as baseline, and the gaps between
the FR curves and the WN curves (dotted curves
with cross markers) and the gaps between the FD
curves and the DF curves (solid curves) show the
amount of improvement we achieved using the
method in addition to the manual alignment links.
Therefore, they represent the effectiveness of the
proposed alignment approach. Also the gaps be-

tween DF and WN curves indicate the differences
in the performance of two link selectors.

The plots illustrate that when the number of
links is small, the WN and DF curves are al-
ways higher than the FR/FD curves. It proves
that our system does not just fix the links pro-
vided by manual alignments, instead the informa-
tion propagates to other links. The largest gap
between FD and DF is 8% absolute in com-
bined alignment of Chinese-English system with
200,000 manual alignment links. Also, we can
see that the disagreement-based link selector (DF)
always outperform the random selector (WN). It
suggest that, if we want to harvest manual align-
ment links, it is possible to apply active learning
method to minimize the user labelling effort while
maximizing the improvement on word alignment
qualities. Especially, notice that in the lower parts
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Figure 4: Alignment qualities of Arabic-English word alignment, NN: Random selector without empty
links, WN: Random selector with empty links, DF: Disagreement selector, FR: Directly fixing the align-
ments with random selector, FD: Directly fixing the alignments with disagreement selector. Each row
shows the precision, recall and AER when applying different number of manual alignment links. The
three rows are for Arabic-English, English-Arabic and heuristically symmetrized alignments (grow-diag-
final-and) accordingly.

of the curves, with a small number of manual
alignment links, we can already improve the align-
ment quality by a large gap. This observation can
benefit low-resource word alignment tasks.

4.2 Experiment on using heuristics

The previous experiment shows the potential of
using the method on manual aligned corpus, here
we demonstrate another possible usage of the pro-
posed method that uses heuristics to generate high-
precision-low-recall links. We use LDC Chinese-
English dictionary as an example. The entries with
single Chinese character and more than six En-
glish words are filtered out. The heuristic-based
aligner yields alignment that has 79.48% preci-
sion and 17.36% recall rate on the test set we used
in 4.1. By applying the links as manual links,
we run proposed method on the same Chinese-
English test data presented in 4.1, and the results

of alignment qualities are shown in 5. As we can
see, the AER reduced by 1.64 from 37.23 to 35.61
on symmetrized alignment.

We also experimented with translation tasks
with moderate-size corpus. We used the corpus
LDC2006G05 with 25 million words. The train-
ing scheme is the same as previous experiments,
where the filtered LDC dictionary is used. After
word alignment, standard Moses phrase extraction
tool (Och and Ney, 2004) is used to build the trans-
lation models and finally Moses (Koehn et. al.,
2007) is used to tune and decode.

We tune the system on the NIST MT06 test
set (1664 sentences), and test on the MT08 (1357
sentences) and the DEV075 (1211 sentences) test
sets, which are further divided into two sources
(newswire and web data). A trigram language

5It is a test set used by GALE Rosseta Team
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MT02 MT03 MT04 MT05 MT08-NW MT08-WB Dev07NW Dev07WB
Baseline 28.87 27.82 30.08 26.77 25.09 17.72 24.88 21.76
Dict-Link 29.59 27.67 31.01 27.13 25.14 17.96 25.51 21.88

Table 4: Comparison of the performance of baseline and the alignment generated by new aligner with
dictionary links in BLEU scores

Precision Recall AER
ORL 100.00 62.61 23.00

Ch-En F/NE 89.25 62.47 26.50
F/WE 99.59 62.47 23.22
ORL 100.00 80.98 10.51

En-Ch F/NE 93.49 80.79 13.32
F/WE 99.82 80.79 10.70
F/NE 90.79 87.49 10.89Comb F/WE 99.78 87.23 6.92
ORL 100.00 72.07 16.23

Ar-En F/NE 82.46 72.00 23.13
F/WE 94.25 72.00 18.36
ORL 100.00 90.14 5.18

En-Ar F/NE 79.81 90.06 15.37
F/WE 93.27 90.10 8.34
F/NE 78.91 93.07 14.59Comb F/WE 94.64 93.21 6.08

Table 3: Alignment quality of oracle alignment
and force alignment, the rows with “ORL” in the
second column are oracle alignments, “F/NE” and
“F/WE” represent force alignments with empty
links and without empty links correspondingly.
For “F/NE” and “F/WE” we also listed the
scores of heuristically symmetrized alignment4.
(“Comb”)

model trained from GigaWord V1 and V2 cor-
pora is used. Table 4 shows the comparison of
the performances on BLEU metric (Papineni et
al., 2002). As we can observe from the results,
the proposed method outperforms the baseline on
all test sets except MT03, and has significant6

improvement on MT02 (+0.72), MT04 (+0.93),
and Dev07NW(+0.63). The average improvement
across all test sets is 0.35 BLEU points.

As a summary, the purpose of the this experi-
ment is to demonstrate an important characteris-
tic of the proposed method. Even with imperfect
manual alignment links, we can get better align-
ment by applying our method. This characteristic
opens a possibility to integrate other more sophis-
ticated aligners.

5 Conclusion
In this study, our major contribution is a novel

generative model extended from IBM Model 4 to
6We used the confidence measurement described in

(Zhang and Vogel, 2004)

Chinese-English
Precision Recall AER

Baseline 68.22 46.88 44.43
Dict-Link 69.93 48.28 42.88

English-Chinese
Precision Recall AER

Baseline 65.35 55.05 40.24
Dict-Link 66.70 56.45 38.85

grow-diag-final-and
Precision Recall AER

Baseline 69.15 57.47 37.23
Dict-Link 70.11 59.54 35.61

Table 5: Comparison on alignment error rate by
using alignment links generated by dictionaries

utilize partial manual alignments. The proposed
method enables us to efficiently enforce subtle
alignment constraints into the EM training. We
performed experiments on manually aligned cor-
pora to prove the validity. We also demonstrated
using the method with simple heuristics to boost
the translation quality on moderate size unlabelled
corpus. The results show that our method is ef-
fective in promoting the word alignment quali-
ties with small amounts of partial alignments and
with high-precision-low-recall heuristics. Also the
method of using dictionary to generate manual
alignment links showed an average improvement
of 0.35 BLEU points across 8 test sets.

The algorithm has small impact on the speed of
GIZA++, and can easily be added to current multi-
thread implementation of GIZA++. Therefore it is
suitable for large scale training.

Future work includes applying the proposed ap-
proach on low resource language pairs and in-
tegrating the algorithm with other rule-based or
discriminative aligners that can generate high-
precision-low-recall partial alignments.
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Abstract 

This paper presents a fast consensus hy-
pothesis regeneration approach for ma-

chine translation. It combines the advan-

tages of feature-based fast consensus de-
coding and hypothesis regeneration.  Our 

approach is more efficient than previous 

work on hypothesis regeneration, and it 
explores a wider search space than con-

sensus decoding, resulting in improved 

performance.  Experimental results show 

consistent improvements across language 
pairs, and an improvement of up to 0.72 

BLEU is obtained over a competitive 

single-pass baseline on the Chinese-to-
English NIST task. 

1 Introduction 

State-of-the-art statistical machine translation 

(SMT) systems are often described as a two-pass 
process. In the first pass, decoding algorithms are 

applied to generate either a translation N-best list 

or a translation forest.  Then in the second pass, 
various re-ranking algorithms are adopted to 

compute the final translation. The re-ranking al-

gorithms include rescoring (Och et al., 2004) and 

Minimum Bayes-Risk (MBR) decoding (Kumar 
and Byrne, 2004; Zhang and Gildea, 2008; 

Tromble et al., 2008). Rescoring uses more so-

phisticated additional feature functions to score 
the hypotheses. MBR decoding directly incorpo-

rates the evaluation metrics (i.e., loss function), 

into the decision criterion, so it is effective in 
tuning the MT performance for a specific loss 

function. In particular, sentence-level BLEU loss 

function gives gains on BLEU (Kumar and 

Byrne, 2004).  
The naïve MBR algorithm computes the loss 

function between every pair of k hypotheses, 

needing O(k
2
) comparisons. Therefore, only 

small number k is applicable. Very recently, De-

Nero et al. (2009) proposed a fast consensus de-

coding (FCD) algorithm in which the similarity 
scores are computed based on the feature expec-

tations over the translation N-best list or transla-

tion forest. It is equivalent to MBR decoding 

when using a linear similarity function, such as 
unigram precision.  

Re-ranking approaches improve performance 

on an N-best list whose contents are fixed. A   
complementary strategy is to augment the con-

tents of an N-best list in order to broaden the 

search space. Chen et al (2008) have proposed a 
three-pass SMT process, in which a hypothesis 

regeneration pass is added between the decoding 

and rescoring passes. New hypotheses are gener-

ated based on the original N-best hypotheses 
through n-gram expansion, confusion-network 

decoding or re-decoding. All three hypothesis 

regeneration methods obtained decent and com-
parable improvements in conjunction with the 

same rescoring model. However, since the final 

translation candidates in this approach are pro-

duced from different methods, local feature func-
tions (such as translation models and reordering 

models) of each hypothesis are not directly com-

parable and rescoring must exploit rich global 
feature functions to compensate for the loss of 

local feature functions. Thus this approach is de-

pendent on the use of computationally expensive 
features for rescoring, which makes it inefficient.  

In this paper, we propose a fast consensus hy-

pothesis regeneration method that combines the 

advantages of feature-based fast consensus de-
coding and hypothesis regeneration. That is, we 

integrate the feature-based similarity/loss func-

tion based on evaluation metrics such as BLEU 
score into the hypothesis regeneration procedure 

to score the partial hypotheses in the beam search 

and compute the final translations. Thus, our ap-
proach is more efficient than the original three-

pass hypothesis regeneration. Moreover, our ap-

proach explores more search space than consen-
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sus decoding, giving it an advantage over the 

latter. 

In particular, we extend linear corpus BLEU 

(Tromble et al., 2008) to n-gram expectation-
based linear BLEU, then further extend the n-

gram expectation computed on full-length hypo-

theses to n-gram expectation computed on fixed-
length partial hypotheses. Finally, we extend the 

hypothesis regeneration with forward n-gram 

expansion to bidirectional n-gram expansion in-
cluding both the forward and backward n-gram 

expansion. Experimental results show consistent 

improvements over the baseline across language 

pairs, and up to 0.72 BLEU points are obtained 
from a competitive baseline on the Chinese-to-

English NIST task. 

2 Fast Consensus Hypothesis Regenera-

tion 

Since the three hypothesis regeneration methods 
with n-gram expansion, confusion network de-

coding and re-decoding produce very similar per-

formance (Chen et al., 2008), we consider only 
n-gram expansion method in this paper. N-gram 

expansion can (almost) fully exploit the search 

space of target strings which can be generated by 

an n-gram language model trained on the N-best 
hypotheses (Chen et al., 2007). 

2.1 Hypothesis regeneration with bidirec-

tional n-gram expansion 

N-gram expansion (Chen et al., 2007) works as 
follows: firstly, train an n-gram language model 

based on the translation N-best list or translation 

forest; secondly, expand each partial hypothesis 

by appending a word via overlapped (n-1)-grams 
until the partial hypothesis reaches the sentence 

ending symbol. In each expanding step, the par-

tial hypotheses are pruned through a beam-search 
algorithm with scoring functions. 

Duchateau et al. (2001) shows that the back-

ward language model contains information com-
plementary to the information in the forward 

language model. Hence, on top of the forward n-

gram expansion used in (Chen et al., 2008), we 

further introduce backward n-gram expansion to 
the hypothesis regeneration procedure. Backward 

n-gram expansion involves letting the partial hy-

potheses start from the last words that appeared 
in the translation N-best list and having the ex-

pansion go from right to left. 

Figure 1 gives an example of backward n-

gram expansion. The second row shows bi-grams 
which are extracted from the original hypotheses 

in the first row. The third row shows how a par-

tial hypothesis is expanded via backward n-gram 

expansion method. The fourth row lists some 

new hypotheses generated by backward n-gram 
expansion which do not exist in the original hy-

pothesis list. 

 

 

original 

 hypotheses 

about weeks' work . 

one week's work 

about one week's 

about a week work 

about one week work 

bi-grams about weeks', weeks' work, …, 

about one, …,  week work. 

backward 
n-gram 

 expansion 

partial hyp.     week's work 

n-gram one week's  

new partial hyp. one week's work 
 

 
new 

 hypotheses 

about one week's work 
about week's work 

one weeks' work . 

one week's work . 

one week's work . 

 
Figure 1: Example of original hypotheses; bi-grams 

collected from them; backward expanding a partial 

hypothesis via an overlapped n-1-gram; and new hy-

potheses generated through backward n-gram expan-

sion. 

2.2 Feature-based scoring functions 

To speed up the search, the partial hypotheses 

are pruned via beam-search in each expanding 

step. Therefore, the scoring functions applied 

with the beam-search algorithm are very impor-
tant. In (Chen et al., 2008), more than 10 addi-

tional global features are computed to rank the 

partial hypothesis list, and this is not an efficient 
way. In this paper, we propose to directly incor-

porate the evaluation metrics such as BLEU 

score to rank the candidates. The scoring func-

tions of this work are derived from the method of 
lattice Minimum Bayes-risk (MBR) decoding 

(Tromble et al., 2008) and fast consensus decod-

ing (DeNero et al., 2009), which were originally 
inspired from N-best MBR decoding (Kumar and 

Byrne, 2004). 

From a set of translation candidates E, MBR 
decoding chooses the translation that has the 

least expected loss with respect to other candi-

dates. Given a hypothesis set E, under the proba-

bility model )|( feP , MBR computes the trans-

lation e~  as follows: 
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)|(),(minarg~ fePeeLe
EeEe

⋅′= ∑
∈′∈

        (1) 

 

where f is the source sentence, ),( eeL ′  is the loss 

function of two translations e and e′ . 

Suppose that we are interested in maximizing 

the BLEU score (Papineni et al., 2002) to optim-

ize the translation performance. The loss func-

tion is defined as ),(1),( eeBLEUeeL ′−=′ ,  

then the MBR objective can be re-written as 

 

)|(),(maxarg~ fePeeBLEUe
EeEe

⋅′= ∑
∈′∈

         (2) 

 
E represents the space of the translations. For 

N-best MBR decoding, this space is the N-best 

list produced by a baseline decoder (Kumar and 

Byrne, 2004). For lattice MBR decoding, this 
space is the set of candidates encoded in the lat-

tice (Tromble et al., 2008). Here, with hypothesis 

regeneration, this space includes: 1) the transla-
tions produced by the baseline decoder either in 

an N-best list or encoded in a translation lattice, 

and 2) the translations created by hypothesis re-
generation. 

However, BLEU score is not linear with the 

length of the hypothesis, which makes the scor-

ing process for each expanding step of hypothe-
sis regeneration very slow. To further speed up 

the beam search procedure, we use an extension 

of a linear function of a Taylor approximation to 
the logarithm of corpus BLEU which was devel-

oped by (Tromble et al., 2008).  The original 

BLEU score of two hypotheses e and e’ are 

computed as follows. 
 

)),(log(
4

1
exp(),(),(

4

1

∑
=

′×′=′
n

n
eePeeeeBLEU γ    (3) 

 

where ),( eePn
′  is the precision of n-grams in the 

hypothesis e given e’ and  ),( ee ′γ  is a brevity 

penalty. Let |e| denote the length of e. The corpus 
log-BLEU gain is defined as follows: 

 

)),(log(
4

1
)
||

||
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4
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=
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e
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Therefore, the first-order Taylor approxima-
tion to the logarithm of corpus BLEU is shown 

in Equation (5). 
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where ),( eec
n

′ are the counts of the matched n-

grams and 
nθ  ( 40 ≤≤ n ) are constant weights 

estimated with held-out data.  

Suppose we have computed the expected n-

gram counts from the N-best list or translation 
forest. Then we may extend linear corpus BLEU 

in (5) to n-gram expectation-based linear corpus 

BLEU to score the partial hypotheses h. That is 
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= ∈

⋅⋅+=
4

1

0 ),()],'([
4

1
||)',(
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where ),( th
n

δ  are n-gram indicator functions that 

equal 1 if n-gram t  appears in h  and 0 other-

wise; )],'([ tecE n
 ( 41 ≤≤ n ) are the real-valued 

n-gram expectations. Different from lattice MBR 

decoding, n-gram expectations in this work are 
computed over the original translation N-best list 

or translation forest; 
nT  ( 41 ≤≤ n ) are the sets of 

n-grams collected from translation N-best list or 
translation forest. Then we make a further exten-

sion: the expectations of the n-gram counts for 

each expanding step are computed over the par-

tial translations. The lengths of all partial hypo-
theses are the same in each n-gram expanding 

step. For instance, in the 5th n-gram expanding 

step, the lengths of all the partial hypotheses are 
5 words. Therefore, we use n-gram count expec-

tations computed over partial original transla-

tions that only contain the first 5 words. The rea-
son is that this solution contains more informa-

tion about word orderings, since some n-grams 

appear more than others at the beginning of the 

translations while they may appear with the same 
or even lower frequencies than others in the full 

translations.  

Once the expanding process of hypothesis re-
generation is finished, we use a more precise 

BLEU metric to score all the translation candi-

dates. We extend BLEU score in (3) to n-gram 

expectation-based BLEU. That is: 
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where ),( thc
n

 is the count of  n-gram t in the 

hypothesis h. The step of choosing the final 

translation is the same as fast consensus decod-

ing (DeNero et al., 2009): first we compute n-
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gram feature expectations, and then we choose 

the translation that is most similar to the others 

via expected similarity according to feature-

based BLEU score as shown in (7). The differ-
ence is the space of translations: the space of fast 

consensus decoding is the same as MBR decod-

ing, while the space of hypothesis regeneration is 
enlarged by the new translations produced via n-

gram expansion. 

2.3 Fast consensus hypothesis regeneration 

We first generate two new hypothesis lists via 
forward and backward n-gram expansion using 

the scoring function in Equation (6). Then we 

choose a final translation using the scoring func-

tion in Equation (7) from the union of the origi-
nal hypotheses and newly generated hypotheses. 

The original hypotheses are from the N-best list 

or extracted from the translation forest. The new 
hypotheses are generated by forward or back-

ward n-gram expansion or are the union of both 

two new hypothesis lists (this is called “bi-

directional n-gram expansion”). 

3 Experimental Results 

We carried out experiments based on translation 
N-best lists generated by a state-of-the-art 

phrase-based statistical machine translation sys-

tem, similar to (Koehn et al., 2007). In detail, the 

phrase table is derived from merged counts of 
symmetrized IBM2 and HMM alignments; the 

system has both lexicalized and distance-based 

distortion components (there is a 7-word distor-
tion limit) and employs cube pruning (Huang and 

Chiang, 2007). The baseline is a log-linear fea-

ture combination that includes language models, 
the distortion components, translation model, 

phrase and word penalties. Weights on feature 

functions are found by lattice MERT (Macherey 

et al., 2008). 

3.1 Data 

We evaluated with different language pairs: Chi-

nese-to-English, and German-to-English. Chi-

nese-to-English tasks are based on training data 
for the NIST 1  2009 evaluation Chinese-to-

English track. All the allowed bilingual corpora 

have been used for estimating the translation 

model. We trained two language models: the first 
one is a 5-gram LM which is estimated on the 

target side of the parallel data. The second is a 5-

                                                
1 http://www.nist.gov/speech/tests/mt 

gram LM trained on the so-called English Giga-

word corpus. 

 

   Chi Eng 

Parallel 

Train 

Large 

Data 

|S| 10.1M 

|W| 270.0M 279.1M 

   Dev |S| 1,506 1,506×4 

Test NIST06 |S| 1,664 1,664×4 

NIST08 |S| 1,357 1,357×4 

Gigaword |S| - 11.7M 

 
Table 1: Statistics of training, dev, and test sets for 
Chinese-to-English task. 

 

We carried out experiments for translating 

Chinese to English. We first created a develop-
ment set which used mainly data from the NIST 

2005 test set, and also some balanced-genre web-

text from the NIST training material. Evaluation 

was performed on the NIST 2006 and 2008 test 
sets. Table 1 gives figures for training, develop-

ment and test corpora; |S| is the number of the 

sentences, and |W| is the size of running words. 
Four references are provided for all dev and test 

sets. 

For German-to-English tasks, we used WMT 
20062 data sets. The parallel training data con-

tains about 1 million sentence pairs and includes 

21 million target words; both the dev set and test 

set contain 2000 sentences; one reference is pro-
vided for each source input sentence. Only the 

target-language half of the parallel training data 

are used to train the language model in this task. 

3.2 Results 

Our evaluation metric is IBM BLEU (Papineni et 

al., 2002), which performs case-insensitive 

matching of n-grams up to n = 4.  

Our first experiment was carried out over 
1000-best lists on Chinese-to-English task. For 

comparison, we also conducted experiments with 

rescoring (two-pass) and three-pass hypothesis 
regeneration with only forward n-gram expan-

sion as proposed in (Chen et al., 2008). In the 

“rescoring” and “three-pass” systems, we used 
the same rescoring model. There are 21 rescoring 

features in total, mainly translation lexicon 

scores from IBM and HMM models, posterior 

probabilities for words, n-grams, and sentence 
length, and language models, etc. For a complete 

description, please refer to (Ueffing et al., 2007). 

The results in BLEU-4 are reported in Table 2. 
 

                                                
2 http://www.statmt.org/wmt06/ 
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testset NIST’06 NIST’08 

baseline 35.70 28.60 

rescoring 36.01 28.97 

three-pass 35.98 28.99 

FCD 36.00 29.10 

Fwd. 36.13 29.19 

Bwd. 36.11 29.20 

Bid. 36.20 29.28 
 
Table 2: Translation performances in BLEU-4(%) 
over 1000-best lists for Chinese-to-English task: “res-
coring” represents the results of rescoring; “three-
pass”, three-pass hypothesis regeneration with for-
ward n-gram expansion; “FCD”, fast consensus de-
coding; “Fwd”, the results of hypothesis regeneration 
with forward n-gram expansion; “Bwd”, backward n-
gram expansion; and “Bid”, bi-directional n-gram 
expansion. 
 

Firstly, rescoring improved performance over 

the baseline by 0.3-0.4 BLEU point. Three-pass 
hypothesis regeneration with only forward n-

gram expansion (“three-pass” in Table 2) ob-

tained almost the same improvements as rescor-
ing. Three-pass hypothesis regeneration exploits 

more hypotheses than rescoring, while rescoring 

involves more scoring feature functions than the 
former. They reached a balance in this experi-

ment. Then, fast consensus decoding (“FCD” in 

Table 2) obtains 0.3-0.5 BLEU point improve-

ments over the baseline. Both forward and back-
ward n-gram expansion (“Fwd.” and “Bwd.” in 

Table 2) improved about 0.1 BLEU point over 

the results of consensus decoding. Fast consen-
sus hypothesis regeneration (Fwd. and Bwd. in 

Table 2) got better improvements than three-pass 

hypothesis regeneration (“three-pass” in Table 2) 

by 0.1-0.2 BLEU point. Finally, combining hy-
pothesis lists from forward and backward n-gram 

expansion (“Bid.” in Table 2), further slight 

gains were obtained. 
 

testset Average time 

three-pass 3h 54m 

Fwd. 25m 

Bwd. 28m 

Bid. 40m 

 
Table 3: Average processing time of NIST’06 and 
NIST’08 test sets used in different systems. Times 
include n-best list regeneration and re-ranking. 
 

Moreover, fast consensus hypothesis regenera-

tion is much faster than the three-pass one, be-

cause the former only needs to compute one fea-

ture, while the latter needs to compute more than 

20 additional features. In this experiment, the 

former is about 10 times faster than the latter in 

terms of processing time, as shown in Table 3. 
 

In our second experiment, we set the size of 

N-best list N equal to 10,000 for both Chinese-to-

English and German-to-English tasks. The re-

sults are reported in Table 4. The same trend as 
in the first experiment can also be observed in 

this experiment. It is worth noticing that enlarg-

ing the size of the N-best list from 1000 to 
10,000 did not change the performance signifi-

cantly. Bi-directional n-gram expansion obtained 

improvements of 0.24 BLEU-score for WMT 
2006 de-en test set; 0.55 for NIST 2006 test set; 

and 0.72 for NIST 2008 test set over the base-

line. 

 

Lang. ch-en de-en 

testset NIST’06 NIST’08 Test2006 

baseline 35.70 28.60 26.92 

FCD 36.03 29.08 27.03 

Fwd. 36.16 29.25 27.11 

Bwd. 36.17 29.22 27.12 

Bid. 36.25 29.32 27.16 
 

Table 4: Translation performances in BLEU-4 (%) 
over 10K-best lists. 
 

We then tested the effect of the extension ac-
cording to which the expectations over n-gram 

counts are computed on partial hypotheses rather 

than whole candidate translations as described in 
Section 2.2. As shown in Table 5, we got tiny 

improvements on both test sets by computing the 

expectations over n-gram counts on partial hypo-
theses. 

 

testset NIST’06 NIST’08 

full 36.11 29.14 

partial 36.13 29.19 
 
Table 5: Translation performances in BLEU-4 (%) 
over 1000-best lists for Chinese-to-English task: 
“full” represents expectations over n-gram counts that 
are computed on whole hypotheses; “partial” 
represents expectations over n-gram counts that are 
computed on partial hypotheses. 

3.3 Discussion  

To speed up the search, the partial hypotheses in 
each expanding step are pruned. When pruning is 

applied, forward and backward n-gram expan-

sion would generate different new hypothesis 

lists. Let us look back at the example in Figure 1.  
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Given 5 original hypotheses in Figure 1, if we set 

the beam size equal to 5 (the size of the original 

hypotheses), the forward and backward n-gram 

expansion generated different new hypothesis 
lists, as shown in Figure 2. 

 

forward backward 

one week's work . 

about week's work 

one week's work . 

about one week's work 

 
Figure 2: Different new hypothesis lists generated by 
forward and backward n-gram expansion. 

 
For bi-directional n-gram expansion, the cho-

sen translation for a source sentence comes from 

the decoder 94% of the time for WMT 2006 test 
set, 90% for NIST test sets; it comes from for-

ward n-gram expansion 2% of the time for WMT 

2006 test set, 4% for NIST test sets; it comes 
from backward n-gram expansion 4% of the time 

for WMT 2006 test set, 6% for NIST test sets. 

This proves bidirectional n-gram expansion is a 

good way of enlarging the search space. 

4 Conclusions and Future Work 

We have proposed a fast consensus hypothesis 
regeneration approach for machine translation. It 

combines the advantages of feature-based con-

sensus decoding and hypothesis regeneration. 

This approach is more efficient than previous 
work on hypothesis regeneration, and it explores 

a wider search space than consensus decoding, 

resulting in improved performance.  Experiments 
showed consistent improvements across lan-

guage pairs. 

Instead of N-best lists, translation lattices or 

forests have been shown to be effective for MBR 
decoding (Zhang and Gildea, 2008; Tromble et 

al., 2008), and DeNero et al. (2009) showed how 

to compute expectations of n-grams from a trans-
lation forest. Therefore, our future work may 

involve hypothesis regeneration using an n-gram 

language model trained on the translation forest. 
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Abstract

This paper presents the results of the
WMT10 and MetricsMATR10 shared
tasks,1 which included a translation task,
a system combination task, and an eval-
uation task. We conducted a large-scale
manual evaluation of 104 machine trans-
lation systems and 41 system combina-
tion entries. We used the ranking of these
systems to measure how strongly auto-
matic metrics correlate with human judg-
ments of translation quality for 26 metrics.
This year we also investigated increasing
the number of human judgments by hiring
non-expert annotators through Amazon’s
Mechanical Turk.

1 Introduction

This paper presents the results of the shared
tasks of the joint Workshop on statistical Ma-
chine Translation (WMT) and Metrics for MA-
chine TRanslation (MetricsMATR), which was
held at ACL 2010. This builds on four previ-
ous WMT workshops (Koehn and Monz, 2006;
Callison-Burch et al., 2007; Callison-Burch et al.,
2008; Callison-Burch et al., 2009), and one pre-
vious MetricsMATR meeting (Przybocki et al.,
2008). There were three shared tasks this year:
a translation task between English and four other
European languages, a task to combine the out-
put of multiple machine translation systems, and
a task to predict human judgments of translation
quality using automatic evaluation metrics. The

1The MetricsMATR analysis was not complete in time for
the publication deadline. An updated version of paper will be
made available on http://statmt.org/wmt10/ prior
to July 15, 2010.

performance on each of these shared task was de-
termined after a comprehensive human evaluation.

There were a number of differences between
this year’s workshop and last year’s workshop:

• Non-expert judgments – In addition to hav-
ing shared task participants judge translation
quality, we also collected judgments from
non-expert annotators hired through Ama-
zon’s Mechanical Turk. By collecting a large
number of judgments we hope to reduce the
burden on shared task participants, and to in-
crease the statistical significance of our find-
ings. We discuss the feasibility of using non-
experts evaluators, by analyzing the cost, vol-
ume and quality of non-expert annotations.

• Clearer results for system combination –
This year we excluded Google translations
from the systems used in system combina-
tion. In last year’s evaluation, the large mar-
gin between Google and many of the other
systems meant that it was hard to improve on
when combining systems. This year, the sys-
tem combinations perform better than their
component systems more often than last year.

• Fewer rule-based systems – This year there
were fewer rule-based systems submitted. In
past years, University of Saarland compiled a
large set of outputs from rule-based machine
translation (RBMT) systems. The RBMT
systems were not submitted this year. This
is unfortunate, because they tended to outper-
form the statistical systems for German, and
they were often difficult to rank properly us-
ing automatic evaluation metrics.

The primary objectives of this workshop are to
evaluate the state of the art in machine transla-
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tion, to disseminate common test sets and pub-
lic training data with published performance num-
bers, and to refine evaluation methodologies for
machine translation. As with past years, all of the
data, translations, and human judgments produced
for our workshop are publicly available.2 We hope
they form a valuable resource for research into sta-
tistical machine translation, system combination,
and automatic evaluation of translation quality.

2 Overview of the shared translation and
system combination tasks

The workshop examined translation between En-
glish and four other languages: German, Span-
ish, French, and Czech. We created a test set for
each language pair by translating newspaper arti-
cles. We additionally provided training data and
two baseline systems.

2.1 Test data

The test data for this year’s task was created
by hiring people to translate news articles that
were drawn from a variety of sources from mid-
December 2009. A total of 119 articles were se-
lected, in roughly equal amounts from a variety
of Czech, English, French, German and Spanish
news sites:3

Czech: iDNES.cz (5), iHNed.cz (1), Lidov-
ky (16)

French: Les Echos (25)
Spanish: El Mundo (20), ABC.es (4), Cinco

Dias (11)
English: BBC (5), Economist (2), Washington

Post (12), Times of London (3)
German: Frankfurter Rundschau (11), Spie-

gel (4)

The translations were created by the profes-
sional translation agency CEET4. All of the trans-
lations were done directly, and not via an interme-
diate language.

2.2 Training data

As in past years we provided parallel corpora to
train translation models, monolingual corpora to

2http://statmt.org/wmt10/results.html
3For more details see the XML test files. The docid

tag gives the source and the date for each document in the
test set, and the origlang tag indicates the original source
language.

4http://www.ceet.eu/

train language models, and development sets to
tune parameters. Some statistics about the train-
ing materials are given in Figure 1.

2.3 Baseline systems
To lower the barrier of entry for newcomers to
the field, we provided two open source toolkits
for phrase-based and parsing-based statistical ma-
chine translation (Koehn et al., 2007; Li et al.,
2009).

2.4 Submitted systems
We received submissions from 33 groups from 29
institutions, as listed in Table 1, a 50% increase
over last year’s shared task.

We also evaluated 2 commercial off the shelf
MT systems, and two online statistical machine
translation systems. We note that these companies
did not submit entries themselves. The entries for
the online systems were done by translating the
test data via their web interfaces. The data used
to train the online systems is unconstrained. It is
possible that part of the reference translations that
were taken from online news sites could have been
included in the online systems’ language models.

2.5 System combination
In total, we received 153 primary system submis-
sions along with 28 secondary submissions. These
were made available to participants in the sys-
tem combination shared task. Based on feedback
that we received on last year’s system combina-
tion task, we provided two additional resources to
participants:

• Development set: We reserved 25 articles
to use as a dev set for system combination.
These were translated by all participating
sites, and distributed to system combination
participants along with reference translations.

• n-best translations: We requested n-best
lists from sites whose systems could produce
them. We received 20 n-best lists accompa-
nying the system submissions.

Table 2 lists the 9 participants in the system
combination task.

3 Human evaluation

As with past workshops, we placed greater em-
phasis on the human evaluation than on the auto-
matic evaluation metric scores. It is our contention
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Europarl Training Corpus

Spanish↔ English French↔ English German↔ English
Sentences 1,650,152 1,683,156 1,540,549

Words 47,694,560 46,078,122 50,964,362 47,145,288 40,756,801 43,037,967
Distinct words 173,033 95,305 123,639 95,846 316,365 92,464

News Commentary Training Corpus

Spanish↔ English French↔ English German↔ English Czech↔ English
Sentences 98,598 84,624 100,269 94,742

Words 2,724,141 2,432,064 2,405,082 2,101,921 2,505,583 2,443,183 2,050,545 2,290,066
Distinct words 69,410 46,918 53,763 43,906 101,529 47,034 125,678 45,306

United Nations Training Corpus

Spanish↔ English French↔ English
Sentences 6,222,450 7,230,217

Words 213,877,170 190,978,737 243,465,100 216,052,412
Distinct words 441,517 361,734 402,491 412,815

109 Word Parallel Corpus

French↔ English
Sentences 22,520,400

Words 811,203,407 668,412,817
Distinct words 2,738,882 2,861,836

CzEng Training Corpus

Czech↔ English
Sentences 7,227,409

Words 72,993,427 84,856,749
Distinct words 1,088,642 522,770

Europarl Language Model Data

English Spanish French German
Sentence 1,843,035 1,822,021 1,855,589 1,772,039
Words 50,132,615 51,223,902 54,273,514 43,781,217

Distinct words 99,206 178,934 127,689 328,628

News Language Model Data

English Spanish French German Czech
Sentence 48,653,884 3,857,414 15,670,745 17,474,133 13,042,040
Words 1,148,480,525 106,716,219 382,563,246 321,165,206 205,614,201

Distinct words 1,451,719 548,169 998,595 1,855,993 1,715,376

News Test Set

English Spanish French German Czech
Sentences 2489

Words 62,988 65,654 68,107 62,390 53,171
Distinct words 9,457 11,409 10,775 12,718 15,825

Figure 1: Statistics for the training and test sets used in the translation task. The number of words and
the number of distinct words is based on the provided tokenizer.
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ID Participant
AALTO Aalto University, Finland (Virpioja et al., 2010)

CAMBRIDGE Cambridge University (Pino et al., 2010)
CMU Carnegie Mellon University’s Cunei system (Phillips, 2010)

CMU-STATXFER Carnegie Mellon University’s statistical transfer system (Hanneman et al., 2010)
COLUMBIA Columbia University
CU-BOJAR Charles University Bojar (Bojar and Kos, 2010)
CU-TECTO Charles University Tectogramatical MT (Žabokrtský et al., 2010)
CU-ZEMAN Charles University Zeman (Zeman, 2010)

DCU Dublin City University (Penkale et al., 2010)
DFKI Deutsches Forschungszentrum für Künstliche Intelligenz (Federmann et al., 2010)

EU European Parliament, Luxembourg (Jellinghaus et al., 2010)
EUROTRANS commercial MT provider from the Czech Republic

FBK Fondazione Bruno Kessler (Hardmeier et al., 2010)
GENEVA University of Geneva

HUICONG Shanghai Jiao Tong University (Cong et al., 2010)
JHU Johns Hopkins University (Schwartz, 2010)
KIT Karlsruhe Institute for Technology (Niehues et al., 2010)
KOC Koc University, Turkey (Bicici and Kozat, 2010; Bicici and Yuret, 2010)
LIG LIG Lab, University Joseph Fourier, Grenoble (Potet et al., 2010)

LIMSI LIMSI (Allauzen et al., 2010)
LIU Linköping University (Stymne et al., 2010)

LIUM University of Le Mans (Lambert et al., 2010)
NRC National Research Council Canada (Larkin et al., 2010)

ONLINEA an online machine translation system
ONLINEB an online machine translation system
PC-TRANS commercial MT provider from the Czech Republic
POTSDAM Potsdam University

RALI RALI - Université de Montréal (Huet et al., 2010)
RWTH RWTH Aachen (Heger et al., 2010)

SFU Simon Fraser University (Sankaran et al., 2010)
UCH-UPV Universidad CEU-Cardenal Herrera y UPV (Zamora-Martinez and Sanchis-Trilles, 2010)

UEDIN University of Edinburgh (Koehn et al., 2010)
UMD University of Maryland (Eidelman et al., 2010)
UPC Universitat Politècnica de Catalunya (Henrı́quez Q. et al., 2010)

UPPSALA Uppsala University (Tiedemann, 2010)
UPV Universidad Politécnica de Valencia (Sanchis-Trilles et al., 2010)

UU-MS Uppsala University - Saers (Saers et al., 2010)

Table 1: Participants in the shared translation task. Not all groups participated in all language pairs.
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ID Participant
BBN-COMBO BBN system combination (Rosti et al., 2010)

CMU-COMBO-HEAFIELD CMU system combination (Heafield and Lavie, 2010)
CMU-COMBO-HYPOSEL CMU system combo with hyp. selection (Hildebrand and Vogel, 2010)

DCU-COMBO Dublin City University system combination (Du et al., 2010)
JHU-COMBO Johns Hopkins University system combination (Narsale, 2010)
KOC-COMBO Koc University, Turkey (Bicici and Kozat, 2010; Bicici and Yuret, 2010)

LIUM-COMBO University of Le Mans system combination (Barrault, 2010)
RWTH-COMBO RWTH Aachen system combination (Leusch and Ney, 2010)

UPV-COMBO Universidad Politécnica de Valencia (González-Rubio et al., 2010)

Table 2: Participants in the system combination task.

Language Pair Sentence Ranking Edited Translations Yes/No Judgments
German-English 5,212 830 824
English-German 6,847 755 751
Spanish-English 5,653 845 845
English-Spanish 2,587 920 690
French-English 4,147 925 921
English-French 3,981 1,325 1,223
Czech-English 2,688 490 488
English-Czech 6,769 1,165 1,163
Totals 37,884 7,255 6,905

Table 3: The number of items that were collected for each task during the manual evaluation. An item
is defined to be a rank label in the ranking task, an edited sentence in the editing task, and a yes/no
judgment in the judgment task.
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that automatic measures are an imperfect substi-
tute for human assessment of translation quality.
Therefore, we define the manual evaluation to be
primary, and use the human judgments to validate
automatic metrics.

Manual evaluation is time consuming, and it re-
quires a large effort to conduct it on the scale of
our workshop. We distributed the workload across
a number of people, including shared-task partic-
ipants, interested volunteers, and a small number
of paid annotators. More than 120 people partic-
ipated in the manual evaluation5, with 89 people
putting in more than an hour’s worth of effort, and
29 putting in more than four hours. A collective
total of 337 hours of labor was invested.6

We asked people to evaluate the systems’ output
in two different ways:

• Ranking translated sentences relative to each
other. This was our official determinant of
translation quality.

• Editing the output of systems without dis-
playing the source or a reference translation,
and then later judging whether edited transla-
tions were correct.

The total number of judgments collected for the
different modes of annotation is given in Table 3.

In all cases, the output of the various translation
systems were judged on equal footing; the output
of system combinations was judged alongside that
of the individual system, and the constrained and
unconstrained systems were judged together.

3.1 Ranking translations of sentences

Ranking translations relative to each other is a rea-
sonably intuitive task. We therefore kept the in-
structions simple:

Rank translations from Best to Worst rel-
ative to the other choices (ties are al-
lowed).

5We excluded data from three errant annotators, identified
as follows. We considered annotators completing at least 3
screens, whose P (A) with others (see 3.2) is less than 0.33.
Out of seven such annotators, four were affiliated with shared
task teams. The other three had no apparent affiliation, and
so we discarded their data, less than 5% of the total data.

6Whenever an annotator appears to have spent more than
ten minutes on a single screen, we assume they left their sta-
tion and left the window open, rather than actually needing
more than ten minutes. In those cases, we assume the time
spent to be ten minutes.

Each screen for this task involved judging trans-
lations of three consecutive source segments. For
each source segment, the annotator was shown the
outputs of five submissions. For each of the lan-
guage pairs, there were more than 5 submissions.
We did not attempt to get a complete ordering over
the systems, and instead relied on random selec-
tion and a reasonably large sample size to make
the comparisons fair.

Relative ranking is our official evaluation met-
ric. Individual systems and system combinations
are ranked based on how frequently they were
judged to be better than or equal to any other sys-
tem. The results of this are reported in Section 4.
Appendix A provides detailed tables that contain
pairwise comparisons between systems.

3.2 Inter- and Intra-annotator agreement in
the ranking task

We were interested in determining the inter- and
intra-annotator agreement for the ranking task,
since a reasonable degree of agreement must ex-
ist to support our process as a valid evaluation
setup. To ensure we had enough data to measure
agreement, we purposely designed the sampling of
source segments shown to annotators so that items
were likely to be repeated, both within an annota-
tor’s assigned tasks and across annotators. We did
so by assigning an annotator a batch of 20 screens
(each with three ranking sets; see 3.1) that were to
be completed in full before generating new screens
for that annotator.

Within each batch, the source segments for nine
of the 20 screens (45%) were chosen from a small
pool of 60 source segments, instead of being sam-
pled from the larger pool of 1,000 source segments
designated for the ranking task.7 The larger pool
was used to choose source segments for nine other
screens (also 45%). As for the remaining two
screens (10%), they were chosen randomly from
the set of eighteen screens already chosen. Fur-
thermore, in the two “local repeat” screens, the
system choices were also preserved.

Heavily sampling from a small pool of source
segments ensured we had enough data to measure
inter-annotator agreement, while purposely mak-
ing 10% of each annotator’s screens repeats of pre-
viously seen sets in the same batch ensured we

7Each language pair had its own 60-sentence pool, dis-
joint from other language pairs’ pools, but ach of the 60-
sentence pools was a subset of the 1,000-sentence pool.
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INTER-ANNOTATOR AGREEMENT

P (A) K

With references 0.658 0.487
Without references 0.626 0.439
WMT ’09 0.549 0.323

INTRA-ANNOTATOR AGREEMENT

P (A) K

With references 0.755 0.633
Without references 0.734 0.601
WMT ’09 0.707 0.561

Table 4: Inter- and intra-annotator agreement for
the sentence ranking task. In this task, P (E) is
0.333.

had enough data to measure intra-annotator agree-
ment.

We measured pairwise agreement among anno-
tators using the kappa coefficient (K), which is de-
fined as

K =
P (A)− P (E)

1− P (E)

where P (A) is the proportion of times that the an-
notators agree, and P (E) is the proportion of time
that they would agree by chance.

For inter-annotator agreement for the ranking
tasks we calculated P (A) by examining all pairs
of systems which had been judged by two or more
judges, and calculated the proportion of time that
they agreed thatA > B, A = B, orA < B. Intra-
annotator agreement was computed similarly, but
we gathered items that were annotated on multiple
occasions by a single annotator.

Table 4 gives K values for inter-annotator and
intra-annotator agreement. These give an indi-
cation of how often different judges agree, and
how often single judges are consistent for repeated
judgments, respectively. The exact interpretation
of the kappa coefficient is difficult, but according
to Landis and Koch (1977), 0− .2 is slight, .2− .4
is fair, .4 − .6 is moderate, .6 − .8 is substantial
and the rest is almost perfect.

Based on these interpretations the agreement
for sentence-level ranking is moderate for inter-
annotator agreement and substantial for intra-
annotator agreement. These levels of agreement
are higher than in previous years, partially due to
the fact that that year we randomly included the
references along the system outputs. In general,

judges tend to rank the reference as the best trans-
lation, so people have stronger levels of agreement
when it is included. That said, even when compar-
isons involving reference are excluded, we still see
an improvement in agreement levels over last year.

3.3 Editing machine translation output
In addition to simply ranking the output of sys-
tems, we also had people edit the output of MT
systems. We did not show them the reference
translation, which makes our edit-based evalu-
ation different from the Human-targeted Trans-
lation Edit Rate (HTER) measure used in the
DARPA GALE program (NIST, 2008). Rather
than asking people to make the minimum number
of changes to the MT output in order capture the
same meaning as the reference, we asked them to
edit the translation to be as fluent as possible with-
out seeing the reference. Our hope was that this
would reflect people’s understanding of the out-
put.

The instructions given to our judges were as fol-
lows:

Correct the translation displayed, mak-
ing it as fluent as possible. If no correc-
tions are needed, select “No corrections
needed.” If you cannot understand the
sentence well enough to correct it, select
“Unable to correct.”

A screenshot is shown in Figure 2. This year,
judges were shown the translations of 5 consec-
utive source sentences, all produced by the same
machine translation system. In last year’s WMT
evaluation they were shown only one sentence at a
time, which made the task more difficult because
the surrounding context could not be used as an
aid to understanding.

Since we wanted to prevent judges from see-
ing the reference before editing the translations,
we split the test set between the sentences used
in the ranking task and the editing task (because
they were being conducted concurrently). More-
over, annotators edited only a single system’s out-
put for one source sentence to ensure that their un-
derstanding of it would not be influenced by an-
other system’s output.

3.4 Judging the acceptability of edited output
Halfway through the manual evaluation period, we
stopped collecting edited translations, and instead
asked annotators to do the following:
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Edit Machine Translation Outputs
Instructions:

You are shown several machine translation outputs.
Your task is to edit each translation to make it as fluent as possible.
It is possible that the translation is already fluent. In that case, select No corrections needed.
If you cannot understand the sentence well enough to correct it, select Unable to correct.
The sentences are all from the same article. You can use the earlier and later sentences
to help understand a confusing sentence.

Your edited translations           The machine translations
   
The shortage of snow in mountain worries the hoteliers

Edited     No corrections needed     Unable to
correct         Reset

 

The shortage of snow in mountain
worries the hoteliers

   
The deserted tracks are not putting down problem only at the exploitants 
of skilift.

Edited     No corrections needed     Unable to
correct         Reset

 

The deserted tracks are not
putting down problem only at the
exploitants of skilift.

   
The lack of snow deters the people to reserving their stays at the ski in 
the hotels and pension.

Edited     No corrections needed     Unable to
correct         Reset

 

The lack of snow deters the people
to reserving their stays at the ski
in the hotels and pension.

   
Thereby, is always possible to track free bedrooms for all the dates in 
winter, including Christmas and Nouvel An.

Edited     No corrections needed     Unable to
correct         Reset

 

Thereby, is always possible to
track free bedrooms for all the
dates in winter, including
Christmas and Nouvel An.

   
We have many of visit on our site

Figure 2: This screenshot shows what an annotator sees when beginning to edit the output of a machine
translation system.
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Indicate whether the edited transla-
tions represent fully fluent and meaning-
equivalent alternatives to the reference
sentence. The reference is shown with
context, the actual sentence is bold.

In addition to edited translations, unedited items
that were either marked as acceptable or as incom-
prehensible were also shown. Judges gave a sim-
ple yes/no indication to each item.

4 Translation task results

We used the results of the manual evaluation to
analyze the translation quality of the different sys-
tems that were submitted to the workshop. In our
analysis, we aimed to address the following ques-
tions:

• Which systems produced the best translation
quality for each language pair?

• Did the system combinations produce better
translations than individual systems?

• Which of the systems that used only the pro-
vided training materials produced the best
translation quality?

Table 5 shows the best individual systems. We
define the best systems as those which had no
other system that was statistically significantly
better than them under the Sign Test at p ≤ 0.1.
Multiple systems are listed as the winners for
many language pairs because it was not possible to
draw a statistically significant difference between
the systems. There is no individual system clearly
outperforming all other systems across the differ-
ent language pairs. With the exception of French-
English and English-French one can observe that
top-performing constrained systems did as well as
the unconstrained system ONLINEB.

Table 6 shows the best combination systems.
For all language directions, except Spanish-
English, one can see that the system combina-
tion runs outperform the individual systems and
that in most cases the differences are statistically
significant. While this is to be expected, system
combination is not guaranteed to improve perfor-
mance as some of the lower ranked combination
runs show, which are outperformed by individual
systems. Also note that except for Czech-English
translation the online systems ONLINEA and ON-
LINEB where not included for the system combi-
nation runs

Understandability
Our hope is that judging the acceptability of edited
output as discussed in Section 3 gives some indi-
cation of how often a system’s output was under-
standable. Figure 3 gives the percentage of times
that each system’s edited output was judged to
be acceptable (the percentage also factors in in-
stances when judges were unable to improve the
output because it was incomprehensible).

This style of manual evaluation is experimental
and should not be taken to be authoritative. Some
caveats about this measure:

• There are several sources of variance that are
difficult to control for: some people are better
at editing, and some sentences are more dif-
ficult to edit. Therefore, variance in the un-
derstandability of systems is difficult to pin
down.

• The acceptability measure does not strongly
correlate with the more established method of
ranking translations relative to each other for
all the language pairs.

5 Shared evaluation task overview

In addition to allowing the analysis of subjective
translation quality measures for different systems,
the judgments gathered during the manual evalu-
ation may be used to evaluate how well the au-
tomatic evaluation metrics serve as a surrogate to
the manual evaluation processes. NIST began run-
ning a “Metrics for MAchine TRanslation” chal-
lenge (MetricsMATR), and presented their find-
ings at a workshop at AMTA (Przybocki et al.,
2008). This year we conducted a joint Metrics-
MATR and WMT workshop, with NIST running
the shared evaluation task and analyzing the re-
sults.

In this year’s shared evaluation task 14 different
research groups submitted a total of 26 different
automatic metrics for evaluation:

Aalto University of Science and Technology
(Dobrinkat et al., 2010)

• MT-NCD – A machine translation metric
based on normalized compression distance
(NCD), a general information-theoretic mea-
sure of string similarity. MT-NCD mea-
sures the surface level similarity between two
strings with a general compression algorithm.
More similar strings can be represented with
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French-English
551–755 judgments per system

System C? ≥others
LIUM •? Y 0.71
ONLINEB • N 0.71
NRC •? Y 0.66
CAMBRIDGE •? Y +GW 0.66
LIMSI ? Y +GW 0.65
UEDIN Y 0.65
RALI •? Y +GW 0.65
JHU Y 0.59
RWTH •? Y +GW 0.55
LIG Y 0.53
ONLINEA N 0.52
CMU-STATXFER Y 0.51
HUICONG Y 0.51
DFKI N 0.42
GENEVA Y 0.27
CU-ZEMAN Y 0.21

English-French
664–879 judgments per system

System C? ≥others
UEDIN •? Y 0.70
ONLINEB • N 0.68
RALI •? Y +GW 0.66
LIMSI •? Y +GW 0.66
RWTH •? Y +GW 0.63
CAMBRIDGE ? Y +GW 0.63
LIUM Y 0.63
NRC Y 0.62
ONLINEA N 0.55
JHU Y 0.53
DFKI N 0.40
GENEVA Y 0.35
EU N 0.32
CU-ZEMAN Y 0.26
KOC Y 0.26

Czech-English
788–868 judgments per system
System C? ≥others
ONLINEB • N 0.7
UEDIN ? Y 0.61
CMU Y 0.55
CU-BOJAR N 0.55
AALTO Y 0.43
ONLINEA N 0.37
CU-ZEMAN Y 0.22

German-English
723–879 judgments per system

System C? ≥others
ONLINEB • N 0.73
KIT •? Y +GW 0.72
UMD •? Y 0.68
UEDIN ? Y 0.66
FBK ? Y +GW 0.66
ONLINEA • N 0.63
RWTH Y +GW 0.62
LIU Y 0.59
UU-MS Y 0.55
JHU Y 0.53
LIMSI Y +GW 0.52
UPPSALA Y 0.51
DFKI N 0.50
HUICONG Y 0.47
CMU Y 0.46
AALTO Y 0.42
CU-ZEMAN Y 0.36
KOC Y 0.23

English-German
1284–1542 judgments per system

System C? ≥others
ONLINEB • N 0.70
DFKI • N 0.62
UEDIN •? Y 0.62
KIT ? Y 0.60
ONLINEA N 0.59
FBK ? Y 0.56
LIU Y 0.55
RWTH Y 0.51
LIMSI Y 0.51
UPPSALA Y 0.47
JHU Y 0.46
SFU Y 0.34
KOC Y 0.30
CU-ZEMAN Y 0.28

English-Czech
1375–1627 judgments per system

System C? ≥others
ONLINEB • N 0.70
CU-BOJAR • N 0.66
PC-TRANS • N 0.62
UEDIN •? Y 0.62
CU-TECTO Y 0.60
EUROTRANS N 0.54
CU-ZEMAN Y 0.50
SFU Y 0.45
ONLINEA N 0.44
POTSDAM Y 0.44
DCU N 0.38
KOC Y 0.33

Spanish-English
1448–1577 judgments per system

System C? ≥others
ONLINEB • N 0.70
UEDIN •? Y 0.69
CAMBRIDGE Y +GW 0.61
JHU Y 0.61
ONLINEA N 0.54
UPC ? Y 0.51
HUICONG Y 0.50
DFKI N 0.45
COLUMBIA Y 0.45
CU-ZEMAN Y 0.27

English-Spanish
540–722 judgments per system

System C? ≥others
ONLINEB • N 0.71
ONLINEA • N 0.69
UEDIN ? Y 0.61
DCU N 0.61
DFKI ? N 0.55
JHU ? Y 0.55
UPV ? Y 0.55
CAMBRIDGE ? Y +GW 0.54
UHC-UPV ? Y 0.54
SFU Y 0.40
CU-ZEMAN Y 0.23
KOC Y 0.19

Systems are listed in the order of how often their translations were ranked higher than or equal to any other system. Ties are
broken by direct comparison.

C? indicates constrained condition, meaning only using the supplied training data, standard monolingual linguistic tools, and
optionally the LDC’s GigaWord, which was allowed this year (entries that used the GigaWord are marked +GW).

• indicates a win in the category, meaning that no other system is statistically significantly better at p-level≤0.1 in pairwise
comparison.

? indicates a constrained win, no other constrained system is statistically better.

For all pairwise comparisons between systems, please check the appendix.

Table 5: Official results for the WMT10 translation task, based on the human evaluation (ranking trans-
lations relative to each other)
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French-English
589–716 judgments per combo

System ≥others
RWTH-COMBO • 0.77
CMU-HYP-COMBO • 0.77
DCU-COMBO • 0.72
LIUM ? 0.71
CMU-HEA-COMBO • 0.70
UPV-COMBO • 0.68
NRC 0.66
CAMBRIDGE 0.66
UEDIN ? 0.65
LIMSI ? 0.65
JHU-COMBO 0.65
RALI 0.65
LIUM-COMBO 0.64
BBN-COMBO 0.64
RWTH 0.55

English-French
740–829 judgments per combo

System ≥others
RWTH-COMBO • 0.75
CMU-HEA-COMBO • 0.74
UEDIN 0.70
KOC-COMBO • 0.68
UPV-COMBO 0.66
RALI ? 0.66
LIMSI 0.66
RWTH 0.63
CAMBRIDGE 0.63

Czech-English
766–843 judgments per combo

System ≥others
CMU-HEA-COMBO • 0.71
ONLINEB ? 0.7
BBN-COMBO • 0.70
RWTH-COMBO • 0.65
UPV-COMBO • 0.63
JHU-COMBO 0.62
UEDIN 0.61

German-English
743–835 judgments per combo

System ≥others
BBN-COMBO • 0.77
RWTH-COMBO • 0.75
CMU-HEA-COMBO 0.73
KIT ? 0.72
UMD ? 0.68
JHU-COMBO 0.67
UEDIN ? 0.66
FBK 0.66
CMU-HYP-COMBO 0.65
UPV-COMBO 0.64
RWTH 0.62
KOC-COMBO 0.59

English-German
1340–1469 judgments per combo

System ≥others
RWTH-COMBO • 0.65
DFKI ? 0.62
UEDIN ? 0.62
KIT ? 0.60
CMU-HEA-COMBO • 0.59
KOC-COMBO 0.59
FBK ? 0.56
UPV-COMBO 0.55

English-Czech
1405–1496 judgments per combo
System ≥others
DCU-COMBO • 0.75
ONLINEB ? 0.70
RWTH-COMBO 0.70
CMU-HEA-COMBO 0.69
UPV-COMBO 0.68
CU-BOJAR 0.66
KOC-COMBO 0.66
PC-TRANS 0.62
UEDIN 0.62

Spanish-English
1385–1535 judgments per combo

System ≥others
UEDIN ? 0.69
CMU-HEA-COMBO • 0.66
UPV-COMBO • 0.66
BBN-COMBO 0.62
JHU-COMBO 0.55
UPC 0.51

English-Spanish
516–673 judgments per combo

System ≥others
CMU-HEA-COMBO • 0.68
KOC-COMBO 0.62
UEDIN ? 0.61
UPV-COMBO 0.60
RWTH-COMBO 0.59
DFKI ? 0.55
JHU 0.55
UPV 0.55
CAMBRIDGE ? 0.54
UPV-NNLM ? 0.54

System combinations are listed in the order of how often their translations were ranked higher than or equal to any other system.
Ties are broken by direct comparison. We show the best individual systems alongside the system combinations, since the goal
of combination is to produce better quality translation than the component systems.

• indicates a win for the system combination meaning that no other system or system combination is statistically signifi-
cantly better at p-level≤0.1 in pairwise comparison.

? indicates an individual system that none of the system combinations beat by a statistically significant margin at p-
level≤0.1.

For all pairwise comparisons between systems, please check the appendix.

Note: ONLINEA and ONLINEB were not included among the systems being combined in the system combination shared tasks,

except in the Czech-English and English-Czech conditions, where ONLINEB was included.

Table 6: Official results for the WMT10 system combination task, based on the human evaluation (rank-
ing translations relative to each other)
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System % Yes Yes count No count N/A count Total count *** en-cz ***
ref 0.97 63 2 0 65 en-cz
dcu-c 0.58 29 21 0 50 en-cz
onlineB 0.55 22 18 0 40 en-cz
rwth-c 0.49 56 59 0 115 en-cz
koc-c 0.45 29 36 0 65 en-cz
pc-trans 0.43 26 34 0 60 en-cz
upv-c 0.42 23 32 0 55 en-cz
cu-bojar 0.4 20 30 0 50 en-cz
eurotrans 0.4 18 27 0 45 en-cz
uedin 0.34 24 46 0 70 en-cz
cu-tecto 0.34 29 55 1 85 en-cz
cmu-hea-c 0.29 13 32 0 45 en-cz
sfu 0.24 14 44 0 58 en-cz
potsdam 0.24 13 42 0 55 en-cz
cu-zeman 0.21 15 55 0 70 en-cz
koc 0.21 21 79 0 100 en-cz
onlineA 0.2 13 52 0 65 en-cz
dcu 0.19 13 57 0 70 en-cz

0.1260077028

*** en-de ***
ref 0.94 47 3 0 50 en-de
onlineA 0.8 20 5 0 25 en-de
koc-c 0.68 17 8 0 25 en-de
uppsala 0.65 26 14 0 40 en-de
uedin 0.62 50 30 0 80 en-de
kit 0.62 37 23 0 60 en-de
upv-c 0.57 30 23 0 53 en-de
onlineB 0.52 21 19 0 40 en-de
dfki 0.52 13 12 0 25 en-de
koc 0.51 18 17 0 35 en-de
limsi 0.51 18 16 1 35 en-de
liu 0.51 28 27 0 55 en-de
rwth 0.5 15 15 0 30 en-de
rwth-c 0.49 22 23 0 45 en-de
jhu 0.48 12 13 0 25 en-de
cmu-hea-c 0.47 14 16 0 30 en-de
fbk 0.4 4 6 0 10 en-de
sfu 0.31 11 24 0 35 en-de
cu-zeman 0.19 10 40 3 53 en-de

0.1364453014

System % Yes Yes count No count N/A count Total count *** en-es ***
ref 0.83 48 10 0 58 en-es
onlineB 0.58 25 18 0 43 en-es
upv 0.5 20 20 0 40 en-es
rwth-c 0.46 13 15 0 28 en-es
dcu 0.42 16 22 0 38 en-es
koc 0.4 17 24 1 42 en-es
upv-nnlm 0.39 15 23 0 38 en-es
onlineA 0.38 11 18 0 29 en-es
jhu 0.38 17 27 1 45 en-es
koc-c 0.38 20 33 0 53 en-es
uedin 0.36 12 21 0 33 en-es
upb-c 0.32 13 27 0 40 en-es
cmu-hea-c 0.32 16 34 0 50 en-es
camb 0.3 12 27 1 40 en-es
dfki 0.29 7 17 0 24 en-es
cu-zeman 0.29 16 39 0 55 en-es
sfu 0.26 9 25 0 34 en-es

0.0845946216

System % Yes Yes count No count N/A count Total count *** en-fr ***
ref 0.91 64 4 2 70 en-fr
rwth-c 0.54 27 23 0 50 en-fr
onlineB 0.52 47 42 1 90 en-fr
upv-c 0.51 34 33 0 67 en-fr
koc-c 0.48 32 34 0 66 en-fr
uedin 0.48 30 32 1 63 en-fr
rali 0.47 21 24 0 45 en-fr
rwth 0.45 25 30 0 55 en-fr
lium 0.43 20 27 0 47 en-fr
camb 0.42 26 36 0 62 en-fr
onlineA 0.41 15 22 0 37 en-fr
limsi 0.37 26 44 0 70 en-fr
jhu 0.37 27 46 0 73 en-fr
nrc 0.36 13 23 0 36 en-fr
cmu-hea-c 0.32 22 47 0 69 en-fr
geneva 0.31 32 70 0 102 en-fr
eu 0.3 13 30 0 43 en-fr
dfki 0.28 16 42 0 58 en-fr
koc 0.21 12 44 1 57 en-fr
cu-zeman 0.17 11 52 0 63 en-fr

0.1045877454

System % Yes Yes count No count N/A count Total count *** cz-en ***
ref 1.00 33 0 0 33 cz-en
cu-bojar 0.6 3 2 0 5 cz-en
upv-c 0.43 15 20 0 35 cz-en
cmu-hea-c 0.35 14 26 0 40 cz-en
rwth-c 0.32 16 34 0 50 cz-en
onlineB 0.3 12 28 0 40 cz-en
bbn-c 0.28 17 43 0 60 cz-en
uedin 0.28 11 28 1 40 cz-en
aalto 0.27 8 22 0 30 cz-en
jhu-c 0.26 13 37 0 50 cz-en
onlineA 0.2 6 24 0 30 cz-en
cmu 0.17 5 25 0 30 cz-en
cu-zeman 0.09 4 40 1 45 cz-en

0.1292958787

System % Yes Yes count No count N/A count Total count *** de-en ***

ref 0.98 44 1 0 45 de-en
umd 0.8 8 2 0 10 de-en
bbn-c 0.67 10 5 0 15 de-en
onlineB 0.65 13 7 0 20 de-en
cmu-hea-c 0.52 12 11 0 23 de-en
jhu-c 0.51 18 17 0 35 de-en
upv-c 0.51 18 16 1 35 de-en
fbk 0.5 20 20 0 40 de-en
uppsala 0.5 20 19 1 40 de-en
limsi 0.46 30 34 1 65 de-en
kit 0.45 18 22 0 40 de-en
liu 0.44 19 24 0 43 de-en
uedin 0.44 11 14 0 25 de-en
dfki 0.4 12 18 0 30 de-en
onlineA 0.4 6 9 0 15 de-en
rwth 0.4 14 21 0 35 de-en
cmu-hyp-c 0.37 11 19 0 30 de-en
huicong 0.36 9 16 0 25 de-en
koc-c 0.36 9 14 2 25 de-en
rwth-c 0.36 10 18 0 28 de-en
koc 0.31 11 23 1 35 de-en
cu-zeman 0.3 12 28 0 40 de-en
uu-ms 0.26 13 37 0 50 de-en
jhu 0.26 9 26 0 35 de-en
cmu 0.24 6 19 0 25 de-en
aalto 0.07 1 14 0 15 de-en

0.1512635669

System % Yes Yes count No count N/A count Total count *** es-en ***
ref 0.98 39 0 1 40 es-en
onlineB 0.71 39 15 1 55 es-en
onlineA 0.64 32 18 0 50 es-en
upv-c 0.6 36 24 0 60 es-en
huicong 0.54 27 23 0 50 es-en
jhu 0.54 35 30 0 65 es-en
cmu-hea-c 0.52 26 23 1 50 es-en
bbn-c 0.51 36 33 1 70 es-en
uedin 0.51 33 30 2 65 es-en
jhu-c 0.47 28 31 1 60 es-en
dfki 0.46 16 18 1 35 es-en
upc 0.43 28 36 1 65 es-en
cu-zeman 0.4 18 26 1 45 es-en
camb 0.36 25 45 0 70 es-en
columbia 0.29 19 46 0 65 es-en

0.1104436607

System % Yes Yes count No count N/A count Total count *** fr-en ***
ref 0.91 32 3 0 35 fr-en
cmu-hyp-c 0.7 21 9 0 30 fr-en
uedin 0.58 23 17 0 40 fr-en
bbn-c 0.56 14 10 1 25 fr-en
rwth-c 0.53 16 14 0 30 fr-en
onlineB 0.51 28 27 0 55 fr-en
camb 0.5 20 19 1 40 fr-en
rali 0.48 31 34 0 65 fr-en
lium 0.46 23 27 0 50 fr-en
dcu-c 0.45 15 16 2 33 fr-en
lig 0.45 9 11 0 20 fr-en
cmu-statxfer 0.44 11 14 0 25 fr-en
nrc 0.43 15 20 0 35 fr-en
dfki 0.4 8 12 0 20 fr-en
jhu 0.4 10 14 1 25 fr-en
jhu-c 0.4 22 30 3 55 fr-en
upv-c 0.4 14 20 1 35 fr-en
lium-c 0.4 27 41 0 68 fr-en
cmu-hea-c 0.35 14 26 0 40 fr-en
limsi 0.35 14 26 0 40 fr-en
onlineA 0.33 20 40 0 60 fr-en
huicong 0.32 13 25 2 40 fr-en
cu-zeman 0.24 6 19 0 25 fr-en
geneva 0.24 6 19 0 25 fr-en
rwth 0.2 1 4 0 5 fr-en

0.1143475506
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French-English

Figure 3: The percent of time that each system’s edited output was judged to be an acceptable translation.
These numbers also include judgments of the system’s output when it was marked either incomprehen-
sible or acceptable and left unedited. Note that the reference translation was edited alongside the system
outputs. Error bars show one positive and one negative standard deviation for the systems in that lan-
guage pair.
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a shorter description when concatenated be-
fore compression than when concatenated af-
ter compression. MT-NCD does not require
any language specific resources.

• MT-mNCD – Enhances MT-NCD with flex-
ible word matching provided by stemming
and synonyms. It works analogously to
M-BLEU and M-TER and uses METEOR’s
aligner module to find relaxed word-to-word
alignments. MT-mNCD exploits English
WordNet data and increases correlation to hu-
man judgments for English over MT-NCD.

Due to a processing issue inherent to the metric,
the scores reported were generated excluding the
first segment of each document. Also, a separate
issue was found for the MT-mNCD metric, and ac-
cording to the developer the scores reported here
would like change with a correction of the issue.

BabbleQuest International8

• Badger 2.0 full – Uses the Smith-Waterman
alignment algorithm with Gotoh improve-
ments to measure segment similarity. The
full version uses a multilingual knowledge
base to assign a substitution cost which sup-
ports normalization of word infection and
similarity.

• Badger 2.0 lite – The lite version uses default
gap, gap extension and substitution costs.

City University of Hong Kong (Wong and Kit,
2010)

• ATEC 2.1 – This version of ATEC extends
the measurement of word choice and word or-
der by various means. The former is assessed
by matching word forms at linguistic levels,
including surface form, stem, sense and se-
mantic similarity, and further by weighting
the informativeness of both matched and un-
matched words. The latter is quantified in
term of the discordance of word position and
word sequence between an MT output and its
reference.

Due to a version discrepancy of the metric, final
scores for ATECD-2.1 differ from those reported
here, but only minimally.

8http://www.babblequest.com/badger2

Carnegie Mellon University (Denkowski and
Lavie, 2010)

• METEOR-NEXT-adq – Evaluates a machine
translation hypothesis against one or more
reference translations by calculating a simi-
larity score based on an alignment between
the hypothesis and reference strings. Align-
ments are based on exact, stem, synonym,
and paraphrase matches between words and
phrases in the strings. Metric parameters are
tuned to maximize correlation with human
judgments of translation quality (adequacy
judgments).

• METEOR-NEXT-hter – METEOR-NEXT
tuned to HTER.

• METEOR-NEXT-rank – METEOR-NEXT
tuned to human judgments of rank.

Columbia University9

• SEPIA – A syntactically-aware machine
translation evaluation metric designed with
the goal of assigning bigger weight to gram-
matical structural bigrams with long surface
spans that cannot be captured with surface n-
gram metrics. SEPIA uses a dependency rep-
resentation produced for both hypothesis and
reference(s). SEPIA is configurable to allow
using different combinations of structural n-
grams, surface n-grams, POS tags, depen-
dency relations and lemmatization. SEPIA is
a precision-based metric and as such employs
clipping and length penalty to minimize met-
ric gaming.

Charles University Prague (Bojar and Kos,
2010)

• SemPOS – Computes overlapping of autose-
mantic (content-bearing) word lemmas in the
candidate and reference translations given a
fine-grained semantic part of speech (sem-
pos) and outputs average overlapping score
over all sempos types. The overlapping is de-
fined as the number of matched lemmas di-
vided by the total number of lemmas in the
candidate and reference translations having
the same sempos type.

9http://www1.ccls.columbia.edu/˜SEPIA/
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• SemPOS-BLEU – A linear combination of
SemPOS and BLEU with equal weights.
BLEU is computed on surface forms of au-
tosemantic words that are used by SemPOS,
i.e. auxiliary verbs or prepositions are not
taken into account.

Dublin City University (He et al., 2010)

• DCU-LFG – A combination of syntactic and
lexical information. It measures the similar-
ity of the hypothesis and reference in terms
of matches of Lexical Functional Grammar
(LFG) dependency triples. The matching
module can also access the WordNet syn-
onym dictionary and Snover’s paraphrase
database10.

University of Edinburgh (Birch and Osborne,
2010)

• LRKB4 – A novel metric which directly mea-
sures reordering success using Kendall’s tau
permutation distance metrics. The reordering
component is combined with a lexical metric,
capturing the two most important elements
of translation quality. This simple combined
metric only has one parameter, which makes
its scores easy to interpret. It is also fast
to run and language-independent. It uses
Kendall’s tau permutation.

• LRHB4 – LRKB4, replacing Kendall’s tau
permutation distance metric with the Ham-
ming distance permutation distance metric.

Due to installation issues, the reported submitted
scores for these two metrics have not been verified
to produce identical scores at NIST.

Harbin Institute of Technology, China

• I-letter-BLEU – Normal BLEU based on let-
ters. Moreover, the maximum length of N-
gram is decided by the average length for
each sentence, respectively.

• I-letter-recall – A geometric mean of N-gram
recall based on letters. Moreover, the maxi-
mum length of N-gram is decided by the av-
erage length for each sentence, respectively.

10Available at http://www.umiacs.umd.edu/
˜snover/terp/.

• SVM-RANK – Uses support vector ma-
chines rank models to predict an ordering
over a set of system translations with lin-
ear kernel. Features include Meteor-exact,
BLEU-cum-1, BLEU-cum-2, BLEU-cum-5,
BLEU-ind-1, BLEU-ind-2, ROUGE-L re-
call, letter-based TER, letter-based BLEU-
cum-5, letter-based ROUGE-L recall, and
letter-based ROUGE-S recall.

National University of Singapore (Liu et al.,
2010)

• TESLA-M – Based on matching of bags of
unigrams, bigrams, and trigrams, with con-
sideration of WordNet synonyms. The match
is done in the framework of real-valued lin-
ear programming to enable the discounting of
function words.

• TESLA – Built on TESLA-M, this metric
also considers bilingual phrase tables to dis-
cover phrase-level synonyms. The feature
weights are tuned on the development data
using SVMrank.

Stanford University

• Stanford – A discriminatively trained
string-edit distance metric with various
similarity-matching, synonym-matching, and
dependency-parse-tree-matching features.
The model resembles a Conditional Random
Field, but performs regression instead of
classification. It is trained on Arabic, Chi-
nese, and Urdu data from the MT-Eval 2008
dataset.

Due to installation issues, the reported scores for
this metric have not been verified to produce iden-
tical scores at NIST.

University of Maryland11

• TER-plus (TERp) – An extension of the
Translation Edit Rate (TER) metric that mea-
sures the number of edits between a hypoth-
esized translation and a reference translation.
TERp extends TER by using stemming, syn-
onymy, and paraphrases as well as tunable
edit costs to better measure the distance be-
tween the two translations. This version
of TERp improves upon prior versions by
adding brevity and length penalties.

11http://www.umiacs.umd.edu/˜snover/
terp
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Scores were not submitted along with this metric,
and due to installation issues were not produced at
NIST in time to be included in this report.

University Politècnica de Catalunya/University
de Barcelona (Comelles et al., 2010)

• DR – An arithmetic mean over a set of
three metrics based on discourse representa-
tions, respectively computing lexical overlap,
morphosyntactic overlap, and semantic tree
matching.

• DRdoc – Is analogous to DR but, instead of
operating at the segment level, it analyzes
similarities over whole document discourse
representations.

• ULCh – An arithmetic mean over a
heuristically-defined set of metrics operat-
ing at different linguistic levels (ROUGE,
METEOR, and measures of overlap between
constituent parses, dependency parses, se-
mantic roles, and discourse representations).

University of Southern California, ISI

• BEwT-E – Basic Elements with Transfor-
mations for Evaluation, is a recall-oriented
metric that compares basic elements, small
portions of contents, between the two trans-
lations. The basic elements (BEs) consist
of content words and various combinations
of syntactically-related words. A variety of
transformations are performed to allow flexi-
ble matching so that words and syntactic con-
structions conveying similar content in dif-
ferent manners may be matched. The trans-
formations cover synonymy, preposition vs.
noun compounding, differences in tenses,
etc. BEwT-E was originally created for sum-
marization evaluation and is English-specific.

• Bkars – Measures overlap between character
trigrams in the system and reference trans-
lations. It is heavily weighted toward recall
and contains a fragmentation penalty. Bkars
produces a score both with and without stem-
ming (using the Snowball package of stem-
mers) and averages the results together. It is
not English-specific.

Scores were not submitted for BEwT-E; the run-
time required for this metric to process the WMT-
10 data set prohibited the production of scores in
time for publication.

6 Evaluation task results

The results reported here are preliminary; a final
release of results will be published on the WMT10
website before July 15, 2010. Metric developers
submitted metrics for installation at NIST; they
were also asked to submit metric scores on the
WMT10 test set along with their metrics. Not
all developers submitted scores, and not all met-
rics were verified to produce the same scores as
submitted at NIST in time for publication. Any
such caveats are reported with the description of
the metrics above.

The results reported here are limited to a com-
parison of metric scores on the full WMT10
test set with human assessments on the human-
assessed subset. An analysis comparing the hu-
man assessments with the automatic metrics run
only on the human-assessed subset will follow at
a later date.

The WMT10 system output used to generate
the reported metric scores was found to have im-
properly escaped characters for a small number of
segments. While we plan to regenerate the met-
ric scores with this issue resolved, we do not ex-
pect this to significantly alter the results, given the
small number of segments affected.

6.1 System Level Metric Scores

The tables in Appendix B list the metric scores
for the language pairs processed by each metric.
These first four tables present scores for transla-
tions out of English into Czech, French, German
and Spanish. In addition to the metric scores of
the submitted metrics identified above, we also
present (1) the ranking of the system as deter-
mined by the human assessments; and (2) the
metrics scores for two popular baseline metrics,
BLEU as calculated by NIST’s mteval software12

and the NIST score. For each method of system
measurement the absolute highest score is identi-
fied by being outlined in a box.

Similarly, the remaining tables in Appendix B
list the metric scores for the submitted metrics and
the two baseline metrics, and the ranking based
on the human assessments for translations into En-
glish from Czech, French, German and Spanish.

As some metrics employ language-specific re-
sources, not all metrics produced scores for all lan-
guage pairs.

12ftp://jaguar.ncsl.nist.gov/mt/
resources/mteval-v13a-20091001.tar.gz
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cz-
en

fr-
en

de-
en

es-
en

avg

SemPOS .78 .77 .60 .95 .77
IQmt-DRdoc .61 .79 .65 .98 .76

SemPOS-BLEU .75 .70 .61 .96 .75
i-letter-BLEU .71 .70 .60 .98 .75

NIST .85 .72 .55 .86 .74
TESLA .70 .70 .60 .97 .74

MT-NCD .71 .72 .58 .95 .74
Bkars .71 .67 .58 .98 .74

ATEC-2.1 .71 .67 .59 .96 .73
meteor-next-rank .69 .68 .60 .96 .73

IQmt-ULCh .70 .64 .60 .99 .73
IQmt-DR .68 .67 .60 .97 .73

meteor-next-hter .71 .66 .59 .95 .73
meteor-next-adq .69 .67 .60 .96 .73

badger-2.0-lite .70 .70 .56 .94 .73
DCU-LFG .69 .69 .58 .96 .73

badger-2.0-full .69 .70 .57 .94 .73
SEPIA .71 .70 .57 .92 .73

SVM-rank .66 .65 .61 .98 .73
i-letter-recall .65 .64 .61 .98 .72

TESLA-M .67 .67 .57 .95 .72
BLEU-4-v13a .69 .68 .52 .90 .70

LRKB4 .63 .62 .53 .89 .67
LRHB4 .62 .65 .50 .87 .66

MT-mNCD .69 .64 .52 .70 .64
Stanford .58 .19 .60 .46 .46

Table 7: The system-level correlation of the au-
tomatic evaluation metrics with the human judg-
ments for translation into English.

It is noticeable that system combinations are of-
ten among those achieving the highest scores.

6.2 System-Level Correlations

To assess the performance of the automatic met-
rics, we correlated the metrics’ scores with the hu-
man rankings at the system level. We assigned a
consolidated human-assessment rank to each sys-
tem based on the number of times that the given
system’s translations were ranked higher than or
equal to the translations of any other system in
the manual evaluation of the given language pair.
We then compared the ranking of systems by the
human assessments to that provided by the au-
tomatic metric system level scores on the com-
plete WMT10 test set for each language pair, us-
ing Spearman’s ρ rank correlation coefficient. The
correlations are shown in Table 7 for translations
to English, and Table 8 out of English, with base-
line metrics listed at the bottom. The highest cor-
relation for each language pair and the highest
overall average are bolded.

Overall, correlations are higher for translations
to English than compared to translations from En-
glish. For all language pairs, there are a number
of new metrics that yield noticeably higher corre-

en-
cz

en-
fr

en-
de

en-
es

avg

SVM-rank .29 .54 .68 .67 .55
TESLA-M .27 .49 .74 .66 .54

LRKB4 .39 .58 .47 .71 .54
i-letter-recall .28 .51 .61 .66 .52

LRHB4 .39 .59 .41 .63 .51
i-letter-BLEU .26 .49 .56 .65 .49

ATEC-2.1 .38 .52 .44 .62 .49
badger-2.0-full .37 .58 .41 .59 .49

Bkars .22 .54 .52 .66 .48
BLEU-4-v13a .35 .58 .39 .57 .47
badger-2.0-lite .32 .57 .41 .59 .47

TESLA .09 .62 .66 .50 .47
meteor-next-rank .34 .59 .39 .51 .46

Stanford .34 .48 .70 .32 .46
MT-NCD .17 .54 .51 .61 .46

NIST .30 .52 .41 .50 .43
MT-mNCD .26 .49 .17 .43 .34

SemPOS .31 n/a n/a n/a .31
SemPOS-BLEU .29 n/a n/a n/a .29

Table 8: The system-level correlation of the au-
tomatic evaluation metrics with the human judg-
ments for translation out of English.

lations with human assessments than either of the
two included baseline metrics. In particular, Bleu
performed in the bottom half of the into-English
and out-of-English directions.

6.3 Segment-Level Metric Analysis

The method employed to collect human judgments
of rank preferences at the segment level produces
a sparse matrix of decision points. It is unclear
whether attempts to normalize the segment level
rankings to 0.0–1.0 values, representing the rela-
tive rank of a system per segment given the num-
ber of comparisons it is involved with, is proper.
An intuitive display of how well metrics mirror the
human judgments may be shown via a confusion
matrix. We compare the human ranks to the ranks
as determined by a metric. Below, we show an ex-
ample of the confusion matrix for the SVM-rank
metric which had the highest summed diagonal
(occurrences when a particular rank by the met-
ric’s score exactly matches the human judgments)
for all segments translated into English. The num-
bers provided are percentages of the total count.
The summed diagonal constitutes 39.01% of all
counts in this example matrix. The largest cell is
the 1/1 ranking cell (top left). We included the
reference translation as a system in this analysis,
which is likely to lead to a lot of agreement on the
highest rank between humans and automatic met-
rics.
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Metric Human Rank
Rank 1 2 3 4 5
1 12.79 4.48 2.75 1.82 0.92
2 2.77 7.94 5.55 3.79 2.2
3 1.57 4.29 6.74 5.4 4.46
4 0.97 2.42 3.76 4.99 6.5
5 0.59 1.54 1.84 3.38 6.55

No allowances for ties were made in this analy-
sis. That is, if a human ranked two system transla-
tions the same, this analysis expects the metrics to
provide the same score in order to get them both
correct. Future analysis could relax this constraint.
As not all human rankings start with the highest
possible rank of “1” (due to ties and withholding
judgment on a particular system output being al-
lowed), we set the highest automatic metric rank
to the highest human rank and shifted the lower
metric ranks down accordingly.

Table 9 shows the summed diagonal percent-
ages of the total count of all datapoints for all met-
rics that WMT10 scores were available for, both
combined for all languages to English (X-English)
and separately for each language into English.

The results are ordered by the highest percent-
age for the summed diagonal on all languages
to English combined. There are quite noticeable
changes in ranking of the metrics for the separate
language pairs; further analysis into the reasons
for this will be necessary.

We plan to also analyze metric performance for
translation into English.

7 Feasibility of Using Non-Expert
Annotators in Future WMTs

In this section we analyze the data that we col-
lected data by posting the ranking task on Ama-
zon’s Mechanical Turk (MTurk). Although we did
not use this data when creating the official results,
our hope was that it may be useful in future work-
shops in two ways. First, if we find that it is pos-
sible to obtain a sufficient amount of data of good
quality, then we might be able to reduce the time
commitment expected from the system develop-
ers in future evaluations. Second, the additional
collected labels might enable us to detect signifi-
cant differences between systems that would oth-
erwise be insignificantly different using only the
data from the volunteers (which we will now refer
to as the “expert” data).

7.1 Data collection

To that end, we prepared 600 ranking sets for each
of the eight language pairs, with each set con-
taining five MT outputs to be ranked, using the
same interface used by the volunteers. We posted
the data to MTurk and requested, for each one,
five redundant assignments, from different work-
ers. Had all the 5× 8× 600 = 24,000 assignments
been completed, we would have obtained 24,000
× 5 = 120,000 additional rank labels, compared
to the 37,884 labels we collected from the volun-
teers (Table 3). In actuality, we collected closer to
55,000 rank labels, as we discuss shortly.

To minimize the amount of data that is of poor
quality, we placed two requirements that must be
satisfied by any worker before completing any of
our tasks. First, we required that a worker have an
existing approval rating of at least 85%. Second,
we required a worker to reside in a country where
the target language of the task can be assumed to
be the spoken language. Finally, anticipating a
large pool of workers located in the United States,
we felt it possible for us to add a third restriction
for the *-to-English language pairs, which is that a
worker must have had at least five tasks previously
approved on MTurk.13 We organized the ranking
sets in groups of 3 per screen, with a monetary re-
ward of $0.05 per screen.

When we created our tasks, we had no expecta-
tion that all the assignments would be completed
over the tasks’ lifetime of 30 days. This was in-
deed the case (Table 10), especially for language
pairs with a non-English target language, due to
workers being in short supply outside the US.
Overall, we see that the amount of data collected
from non-US workers is relatively small (left half
of Table 10), whereas the pool of US-based work-
ers is much larger, leading to much higher com-
pletion rates for language pairs with English as the
target language (right half of Table 10). This is in
spite of the additional restriction we placed on US
workers.

13We suspect that newly registered workers on MTurk al-
ready start with an “approval rating” of 100%, and so requir-
ing a high approval rating alone might not guard against new
workers. It is not entirely clear if our suspicion is true, but our
past experiences with MTurk usually involved a noticeably
faster completion rate than what we experienced this time
around, indicating our suspicion might very well be correct.
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Metric *-English Czech-English French-English German-English Spanish-English
SVM-rank 39.01 41.21 36.07 38.81 40.3
i-letter-recall 38.85 41.71 36.19 38.8 39.5
MT-NCD 38.77 42.55 35.31 38.7 39.48
i-letter-BLEU 38.69 40.54 36.05 38.82 39.64
meteor-next-rank 38.5 40.1 34.41 39.25 40.05
meteor-next-adq 38.27 39.58 34.41 39.5 39.35
meteor-next-hter 38.21 38.61 34.1 39.13 40.18
Bkars 37.98 40.1 35.08 38.6 38.52
Stanford 37.97 39.87 36.19 38.27 38.09
ATEC-2.1 37.95 40.06 34.96 38.6 38.53
TESLA 37.57 38.68 34.38 38.67 38.36
NIST 37.47 39.54 35.54 37.13 38.2
SemPOS 37.21 38.8 37.39 35.73 37.69
SemPOS-BLEU 37.16 38.05 36.57 37.11 37.21
badger-2.0-full 37.12 37.5 36 36.21 38.62
badger-2.0-lite 37.08 37.2 35.88 36.23 38.69
SEPIA 37.06 38.98 34.6 36.46 38.52
BLEU-4-v13a 36.71 37.83 34.84 36.44 37.81
LRHB4 36.14 38.35 34.65 34.24 37.93
TESLA-M 36.13 37.01 34 35.79 37.6
LRKB4 36.12 38.72 33.47 35.25 37.63
IQmt-ULCh 35.86 37.64 33.95 35.81 36.45
IQmt-DR 35.77 36.27 34.43 34.43 37.74
DCU-LFG 34.72 36.38 32.29 33.87 36.49
MT-mNCD 34.51 34.93 31.78 35.73 35.13
IQmt-DRdoc 31.9 33.85 28.99 32.9 32.18

Table 9: The segment-level performance for metrics for the into-English direction.

en-de en-es en-fr en-cz de-en es-en fr-en cz-en
Location DE ES/MX FR CZ US US US US
Completed 1 time 37% 38% 29% 19% 3.5% 1.5% 14% 2.0%
Completed 2 times 18% 14% 12% 1.5% 6.0% 5.5% 19% 4.5%
Completed 3 times 2.5% 4.5% 0.5% 0.0% 8.5% 11% 20% 10%
Completed 4 times 1.5% 0.5% 0.5% 0.0% 22% 19% 23% 17%
Completed 5 times 0.0% 0.5% 0.0% 0.0% 60% 63% 22% 67%
Completed ≥ once 59% 57% 42% 21% 100% 99% 96% 100%
Label count 2,583 2,488 1,578 627 12,570 12,870 9,197 13,169
(% of expert data) (38%) (96%) (40%) (9%) (241%) (228%) (222%) (490%)

Table 10: Statistics for data collected on MTurk for the ranking task. In total, 55,082 rank labels were
collected across the eight language pairs (145% of expert data). Each language pair had 600 sets, and
we requested each set completed by 5 different workers. Since each set provides 5 labels, we could have
potentially obtained 600 × 5 × 5 = 15,000 labels for each language pair. The Label count row indicates
to what extent that potential was met (over the 30-day lifetime of our tasks), and the “Completed...” rows
give a breakdown of redundancy. For instance, the right-most column indicates that, in the cz-en group,
2.0% of the 600 sets were completed by only one worker, while 67% of the sets were completed by 5
workers, with 100% of the sets completed at least once. The total cost of this data collection effort was
roughly $200.
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INTER-ANNOTATOR AGREEMENT

P (A) K K∗

With references 0.466 0.198 0.487
Without references 0.441 0.161 0.439

INTRA-ANNOTATOR AGREEMENT

P (A) K K∗

With references 0.539 0.309 0.633
Without references 0.538 0.307 0.601

Table 11: Inter- and intra-annotator agreement for
the MTurk workers on the sentence ranking task.
(As before, P (E) is 0.333.) For comparison, we
repeat here the kappa coefficients of the experts
(K∗), taken from Table 4.

7.2 Quality of MTurk data

It is encouraging to see that we can collect a large
amount of rank labels from MTurk. That said, we
still need to guard against data from bad work-
ers, who are either not being faithful and click-
ing randomly, or who might simply not be compe-
tent enough. Case in point, if we examine inter-
and intra-annotator agreement on the MTurk data
(Table 11), we see that the agreement rates are
markedly lower than their expert counterparts.

Another indication of the presence of bad work-
ers is a low reference preference rate (RPR),
which we define as the proportion of time a ref-
erence translation wins (or ties in) a comparison
when it appears in one. Intuitively, the RPR
should be quite high, since it is quite rare that an
MT output ought to be judged better than the refer-
ence. This rate is 96.5% over the expert data, but
only 83.7% over the MTurk data. Compare this
to a randomly-clicking RPR of 66.67% (because
the two acceptable answers are that the reference
is either better than a system’s output or tied with
it).

Also telling would be the rate at which MTurk
workers agree with experts. To ensure that we ob-
tain enough overlapping data to calculate such a
rate, we purposely select one-sixth14 of our rank-
ing sets so that the five-system group is exactly one
that has been judged by an expert. This way, at
least one-sixth of the comparisons obtained from
an MTurk worker’s labels are comparisons for

14This means that on average Turkers ranked a set of sys-
tem outputs that had been ranked by experts on every other
screen, since each screen’s worth of work had three sets.

which we already have an expert judgment. When
we calculate the rate of agreement on this data,
we find that MTurk workers agree with the ex-
pert workers 53.2% of the time, or K = 0.297, and
when references are excluded, the agreement rate
is 50.0%, or K = 0.249. Ideally, we would want
those values to be in the 0.4–0.5 range, since that
is where the inter-annotator kappa coefficient lies
for the expert annotators.

7.3 Filtering MTurk data by agreement with
experts

We can use the agreement rate with experts to
identify MTurk workers who are not performing
the task as required. For each worker w of the
669 workers for whom we have such data, we
compute the worker’s agreement rate with the ex-
perts, and from it a kappa coefficient Kexp(w) for
that worker. (Given that P (E) is 0.333, Kexp(w)
ranges between−0.5 and +1.0.) We sort the work-
ers based on Kexp(w) in ascending order, and ex-
amine properties of the MTurk data as we remove
the lowest-ranked workers one by one (Figure 4).

We first note that the amount of data we ob-
tained from MTurk is so large, that we could af-
ford to eliminate close to 30% of the labels, and
we would still have twice as much data than us-
ing the expert data alone. We also note that two
workers in particular (the 103rd and 130th to be
removed) are likely responsible for the majority
of the bad data, since removing their data leads to
noticeable jumps in the reference preference rate
and the inter-annotator agreement rate (right two
curves of Figure 4). Indeed, examining the data for
those two workers, we find that their RPR values
are 55.7% and 51.9%, which is a clear indication
of random clicking.15

Looking again at those two curves shows de-
grading values as we continue to remove workers
in large droves, indicating a form of “overfitting”
to agreement with experts (which, naturally, con-
tinues to increase until reaching 1.0; bottom left
curve). It is therefore important, if one were to fil-
ter out the MTurk data by removing workers this
way, to choose a cutoff carefully so that no crite-
rion is degraded dramatically.

In Appendix A, after reporting head-to-head
comparisons using only the expert data, we also
report head-to-head comparisons using the expert

15In retrospect, we should have performed this type of
analysis as the data was being collected, since such workers
could have been identified early on and blocked.

35



-

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700

# Workers Removed

M
T
u
rk

 D
a
ta

 R
e
m

a
in

in
g

(%
 o

f 
E

x
p
e
rt

 D
a
ta

)

-

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400 500 600 700

# Workers Removed

A
g
re

e
m

e
n
t 
w

it
h
 E

x
p
e
rt

 D
a
ta

 (
k
a
p
p
a
)

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

0 100 200 300 400 500 600 700

# Workers Removed

R
e
fe

re
n
c
e
 P

re
fe

re
n
c
e
 R

a
te

0.10

0.15

0.20

0.25

0.30

0 100 200 300 400 500 600 700

# Workers Removed

In
te

r-
A

n
n
o
ta

to
r 

A
g
re

e
m

e
n
t 
(k

a
p
p
a
)

Figure 4: The effect of removing an increasing number of MTurk workers. The order in which workers
are removed is by Kexp(w), the kappa agreement coefficient with expert data (excluding references).

data combined with the MTurk data, in order to
be able to detect more significant differences be-
tween the systems. We choose the 300-worker
point as a reasonable cutoff point before combin-
ing the MTurk data with the expert data, based
on the characteristics of the MTurk data at that
point: a high reference preference rate, high inter-
annotator agreement, and, critically, a kappa co-
efficient vs. expert data of 0.449, which is close
to the expert inter-annotator kappa coefficient of
0.439.

7.4 Feasibility of using only MTurk data

In the previous subsection, we outlined an ap-
proach by which MTurk data can be filtered out
using expert data. Since we were to combine the
filtered MTurk data with the expert data to ob-
tain more significant differences, it was reason-
able to use agreement with experts to quantify the
MTurk workers’ competency. However, we also
would like to know whether it is feasible to use the
MTurk data alone. Our aim here is not to boost the
differences we see by examining expert data, but
to eliminate our reliance on obtaining expert data
in the first place.

We briefly examined some simple ways of fil-
tering/combining the MTurk data, and measured
the Spearman rank correlations obtained from the
MTurk data (alone), as compared to the rankings
obtained using the expert data (alone), and report
them in Table 12. (These correlations do not in-
clude the references.)

We first see that even when using the MTurk
data untouched, we already obtain relatively high
correlation with expert ranking (“Unfiltered”).
This is especially true for the *-to-English lan-
guage pairs, where we collected much more data
than English-to-*. In fact, the relationship be-
tween the amount of data and the correlation val-
ues is very strong, and it is reasonable to expect
the correlation numbers for English-to-* to catch
up had more data been collected.

We also measure rank correlations when apply-
ing some simple methods of cleaning/weighting
MTurk data. The first method (“Voting”) is per-
forming a simple vote whenever redundant com-
parisons (i.e. from different workers) are avail-
able. The second method (“Kexp-filtered”) first re-
moves labels from the 300 worst workers accord-
ing to agreement with experts. The third method
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(“RPR-filtered”) first removes labels from the 62
worst workers according to their RPR. The num-
bers 300 and 62 were chosen since those are the
points at which the MTurk data reaches the level
of expert data in the inter-annotator agreement and
RPR of the experts.

The fourth and fifth methods (“Weighted by
Kexp” and “Weighted by K(RPR)”) do not re-
move any data, instead assigning weights to work-
ers based on their agreement with experts and their
RPR, respectively. Namely, for each worker, the
weight assigned by the fourth method is Kexp for
that worker, and the weight assigned by the fifth
method is K(RPR) for that worker.

Examining the correlation coefficients obtained
from those methods (Table 12), we see mixed re-
sults, and there is no clear winner among those
methods. It is also difficult to draw any conclusion
as to which method performs best when. However,
it is encouraging to see that the two RPR-based
methods perform well. This is noteworthy, since
there is no need to use expert data to weight work-
ers, which means that it is possible to evaluate a
worker using inherent, ‘built-in’ properties of that
worker’s own data, without resorting to making
comparisons with other workers or with experts.

8 Summary

As in previous editions of this workshop we car-
ried out an extensive manual and automatic eval-
uation of machine translation performance for
translating from European languages into English,
and vice versa.

The number of participants grew substantially
compared to previous editions of the WMT work-
shop, with 33 groups from 29 institutions partic-
ipating in WMT10. Most groups participated in
the translation task only, while the system combi-
nation task attracted a somewhat smaller number
of participants

Unfortunately, fewer rule-based systems partic-
ipated in this year’s edition of WMT, compared
to previous editions. We hope to attract more
rule-based systems in future editions as they in-
crease the variation of translation output and for
some language pairs, such as German-English,
tend to outperform statistical machine translation
systems.

This was the first time that the WMT workshop
was held as a joint workshop with NIST’s Metric-
sMATR evaluation initiative. This joint effort was

very productive as it allowed us to focus more on
the two evaluation dimensions: manual evaluation
of MT performance and the correlation between
manual metrics and automated metrics.

This year was also the first time we have in-
troduced quality assessments by non-experts. In
previous years all assessments were carried out
through peer evaluation exclusively consisting of
developers of machine translation systems, and
thereby people who are used to machine transla-
tion output. This year we have facilitated Ama-
zon’s Mechanical Turk to investigate two as-
pects of manual evaluation: How stable are man-
ual assessments across different assessor profiles
(experts vs. non-experts) and how reliable are
quality judgments of non-expert users? While
the intra- and inter-annotator agreements between
non-expert assessors are considerably lower than
for their expert counterparts, the overall rankings
of translation systems exhibit a high degree of cor-
relation between experts and non-experts. This
correlation can be further increased by applying
various filtering strategies reducing the impact of
unreliable non-expert annotators.

As in previous years, all data sets generated by
this workshop, including the human judgments,
system translations and automatic scores, are pub-
licly available for other researchers to analyze.16
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A Pairwise system comparisons by human judges

Tables 13–20 show pairwise comparisons between systems for each language pair. The numbers in each
of the tables’ cells indicate the percentage of times that the system in that column was judged to be better
than the system in that row. Bolding indicates the winner of the two systems. The difference between
100 and the sum of the complimentary cells is the percent of time that the two systems were judged to
be equal.

Because there were so many systems and data conditions the significance of each pairwise compar-
ison needs to be quantified. We applied the Sign Test to measure which comparisons indicate genuine
differences (rather than differences that are attributable to chance). In the following tables ? indicates sta-
tistical significance at p ≤ 0.10, † indicates statistical significance at p ≤ 0.05, and ‡ indicates statistical
significance at p ≤ 0.01, according to the Sign Test.

B Automatic scores

The tables on pages 33–32 give the automatic scores for each of the systems.

C Pairwise system comparisons for combined expert and non-expert data

Tables 21–20 show pairwise comparisons between systems for the into English direction when non-
expert judgments have been added.

The number of pairwise comparisons at the ? level of significance increases from 48 to 50, and the
number at the † level of significants increases from 79 to 80 (basically same number). However, the
‡ level of significance went up considerably, from 280 to 369. That’s a 31% increase. 75 of ‡ are
comparisons involving the reference, then the non-reference ‡ count went up from 205 to 294, a 43%
increase.
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REF – .00‡ .00‡ .00‡ .00‡ .00‡ .04‡ .03‡ .00‡ .00‡ .00‡ .00‡ .04‡ .00‡ .04‡ .00‡ .00‡ .00‡ .00‡ .05‡ .06‡ .03‡ .09‡ .04‡ .04‡

CAMBRIDGE .79‡ – .36 .16‡ .12‡ .23† .27 .43 .26† .38 .24 .3 .28 .51 .34 .23 .37 .24 .32 .46 .24 .29 .45 .59? .44
CMU-STATXFER .84‡ .58 – .16‡ .48 .14‡ .19 .39 .33 .54 .54? .50† .36 .50 .70‡ .55? .50 .46 .58† .67† .50 .56† .48 .58‡ .52†

CU-ZEMAN 1.00‡ .77‡ .72‡ – .76‡ .37 .73‡ .74‡ .79‡ .77‡ .77‡ .81‡ .75‡ .94‡ .86‡ .77‡ .89‡ .67 .77‡ .79‡ .81‡ .81‡ .77‡ .96‡ .86‡

DFKI 1.00‡ .72‡ .45 .12‡ – .32 .48 .50 .52 .53 .56 .65 .53 .62 .55 .43 .61? .50 .68† .73‡ .70† .60 .59? .72‡ .71‡

GENEVA 1.00‡ .69† .76‡ .48 .56 – .47 .71† .79‡ .72† .79‡ .71† .68† .76‡ .83‡ .57 .86‡ .72‡ .71† .69† .76† .65‡ .88‡ .96‡ .70
HUICONG .86‡ .54 .29 .12‡ .26 .37 – .48 .31 .43 .63‡ .62† .53 .55 .53‡ .44 .50 .55 .52 .68‡ .52? .51 .52? .57 .53

JHU .83‡ .39 .42 .13‡ .33 .19† .3 – .3 .36 .56† .56? .47 .52 .46 .29 .36 .42 .42 .59† .50 .31 .43 .29 .37
LIG .97‡ .63† .36 .15‡ .37 .18‡ .40 .60 – .62? .57‡ .39 .35 .54† .46 .33 .34 .38 .54† .48? .42 .44 .50 .61? .56

LIMSI .96‡ .41 .23 .19‡ .31 .17† .32 .50 .28? – .35 .42 .21 .62‡ .25 .21 .33 .22 .42 .35 .43 .32 .26 .35 .41
LIUM .83‡ .33 .21? .13‡ .41 .05‡ .13‡ .15† .09‡ .3 – .39 .19 .36 .43 .26 .23† .28 .29 .45 .28 .26 .28 .33 .28

NRC .96‡ .3 .10† .10‡ .32 .24† .15† .22? .22 .33 .43 – .26 .58 .26 .24 .3 .50 .36 .45 .47† .23 .38 .36† .35
ONLINEA .96‡ .55 .57 .14‡ .42 .16† .42 .4 .39 .53 .52 .47 – .52? .46 .36 .64 .57 .59 .50 .59 .42 .46 .43 .48
ONLINEB .87‡ .37 .33 .03‡ .29 .12‡ .31 .26 .16† .12‡ .39 .35 .20? – .33 .38 .17† .36 .29 .21 .33 .3 .3 .32 .21‡

RALI .89‡ .45 .15‡ .06‡ .35 .04‡ .12‡ .42 .35 .46 .32 .42 .39 .52 – .32 .31 .26 .43 .41 .27 .43 .40 .63? .26
RWTH .91‡ .46 .21? .05‡ .51 .36 .44 .46 .53 .39 .48 .48 .39 .48 .48 – .39 .38 .39 .52 .46 .53† .52 .50‡ .25

UEDIN .96‡ .40 .33 .03‡ .28? .03‡ .28 .29 .49 .38 .61† .3 .32 .50† .34 .24 – .42 .33 .43 .48 .18? .13 .27 .38
BBN-C .90‡ .48 .46 .29 .39 .22‡ .27 .27 .46 .43 .28 .35 .33 .39 .29 .34 .26 – .28 .44† .33 .26 .62? .36 .28

CMU-HEA-C .89‡ .50 .23† .14‡ .30† .21† .26 .25 .17† .33 .43 .16 .36 .43 .26 .29 .24 .24 – .48 .27 .13 .25 .30 .15
CMU-HYP-C .81‡ .17 .19† .11‡ .19‡ .19† .14‡ .14† .19? .40 .23 .18 .29 .46 .35 .29 .21 .15† .17 – .26 .18 .07‡ .32 .21

DCU-C .88‡ .27 .25 .11‡ .22† .24† .20? .28 .21 .35 .50 .10† .31 .44 .27 .29 .22 .21 .2 .30 – .12? .26 .26 .08
JHU-C .86‡ .48 .16† .16‡ .33 .21‡ .35 .41 .32 .44 .39 .35 .39 .37 .26 .19† .50? .23 .32 .43 .40? – .36 .27 .39

LIUM-C .87‡ .41 .36 .13‡ .31? .08‡ .21? .48 .31 .47 .44 .24 .39 .52 .28 .28 .33 .27? .25 .67‡ .26 .44 – .54‡ .48
RWTH-C .88‡ .18? .13‡ .04‡ .22‡ .04‡ .14 .24 .25? .3 .33 .05† .43 .50 .30? .13‡ .23 .14 .18 .21 .19 .23 .11‡ – .24

UPV-C .92‡ .25 .12† .10‡ .16‡ .3 .25 .34 .29 .31 .34 .29 .39 .65‡ .39 .36 .3 .45 .27 .36 .23 .16 .24 .28 –
> others .90 .44 .31 .13 .33 .18 .29 .37 .34 .42 .44 .38 .37 .51 .41 .31 .38 .35 .38 .48 .39 .36 .40 .46 .37

>= others .98 .66 .51 .21 .42 .27 .51 .59 .53 .65 .71 .66 .52 .71 .65 .55 .65 .64 .70 .77 .72 .65 .64 .77 .68

Table 13: Sentence-level ranking for the WMT10 French-English News Task
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REF – .08‡ .02‡ .00‡ .04‡ .08‡ .13‡ .06‡ .09‡ .09‡ .07‡ .16‡ .11‡ .12‡ .12‡ .12‡ .05‡ .07‡ .08‡ .09‡

CAMBRIDGE .82‡ – .16‡ .24† .15‡ .07‡ .35 .10‡ .42 .36 .43 .27 .67‡ .46 .39 .44 .40 .46 .48? .40
CU-ZEMAN .98‡ .82‡ – .47 .54? .62‡ .71‡ .41 .79‡ .82‡ .70‡ .67‡ .85‡ .90‡ .75‡ .72‡ .92‡ .82‡ .88‡ .82‡

DFKI .95‡ .66† .31 – .46 .25? .78‡ .36 .59 .62? .75‡ .65† .45 .56? .75‡ .69‡ .71‡ .63? .57 .65†

EU .96‡ .78‡ .30? .41 – .55 .68‡ .16‡ .76‡ .72‡ .82‡ .67‡ .63‡ .86‡ .78‡ .78‡ .76‡ .76‡ .75‡ .71‡

GENEVA .86‡ .81‡ .23‡ .55? .34 – .65‡ .25‡ .65† .70‡ .69‡ .66‡ .77‡ .71‡ .70‡ .89‡ .75‡ .63† .84‡ .75‡

JHU .77‡ .42 .15‡ .22‡ .22‡ .22‡ – .06‡ .58? .47 .52† .49 .70‡ .61† .53 .64‡ .53? .65‡ .68‡ .50
KOC .85‡ .67‡ .4 .58 .55‡ .69‡ .82‡ – .76‡ .85‡ .81‡ .72‡ .86‡ .82‡ .86‡ .85‡ .77‡ .77‡ .74‡ .79‡

LIMSI .84‡ .23 .08‡ .29 .09‡ .30† .21? .08‡ – .33 .37 .17‡ .51 .40 .29 .45 .49 .40 .61‡ .28
LIUM .85‡ .39 .07‡ .32? .11‡ .21‡ .44 .07‡ .46 – .44 .4 .32 .44 .37 .64† .35 .40 .35 .42

NRC .91‡ .43 .15‡ .20‡ .11‡ .25‡ .21† .09‡ .31 .45 – .32 .48 .44 .49 .61† .52† .30 .58? .40
ONLINEA .80‡ .51 .21‡ .33† .23‡ .15‡ .41 .14‡ .60‡ .42 .54 – .52? .56? .36 .67‡ .61‡ .45 .50 .44
ONLINEB .87‡ .23‡ .08‡ .43 .23‡ .11‡ .12‡ .08‡ .27 .36 .43 .25? – .38 .31 .33 .52 .33? .46 .29

RALI .83‡ .38 .05‡ .27? .11‡ .15‡ .22† .10‡ .36 .44 .49 .31? .50 – .38 .44 .42 .37 .38 .34
RWTH .76‡ .33 .11‡ .12‡ .15‡ .17‡ .34 .05‡ .34 .44 .29 .42 .49 .40 – .56 .48 .44 .53‡ .50

UEDIN .84‡ .29 .20‡ .17‡ .12‡ .09‡ .19‡ .07‡ .33 .23† .24† .24‡ .56 .31 .3 – .36? .27 .51 .18†

CMU-HEAFIELD-COMBO .90‡ .23 .04‡ .23‡ .18‡ .12‡ .22? .11‡ .32 .41 .20† .23‡ .28 .31 .31 .11? – .29 .24 .3
KOC-COMBO .91‡ .26 .08‡ .31? .17‡ .28† .20‡ .07‡ .23 .26 .19 .36 .57? .37 .32 .32 .42 – .38 .34

RWTH-COMBO .85‡ .21? .02‡ .36 .16‡ .07‡ .12‡ .07‡ .16‡ .3 .30? .4 .34 .32 .06‡ .26 .35 .16 – .21?

UPV-COMBO .87‡ .38 .08‡ .30† .19‡ .19‡ .37 .11‡ .39 .24 .33 .37 .44 .27 .34 .46† .35 .28 .50? –
> others .87 .43 .15 .30 .22 .25 .38 .13 .44 .45 .46 .41 .53 .49 .44 .52 .53 .45 .53 .45

>= others .92 .63 .26 .40 .32 .35 .53 .26 .66 .63 .62 .55 .68 .66 .63 .70 .74 .68 .75 .66

Table 14: Sentence-level ranking for the WMT10 English-French News Task
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REF – .00‡ .03‡ .00‡ .06‡ .03‡ .00‡ .00‡ .05‡ .00‡ .00‡ .03‡ .06‡ .09‡ .06‡ .00‡ .09‡ .03‡ .03‡ .14‡ .03‡ .06‡ .03‡ .03‡ .06‡ .00‡

AALTO 1.00‡ – .50 .31 .60 .69‡ .39 .41 .71† .31 .45 .60‡ .59† .65‡ .66‡ .64‡ .81‡ .45 .41 .69† .72‡ .75† .55 .55‡ .76‡ .57†

CMU .93‡ .31 – .29 .49 .57‡ .38 .50 .74‡ .13‡ .44 .59‡ .57† .59? .60† .67† .59‡ .41 .50 .68‡ .67‡ .46 .64‡ .55? .67‡ .54?

CU-ZEMAN 1.00‡ .44 .56 – .58 .64‡ .17 .44 .75‡ .38 .50 .54† .76† .79‡ .73‡ .72‡ .72‡ .50? .73‡ .78‡ .80‡ .68‡ .72† .62† .68? .73‡

DFKI .92‡ .25 .32 .27 – .53 .36 .46 .65? .07‡ .50 .47 .47 .69‡ .56 .35 .55 .58 .47 .67† .61? .52 .47 .38 .67† .51
FBK .97‡ .20‡ .16‡ .14‡ .38 – .11‡ .31 .45 .10‡ .22? .36 .50 .57† .37 .43 .40 .12‡ .17† .48? .43 .35 .38 .22 .38 .39

HUICONG .93‡ .35 .28 .46 .43 .75‡ – .52 .69† .16† .39 .42 .64† .79‡ .31 .51† .78‡ .27 .41 .49 .74‡ .68‡ .60? .37 .68‡ .56†

JHU .86‡ .34 .29 .16 .43 .31 .26 – .61‡ .15‡ .35 .36 .45 .69‡ .52? .56? .64† .27 .36 .70‡ .53 .47 .66‡ .52 .68‡ .44
KIT .89‡ .21† .10‡ .14‡ .29? .33 .19† .14‡ – .03‡ .27 .21† .36 .46 .17‡ .29 .24 .25‡ .25‡ .48 .23? .31 .38 .2 .36 .12‡

KOC .96‡ .58 .77‡ .48 .70‡ .77‡ .58† .71‡ .97‡ – .77‡ .90‡ .72‡ .82‡ .76‡ .84‡ .81‡ .84‡ .66‡ .83‡ .87‡ .79‡ .77‡ .75‡ .93‡ .71‡

LIMSI 1.00‡ .23 .28 .35 .35 .53? .33 .45 .41 .19‡ – .49 .48 .63† .49 .63‡ .52 .36 .29 .73‡ .53? .45 .59‡ .29 .56† .59†

LIU .88‡ .12‡ .15‡ .16† .39 .21 .46 .36 .61† .00‡ .27 – .44 .63† .49 .45 .53 .27? .33 .67‡ .55? .46 .44 .32 .37 .55
ONLINEA .92‡ .15† .23† .24† .42 .34 .21† .35 .50 .10‡ .32 .36 – .41 .4 .44 .37 .32 .34 .36 .4 .47 .3 .26 .48 .41
ONLINEB .68‡ .18‡ .29? .17‡ .26‡ .24† .18‡ .23‡ .33 .18‡ .23† .27† .34 – .3 .15‡ .29 .24† .15‡ .44 .28 .33? .20† .21‡ .38 .3

RWTH .88‡ .17‡ .20† .20‡ .37 .49 .41 .23? .61‡ .16‡ .4 .3 .43 .56 – .39 .50 .26 .49 .37 .29 .34 .41 .26 .44 .2
UEDIN .89‡ .14‡ .22† .13‡ .62 .34 .18† .22? .39 .03‡ .17‡ .3 .44 .67‡ .42 – .39 .15‡ .14‡ .52? .40 .36 .43 .26 .41 .38

UMD .91‡ .07‡ .14‡ .08‡ .36 .34 .11‡ .25† .48 .16‡ .24 .34 .52 .56 .41 .45 – .16‡ .21† .41 .28 .29 .43 .29 .25 .23
UPPSALA .97‡ .32 .34 .17? .36 .54‡ .23 .37 .70‡ .00‡ .41 .62? .56 .68† .57 .64‡ .59‡ – .2 .63‡ .69‡ .51‡ .60? .33 .69‡ .63‡

UU-MS .82‡ .22 .43 .14‡ .45 .51† .19 .21 .68‡ .14‡ .39 .52 .60 .64‡ .44 .53‡ .61† .28 – .36 .58‡ .52? .53? .30 .64‡ .44
BBN-C .86‡ .25† .10‡ .07‡ .27† .17? .23 .18‡ .35 .07‡ .15‡ .12‡ .32 .41 .3 .19? .22 .15‡ .27 – .39 .06† .23? .11‡ .21 .18†

CMU-HEA-C .87‡ .14‡ .15‡ .08‡ .29? .33 .04‡ .26 .53? .00‡ .20? .24? .44 .31 .46 .23 .53 .15‡ .13‡ .27 – .40 .2 .14‡ .22 .28
CMU-HYP-C .94‡ .25† .24 .14‡ .44 .3 .15‡ .26 .47 .08‡ .45 .31 .42 .67? .24 .36 .46 .14‡ .21? .50† .32 – .43 .28 .51? .42

JHU-C .97‡ .34 .11‡ .20† .29 .34 .29? .03‡ .38 .12‡ .07‡ .29 .55 .67† .34 .32 .23 .24? .24? .48? .40 .32 – .27 .37 .31
KOC-C .88‡ .00‡ .23? .21† .53 .44 .29 .22 .43 .08‡ .36 .50 .53 .63‡ .39 .37 .39 .28 .19 .64‡ .61‡ .38 .55 – .48? .46

RWTH-C .82‡ .09‡ .06‡ .29? .25† .25 .18‡ .18‡ .24 .03‡ .19† .26 .36 .54 .25 .26 .33 .06‡ .14‡ .29 .22 .23? .3 .17? – .13‡

UPV-C .97‡ .17† .21? .17‡ .36 .36 .23† .19 .67‡ .20‡ .18† .29 .41 .40 .40 .38 .48 .17‡ .31 .50† .43 .27 .27 .27 .65‡ –
> others .91 .23 .25 .20 .39 .42 .24 .30 .53 .11 .31 .38 .47 .59 .42 .43 .48 .27 .30 .53 .49 .42 .44 .31 .51 .41

>= others .96 .42 .46 .36 .50 .66 .47 .53 .72 .23 .52 .59 .63 .73 .62 .66 .68 .51 .55 .77 .73 .65 .67 .59 .75 .64

Table 15: Sentence-level ranking for the WMT10 German-English News Task
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REF – .03‡ .06‡ .01‡ .02‡ .05‡ .00‡ .00‡ .01‡ .04‡ .03‡ .01‡ .01‡ .01‡ .02‡ .01‡ .01‡ .05‡ .06‡

CU-ZEMAN .97‡ – .85‡ .67‡ .62‡ .78‡ .58? .70‡ .64‡ .80‡ .85‡ .64‡ .52 .80‡ .61† .79‡ .69‡ .76‡ .73‡

DFKI .89‡ .14‡ – .36† .24‡ .38 .30‡ .27‡ .36? .36? .55 .35† .21‡ .41 .39 .46 .38? .47 .37?

FBK .97‡ .30‡ .59† – .35† .42 .12‡ .36 .48 .48 .64‡ .39 .29‡ .46 .30† .44 .46 .48 .38
JHU .98‡ .27‡ .72‡ .57† – .59‡ .30‡ .51 .53 .56? .65‡ .43 .39 .66‡ .45 .56 .61‡ .52 .47
KIT .92‡ .18‡ .55 .42 .29‡ – .23‡ .32 .32† .43 .53? .41 .27‡ .43 .23‡ .41 .41 .42 .37

KOC 1.00‡ .37? .64‡ .82‡ .62‡ .70‡ – .74‡ .74‡ .74‡ .82‡ .63‡ .48 .62† .65‡ .73‡ .67‡ .81‡ .71‡

LIMSI .95‡ .27‡ .68‡ .39 .45 .49 .17‡ – .49 .74‡ .70‡ .51 .28‡ .58‡ .32 .51 .53? .52† .31
LIU .95‡ .32‡ .59? .4 .36 .58† .21‡ .37 – .39 .74‡ .33? .23‡ .55† .36? .49 .42 .46 .38

ONLINEA .95‡ .16‡ .55? .4 .36? .45 .21‡ .23‡ .50 – .56† .38 .23‡ .41 .23‡ .48 .4 .50 .33†

ONLINEB .92‡ .12‡ .42 .26‡ .27‡ .33? .14‡ .23‡ .21‡ .32† – .24‡ .14‡ .39 .19‡ .29‡ .27‡ .36 .32‡

RWTH .98‡ .33‡ .61† .51 .47 .46 .30‡ .33 .52? .55 .71‡ – .33† .57? .45 .40 .51† .47 .46
SFU .98‡ .42 .77‡ .66‡ .51 .69‡ .48 .68‡ .69‡ .72‡ .77‡ .56† – .82‡ .53 .65‡ .69‡ .73‡ .62‡

UEDIN .94‡ .17‡ .51 .4 .31‡ .49 .34† .25‡ .30† .52 .52 .36? .10‡ – .33? .31 .42 .38 .22‡

UPPSALA .97‡ .36† .55 .51† .47 .70‡ .25‡ .46 .57? .67‡ .71‡ .41 .38 .54? – .53† .42 .58‡ .40
CMU-HEAFIELD-COMBO .96‡ .17‡ .49 .36 .36 .37 .21‡ .35 .49 .42 .64‡ .38 .28‡ .48 .28† – .35 .46 .35

KOC-COMBO .99‡ .27‡ .56? .32 .27‡ .32 .23‡ .32? .41 .55 .64‡ .30† .21‡ .37 .36 .41 – .34 .36
RWTH-COMBO .92‡ .17‡ .50 .34 .35 .41 .09‡ .25† .38 .4 .54 .38 .20‡ .42 .19‡ .28 .35 – .16‡

UPV-COMBO .93‡ .23‡ .58? .38 .36 .51 .23‡ .50 .49 .57† .60‡ .42 .28‡ .51‡ .3 .38 .46 .48‡ –
> others .95 .24 .57 .44 .37 .48 .24 .39 .45 .51 .63 .40 .27 .51 .34 .45 .44 .49 .39

>= others .98 .28 .62 .56 .46 .60 .30 .51 .55 .59 .70 .51 .34 .62 .47 .59 .59 .65 .55

Table 16: Sentence-level ranking for the WMT10 English-German News Task
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REF – .00‡ .01‡ .01‡ .01‡ .00‡ .00‡ .00‡ .00‡ .00‡ .01‡ .02‡ .05‡ .01‡ .04‡

CAMBRIDGE .95‡ – .23‡ .14‡ .34? .31† .41 .34 .62‡ .45? .35 .40? .42 .22† .44
COLUMBIA .97‡ .58‡ – .25‡ .52 .45 .59‡ .53? .65‡ .60‡ .47 .56‡ .55‡ .45 .58‡

CU-ZEMAN .96‡ .71‡ .59‡ – .60‡ .68‡ .79‡ .66‡ .75‡ .80‡ .66‡ .79‡ .78‡ .69‡ .75‡

DFKI .97‡ .51? .37 .23‡ – .43 .59‡ .52† .66‡ .62‡ .48 .53† .55† .55† .64‡

HUICONG .95‡ .50† .34 .21‡ .41 – .45 .50 .66‡ .61‡ .39 .50? .59‡ .40 .52‡

JHU .98‡ .39 .22‡ .12‡ .30‡ .33 – .37 .56‡ .51‡ .34 .39 .34† .22‡ .34
ONLINEA .96‡ .46 .37? .23‡ .32† .38 .44 – .59‡ .53† .4 .50 .36 .30† .54‡

ONLINEB .88‡ .25‡ .21‡ .16‡ .23‡ .21‡ .27‡ .23‡ – .35 .24‡ .28‡ .34† .22‡ .36
UEDIN .96‡ .31? .28‡ .10‡ .25‡ .19‡ .25‡ .31† .48 – .23‡ .27† .31 .23‡ .2

UPC .94‡ .47 .4 .20‡ .41 .33 .43 .46 .66‡ .56‡ – .50? .52† .48? .49†

BBN-COMBO .95‡ .26? .31‡ .09‡ .32† .34? .33 .37 .54‡ .44† .33? – .35 .24‡ .34
CMU-HEAFIELD-COMBO .91‡ .39 .21‡ .08‡ .34† .22‡ .16† .42 .57† .45 .31† .31 – .14‡ .27

JHU-COMBO .95‡ .40† .32 .15‡ .36† .31 .44‡ .50† .66‡ .50‡ .32? .47‡ .43‡ – .43†

UPV-COMBO .92‡ .35 .28‡ .16‡ .27‡ .23‡ .38 .28‡ .47 .30 .28† .26 .35 .25† –
> others .95 .41 .30 .15 .33 .32 .39 .39 .56 .48 .34 .41 .43 .32 .43

>= others .99 .61 .45 .27 .45 .50 .61 .54 .70 .69 .51 .62 .66 .55 .66

Table 17: Sentence-level ranking for the WMT10 Spanish-English News Task
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REF – .00‡ .02‡ .07‡ .15‡ .07‡ .02‡ .11‡ .14‡ .07‡ .07‡ .03‡ .06‡ .09‡ .06‡ .03‡ .07‡

CAMBRIDGE .91‡ – .28† .45 .38 .45 .11‡ .52 .61† .21? .52 .47 .35 .54 .51 .39 .49
CU-ZEMAN .95‡ .70† – .79‡ .75‡ .85‡ .49 .83‡ .82‡ .74‡ .87‡ .67‡ .85‡ .81‡ .80‡ .70‡ .74‡

DCU .93‡ .32 .21‡ – .45 .32 .09‡ .70† .59 .24‡ .48 .38 .29 .32 .36 .24 .14‡

DFKI .80‡ .41 .15‡ .45 – .38 .12‡ .64† .57 .4 .57 .31 .41 .59 .50 .48 .47
JHU .90‡ .37 .10‡ .52 .56 – .17‡ .67† .67‡ .26† .34 .3 .49 .54 .53† .47 .35
KOC .98‡ .87‡ .47 .88‡ .73‡ .76‡ – .76‡ .87‡ .67‡ .83‡ .86‡ .90‡ .87‡ .90‡ .86‡ .86‡

ONLINEA .82‡ .42 .08‡ .30† .18† .24† .20‡ – .49 .36 .25† .17‡ .25† .45 .30? .29 .18‡

ONLINEB .76‡ .26† .10‡ .32 .37 .22‡ .10‡ .34 – .21‡ .28 .24† .32 .33 .22‡ .19‡ .27?

SFU .91‡ .54? .19‡ .67‡ .51 .63† .27‡ .64 .72‡ – .74‡ .57? .68‡ .77‡ .71‡ .64‡ .46
UEDIN .91‡ .3 .08‡ .4 .38 .34 .14‡ .71† .49 .09‡ – .34 .4 .58 .33 .3 .31

UPV .94‡ .34 .07‡ .41 .53 .54 .07‡ .73‡ .61† .27? .45 – .37 .51 .44 .38 .48†

UCH-UPV .90‡ .55 .07‡ .58 .51 .41 .08‡ .69† .52 .24‡ .51 .46 – .47 .41 .49 .49
CMU-HEAFIELD-COMBO .83‡ .29 .13‡ .37 .38 .35 .07‡ .48 .54 .08‡ .29 .26 .28 – .17† .21? .21

KOC-COMBO .88‡ .27 .15‡ .40 .42 .24† .03‡ .62? .60‡ .15‡ .41 .27 .34 .53† – .3 .40
RWTH-COMBO .92‡ .36 .21‡ .52 .33 .31 .10‡ .55 .65‡ .14‡ .37 .22 .41 .52? .48 – .31

UPV-COMBO .91‡ .32 .13‡ .69‡ .4 .32 .09‡ .76‡ .52? .36 .38 .19† .31 .45 .35 .28 –
> others .89 .39 .15 .48 .44 .41 .14 .61 .58 .29 .46 .36 .42 .51 .44 .39 .40

>= others .93 .54 .23 .61 .55 .55 .19 .69 .71 .40 .61 .55 .54 .68 .62 .59 .60

Table 18: Sentence-level ranking for the WMT10 English-Spanish News Task
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REF – .04‡ .02‡ .03‡ .00‡ .02‡ .00‡ .03‡ .03‡ .04‡ .01‡ .04‡ .02‡

AALTO .88‡ – .49 .51 .22‡ .38 .64‡ .55† .57? .71‡ .64‡ .65‡ .59‡

CMU .97‡ .35 – .4 .14‡ .18‡ .59‡ .49† .45† .57‡ .50‡ .34 .43
CU-BOJAR .90‡ .33 .43 – .12‡ .20‡ .64‡ .45 .45 .54‡ .42 .42 .41

CU-ZEMAN .99‡ .60‡ .77‡ .75‡ – .56† .81‡ .78‡ .88‡ .79‡ .84‡ .84‡ .76‡

ONLINEA .92‡ .46 .68‡ .59‡ .28† – .65‡ .54‡ .72‡ .75‡ .58‡ .57‡ .66‡

ONLINEB .97‡ .27‡ .28‡ .21‡ .10‡ .17‡ – .25† .32 .22 .21† .32 .28
UEDIN .95‡ .28† .26† .38 .07‡ .22‡ .49† – .60‡ .52‡ .33 .31 .32

BBN-COMBO .92‡ .31? .20† .39 .08‡ .15‡ .41 .16‡ – .27 .25 .3 .26
CMU-HEAFIELD-COMBO .90‡ .13‡ .23‡ .25‡ .07‡ .15‡ .31 .23‡ .34 – .18‡ .35 .28

JHU-COMBO .93‡ .20‡ .19‡ .33 .08‡ .25‡ .48† .39 .38 .52‡ – .37 .42
RWTH-COMBO .92‡ .18‡ .37 .38 .13‡ .25‡ .34 .28 .43 .40 .26 – .25

UPV-COMBO .96‡ .25‡ .36 .41 .11‡ .27‡ .45 .35 .37 .44 .31 .34 –
> others .93 .28 .36 .38 .11 .23 .49 .38 .47 .48 .38 .40 .40

>= others .98 .43 .55 .55 .22 .37 .70 .61 .70 .71 .62 .65 .63

Table 19: Sentence-level ranking for the WMT10 Czech-English News Task
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REF – .04‡ .04‡ .03‡ .01‡ .05‡ .03‡ .08‡ .04‡ .04‡ .03‡ .02‡ .02‡ .04‡ .08‡ .04‡ .07‡ .04‡

CU-BOJAR .87‡ – .46 .27‡ .12‡ .28‡ .16‡ .17‡ .44 .4 .11‡ .27‡ .41 .28 .52‡ .28 .42 .43
CU-TECTO .88‡ .36 – .30† .23‡ .38 .17‡ .28‡ .56† .44 .29† .27‡ .36 .45 .51† .4 .58† .35

CU-ZEMAN .91‡ .58‡ .51† – .38 .49 .19‡ .39 .62‡ .63‡ .36 .41 .48 .51‡ .58‡ .48† .54† .55‡

DCU .98‡ .73‡ .52‡ .43 – .59‡ .22‡ .47 .74‡ .63‡ .47† .53† .56‡ .77‡ .77‡ .62‡ .76‡ .71‡

EUROTRANS .88‡ .61‡ .47 .33 .30‡ – .10‡ .33 .51 .54† .25‡ .27‡ .49 .57‡ .59† .49 .57‡ .60‡

KOC .93‡ .69‡ .67‡ .54‡ .49‡ .77‡ – .54‡ .71‡ .70‡ .51‡ .55‡ .64‡ .72‡ .78‡ .65‡ .76‡ .78‡

ONLINEA .91‡ .62‡ .57‡ .51 .39 .44 .24‡ – .66‡ .62‡ .39 .43 .55‡ .60‡ .61‡ .59‡ .73‡ .61‡

ONLINEB .91‡ .31 .29† .27‡ .13‡ .33 .14‡ .19‡ – .44 .22‡ .09‡ .39 .19 .34 .24? .22† .39
PC-TRANS .88‡ .45 .43 .24‡ .26‡ .29† .21‡ .24‡ .49 – .22‡ .27‡ .37 .43 .55† .33† .49 .41
POTSDAM .88‡ .60‡ .51† .40 .27† .59‡ .25‡ .47 .63‡ .64‡ – .45 .52‡ .56‡ .69‡ .61‡ .70‡ .68‡

SFU .95‡ .52‡ .56‡ .4 .30† .61‡ .27‡ .39 .65‡ .64‡ .29 – .55‡ .54‡ .76‡ .53‡ .70‡ .60‡

UEDIN .94‡ .39 .44 .33 .23‡ .32 .20‡ .26‡ .32 .49 .25‡ .26‡ – .43 .57‡ .18 .46† .42
CMU-HEAFIELD-COMBO .91‡ .42 .39 .23‡ .10‡ .27‡ .14‡ .19‡ .23 .35 .24‡ .19‡ .28 – .48‡ .28 .34 .29

DCU-COMBO .84‡ .23‡ .27† .23‡ .03‡ .31† .10‡ .21‡ .42 .31† .15‡ .10‡ .16‡ .20‡ – .18‡ .27? .22‡

KOC-COMBO .91‡ .37 .49 .25† .10‡ .39 .17‡ .32‡ .42? .55† .17‡ .27‡ .26 .33 .41‡ – .32 .22
RWTH-COMBO .88‡ .29 .34† .28† .05‡ .26‡ .10‡ .17‡ .48† .43 .16‡ .15‡ .24† .33 .46? .36 – .29

UPV-COMBO .92‡ .37 .52 .22‡ .09‡ .25‡ .10‡ .19‡ .28 .47 .15‡ .25‡ .33 .24 .49‡ .34 .39 –
> others .91 .45 .44 .32 .20 .39 .16 .29 .49 .49 .25 .28 .40 .43 .54 .39 .50 .45

>= others .96 .66 .60 .50 .38 .54 .33 .44 .70 .62 .44 .45 .62 .69 .75 .66 .70 .68

Table 20: Sentence-level ranking for the WMT10 English-Czech News Task
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!"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$( !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$

""#)* +,-. +,/- +,/. +,-0 +,/+ +,-1 +,-0 +,-. +,-1 +,/+ +,-/ +,2- +,3/ +,24 +,./ +,/3 +,--

''567*8'* +,4+ +,/1 !"#$ !"#% !"#% !"#% !"#% !"#! !"## !"#& !"#' !"() !"'& !"*& !"%% !"#$ !"%)

78&69:67*8'* !"&' +,/1 +,// +,/- +,/- +,/. +,/. +,/+ +,/- !"#& +,/+ !"() !"'& +,.; !"%% !"#$ +,-1

78& +,// +,// +,/. +,/2 +,/2 +,/3 +,/2 +,-; +,/2 +,/- +,-1 +,24 !"'& +,.. +,-3 +,/- +,-;

7&6'*<"= +,// +,/; +,/. +,/+ +,/3 +,-0 +,/+ +,-/ +,/3 +,/. +,-4 +,2/ +,3/ +,.+ +,.4 +,/. +,-;

7&6>?8"5 +,22 +,-0 +,/2 +,-/ +,-; +,-/ +,-/ +,.0 +,-/ +,-; +,-2 +,23 +,3. +,2+ +,.+ +,/+ +,-3

<@&67*8'* +,;2 +,/4 !"#$ !"#% !"#% +,/. !"#% +,-1 +,/. +,// +,-0 +,21 !"'& +,./ +,-2 +,/. +,-4

*5#A5?B +,.4 +,/- +,/2 +,-0 +,/+ +,-1 +,/+ +,-2 +,-4 +,-0 +,-- +,2- +,3- +,24 +,.- +,-0 +,-2

*5#A5?C +,4+ !"#) !"#$ !"#% +,/. +,/. +,/. +,-0 +,/- +,/; +,/+ !"() !"'& +,.; +,-. +,/. +,-;

=D)@67*8'* +,;/ +,/1 +,// !"#% !"#% +,/. +,/. +,-0 +,/. +,/; +,-0 !"() !"'& +,./ +,-2 +,// +,-1

&?EA5 +,;3 +,/4 +,/- +,/2 +,/. +,/3 +,/2 +,-1 +,/. +,// +,-0 +,21 +,3; +,.- +,-2 +,// +,-1

&FG67*8'* +,;. +,/1 +,// !"#% !"#% +,/. +,/. +,-0 +,/- +,/; +,/+ !"() !"'& +,./ +,-. +,// +,-1

!"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$

""#)* +,-0 +,/2 -,04 !"%' +,+2 +,+4 +,24 +,-2 +,2/ +,/2 +,/2 +,31 ;,2+

''567*8'* +,/- !"#& /,-; !"%+ !"!* +,33 !"** !"%+ !"*! !"#+ !"#+ !"(# &"'!

78&69:67*8'* +,/- +,/4 /,-. !"%+ !"!* +,+0 !"** +,-1 !"*! +,/4 +,/4 !"(# ;,01

78& +,/+ +,/. /,3+ +,-/ +,+2 +,+0 +,.3 +,-; +,21 +,/- +,/- +,22 ;,;;

7&6'*<"= +,/2 +,// /,2. +,-/ +,+2 +,+/ +,.+ +,-/ +,24 +,// +,// +,30 ;,2-

7&6>?8"5 +,-4 +,-0 -,44 +,.; +,+2 +,+. +,2. +,.4 +,22 +,-0 +,-0 +,3- /,-/

<@&67*8'* +,/. +,// /,2/ +,-; +,+2 +,+. +,.2 +,-; +,20 +,/; +,/; +,2. 4,++

*5#A5?B +,-0 +,/3 -,14 +,-2 +,+2 +,+4 +,24 +,-. +,2/ +,/2 +,/2 +,31 ;,3.

*5#A5?C !"## !"#& /,-3 !"%+ !"!* !"'$ +,.2 +,-4 !"*! !"#+ !"#+ +,2- ;,3.

=D)@67*8'* +,/- +,/; /,-+ !"%+ !"!* +,+4 +,.2 +,-4 +,20 +,/4 +,/4 +,2- 4,+;

&?EA5 +,/. !"#& /,-+ !"%+ !"!* +,3- +,.2 +,-4 +,20 +,/4 +,/4 +,2. ;,;-

&FG67*8'* +,/- !"#& #"%& !"%+ !"!* +,+4 !"** +,-4 +,20 !"#+ !"#+ +,2- ;,00

="5H

IJK)"5L*=E MNJFO(#?P?=(=?7"## KQR(J"5H MNKSB CNDM6N CH"=%

RNMNTJ("EU RNMNTJ(="5HRNMNTJ(@)?= KNVOB K?8VTK

,-./012345670888((66((((((R?)=A7%(%&'8A)?E()*(WOKM(R?)=A7%RBMJ(2+3+X(F#&%()D*('"%?#A5?(8?)=A7%(!CSNY("5E(WOKM$,((K7*=?%(L*=(Z"##Z(!?5[=?(\RM3+()?%)%?)$("5E(Z%&'Z(!%&'%?)(*L()@?(@&8"5#]("%%?%%?E(E")"$("=?(%@*D5,

SJ^C- SJ9C-

WOKMCSNY(G3."

RM6W_I RM68W_I C"E`?=(L&## C"E`?=(#A)? BMN_(2,3

I=E*7 YS_@O(#?P?=(CSNY

K?8VTK(CSNY I_Y6S:a

MNKSB(R

!"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$( !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$

'')*+,-', ./01 ./0. %&'( %&') %&'* ./23 %&') %&+, %&'- %&.. %&/* ./14 %&'% %&'* ./2.

+"-'56789 ./00 ./0. %&'( ./2: %&'* ./23 %&') %&+, %&'- %&.. %&/* ./1. ./1; %&'* ./2.

+-&*<=*+,-', ./>. ./0. %&'( %&') %&'* ./23 %&') %&+, %&'- %&.. %&/* ./14 ./1; %&'* ./2.

+-&*?@A*+,-', %&(( ./0. %&'( ./2: %&'* ./23 %&') %&+, %&'- %&.. %&/* %&-/ %&-) ./2> ./2.

+-&*%B"BCD95 ./24 ./2: ./22 ./22 ./21 ./1; ./20 ./2: ./24 ./E; %&/( %&.( %&-. ./20 ./1:

+&*F9-") ./E4 ./2E ./22 ./24 ./2. ./10 ./2E ./21 ./1: ./E1 %&/' %&,. %&.( ./23 ./11

7+&*+,-', ./>E %&+/ %&'( %&') %&'* %&'- %&') ./0E %&'- %&.. %&/* %&-. %&'% %&'* %&'/

7G6 ./1E ./20 ./23 ./2E ./24 ./10 ./23 ./21 ./1; ./E2 ./4> ./3E ./1. ./22 ./10

89)9H" ./E> ./22 ./2E ./1; ./1; ./11 ./2. ./24 ./10 ./E3 ./41 ./E> ./3> ./23 ./11

?&6+,)8 ./24 ./20 ./22 ./22 ./21 ./2. ./20 ./2: ./24 ./E: ./4> ./3E ./11 ./22 ./1>

I?&*+,-', ./02 ./0. %&'( ./2: %&'* ./23 ./2: ./04 ./23 ./3E %&/* ./1. ./1: %&'* ./2.

I?& ./2; ./0. %&'( ./2> ./20 ./2E ./2: ./0. ./23 ./34 %&/* ./3: ./1> ./2> ./1;

#68 ./23 ./2; ./20 ./22 ./22 ./24 ./20 ./2; ./2E ./3. ./4> ./30 ./12 ./20 ./1:

#6-%6 ./02 ./2; ./20 ./2> ./20 ./2E ./2> ./0. ./23 ./34 ./4> ./3: ./1> ./2> ./1:

#6&-*+,-', ./01 ./0. %&'( ./2: ./2> ./23 ./2: ./04 ./23 %&.. %&/* ./14 ./1; ./2> ./1;

#6&- ./>4 ./0. %&'( ./2: ./2> ./23 %&') ./04 %&'- ./3E %&/* ./14 ./1; %&'* ./2.

)5+ ./00 ./0. %&'( ./2> ./20 ./2E ./2: ./04 ./23 ./3E %&/* ./3; ./1: ./2> ./1;

,)#6)9J ./2E ./2; ./20 ./22 ./22 ./2. ./20 ./2: ./24 ./3. ./4> ./30 ./11 ./21 ./10

,)#6)9K ./>4 ./0. %&'( ./2: %&'* ./23 ./2: ./04 %&'- ./3E %&/* ./1E ./1; ./2> ./1;

5"#6 ./02 ./0. ./20 ./2> ./20 ./2E ./2: ./04 %&'- ./3E %&/* ./1. ./1: ./2> ./1;

5LB?*+,-', %&(( ./0. %&'( ./2; %&'* %&'- %&') %&+, %&'- %&.. %&/* ./1E %&'% %&'* ./2.

5LB? ./22 ./2; ./20 ./2> ./20 ./2E ./2: ./0. ./23 ./34 ./4> ./3: ./10 %&'( ./1;

&976) ./02 ./0. ./20 ./2> ./2> ./23 ./2: ./04 %&'- ./3E %&/* ./1. ./1; %&'* ./1;

&AH*+,-', ./0: ./0. %&'( ./2: %&'* %&'- %&') %&+, %&'- %&.. %&/* ./1E %&'% %&'* %&'/

!"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$

'')*+,-', %&'* ./0. 2/:. ./24 %&%. ./.E %&.( ./2. %&.- %&+/ ./3. (&*/

+"-'56789 ./2> ./0. 2/:. ./24 %&%. ./.2 %&.( ./2. ./33 %&+/ ./3. >/02

+-&*<=*+,-', %&'* ./0. 2/:4 %&', %&%. ./.3 %&.( %&'/ ./31 %&+/ ./3. >/0;

+-&*?@A*+,-', %&'* ./0. 2/:1 %&', %&%. ./.3 %&.( %&'/ %&.- %&+/ ./3. >/0;

+-&*%B"BCD95 ./22 ./2> 2/20 ./1: %&%. ./.3 ./31 ./1; ./34 ./2: ./E2 >/40

+&*F9-") ./24 ./21 2/3. ./1. ./.E ./.E ./E> ./1. ./E> ./22 ./4; 0/4E

7+&*+,-', %&'* %&+/ 2/:> ./2E %&%. ./.3 %&.( %&'/ %&.- %&+/ %&./ >/>:

7G6 ./24 ./20 2/10 ./10 ./.E ./.1 ./34 ./12 ./E; ./22 ./4; 0/.4

89)9H" ./1; ./22 2/E; ./12 ./.E ./.2 ./E; ./13 ./E> ./21 ./4> 2/0>

?&6+,)8 ./22 ./2: 2/0. ./1: %&%. ./.3 ./33 ./1> ./34 ./2> ./E1 0/;;

I?&*+,-', ./2> ./0. 2/>> ./24 %&%. ./.4 ./30 ./2. ./33 ./0. ./E; >/04

I?& ./2> ./2; 2/>1 ./2. %&%. ./.: ./32 ./2. ./3E ./0. ./E: >/11

#68 ./22 ./2: 2/0E ./1: %&%. ./.2 ./31 ./1; ./34 ./2: ./E0 >/43

#6-%6 ./20 ./2; 2/>E ./24 %&%. ./.2 ./30 ./2. ./33 ./2; ./E> >/34

#6&-*+,-', ./2> ./0. 2/>> ./24 %&%. ./.3 %&.( %&'/ ./33 ./0. ./E; >/>.

#6&- %&'* %&+/ '&** %&', %&%. ./.0 %&.( %&'/ %&.- %&+/ ./E; >/2;

)5+ ./2> ./0. 2/>; ./2. %&%. ./.1 ./30 ./2. ./33 ./0. ./E; >/23

,)#6)9J ./22 ./2: 2/21 ./2. %&%. ./.: ./33 ./1: ./34 ./2: ./E2 >/E;

,)#6)9K %&'* ./0. 2/:. %&', %&%. %&// %&.( %&'/ %&.- %&+/ ./E; >/>3

5"#6 ./2> ./0. 2/:. %&', %&%. ./.0 ./30 ./2. ./33 ./0. ./E: >/11

5LB?*+,-', %&'* %&+/ 2/:> %&', %&%. ./.4 %&.( %&'/ %&.- %&+/ ./3. >/>3

5LB? ./20 ./2; 2/>3 ./2. %&%. ./.1 ./30 ./2. ./33 ./0. ./E: >/3;

&976) ./2> ./0. 2/:E ./24 %&%. ./.1 ./30 ./2. ./33 %&+/ ./E: >/11

&AH*+,-', %&'* %&+/ '&** %&', %&%. ./.3 %&.( ./2. %&.- %&+/ ./3. >/01

0123456738#9:5;(((**(((((M9B56+%(%&'-6N97(B,(OPQR(M9B56+%MJRS(E.4.T(A#&%(BL,('"%9#6)9(-9B56+%(!KUVW(")7(OPQR$/((Q+,59%(D,5(X"##X(!9)Y59(ZMR4.(B9%B%9B$(")7(X%&'X(!%&'%9B(,D(B?9(?&-")#@("%%9%%97(7"B"$("59(%?,L)/

5")[ MR*O\] MR*-O\] K"7895(D&## K"7895(#6B9 ]\W*U=^ US_K1 US<K1Q9-`aQ Q9-`aQ(KUVW

P(#9N95(KUVW P(#9N95(59+"## QbM(S")[ RVQUJ(M RVQUJ QB")D,57

MVRVaS("7c MVRVaS(?B95 MVRVaS(5")[ QV`PJJRV\(E/4

KUVW(43" OPQRRVSA ]S ]57,+ WU\? KVLR*V K["5%
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!"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$( !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$

""#)* +,-. +,/- +,/0 +,/+ +,-1 +,-0 +,/+ +,/. +,-2 +,./ +,3/ +,./ +,0/ +,-4 +,02

''567*8'* !"## !"$% +,// !"$$ !"$& +,/+ +,/2 +,/1 +,/. !"'( +,39 +,02 +,-2 !"$& !"&)

78&6:;67*8'* +,90 +,/4 +,// !"$$ !"$& +,/+ +,/2 +,/1 +,/. +,0+ +,39 +,0/ +,-/ !"$& !"&)

78&6<=>67*8'* +,2/ +,/4 +,// +,/- +,/0 +,/+ +,/2 +,/4 +,/3 +,.1 +,39 +,0- +,-- +,/0 +,-3

78& +,-2 +,/- +,/3 +,/+ +,/+ +,-- +,/3 +,/0 +,-9 +,.2 +,32 +,0+ +,04 +,/3 +,04

7&6?@8"5 +,02 +,/3 +,/0 +,-9 +,-9 +,-. +,-4 +,/+ +,-/ +,.0 +,3- +,.+ +,0. +,/+ +,02

ABC +,/+ +,/- +,/. +,-1 +,-4 +,-- +,/3 +,/. +,-9 +,.- +,32 +,.1 +,0/ +,/+ +,02

DE +,22 +,/4 +,/- +,/3 +,/3 +,-1 +,// +,/9 +,/+ +,.9 +,32 +,03 +,-. +,/. +,01

<&C7*5F +,-9 +,/0 +,/3 +,-1 +,-4 +,-0 +,/+ +,/. +,-9 +,./ +,3/ +,./ +,02 +,/+ +,02

G<&67*8'* +,29 +,/4 +,// +,/- +,/0 +,/+ +,// +,/4 +,/3 +,.1 +,32 +,0- +,-- +,/0 +,-3

G<& +,/0 +,// +,/. +,/. +,/3 +,-/ +,/3 +,/- +,-9 +,.9 +,32 +,.1 +,09 +,-1 +,09

EC) +,9. +,/4 +,/- +,/0 +,/. +,-1 +,// +,/9 +,/3 +,.1 +,32 +,0- +,-- +,/0 +,-+

E*767*8'* +,/1 +,/2 +,/- +,/0 +,/. +,-4 +,/0 +,/2 +,-1 +,.4 +,32 +,03 +,-3 +,/. +,-+

E*7 +,.0 +,-1 +,-9 +,-/ +,-/ +,09 +,-0 +,-/ +,-3 +,.3 +,30 +,.3 +,.4 +,-1 +,0/

#C8%C +,/. +,/9 +,/- +,/. +,/3 +,-4 +,/- +,/2 +,/+ +,.4 +,32 +,0. +,-3 +,/. +,01

#C& +,/1 +,/9 +,/- +,/3 +,/+ +,-9 +,/0 +,// +,-1 +,.9 +,32 +,0. +,-3 +,/. +,01

*5#C5@H +,20 +,/9 +,/- +,/. +,/3 +,-4 +,/0 +,// +,-1 +,.9 +,32 +,03 +,-+ +,-1 +,02

*5#C5@I +,90 !"$% !"$* !"$$ !"$& !"$) +,/9 !"*! !"$' !"'( !"(+ !"'# !"&# !"$& +,-3

JK)<67*8'* +,9/ +,/4 +,// +,/- !"$& +,/+ +,/2 +,/1 +,/. +,0+ +,39 +,0/ +,-/ !"$& +,-3

JK)< +,2. +,/4 +,// +,/0 +,/. +,-1 +,// +,/9 +,/3 +,.1 +,39 +,0- +,-- +,/0 +,-3

&@AC5 +,22 +,/4 +,/- +,/0 +,/. +,/+ +,// +,/9 +,/3 +,.1 +,32 +,00 +,-0 +,/0 +,01

&8A +,24 +,/4 +,// +,/0 +,/. +,/+ +,/2 +,/4 +,/3 +,.1 +,39 +,00 +,-- +,/0 +,-+

&>>%"#" +,/3 +,// +,/0 +,/+ +,/+ +,-/ +,/3 +,/- +,-4 +,.2 +,3/ +,.4 +,04 +,/3 +,04

&>L67*8'* +,2- +,/4 +,// +,/- +,/0 +,/+ +,// +,/4 +,/3 +,.1 +,32 +,0- +,-- +,/0 +,-3

&&68% +,// +,// +,/. +,/+ +,-1 +,-/ +,/3 +,/0 +,-9 +,.2 +,3/ +,.1 +,09 +,/3 +,04

!"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$

""#)* +,/+ +,/. /,+3 +,-3 +,+. +,+3 +,.1 +,-. +,./ +,/0 +,31 2,04

''567*8'* +,// +,/9 /,-2 +,-4 !"!' +,+- +,0/ +,-9 +,0+ +,/4 !")* #")+

78&6:;67*8'* +,// +,/9 /,-9 +,-4 !"!' +,+0 +,0- +,-2 +,0+ +,/4 !")* 9,31

78&6<=>67*8'* +,/- +,/9 /,-2 +,-9 !"!' +,+- +,00 +,-2 +,.1 +,/4 +,./ 9,+1

78& +,/+ +,/0 /,+4 +,-. +,+. +,+0 +,0+ +,-- +,.2 +,/. +,.3 2,-9

7&6?@8"5 +,-4 +,/3 -,14 +,09 +,+. +,+. +,.2 +,01 +,.0 +,/3 +,32 /,93

ABC +,-1 +,/0 /,3. +,-/ +,+. +,+2 +,03 +,-/ +,.4 +,/0 +,39 /,1/

DE +,/- +,/9 /,-0 +,-9 !"!' +,+. +,00 +,-2 +,.4 +,/4 +,.. 2,29

<&C7*5F +,/+ +,/0 /,33 +,-. +,+. +,+. +,0+ +,-0 +,.2 +,/. +,31 2,30

G<&67*8'* +,/- +,/9 /,-0 +,-9 !"!' +,+. +,0- +,-2 +,.1 +,/4 +,./ 9,30

G<& +,/3 +,/0 /,3. +,-. +,+. +,+/ +,03 +,-- +,.9 +,/- +,.3 2,90

EC) +,/- +,/4 /,/3 +,-4 !"!' +,+/ +,0- +,-9 +,0+ +,/4 +,.- 2,13

E*767*8'* +,/. +,// /,03 +,-/ +,+. +,+. +,00 +,-/ +,.4 +,/2 +,.- 2,44

E*7 +,-0 +,-4 -,9. +,02 +,+. +,+3 +,.9 +,-+ +,.- +,-9 +,32 /,01

#C8%C +,/0 +,/2 /,0/ +,-9 +,+. +,+- +,0. +,-2 +,.4 +,/9 +,.0 2,90

#C& +,/0 +,/2 /,0- +,-2 +,+. +,+0 +,0. +,-2 +,.4 +,/2 +,.. 2,2+

*5#C5@H +,/0 +,// /,.- +,-2 +,+. +,3+ +,00 +,-2 +,.1 +,/2 +,.3 2,44

*5#C5@I !"$* !"*! $"#( !"$) !"!' !"(# !"'* !"&% !"') !"*( !")* 9,34

JK)<67*8'* +,// +,/4 /,/+ +,-4 !"!' +,+. +,0/ +,-9 +,0+ +,/1 !")* 9,.+

JK)< +,/- +,/9 /,-- +,-9 !"!' +,+0 +,00 +,-2 +,.1 +,/4 +,.- 2,12

&@AC5 +,/- +,/4 /,/0 +,-1 !"!' +,+2 +,0- +,-4 +,0+ +,/4 +,.0 2,4+

&8A +,// +,/4 /,/+ +,-4 !"!' +,+9 +,00 +,-9 +,.1 +,/4 +,.0 2,99

&>>%"#" +,/3 +,/- /,.3 +,-0 +,+. +,+. +,03 +,-- +,.9 +,/- +,.3 2,/3

&>L67*8'* +,/- +,/9 /,-/ +,-4 !"!' +,+0 +,0- +,-/ +,.1 +,/4 +,./ 9,3/

&&68% +,/+ +,/- /,34 +,-- +,+. +,+. +,03 +,-/ +,.9 +,/- +,.+ 2,0.

,-./0123145678(((((66(((((M@)JC7%(%&'8CN@A()*(OPQR(M@)JC7%MHRS(.+3+T(>#&%()K*('"%@#C5@(8@)JC7%(!IUVW("5A(OPQR$,((Q7*J@%(X*J(Y"##Y(!@5ZJ@([MR3+()@%)%@)$("5A(Y%&'Y(!%&'%@)(*X()<@(<&8"5#=("%%@%%@A(A")"$("J@(%<*K5,

J"5E MR6O\] MR68O\] I"AF@J(X&## I"AF@J(#C)@ ]\W6U;^ US_I- US:I-Q@8`aQ Q@8`aQ(IUVW

P(#@N@J(IUVW P(#@N@J(J@7"## QbM(S"5E RVQUH(M RVQUH Q)"5X*JA

MVRVaS("Ac MVRVaS(<)@J MVRVaS(J"5E QV`PHHRV\(.,3

IUVW(30" OPQRRVS> ]S ]JA*7 WU\< IVKR6V IE"J%

!"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$( !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$

'')*+,-', ./01 ./02 ./34 ./35 ./35 ./36 ./0. ./07 ./33 ./76 ./24 ./67 ./37 ./35 !"#$

+"-'89:;< ./02 ./0. ./34 ./34 ./3= ./37 ./35 ./01 ./33 ./76 ./24 ./62 ./31 ./35 !"#$

+-&*>?*+,-', ./00 ./02 ./34 ./35 ./34 ./36 ./0. ./07 ./33 ./76 ./24 ./62 ./31 ./35 !"#$

+,#&-'9" ./63 ./34 ./30 ./33 ./36 ./3. ./30 ./35 ./31 ./7. ./2= ./73 ./6= ./3= ./64

+&*@<-") ./1= ./33 ./34 ./31 ./31 ./64 ./36 ./30 ./3. ./1= ./23 ./13 ./62 ./33 ./63

:A9 ./63 ./34 ./33 ./36 ./37 ./65 ./30 ./34 ./32 ./14 ./24 ./73 ./60 ./30 ./6=

B&9+,); ./3. ./3= ./30 ./30 ./33 ./32 ./34 ./02 ./37 ./72 ./2= ./73 ./6= ./3= ./64

CB&*+,-', ./33 ./0. ./34 ./34 ./34 ./37 ./35 ./01 ./36 ./77 ./24 ./6. ./32 ./34 ./3.

CB& ./02 ./0. ./3= ./3= ./3= ./37 ./35 ./01 ./36 ./77 ./24 ./75 ./3. ./34 ./65

,)#9)"D ./36 ./0. ./3= ./3= ./3= ./37 ./34 ./02 ./36 ./71 ./2= ./75 ./64 ./33 ./60

,)#9)<E !"%! !"&' !"#( !"&) !"&$ !"#& !"&) !"&# !"#% !"'& !")! !"*% !"## ./35 ./3.

&<:9) ./05 ./02 ./3= ./34 ./34 ./36 ./0. ./07 ./33 ./77 ./24 ./61 ./31 ./35 !"#$

&F+ ./32 ./35 ./30 ./33 ./33 ./32 ./34 ./0. ./37 ./72 ./2= ./7= ./64 ./34 ./65

&FG*+,-', ./00 ./02 ./34 ./35 ./34 ./36 ./0. ./07 ./33 ./76 ./24 ./61 ./37 !"&! !"#$

!"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$

'')*+,-', ./35 ./02 3/51 ./31 !"!' ./.6 ./74 ./3. ./76 ./01 ./71 =/56

+"-'89:;< ./34 ./0. 3/43 ./32 !"!' ./.= ./7= ./3. ./77 ./02 ./72 =/==

+-&*>?*+,-', ./35 ./02 3/5. ./31 !"!' ./.6 ./7= ./3. ./76 ./01 ./72 =/4=

+,#&-'9" ./33 ./3= 3/37 ./6= ./.1 ./.6 ./76 ./60 ./7. ./3= ./1= =/25

+&*@<-") ./36 ./30 3/60 ./61 ./.1 ./.7 ./14 ./62 ./1= ./30 ./11 0/03

:A9 ./36 ./34 3/07 ./3. ./.1 ./.4 ./76 ./6= ./72 ./34 ./17 0/0.

B&9+,); ./3= ./35 3/=7 ./65 !"!' ./.3 ./76 ./64 ./72 ./35 ./10 =/7=

CB&*+,-', ./34 ./0. 3/47 ./32 !"!' ./.2 ./7= ./3. ./77 ./02 ./7. =/42

CB& ./34 ./0. 3/47 ./32 !"!' ./.4 ./70 ./65 ./77 ./02 ./15 =/=1

,)#9)"D ./3= ./35 3/=. ./31 !"!' ./22 ./70 ./3. ./71 ./02 ./14 =/==

,)#9)<E !"&$ !"&' &"!' !"#& !"!' !")# !"*! !"#' !"'& !"&* !"'' +"'(

&<:9) ./35 ./01 3/5= ./36 !"!' ./21 ./74 ./32 ./76 ./01 ./7. =/04

&F+ ./30 ./0. 3/=3 ./3. !"!' ./.7 ./73 ./64 ./71 ./0. ./10 =/13

&FG*+,-', ./35 ./01 3/5= ./37 !"!' ./.6 ./74 ./3. ./76 ./01 ./72 =/41

,-./01234/560127((((**(((((H<I89+%(%&'-9J<:(I,(KLMN(H<I89+%HDNO(1.2.P(F#&%(IQ,('"%<#9)<(-<I89+%(!ERST("):(KLMN$/((M+,8<%(U,8(V"##V(!<)W8<(XHN2.(I<%I%<I$("):(V%&'V(!%&'%<I(,U(IB<(B&-")#Y("%%<%%<:(:"I"$("8<(%B,Q)/

8")Z HN*K[\ HN*-K[\ E":;<8(U&## E":;<8(#9I< \[T*R?] RO^E6 RO>E6M<-_`M M<-_`M(ERST

L(#<J<8(ERST L(#<J<8(8<+"## MaH(O")Z NSMRD(H NSMRD MI")U,8:

HSNS`O(":b HSNS`O(BI<8 HSNS`O(8")Z MS_LDDNS[(1/2

ERST(27" KLMNNSOF \O \8:,+ TR[B ESQN*S EZ"8%
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!"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$( !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$ !"##$ !%&'$
)*&+,-+).*'. /012 /034 /035 /03/ /056 /076 !"#$ /076 /052 /038 /055

)&+'.9": /011 /036 /035 /052 /051 /071 /057 /071 /056 /03/ /057
)&+;<);. /01/ /036 /037 /051 /057 /075 /05/ /077 /05= /054 /058

)&+><*"? /03/ /033 /03= /051 /057 /078 /072 /075 /05= /051 /072
@)&+).*'. !"%$ !"$& !"$$ !"$' !"#( !")& !"#$ !")( !"$' !"$* !"#+

@)& /074 /035 /038 /051 /057 /07= /072 /077 /058 /052 /057
<&:.;:"?% /035 /035 /038 /057 /058 /0=2 /076 /078 /074 /054 /05=

A.)+).*'. /011 /036 /035 /052 /051 /076 /057 /076 /056 /038 /053
A.) /077 /03= /052 /055 /058 /0=2 /071 /077 /072 /052 /05=
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REF – .03‡ .02‡ .03‡ .01‡ .03‡ .02‡ .05‡ .02‡ .06‡ .03‡ .05‡ .03‡

AALTO .93‡ – .54‡ .54‡ .23‡ .36 .58‡ .56‡ .65‡ .69‡ .64‡ .67‡ .62‡

CMU .94‡ .30‡ – .47 .14‡ .22‡ .52‡ .41 .50‡ .57‡ .45† .44 .38
CU-BOJAR .94‡ .26‡ .38 – .10‡ .22‡ .61‡ .47† .46 .55‡ .42 .49‡ .44

CU-ZEMAN .98‡ .58‡ .73‡ .77‡ – .55‡ .79‡ .71‡ .84‡ .80‡ .77‡ .79‡ .75‡

ONLINEA .94‡ .41 .61‡ .57‡ .23‡ – .68‡ .63‡ .71‡ .71‡ .63‡ .54‡ .61‡

ONLINEB .93‡ .30‡ .31‡ .26‡ .10‡ .17‡ – .32† .35 .31 .22‡ .29? .38
UEDIN .91‡ .27‡ .35 .34† .11‡ .18‡ .47† – .54‡ .50‡ .35 .29 .35
BBN-C .95‡ .21‡ .22‡ .36 .06‡ .17‡ .38 .26‡ – .32 .24‡ .31? .26‡

CMU-HEA-C .90‡ .17‡ .19‡ .23‡ .09‡ .18‡ .32 .27‡ .34 – .31† .31? .30‡

JHU-C .93‡ .19‡ .30† .35 .09‡ .24‡ .50‡ .34 .47‡ .45† – .41‡ .36
RWTH-C .91‡ .16‡ .35 .29‡ .12‡ .27‡ .41? .37 .42? .42? .23‡ – .24†

UPV-C .94‡ .24‡ .40 .36 .09‡ .28‡ .39 .32 .46‡ .47‡ .33 .36† ?
> others .93 .26 .37 .38 .11 .24 .47 .40 .49 .49 .38 .41 .40

>= others .97 .42 .56 .55 .25 .39 .67 .62 .70 .70 .61 .65 .62

Table 21: Sentence-level ranking for the WMT10 Czech-English News Task (Combining expert and
non-expert Mechanical Turk judgments)
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REF – .00‡ .02‡ .00‡ .07‡ .04‡ .03‡ .00‡ .06‡ .04‡ .00‡ .02‡ .07‡ .07‡ .07‡ .02‡ .09‡ .03‡ .03‡ .10‡ .04‡ .04‡ .03‡ .02‡ .07‡ .06‡

AALTO 1.00‡ – .43 .39 .48 .60‡ .38 .41 .74‡ .18‡ .42 .57‡ .50† .63‡ .55‡ .68‡ .79‡ .42 .33 .71‡ .61‡ .66‡ .54 .51‡ .66‡ .56‡

CMU .95‡ .34 – .19‡ .45 .52† .38 .50 .63‡ .17‡ .51‡ .55‡ .56† .66‡ .55‡ .60‡ .56‡ .30 .40 .62‡ .64‡ .49‡ .58‡ .46 .64‡ .46†

CU-ZEMAN 1.00‡ .44 .64‡ – .43 .72‡ .31 .45† .69‡ .36 .55 .62‡ .75‡ .75‡ .78‡ .75‡ .75‡ .48? .56† .79‡ .82‡ .72‡ .68‡ .63‡ .67‡ .84‡

DFKI .92‡ .29 .33 .35 – .37 .40 .34 .59 .08‡ .42 .50 .49 .64‡ .35 .44 .44 .50 .41 .70‡ .61† .57 .46 .47 .62‡ .44
FBK .93‡ .26‡ .23† .17‡ .49 – .12‡ .30 .52† .08‡ .20‡ .45? .41 .62‡ .44 .44 .48? .18‡ .25† .53‡ .47 .38 .38 .22† .41 .51?

HUICONG .92‡ .34 .39 .37 .38 .71‡ – .53† .67‡ .18‡ .51† .47 .60‡ .65‡ .49? .55‡ .78‡ .35 .41 .56‡ .77‡ .74‡ .58‡ .41 .65‡ .57‡

JHU .92‡ .35 .30 .17† .52 .45 .25† – .58‡ .16‡ .43 .38 .57† .60‡ .54‡ .60‡ .70‡ .29 .25 .65‡ .75‡ .56‡ .62‡ .49? .66‡ .48†

KIT .90‡ .14‡ .16‡ .14‡ .35 .28† .19‡ .16‡ – .03‡ .29? .20‡ .35 .53? .21‡ .24† .30 .20‡ .22‡ .44 .29 .38 .35 .24 .40 .24†

KOC .95‡ .66‡ .71‡ .51 .75‡ .80‡ .58‡ .68‡ .93‡ – .75‡ .87‡ .72‡ .74‡ .74‡ .81‡ .81‡ .78‡ .66‡ .89‡ .85‡ .80‡ .80‡ .72‡ .91‡ .73‡

LIMSI .99‡ .26 .24‡ .32 .45 .61‡ .25† .38 .50? .10‡ – .50? .55? .69‡ .52? .57‡ .57‡ .29† .22‡ .60‡ .52† .42 .47† .37 .60‡ .56‡

LIU .87‡ .17‡ .20‡ .14‡ .34 .22? .31 .38 .66‡ .04‡ .27? – .51? .53† .52? .53? .51 .20‡ .33 .64‡ .59‡ .48† .48 .51 .37 .53?

ONLINEA .90‡ .25† .29† .18‡ .34 .43 .23‡ .28† .49 .08‡ .32? .30? – .44 .38 .40 .42 .32† .35? .39 .47 .51 .27‡ .35 .43 .40
ONLINEB .76‡ .22‡ .24‡ .14‡ .27‡ .27‡ .25‡ .25‡ .32? .22‡ .21‡ .28† .32 – .27† .21‡ .30† .23‡ .15‡ .41 .31 .40 .23‡ .16‡ .42 .29

RWTH .89‡ .22‡ .23‡ .13‡ .49 .35 .29? .21‡ .62‡ .15‡ .32? .29? .46 .57† – .39 .49 .25 .38 .41 .27 .34 .36 .27 .48? .22‡

UEDIN .91‡ .15‡ .20‡ .12‡ .49 .35 .24‡ .22‡ .49† .04‡ .22‡ .30? .46 .62‡ .43 – .39 .11‡ .15‡ .45 .33 .40 .45 .33 .34 .33
UMD .91‡ .12‡ .23‡ .06‡ .35 .29? .11‡ .16‡ .47 .14‡ .23‡ .35 .40 .55† .36 .47 – .16‡ .17‡ .44 .29† .27 .37 .26 .27 .24†

UPPSALA .94‡ .30 .41 .23? .35 .53‡ .26 .37 .66‡ .03‡ .54† .71‡ .57† .65‡ .45 .72‡ .67‡ – .25 .59‡ .69‡ .49‡ .63‡ .33 .60‡ .64‡

UU-MS .83‡ .28 .42 .24† .41 .49† .28 .42 .68‡ .10‡ .55‡ .48 .55? .63‡ .49 .56‡ .60‡ .32 – .52† .58‡ .61‡ .64‡ .46‡ .64‡ .50?

BBN-C .90‡ .15‡ .16‡ .10‡ .22‡ .17‡ .22‡ .18‡ .41 .06‡ .16‡ .21‡ .35 .45 .30 .26 .34 .13‡ .20† – .42† .14† .27 .11‡ .25 .21†

CMU-HEA-C .83‡ .20‡ .18‡ .07‡ .29† .32 .06‡ .10‡ .49 .05‡ .26† .21‡ .41 .33 .37 .43 .58† .10‡ .14‡ .18† – .33 .32 .11‡ .34 .24?

CMU-HYPO-C .96‡ .24‡ .20‡ .07‡ .37 .33 .12‡ .21‡ .40 .10‡ .41 .26† .40 .54 .25 .37 .44 .13‡ .17‡ .49† .31 – .34 .23? .51† .45
JHU-C .97‡ .33 .22‡ .18‡ .31 .30 .27‡ .18‡ .33 .12‡ .19† .33 .59‡ .60‡ .39 .32 .30 .19‡ .20‡ .44 .29 .34 – .21? .36 .23
KOC-C .93‡ .11‡ .31 .17‡ .41 .50† .25 .27? .44 .11‡ .42 .36 .47 .68‡ .43 .41 .40 .33 .18‡ .59‡ .57‡ .46? .47? – .52† .43

RWTH-C .87‡ .20‡ .10‡ .21‡ .25‡ .27 .15‡ .23‡ .24 .02‡ .20‡ .30 .34 .47 .27? .34 .36 .14‡ .20‡ .33 .26 .21† .24 .20† – .17‡

UPV-C .93‡ .14‡ .20† .10‡ .42 .29? .25‡ .25† .57† .20‡ .22‡ .33? .39 .45 .47‡ .40 .50† .24‡ .28? .44† .42? .27 .34 .28 .56‡ ?
> others .92 .25 .28 .18 .39 .41 .25 .30 .52 .12 .34 .39 .47 .57 .42 .46 .51 .27 .28 .52 .49 .45 .44 .34 .50 .42

>= others .96 .46 .49 .35 .53 .62 .45 .51 .71 .24 .54 .58 .63 .72 .63 .66 .70 .50 .51 .75 .73 .68 .67 .59 .74 .64

Table 22: Sentence-level ranking for the WMT10 German-English News Task (Combining expert and
non-expert Mechanical Turk judgments)
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REF – .05‡ .01‡ .02‡ .03‡ .03‡ .01‡ .02‡ .04‡ .03‡ .04‡ .03‡ .07‡ .05‡ .04‡

CAMBRIDGE .90‡ – .24‡ .11‡ .35† .26‡ .43 .35 .50† .45† .33? .40 .46 .28? .41
COLUMBIA .97‡ .61‡ – .25‡ .47 .44 .61‡ .53‡ .62‡ .59‡ .48† .59‡ .57‡ .45† .57‡

CU-ZEMAN .92‡ .73‡ .59‡ – .62‡ .66‡ .71‡ .65‡ .75‡ .79‡ .58‡ .75‡ .78‡ .71‡ .72‡

DFKI .95‡ .50† .41 .21‡ – .46 .56‡ .52‡ .65‡ .62‡ .47 .52‡ .56‡ .52† .60‡

HUICONG .93‡ .57‡ .34 .21‡ .36 – .47† .43 .67‡ .58‡ .40 .51‡ .62‡ .46† .52‡

JHU .94‡ .39 .22‡ .16‡ .30‡ .32† – .41 .52‡ .47‡ .37 .41 .33† .28 .35
ONLINEA .92‡ .45 .35‡ .24‡ .34‡ .41 .41 – .60‡ .58‡ .38 .55‡ .46 .36 .57‡

ONLINEB .87‡ .34† .24‡ .15‡ .21‡ .19‡ .33‡ .25‡ – .34† .26‡ .34† .37? .24‡ .40
UEDIN .94‡ .33† .26‡ .12‡ .24‡ .22‡ .25‡ .25‡ .50† – .25‡ .28† .32? .25‡ .26

UPC .89‡ .45? .36† .23‡ .39 .37 .42 .48 .62‡ .57‡ – .54‡ .51‡ .50‡ .53‡

BBN-C .91‡ .33 .25‡ .11‡ .32‡ .30‡ .34 .31‡ .51† .41† .30‡ – .36 .26‡ .31
CMU-HEA-C .89‡ .37 .20‡ .10‡ .29‡ .23‡ .23† .35 .50? .44? .31‡ .34 – .23‡ .31

JHU-C .89‡ .39? .31† .17‡ .37† .33† .38 .42 .63‡ .47‡ .31‡ .42‡ .42‡ – .37†

UPV-C .91‡ .35 .30‡ .16‡ .29‡ .26‡ .32 .28‡ .44 .35 .27‡ .27 .30 .24† ?
> others .92 .42 .29 .16 .33 .32 .39 .37 .54 .48 .34 .42 .44 .35 .43

>= others .97 .62 .45 .29 .46 .50 .61 .52 .68 .68 .51 .64 .65 .58 .66

Table 23: Sentence-level ranking for the WMT10 Spanish-English News Task (Combining expert and
non-expert Mechanical Turk judgments)
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REF – .02‡ .00‡ .00‡ .00‡ .00‡ .05‡ .02‡ .00‡ .00‡ .00‡ .02‡ .06‡ .02‡ .04‡ .02‡ .04‡ .03‡ .02‡ .05‡ .05‡ .04‡ .05‡ .06‡ .02‡

CAMBRIDGE .82‡ – .42 .16‡ .12‡ .35 .31 .45 .21‡ .47 .29 .38 .28† .54 .43 .33 .38 .28 .39 .45† .24 .25 .34 .54† .37
CMU-STATXFER .91‡ .50 – .17‡ .41 .17‡ .28 .44 .36 .48? .56‡ .57‡ .47 .56? .70‡ .49 .50 .47 .61‡ .68‡ .55† .50 .42 .52† .51†

CU-ZEMAN 1.00‡ .74‡ .71‡ – .74‡ .46 .67‡ .73‡ .73‡ .74‡ .75‡ .76‡ .75‡ .89‡ .78‡ .66‡ .83‡ .74‡ .87‡ .73‡ .80‡ .83‡ .77‡ .95‡ .82‡

DFKI 1.00‡ .77‡ .48 .17‡ – .27† .49 .52 .48 .64‡ .69‡ .67† .47 .62? .53 .47 .64‡ .60† .73‡ .72‡ .79‡ .58? .66‡ .73‡ .74‡

GENEVA .98‡ .58 .70‡ .44 .59† – .55? .67‡ .70‡ .70‡ .77‡ .73‡ .63‡ .81‡ .81‡ .69† .77‡ .73‡ .62† .66‡ .75‡ .60‡ .73‡ .88‡ .67†

HUICONG .89‡ .53 .34 .13‡ .34 .30? – .41 .36 .43 .70‡ .56‡ .57 .59† .56‡ .43 .55† .45 .51? .64‡ .48 .49 .49 .53† .57†

JHU .88‡ .36 .38 .11‡ .34 .25‡ .35 – .33? .46 .49? .48 .40 .50 .40 .34 .36 .39 .33 .59‡ .54? .41 .42 .40 .41
LIG .98‡ .65‡ .34 .18‡ .44 .26‡ .39 .56? – .60‡ .55‡ .51‡ .45 .54† .53 .39 .38 .52? .54† .53‡ .51? .53† .55 .51 .58†

LIMSI .98‡ .40 .24? .23‡ .23‡ .15‡ .29 .38 .25‡ – .28 .38 .27† .64‡ .35 .30 .41 .27 .33 .49 .45 .37 .28 .45 .39
LIUM .90‡ .40 .19‡ .12‡ .30‡ .11‡ .11‡ .26? .15‡ .36 – .36 .25† .37 .39 .26 .29 .24 .34 .49† .34 .33 .34 .31 .38

NRC .93‡ .31 .06‡ .15‡ .29† .23‡ .20‡ .32 .16‡ .38 .36 – .23† .53 .36 .24? .31 .44 .37 .47? .45? .29 .39 .38 .42
ONLINEA .92‡ .60† .47 .15‡ .44 .22‡ .32 .46 .34 .57† .52† .60† – .52? .34 .44 .57† .56 .51 .51 .64† .46 .51 .41 .60
ONLINEB .85‡ .35 .32? .09‡ .33? .10‡ .29† .31 .25† .17‡ .40 .34 .24? – .38 .32? .28 .39 .30 .42 .37 .41 .35 .32 .22‡

RALI .90‡ .31 .19‡ .10‡ .38 .10‡ .17‡ .47 .35 .38 .33 .38 .48 .48 – .29? .31 .29 .38 .40 .38 .34 .31 .57† .21†

RWTH .93‡ .43 .33 .12‡ .47 .26† .39 .40 .47 .35 .45 .49? .44 .53? .54? – .44? .42 .48 .51? .54? .48† .49 .50‡ .26
UEDIN .92‡ .42 .32 .10‡ .22‡ .10‡ .28† .30 .42 .30 .55 .36 .23† .43 .33 .20? – .41 .24 .52† .46 .25 .22 .27 .37
BBN-C .92‡ .49 .33 .24‡ .28† .18‡ .40 .39 .28? .45 .27 .27 .36 .39 .35 .35 .31 – .26 .45‡ .43 .26 .58‡ .36 .28

CMU-HEA-C .90‡ .41 .21‡ .06‡ .23‡ .29† .28? .27 .22† .39 .40 .22 .39 .43 .29 .30 .40 .28 – .43 .28 .15? .25 .26 .16
CMU-HYPO-C .84‡ .18† .20‡ .14‡ .20‡ .22‡ .21‡ .19‡ .16‡ .31 .22† .21? .36 .38 .34 .27? .22† .16‡ .24 – .36 .23 .10‡ .33 .24

DCU-C .92‡ .27 .24† .12‡ .17‡ .23‡ .30 .29? .24? .32 .43 .22? .28† .41 .23 .27? .28 .22 .23 .25 – .23 .23 .24 .17
JHU-C .88‡ .47 .26 .10‡ .33? .24‡ .36 .34 .24† .41 .39 .40 .42 .39 .34 .25† .42 .28 .37? .38 .39 – .37 .32 .38?

LIUM-C .90‡ .48 .42 .13‡ .25‡ .20‡ .33 .50 .30 .44 .37 .34 .37 .52 .43 .34 .33 .22‡ .34 .56‡ .33 .43 – .49‡ .44
RWTH-C .89‡ .22† .19† .03‡ .23‡ .12‡ .19† .23 .27 .30 .36 .19 .47 .54 .26† .16‡ .27 .19 .26 .28 .16 .22 .16‡ – .22

UPV-C .89‡ .27 .15† .10‡ .16‡ .29† .30† .31 .25† .36 .42 .24 .32 .64‡ .46† .34 .27 .44 .33 .44 .23 .17? .31 .24 ?
> others .91 .43 .32 .14 .31 .21 .31 .39 .31 .42 .44 .40 .38 .52 .43 .33 .40 .37 .40 .49 .43 .38 .4 .44 .39

>= others .97 .64 .51 .24 .40 .31 .50 .59 .50 .63 .68 .65 .51 .68 .65 .55 .66 .63 .69 .75 .71 .64 .62 .74 .67

Table 24: Sentence-level ranking for the WMT10 French-English News Task (Combining expert and
non-expert Mechanical Turk judgments)
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Abstract

This paper describes our Statistical Ma-
chine Translation systems for the WMT10
evaluation, where LIMSI participated for
two language pairs (French-English and
German-English, in both directions). For
German-English, we concentrated on nor-
malizing the German side through a proper
preprocessing, aimed at reducing the lex-
ical redundancy and at splitting complex
compounds. For French-English, we stud-
ied two extensions of our in-houseN -code
decoder: firstly, the effect of integrating a
new bilingual reordering model; second,
the use of adaptation techniques for the
translation model. For both set of exper-
iments, we report the improvements ob-
tained on the development and test data.

1 Introduction

LIMSI took part in the WMT 2010 evalua-
tion campaign and developed systems for two
languages pairs: French-English and German-
English in both directions. For German-English,
we focused on preprocessing issues and performed
a series of experiments aimed at normalizing the
German side by removing some of the lexical re-
dundancy and by splitting compounds. For this
pair, all the experiments were performed using the
Moses decoder (Koehn et al., 2007). For French-
English, we studied two extensions of ourn-gram
based system: first, the effect of integrating a
new bilingual reordering model; second, the use
of adaptation techniques for the translation model.
Decoding is performed using our in-houseN -code
(Mariño et al., 2006) decoder.

2 System architecture and resources

In this section, we describe the main characteris-
tics of the phrase-based systems developed for this

evaluation and the resources that were used to train
our models. As far as resources go, we used all the
data supplied by the 2010 evaluation organizers.
Based on our previous experiments (Déchelotte et
al., 2008) which have demonstrated that better nor-
malization tools provide betterBLEUscores (Pap-
ineni etal., 2002), we took advantage of our in-
house text processing tools for the tokenization
and detokenization steps. Only for German data
did we used the TreeTagger (Schmid, 1994) tok-
enizer. Similar to last year’s experiments, all of
our systems are built in ”true-case”.

3 German-English systems

As German is morphologically more complex than
English, the default policy which consists in treat-
ing each word form independently from the oth-
ers is plagued with data sparsity, which poses a
number of difficulties both at training and de-
coding time. When aligning parallel texts at
the word level, German compound words typi-
cally tend to align with more than one English
word; this, in turn, tends to increase the number
of possible translation counterparts for each En-
glish type, and to make the corresponding align-
ment scores less reliable. In decoding, new com-
pounds or unseen morphological variants of ex-
isting words artificially increase the number out-
of-vocabulary (OOV) forms, which severely hurts
the overall translation quality. Several researchers
have proposed normalization (Niessen and Ney,
2004; Corston-oliver and Gamon, 2004; Goldwa-
ter and McClosky, 2005) and compound splitting
(Koehn and Knight, 2003; Stymne, 2008; Stymne,
2009) methods. Our approach here is similar, yet
uses different implementations; we also studied
the joint effect of combining both techniques.

3.1 Reducing the lexical redundancy

In German, determiners, pronouns, nouns and ad-
jectives carry inflection marks (typically suffixes)
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Input POS Lemma Analysis
In APPR in APPR.In
der* ART d ART.Def.Dat.Sg.Fem
Folge NN Folge N.Reg.Dat.Sg.Fem
befand VVFIN befinden VFIN.Full.3.Sg.Past.Ind
die* ART d ART.Def.Nom.Sg.Fem
derart ADV derart ADV
gesẗarkte* ADJA gesẗarkt ADJA.Pos.Nom.Sg.Fem
Justiz NN Justiz N.Reg.Nom.Sg.Fem
wiederholt ADJD wiederholt ADJD.Pos
gegen APPR gegen APPR.Acc
die* ART d ART.Def.Acc.Sg.Fem
Regierung NN Regierung N.Reg.Acc.Sg.Fem
und KON und CONJ.Coord.-2
insbesondere ADV insbesondere ADV
gegen APPR gegen APPR.Acc
deren* PDAT d PRO.Dem.Subst.-3.Gen.Sg.Fem
Geheimdienste* NN Geheimdienst N.Reg.Acc.Pl.Masc
. $. . SYM.Pun.Sent

Table 1: TreeTagger and RFTagger outputs. Starred word forms are modified during preprocessing.

so as to satisfy agreement constraints. Inflections
vary according to gender, case, and number infor-
mation. For instance, the German definite deter-
miner could be marked in sixteen different ways
according to the possible combinations of genders
(3), case (4) and number (2)1, which are fused
in six different tokensder, das, die, den, dem,
des. With the exception of the plural and gen-
itive cases, all these words translate to the same
English word: the. In order to reduce the size of
the German vocabulary and to improve the robust-
ness of the alignment probabilities, we considered
various normalization strategies for the different
word classes. In a nutshell, normalizing amounts
to collapsing several German forms of a given
lemma into a unique representative, using manu-
ally written normalization patterns. A pattern typ-
ically specifies which forms of a given morpho-
logical paradigm should be considered equivalent
when translating into English. These normaliza-
tion patterns use the lemma information computed
by the TreeTagger and the fine-grained POS infor-
mation computed by the RFTagger (Schmid and
Laws, 2008), which uses a tagset containing ap-
proximately 800 tags. Table 1 displays the analy-
sis of an example sentence.2

In most cases, normalization patterns replace a
word form by its lemma; in order to partially pre-

1For the plural forms, gender distinctions are neutralized
and the same 4 forms are used for all genders .

2The English reference:Subsequently , the energized judi-
ciary continued ruling against government decisions , embar-
rassing the government – especially its intelligence agencies
.

serve some inflection marks, we introduced two
generic suffixes,+s and +en which respectively
denote plural and genitive wherever needed. Typ-
ical normalization rules take the following form:

• For articles, adjectives, and pronouns (Indef-
inite , possessive, demonstrative, relative and
reflexive), if a token has;

– Genitive case: replace with lemma+en
(Ex. des, der, des, der→ d+en)

– Plural number: replace with lemma+s
(Ex. die, den→ d+s)

– All other gender, case and number: re-
place with lemma (Ex.der, die, das, die
→ d)

• For nouns;

– Plural number: replace with lemma+s
(Ex. Bilder, Bildern, Bilder→ Bild+s))

– All other gender and case: replace with
lemma (ExBild, Bilde, Bildes→ Bild;

Using these tags, a normalized version of previ-
ous sentence is as follows:In d Folge befand d de-
rart gesẗarkt Justiz wiederholt gegen d Regierung
und insbesondere gegen d+en Geheimdienst+s.
Several experiments were carried out to assess the
effect of different normalization schemes. Remov-
ing all gender and case information, except for the
genitive for articles, adjectives and pronouns, al-
lowed to achieve the bestBLEUscores.

3.2 Compound Splitting

Combining nouns, verbs and adjectives to forge
new words is a very common process in German.
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It partly explains the difference between the num-
ber of types and tokens between English and Ger-
man in parallel texts. In most cases, compounds
are formed by a mere concatenation of existing
word forms, and can easily be split into simpler
units. As words are freely conjoined, the vocab-
ulary size increases vastly, yielding to sparse data
problems that turn into unreliable parameter esti-
mates. We used the frequency-based segmenta-
tion algorithm initially introduced in (Koehn and
Knight, 2003) to handle compounding. Our im-
plementation extends this technique to handle the
most common letter fillers at word junctions. In
our experiments, we investigated different split-
ting schemes in a manner similar to the work of
(Stymne, 2008).

4 French-English systems

4.1 BaselineN -coder systems

For this language pair, we used our in-house
N -code system, which implements then-gram-
based approach to SMT. In a nutshell, the transla-
tion model is implemented as a stochastic finite-
state transducer trained using an-gram model
of (source,target) pairs (Casacuberta and Vidal,
2004). Training this model requires to reorder
source sentences so as to match the target word
order. This is performed by a stochastic finite-
state reordering model, which uses part-of-speech
information3 to generalize reordering patterns be-
yond lexical regularities.

In addition to the translation model, our sys-
tem implements eight feature functions which are
optimally combined using a discriminative train-
ing framework (Och, 2003): atarget-language
model; two lexicon models, which give comple-
mentary translation scores for each tuple; two
lexicalized reordering modelsaiming at predict-
ing the orientation of the next translation unit;
a ’weak’ distance-baseddistortion model; and
finally a word-bonus modeland a tuple-bonus
model which compensate for the system prefer-
ence for short translations. One novelty this year
are the introduction of lexicalized reordering mod-
els (Tillmann, 2004). Such models require to
estimate reordering probabilities for each phrase
pairs, typically distinguishing three case, depend-
ing whether the current phrase is translatedmono-
tone, swappedor discontiguouswith respect to the

3Part-of-speech information for English and French is
computed using the above mentioned TreeTagger.

previous (respectively next phrase pair).
In our implementation, we modified the three

orientation types originally introduced and con-
sider: a consecutivetype, where the original
monotone and swap orientations are lumped to-
gether, aforward type, specifying a discontiguous
forward orientation, and abackwardtype, specify-
ing a discontiguous backward orientation. Empir-
ical results showed that in our case, the new orien-
tations slightly outperform the original ones. This
may be explained by the fact that the model is ap-
plied over tuples instead of phrases.

Counts of these three types are updated for
each unit collected during the training process.
Given these counts, we can learn probability dis-
tributions of the formpr(orientation|(st)) where
orientation ∈ {c, f, b} (consecutive, forward
and backward) and(st) is a translation unit.
Counts are typically smoothed for the estimation
of the probability distribution.

The overall search process is performed by our
in-housen-codedecoder. It implements a beam-
search strategy on top of a dynamic programming
algorithm. Reordering hypotheses are computed
in a preprocessing step, making use of reordering
rules built from the word reorderings introduced
in the tuple extraction process. The resulting re-
ordering hypotheses are passed to the decoder in
the form of word lattices (Crego and no, 2006).

4.2 A bilingual POS-based reordering model

For this year evaluation, we also experimented
with an additional reordering model, which is esti-
mated as a standardn-gram language model, over
generalized translation units. In the experiments
reported below, we generalized tuples using POS
tags, instead of raw word forms. Figure 1 displays
the same sequence of tuples when built from sur-
face word forms (top), and from POS tags (bot-
tom).

Figure 1: Sequence of units built from surface
word forms (top) and POS-tags (bottom).

Generalizing units greatly reduces the number
of symbols in the model and enables to take larger
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n-gram contexts into account: in the experiments
reported below, we used up to6-grams. This new
model is thus helping to capture the mid-range
syntactic reorderings that are observed in the train-
ing corpus. This model can also be seen as a trans-
lation model of the sentence structure. It models
the adequacy of translating sequences of source
POS tags into target POS tags. Additional details
on these new reordering models can be found in
(Crego and Yvon, 2010).

4.3 Combining translation models

Our main translation model being a conventional
n-gram model over bilingual units, it can directly
take advantage of all the techniques that exist for
these models. To take the diversity of the available
parallel corpora into account, we independently
trained several translation models on subpart of
the training data. These translation models were
then linearly interpolated, where the interpolation
weights are chosen so as to minimize the perplex-
ity on the development set.

5 Language Models

The English and French language models (LMs)
are the same as for the last year’s French-English
task (Allauzen et al., 2009) and are heavily tuned
to the newspaper/newswire genre, using the first
part of the WMT09 official development data
(dev2009a). We used all the authorized news
corpora, including the French and English Gi-
gaword corpora, for translating both into French
(1.4 billion tokens) and English (3.7 billion to-
kens). To estimate such LMs, a vocabulary was
defined for both languages by including all to-
kens in the WMT parallel data. This initial vo-
cabulary of 130K words was then extended with
the most frequent words observed in the training
data, yielding a vocabulary of one million words
in both languages. The training data was divided
into several sets based on dates and genres (resp.
7 and 9 sets for English and French). On each
set, a standard 4-gram LM was estimated from
the 1M word vocabulary with in-house tools using
Kneser-Ney discounting interpolated with lower
order models (Kneser and Ney, 1995; Chen and
Goodman, 1998)4. The resulting LMs were then
linearly combined using interpolation coefficients

4Given the amount of training data, the use of the modi-
fied Kneser-Ney smoothing is prohibitive while previous ex-
periments did not show significant improvements.

chosen so as to minimize perplexity of the de-
velopment set (dev2009a). The final LMs were
finally pruned using perplexity as pruning crite-
rion (Stolcke, 1998).

For German, since we have less training
data, we only used the German monolingual
texts (Europarl-v5, News Commentary and News
Monolingual) provided by the organizers to train
a singlen-gram language model, with modified
Kneser-Ney smoothing scheme (Chen and Good-
man, 1998), using the SRILM toolkit (Stolcke,
2002).

6 Tuning

Moses-based systems were tuned using the imple-
mentation of minimum error rate training (MERT)
(Och, 2003) distributed with the Moses decoder,
using the development corpus (news-test2008).

The N -code systems were also tuned by
the same implementation ofMERT, which was
slightly modified to match the requirements of our
decoder. TheBLEU score is used as objective
function for MERT and to evaluate test perfor-
mance. The interpolation experiment for French-
English was tuned on news-test2008a (first 1025
lines). Optimization was carried out over new-
stest2008b (last 1026 lines).

7 Experiments

For each system, we used all the available par-
allel corpora distributed for this evaluation. We
usedEuroparl andNews commentarycorpora for
German-English task andEuroparl, News com-
mentary, United Nationsand Gigaword corpora
for the French-English tasks. All corpora were
aligned with GIZA++ for word-to-word align-
ments withgrow-diag-final-andand default set-
tings. For the German-English tasks, we applied
normalization and compound splitting as a pre-
processing step. For the French-English tasks, we
used new POS-based reordering model and inter-
polation.

7.1 German-English Tasks

We combined our two preprocessing schemes (see
Section 3) by applying compound splitting over
normalized data. Our experiments showed that for
German to English, using 4 characters as the mini-
mum split length and 8 characters as the minimum
compound candidate, and allowing the insertion of
-s -n -en -nen -e -es -er -ien)and the truncation of
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-e -en -nyielded the bestBLEU scores. On the
reverse direction, the best setting is different: 5
characters as minimum split length, 10 characters
as minimum compound candidate, no truncation.

These processes are performed before align-
ment, training, tuning and decoding. Before de-
coding, we also replaced all OOV words with their
lemma. We used the Moses (Koehn et al., 2007)
decoder, with default settings, to obtain the trans-
lations. For translating from English to German,
we used a two-level decoding. The first decoding
step translates English to “preprocessed German”,
which is then turned into German by undoing the
effect of normalization. In this second step, we
thus aim at restoring inflection marks and at merg-
ing compounds. For this second “translation” step,
we also use a Moses-based system. To point out
the error rate of the second step, we also translated
the preprocessed reference German text and com-
puted theBLEU score as97.05. Our experiments
showed that this two-level decoding strategy was
not improving the direct baseline systems. Table 2
reports theBLEU scores5 on newstest2010of our
official submissions.

System De→ En En→ De
Baseline 20.0 15.3

Norm+Split 21.3 15.0

Table 2: Results for German-English

7.2 French-English tasks

As explained above, in addition to the baseline
system (base), two contrast systems were built.
The first introduces an additional POS-based bilin-
gual6-gram reordering model (bilrm ), the second
implements the bilingualn-gram model after in-
terpolating 4 models trained respectively on the
news, epps, UNdoc and gigaword subparts of the
parallel corpus (interp ). Optimization was carried
out over newstest2008b (last 1026 lines) and tested
over newstest2010 (2489 lines). Table 3 reports
translation accuracy for the three systems and for
both translation directions.

As can be seen, the system using the new
reordering model (base+bilrm) outperformed the
baseline system when translating into French,
while no difference was measured when translat-
ing into English. The interpolation experiments

5Scores are computed with the official script mteval-
v11b.pl

System Fr→ En En→ Fr
base 26.52 27.22

base+bilrm 26.50 27.84

base+bilrm+interp 26.84 27.62

Table 3: Results for French-English

did not show any clear impact on performance.

8 Conclusions

In this paper, we presented our statistical MT sys-
tems developed for the WMT’10 shared task, in-
cluding several novelties, namely the preprocess-
ing of German, and the integration of several new
techniques in ourn-gram based decoder.
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Malostranské náměstı́ 25, Praha 1, CZ-11800, Czech Republic
bojar@ufal.mff.cuni.cz, kamilkos@email.cz

Abstract

The paper describes our experiments with
English-Czech machine translation for
WMT101 in 2010. Focusing primarily
on the translation to Czech, our additions
to the standard Moses phrase-based MT
pipeline include two-step translation to
overcome target-side data sparseness and
optimization towards SemPOS, a metric
better suited for evaluating Czech. Unfor-
tunately, none of the approaches bring a
significant improvement over our standard
setup.

1 Introduction

Czech is a flective language with very rich mor-
phological system. Translation between Czech
and English poses different challenges for each of
the directions.

When translating from Czech, the word order
usually needs only minor changes (despite the is-
sue of non-projectivity, a phenomenon occurring
at 2% of words but in 23% of Czech sentences,
see Hajičová et al. (2004) and Holan (2003)). A
much more severe issue is caused by the Czech vo-
cabulary size. Fortunately, this can be to a certain
extent mitigated by backing-off to Czech lemmas
if the exact forms are not available.

We are primarily interested in the harder task of
translating to Czech and most of the paper deals
with this direction. After a brief specification of
data sets, pre-processing and evaluation method
in this section, we provide details on the issue
of Czech vocabulary size (Section 2). We de-
scribe our current attempts at generating Czech

∗The work on this project was supported by the grants
EuroMatrixPlus (FP7-ICT-2007-3-231720 of the EU and
7E09003 of the Czech Republic), GAČR P406/10/P259, and
MSM 0021620838. Thanks to David Kolovratnı́k for the help
with manual evaluation.

1http://www.statmt.org/wmt10/

word forms in Section 3. Partly due to the large
vocabulary size of Czech, BLEU score (Papineni
et al., 2002) correlates rather poorly with human
judgments. We summarize our efforts to use a bet-
ter metric in the model optimization in Section 4.
The final Section 5 lists the exact configurations
of our English↔Czech primary submissions for
WMT10, including the back-off to lemmas we use
for Czech-to-English.

1.1 Data and Pre-Processing Pipeline

Throughout the paper, we use CzEng 0.9 (Bojar
andŽabokrtský, 2009)2 as our main parallel cor-
pus. Following CzEng authors’ request, we did
not use sections 8* and 9* reserved for evaluation
purposes.

As the baseline training dataset (“Small” in the
following) only the news domain of CzEng (126k
parallel sentences) is used. For large-scale ex-
periments (“Large” in the following) and our pri-
mary WMT10 submissions, we use all CzEng do-
mains exceptnavajo and add the EMEA corpus
(Tiedemann, 2009)3,4 of 7.5M parallel sententes.

As our monolingual data we use by default only
the target side of the parallel corpus. For experi-
ments reported here, we also use the monolingual
data provided by WMT10 organizers for Czech.
Our primary WMT10 submission includes further
monolingual data, see Section 5.1.

We use a slightly modified tokenization rules
compared to CzEng export format. Most notably,
we normalize English abbreviated negation and
auxiliary verbs (“couldn’t”→ “could not”) and
attempt at normalizing quotation marks to distin-
guish between the opening and closing one follow-

2http://ufal.mff.cuni.cz/czeng
3http://urd.let.rug.nl/tiedeman/OPUS
4Unfortunately, the EMEA corpus is badly tokenized on

the Czech side. Most frequently, fractional numbers are split
into several tokens (e.g. “3, 14”). We attempted to reconstruct
the original detokenized form using a small set of regular ex-
pressions.
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Large Small Dev
Sents 7.5M 126.1k 2.5k
Czech Tokens 79.2M 2.6M 55.8k
English Tokens 89.1M 2.9M 49.9k
Czech Vocabulary 923.1k 138.7k 15.4k
English Vocabulary 646.3k 64.7k 9.4k
Czech Lemmas 553.5k 60.3k 9.5k
English Lemmas 611.4k 53.8k 7.7k

Table 1: Corpus and vocabulary sizes.

ing proper typesetting rules.
The rest of our pre-processing pipeline matches

the processing employed in CzEng (Bojar and
Žabokrtský, 2009).5 We use “supervised truecas-
ing”, meaning that we cast the case of the lemma
to the form, relying on our morphological analyz-
ers and taggers to identify proper names, all other
words are lowercased.

The differences in relations between Czech and
English Large and Small datasets can be attributed
either to domain differences or possibly due to
noise in CzEng.

1.2 Evaluation

We use WMT10 development sets for tuning
(news-test2008) and evaluation (news-test2009).
The official scores on news-test2010 are given
only in the main WMT10 paper and not here.

The BLEU scores reported in this paper are
based on truecased word forms in the original to-
kenization as provided by the decoder. Therefore
they are likely to differ from figures reported else-
where.

The± value given with each BLEU score is the
average of the distances to the lower and upper
empirical 95% confidence bounds estimated using
bootstrapping (Koehn, 2004).

2 Issues of Czech Vocabulary Size

Table 1 summarizes the differences of Czech and
English vocabulary sizes in our parallel corpora.
We see that the vocabulary size of Czech forms
(truecased) is more than double compared to En-
glish in the Small dataset and significantly larger
in the Large dataset as well. On the other hand,
the number of distinct Czech and English lemmas
is nearly identical.

5Due to the subsequent processing, incl. parsing, the tok-
enization of English follows PennTreebenk style. The rather
unfortunate convention of treating hyphenated words as sin-
gle tokens increases our out-of-vocabulary rate. Next time,
we will surely post-tokenize the parsed text.

Distortion Limit
TOpts 3 6 10 30 40

1 0.2 0.3 0.3 0.3 0.3
5 0.8 0.9 1.0 1.0 1.0

10 1.1 1.3 1.5 1.5 1.5
20 1.2 1.5 1.7 1.7 1.7
50 1.2 1.5 1.7 1.7 1.7

100 1.2 1.5 1.7 1.7 1.7

Table 3: Percentage of sentences reachable in
Czech-to-English small setting with various dis-
tortion limits and translation options per coverage
(TOpts) (BLEU score 14.76±0.44).

2.1 Out-of-Vocabulary Rates

Table 2 lists out-of-vocabulary (OOV) rates of our
Small and Large data setting given the develop-
ment corpus. We calculate the rates for both the
complete corpus and the restricted set of phrases
extracted from the corpus. (Note that higher-order
n-gram rates are estimated using phrases as inde-
pendent units, no combination of phrases is per-
formed.) We also list the effective OOV rate for
English-to-Czech translation where all (English)
words from each source sentence can be also pro-
duced in the hypothesis.

We see that in the small setting, the OOV rate
is almost double for Czech than for English. The
OOV is significantly decreased by enlarging the
corpus or lemmatizing the word forms.

If we consider only the words available in the
phrase tables, the issue of Czech with limited data
is striking: 10–12% of devset tokens are not avail-
able in the training data.

2.2 Reachability of Training and Reference
Translations

Schwartz (2008) extended Moses to support “con-
straint decoding”, that is to perform an exhaustive
search through the space of hypotheses in order to
reach the reference translation (and get its score).

The current implementation of the exhaustive
search in Moses is in fact subject to several con-
figuration parameters, most importantly the num-
ber of translation options considered for each span
(-max-trans-opt-per-coverage) and the
distortion limit (-distortion-limit).

Given his aim, Schwartz (2008) uses the output
of four MT systems translating from different lan-
guages to English as the references and notes that
only around 10% of the reference translations are
reachable by an independent Swedish-English MT
system.
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n-grams Out of Corpus Voc. n-grams Out of Phrase-Table Voc.
Dataset Language 1 2 3 4 1 2 3 4
Large Czech 2.2% 30.5% 70.2% 90.3% 3.9% 44.1% 82.2% 95.6%
Large English 1.5% 13.7% 47.3% 78.8% 2.1% 22.4% 63.5% 89.1%
Large Czech + English input sent 1.5% 29.4% 69.6% 90.1%3.1% 42.8% 81.5% 95.3%
Small Czech 6.7% 48.1% 83.0% 95.5%12.5% 65.4% 91.9% 98.6%
Small English 3.6% 28.1% 68.3% 90.9% 6.3% 45.4% 84.3% 97.0%
Small Czech + English input sent 5.2% 46.6% 82.4% 95.2%10.6% 63.7% 91.2% 98.3%
Small Czech lemmas 4.1% 36.3% 75.8% 92.8%5.8% 52.6% 87.7% 97.4%
Small English lemmas 3.4% 24.6% 64.6% 89.4%6.9% 53.2% 87.9% 97.5%
Small Czech + English input sent lemmas 3.1% 35.7% 75.6% 92.8% 5.1% 38.1% 80.8% 96.2%

Table 2: Out-of-vocabulary rates.

Distortion Limit
TOpts 3 6 10 30 40

1 0.4 0.4 0.4 0.4 0.4
5 1.5 1.9 2.0 2.0 2.0

10 2.5 3.2 3.5 3.5 3.5
20 3.7 5.0 5.5 5.6 5.6
50 4.9 6.7 8.0 8.6 8.6

100 5.3 7.6 9.1 9.4 9.4

Table 4: Percentage of sentences reachable in
Czech-to-English large setting, two alternative de-
coding paths to translate from Czech lemma if
the form is not available in the translation table
(BLEU score 18.70±0.46).

We observe that reaching man-made reference
translations in Czech-to-English translation is far
harder. Table 3 provides the figures for small data
setting (and no phrase table filtering). The best
reachability we can hope for is given in Table 4
where we allow to use source word lemmas if the
exact form is not available. We see that the default
limits (50 translation options per span and distor-
tion limit of 6) leave us with only 6.7% sentences
reachable.

While not directly important for your training,
the figures still underpin the issue of sparse data in
Czech-English translation.

3 Targetting Czech Word Forms

Bojar (2007) experimented with several transla-
tion scenarios, including what we will call Mor-
phG, i.e. the independent translation of lemma to
lemma and tag to tag followed by a generation step
to produce target-side word form. With the small
training set available then, the MorphG model per-
formed equally well as a simpler direct translation
followed by target-side tagging and an additional
n-gram model over morphological tags. Koehn
and Hoang (2007) reports even a large loss with
MorphG for German-to-English if the alternative

of direct form-to-form translation is not available.
Bojar et al. (2009b) applied the two alternative

decoding paths (direct form-to-form and MorphG,
labelled “T+C+C&T+T+G”) to English-Czech but
they were able to use only 84k sentences. For
the full training set of 2.2M sentences, the model
was too big to fit in reasonable disk limits. More
importantly, already in the small data setting, the
complex model suffered from little stability due
to abundance of features (5 features per phrase-
table plus tree features for three LMs), so nearly
the same performance on the development set gave
largely varying quality on the independent test set.

The most important issue of the MorphG setup,
however, is the explosion of translation options.
Due to the “synchronous factors” approach of
Moses (Koehn and Hoang, 2007), all translation
options have to be fully constructed before the
main search begins. The MorphG model how-
ever licenses too many possible combinations of
lemmas, tags and final word forms, so the prun-
ing of translation options strikes hard, causing
search errors. For more details, see Bojar et al.
(2009a) where a similar issue occurs for treelet-
based translation.

3.1 Two-Step Translation

In order to avoid the explosion of the translation
options6, we experimented with two-step transla-
tion.

The first step translates from English to lemma-
tized Czech augmented to preserve important se-
mantic properties known from the source phrase.
The second step is a monotone translation from
the lemmas to fully inflected Czech. The idea be-
hind the delimitation is that all the morphological
properties of Czech words that can be established

6and also motivated when we noticed that reading MT
output tolemmatizedCzech is sometimes more pleasant and
informative than regular phrase-based output
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Data Size Simple Two-Step
Parallel Mono BLEU SemPOS BLEU SemPOS
Small Small 10.28±0.40 29.92 10.38±0.38 30.01
Small Large 12.50±0.44 31.01 12.29±0.47 31.40
Large Large 14.17±0.51 33.07 14.06±0.49 32.57

Table 5: Performance of direct (Simple) and two-step factored translation in small and large data setting.

regardless the English source should not cause par-
allel data sparseness and clutter the search. In-
stead, they should be decided based on context in
the second phase only.

Specifically, the intermediate Czech represents
most words as tuples containing only: lemma,
negation, grade (of adjectives and adverbs), num-
ber (of nouns, adjectives, verbs) and detailed part
of speech (constraining also e.g. verb tense of
Czech verbs). Some words are handled separately:

• Pronouns, punctuation and the verbs “být” (to
be) and “mı́t” (to have) are represented using
their lowecased full forms because they are very
frequent, often auxiliary to other words and
their exact form best captures the available and
necessary detail of many morphological and
syntactic properties.

• Prepositions are represented using their lemmas
and case because the case of a noun phrase is
actually introduced by the governing word (e.g.
the verb that subcategorized for the noun phrase
or the preposition for prepositional phrases).

Table 5 compares the scores of the simple
phrase-based and the two-step translation via aug-
mented Czech lemmas as described above. The
small and large parallel data denote the datasets
described in Section 1.1. The small monolingual
set means just the news domain of CzEng, while
the large monolingual set means WMT10 mono-
lingual Czech texts (and no CzEng data). Note
that the monolingual data serve three purposes in
the two-step approach: the language model for the
first phase, the translation model in the second
phase (monotone and restricted to phrase-length
of 1; longer phrases did not bring significant im-
provement either), and the language model of the
second phase. Ignoring the opportunity to use the
monolingual set as the language model in the first
phase already hurts the performance.

We see that the results as evaluated both by
BLEU and SemPOS (see Section 4 below) are
rather mixed but not that surprising. There is a
negligible gain in the Small-Small setting, a mixed
outcome in the Small-Large and a little loss in the

Two- Both Both
-Step Fine Wrong Simple Total

Two-Step 23 4 8 - 35
Both Fine 7 14 17 5 43
Both Wrong 8 1 28 2 39
Simple - 3 7 23 33
Total 38 22 60 30 150

Table 6: Manual micro-evaluation of Simple
(12.50±0.44) vs. Two-step (12.29±0.47) model
in the Small-Large setting.

Large-Large setting.
The most interesting result is the Small-Large

setting: BLEU (insignificantly) prefers the simple
and SemPOS the two-step model. It thus seems
that a large target-side LM is sufficient to improve
the BLEU score, despite the untackled issue of
bilingual data sparseness.

We carried out a quick manual evaluation of
150 sentences by two annotators (one of the au-
thors and a third person; systems anonymized):
for each input segment, either one of the outputs
is distinguishably better or both are equally wrong
or equally acceptable. As listed in the confusion
matrix in Table 6, each annotator independently
marginally prefers the two-step approach but the
intersection does not confirm that.7 One good
thingis that the annotators do not completely con-
tradict each other’s preference.

Ultimately, we did not use the two-step ap-
proach in our primary submission, but we feel
there is still some unexploited potential in this
phrase-based approximation of the technique sep-
arating properties of words handled in the transla-
tion phase from properties implied by the target-
side (grammatical) context only. Certainly, the
representation of the intermediate language can

7Of the 23 sentences improved by the two-step setup,
about three quarters indeed had an improvement in lexical
coverage or better morphological choice of a word. Of the
23 sentences where the two-step model hurts, about a half
suffered from errors related to superfluous auxiliary wordsin
Czech that seem to be introduced by a bias towards word-
for-word translation. This bias is not inherent to the model,
only the (normalized) phrase penalty weight happened to get
nearly three times bigger than in the simple model.

63



be still improved, and more importantly, the sec-
ond phase of monotone decoding could be handled
by a more appropriate model capable of including
more additional (source) context features.8

4 Optimizing towards SemPOS

In our setup, we use minimum error-rate training
(MERT, Och (2003)) to optimize weights of model
components. In the standard implementation in
Moses, BLEU (Papineni et al., 2002) is used as
the objective function, despite its rather disputable
correlation with human judgments of MT quality.

Kos and Bojar (2009) introduced SemPOS, a
metric that performs much better in terms of cor-
relation to human judgments when translating to
Czech. Naturally, we wanted to optimize towards
SemPOS.

SemPOS computes the overlapping of autose-
mantic (content-bearing) word lemmas in the can-
didate and reference translations given a fine-
grained semantic part of speech (sempos9), as de-
fined in Hajič et al. (2006), and outputs average
overlapping score over all sempos types.

The SemPOS metric outperformed common
metrics as BLEU, TER (Snover et al., 2006) or an
adaptation of Meteor (Lavie and Agarwal, 2007)
for Czech on test sets from WMT08 (Callison-
Burch et al., 2008).

4.1 Integrating SemPOS to MERT

In our experiments we used Z-MERT (Zaidan,
2009), a recent implementation of the MERT al-
gorithm, to optimize model parameters.

The SemPOS metric requires to remove all aux-
iliary words and to identify the (deep-syntactic)
lemmas and semantic part of speech for autose-
mantic words. When employed in MERT train-
ing, the wholen-best list of candidates has to pro-
cessed like this at each iteration.

We use the TectoMT platform (Žabokrtský and
Bojar, 2008)10 for the linguistic processing. Tec-
toMT follows the complete pipeline of tagging,
surface-syntactic analysis and deep-syntactic anal-
ysis, which is the best but rather costly way to ob-
tain the required information.

Therefore, we use two different ways of obtain-
ing lemmas and semantic parts of speech in the

8We are grateful to Trevor Cohn for the suggestion.
9In the following text we will use SemPOS to denote the

SemPOS metric. When speaking about the semantic part of
speech, we will write sempos type or sempos tag.

10http://ufal.mff.cuni.cz/tectomt/

BLEU SemPOS Iters Time
TectoMT 10.11±0.40 29.69 20 2d12.0h

in MERT 9.53±0.39 29.69 10 1d12.0h
Factored 9.46±0.37 29.36 10 2.4h

translation 8.20±0.37 29.68 - -
6.96±0.33 27.79 9 1.7h

Table 7: Five independent MERT runs optimizing
towards SemPOS with semantic parts of speech
and lemmas provided either by TectoMT on the
fly or by Moses factored translation.

MERT loop:
• indeed apply TectoMT processing to then-best

list at each iteration (parallelized to 15 CPUs),
• apply TectoMT to thetraining data, express the

(deep) lemma and sempos as additional factors
using a blank value for auxiliary words, and us-
ing Moses factored translation to translate from
English forms to triplets of Czech form, deep
lemma and sempos.
Table 7 lists several ZMERT runs when opti-

mizing a simple form→form phrase-based model
(small data setting) towards SemPOS. One obser-
vation is that using TectoMT in the MERT loop
is unbearably costly and we avoided it in the sub-
sequent experiments. More importantly, from the
huge differences in the final BLEU as well as Sem-
POS scores (evaluated on the independent test set),
we see how unstable the search is.

SemPOS, while good at comparing different
MT systems, is very bad at comparing candidates
from a single system in ann-best list. This can be
easily explained by its low sensitivity to precision:
SemPOS disregards word forms as well as all aux-
iliary words. This is a good thing to compare very
different candidates (where each of the systems al-
ready struggled to produce a coherent output) but
is of very little help when comparing candidates of
a single system, because these candidates tend to
differ rather in forms than in lexical choice.

4.2 Combination of SemPOS and BLEU

To compensate for some of the shortcomings of
SemPOS, we also attempted to optimize towards
a linear combination of SemPOS and BLEU.
This should increase the suitability of the metric
for MERT optimization because BLEU will take
correct word forms into account while SemPOS
should promote better lexical choice (possibly not
confirmed by BLEU due to a different word form
than in the reference).

Table 8 provides the results of various weight
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W. BLEU SemPOS W. BLEU SemPOS
1:0 10.42±0.38 29.91 3:1 10.30±0.39 30.03
1:1 10.15±0.39 29.81 10:1 10.17±0.40 29.58
1:1 9.42±0.37 29.30 1:2 10.11±0.38 29.80
2:1 10.37±0.38 29.95 1:10 9.44±0.40 29.74

Table 8: Optimizing towards a linear combina-
tion of BLEU and SemPOS (weights in this order),
small data setting.

BLEU SemPOS
BLEU alone 14.08±0.50 32.44
SemPOS-BLEU (1:1) 13.79±0.55 33.17

Table 9: Optimizing towards BLEU and/or Sem-
POS in large data setting.

settings, including the optimization towards
BLEU alone using ZMERT implementation. We
see that the stability is much better, only few runs
suffered a minor loss (including 1:1 in one case).
Unfortunately, the differences in final BLEU and
SemPOS scores are all within confidence intervals
when trained on the small dataset.

Table 9 documents that in our large data set-
ting, MERT indeed achieves slightly higher Sem-
POS (and lower BLEU) when optimizing towards
it. This corresponds with the intuition that with
more variance in lexical choices available in the
phrase tables, SemPOS can help to balance model
features. The current set of weights is rather lim-
ited, so our future experiments should focus on ac-
tually providing means to e.g. domain adaptation
by using features indicating the applicability of a
phrase in a specific domain.

5 Our Primary Submissions to WMT10

5.1 English-to-Czech Translation

Given the little or no improvements achieved by
the many configurations we tried, our English-to-
Czech primary submission is rather simple:
• Standard GIZA++ word alignment based on both source

and target lemmas.
• Two alternative decoding paths; forms always truecased:

form+tag→form & form→form.
The first path is more specific and helps to preserve core
syntactic elements in the sentence. Without the tag, am-
biguous English words could often all translate as e.g.
nouns, leading to no verb in the Czech sentence. The de-
fault path serves as a back-off.

• Significance filtering of the phrase tables (Johnson et al.,
2007) implemented for Moses by Chris Dyer; default set-
tings of filter valuea+e and the cut-off 30.

• Two separate 5-gram Czech LMs of truecased forms each
of which interpolates models trained on the following
datasets; the interpolation weights were set automatically
using SRILM (Stolcke, 2002) based on the target side of

Large Small
Backed-off by source lemmas 18.95±0.45 14.95±0.48
form→form only 18.41±0.44 14.73±0.47

Table 10: Translation from Czech better when
backed-off by source lemmas.

the development set:11

– Interpolated CzEng domains: news, web, fiction. The
rationale behind the selection of the domains is that we
prefer prose-like texts for LM estimation (and not e.g.
technical documentation) while we want as much paral-
lel data as possible.

– Interpolated monolingual corpora: WMT09
monolingual, WMT10 monolingual, Czech
National Corpus (Kocek et al., 2000) sections
SYN2000+2005+2006PUB.

• Lexicalized reordering (or-bi-fe) based on forms.
• Standard Moses MERT towards BLEU.

5.2 Czech-to-English Translation

For Czech-to-English translation we experimented
with far fewer configuration options. Our primary
submission is configured as follows:
• Two alternative decoding paths; forms always truecased:

form→form & lemma→form.
• Significance filtering as in Section 5.1.
• 5-gram English LM based on CzEng English side only.12

• Lexicalized reordering (or-bi-fe) based on forms.
• Standard Moses MERT towards BLEU.

Table 10 documents the utility of the additional
decoding path from Czech lemmas in both small
and large setting, surprisingly less significant in
the small setting. Later experiments with system
combination by Kenneth Heafield indicated that
while our system is not among the top three, it
brings an advantage to the combination.

6 Conclusion

We provided an extensive documentation of Czech
data sparseness issue for machine translation. We
attempted to tackle the problem of constructing
the target-side form by a two-step translation setup
and the problem of unreliable automatic evalua-
tion by employing a new metric in MERT loop,
neither with much success so far. Both of the at-
tempts however deserve further exploration. Ad-
ditionally, we provide the exact configurations of
our WMT10 primary submissions.

11The subsequent MERT training using the same develop-
ment test may suffer from overestimating the language model
weights, but we did not observe the issue, possibly due to
only moderate overlap of the datasets.

12We attempted to use a second LM trained on English Gi-
gaword by Chris Callison-Burch, but we observed a drop in
BLEU score from 18.95±0.45 to 18.03±0.44 probably due
to different tokenization guidelines applied.
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Ondřej Bojar and ZdeněǩZabokrtský. 2009. CzEng
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Abstract

This paper describes a statistical machine
translation system for our participation
for the WMT10 shared task. Based on
MOSES, our system is capable of translat-
ing German, French and Spanish into En-
glish. Our main contribution in this work
is about effective parameter tuning. We
discover that there is a significant perfor-
mance gap as different development sets
are adopted. Finally, ten groups of devel-
opment sets are used to optimize the model
weights, and this does help us obtain a sta-
ble evaluation result.

1 Introduction

We present a machine translation system that rep-
resents our participation for the WMT10 shared
task from Brain-like Computing and Machine In-
telligence Lab of Shanghai Jiao Tong University
(SJTU-BCMI Lab). The system is based on the
state-of-the-art SMT toolkit MOSES (Koehn et al.,
2007). We use it to translate German, French and
Spanish into English. Though different develop-
ment sets used for training parameter tuning will
certainly lead to quite different performance, we
empirically find that the more sets we combine to-
gether, the more stable the performance is, and a
development set similar with test set will help the
performance improvement.

2 System Description

The basic model of the our system is a log-linear
model (Och and Ney, 2002). For given source lan-

∗This work was partially supported by the National Natu-
ral Science Foundation of China (Grant No. 60903119, Grant
No. 60773090 and Grant No. 90820018), the National Basic
Research Program of China (Grant No. 2009CB320901), and
the National High-Tech Research Program of China (Grant
No.2008AA02Z315).

†corresponding author

guage strings, the target language string t will be
obtained by the following equation,

t̂I1 =arg max
tI1

{pλm
1

(tI1 | sJ
1 )}

=arg max
tI1

{ exp[
∑M

m=1 λmhm(tI1, s
J
1 )]∑

t̄I1
exp[

∑M
m=1 λmhm(t̄I1, s

J
1 )]
},

where hm is the m-th feature function and λm is
the m-th model weight. There are four main parts
of features in the model: translation model, lan-
guage model, reordering model and word penalty.
The whole model has been well implemented by
the state-of-the-art statistical machine translation
toolkit MOSES.

For each language that is required to translated
into English, two sets of bilingual corpora are pro-
vided by the shared task organizer. The first set
is the new release (version 5) of Europarl cor-
pus which is the smaller. The second is a com-
bination of other available data sets which is the
larger. In detail, two corpora, europarl-v5 and
news-commentary10 are for German, europarl-v5
and news-commentary10 plus undoc for French
and Spanish, respectively. Details of training data
are in Table 1. Only sentences with length 1 to 40
are acceptable for our task. We used the larger set
for our primary submission.

We adopt word alignment toolkit GIZA++ (Och
and Ney, 2003) to learn word-level alignment with
its default setting and grow-diag-final-and param-
eters. Given a sentence pair and its corresponding
word-level alignment, phrases will be extracted by
using the approach in (Och and Ney, 2004). Phrase
probability is estimated by its relative frequency
in the training corpus. Lexical reordering is deter-
mined by using the default setting of MOSES with
msd-bidirectional parameter.

For training the only language model (English),
the data sets are extracted from monolingual parts
of both europarl-v5 and news-commentary10,
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sentences words(s) words(t)
de small 1540549 35.76M 38.53M

large 1640818 37.95M 40.64M
fr small 1683156 44.02M 44.20M

large 8997997 251.60M 228.50M
es small 1650152 43.17M 41.25M

large 7971200 236.24M 207.79M

Table 1: Bilingual training corpora from Ger-
man(de), French(fr) and Spanish(es) to English.

which include 1968914 sentences and 47.48M
words. And SRILM is adopted with 5-gram, in-
terpolate and kndiscount settings (Stolcke, 2002)
.

The next step is to estimate feature weights by
optimizing translation performance on a develop-
ment set. We consider various combinations of 10
development sets with 18207 sentences to get a
stable performance in our primary submission.

We use the default toolkits which are provided
by WMT10 organizers for preprocessing (i.e., to-
kenize) and postprocessing (i.e., detokenize, re-
caser).

3 Development Set Selection

3.1 Motivation

Given the previous feature functions, the model
weights will be obtained by optimizing the follow-
ing maximum mutual information criterion, which
can be derived from the maximum entropy princi-
ple:

λ̂M
1 = arg max

λM
1

{
S∑

i=1

log pλM
1

(ti | si)}

As usual, minimum error rate training (MERT) is
adopted for log-linear model parameter estimation
(Och, 2003). There are many improvements on
MERT in existing work (Bertoldi et al., 2009; Fos-
ter and Kuhn, 2009), but there is no demonstration
that the weights with better performance on the
development set would lead to a better result on
the unseen test set. In our experiments, we found
that different development sets will cause signifi-
cant BLEU score differences, even as high as one
percent. Thus the remained problem will be how
to effectively choose the development set to obtain
a better and more stable performance.

3.2 Experimental Settings

Our empirical study will be demonstrated through
German to English translation on the smaller cor-
pus. The development sets are all development
sets and test sets from the previous WMT shared
translation task as shown in Table 2, and labeled
as dev-0 to dev-9. Meanwhile, we denote 10 batch
sets from batch-0 to batch-9 where the batch-i set
is the combination of dev- sets from dev-0 to dev-i.
The test set is newstest2009, which includes 2525
sentences, 54K German words and 58K English
words, and news-test2008, which includes 2051
sentences, 41K German words and 43K English
words.

id name sent w(de) w(en)
dev-0 dev2006 2000 49K 53K
dev-1 devtest2006 2000 48K 52K
dev-2 nc-dev2007 1057 23K 23K
dev-3 nc-devtest2007 1064 24K 23K
dev-4 nc-test2007 2007 45K 44K
dev-5 nc-test2008 2028 45K 44K
dev-6 news-dev2009 2051 41K 43K
dev-7 test2006 2000 49K 54K
dev-8 test2007 2000 49K 54K
dev-9 test2008 2000 50K 54K

Table 2: Development data.

3.3 On the Scale of Development Set

Having 20 different development sets (10 dev- sets
and batch- sets), 20 models are correspondingly
trained.The decode results on the test set are sum-
marized in Table 3 and Figure 1. The dotted lines
are the performances of 10 different development
sets on the two test sets, we will see that there
is a huge gap between the highest and the lowest
score, and there is not an obvious rule to follow. It
will bring about unsatisfied results if a poor devel-
opment set is chosen. The solid lines represents
the performances of 10 incremental batch sets on
the two test sets, the batch processing still gives a
poor performance at the beginning, but the results
become better and more stable when the develop-
ment sets are continuously enlarged. This sort of
results suggest that a combined development set
may produce reliable results in the worst case. Our
primary submission used the combined develop-
ment set and the results as Table 4.
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id 09-dev 09-batch 08-dev 08-batch
0 16.46 16.46 16.38 16.38
1 16.67 16.25 16.66 16.44
2 16.74 16.20 16.94 16.22
3 16.15 16.83 16.18 17.02
4 16.44 16.73 16.64 16.89
5 16.50 16.97 16.75 17.13
6 17.15 17.03 17.67 17.24
7 16.51 17.00 16.34 17.09
8 17.03 16.97 17.15 17.22
9 16.25 16.99 16.24 17.26

Table 3: BLEU scores on the two test
sets(newstest2009 & news-test2008), which use
two data set sequences(dev- sequence & batch- se-
quence) to optimize model weights.

de-en fr-en es-en
18.90 24.30 26.40

Table 4: BLEU scores of our primary submission.

3.4 On BLEU Score Difference

To compare BLEU score differences between test
set and development set, we consider two groups
of BLEU score differences, For each development
set, dev-i, the BLEU score difference will be com-
puted between b1 from which adopts itself as the
development set and b2 from which adopts test
set as the development set. For the test set, the
BLEU score difference will be computed between
b′1 from which adopts each development set, dev-i,
as the development set and b′2 from which adopts
itself as the development set.

These two groups of results are illustrated in
Figure 2 (the best score of the test set under self
tuning, newstest2009 is 17.91). The dotted lines
have the inverse trend with the dotted in Figure
1(because the addition of these two values is con-
stant), and the solid lines have the same trend
with the dotted, which means that the good per-
formance is mutual between test set and develop-
ment sets: if tuning using A set could make a good
result over B set, then vice versa.

3.5 On the Similarity between Development
Set and Test Set

This experiment is motivated by (Utiyama et al.,
2009), where they used BLEU score to measure
the similarity of a sentences pair and then ex-
tracted sentences similar with those in test set to
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Figure 2: The trend of BLEU score differences

construct a specific tuning set. In our experiment,
we will try to measure data set similarity instead.
Given two sets of sentences, one is called as candi-
date(cnd) set and the other reference(ref) set. For
any cnd sentence, we let the whole ref set to be its
reference and then multi-references BLEU score is
computed for cnd set. There comes a problem that
the sentence penalty will be constant for any cnd
sentence, we turn to calculate the average length
of whose sentences which have common n-gram
with the given cnd sentence.

Now we may define three measures. The mea-
sure which uses dev- and batch- sets as cnd sets
and news-test2009 set as ref set is defined as
precision-BLEU , and the measure which uses the
above sets on the contrary way is defined as recall-
BLEU. Then F1-BLEU is defined as the harmonic
mean of precision-BLEU and recall-BLEU. These
results are illustrated in Figure 3. From the fig-
ure, we find that F1-BLEU plays an important
role to predict the goodness of a development set,
F1-BLEU scores of batch- sets have an ascending
curve and batch data set sequence will cause a sta-
ble good test performance, the point on dev- sets
which has high F1-BLEU(eg, dev-0,4,5) would
also has a good test performance.

3.6 Related Work

The special challenge of the WMT shared task is
domain adaptation, which is a hot topic in recent
years and more relative to our experiments. Many
existing works are about this topic (Koehn and
Schroeder, 2007; Nakov, 2008; Nakov and Ng,
2009; Paul et al., 2009; Haque et al., 2009). How-
ever, most of previous works focus on language
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model, translation phrase table, lexicons model
and factored translation model, few of them pay
attention to the domain adaptation on the develop-
ment set. For future work we consider to use some
machine learning approaches to select sentences in
development sets more relevant with the test set in
order to further improve translation performance.

4 Conclusion

In this paper, we present our machine translation
system for the WMT10 shared task and perform an
empirical study on the development set selection.
According to our experimental results, Choosing
different development sets would play an impor-
tant role for translation performance. We find that
a development set with higher F1-BLEU yields
better and more stable results.
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performance.

0 1 2 3 4 5 6 7 8 9
10

15

20

25

30

DATA SET ID

B
LE

U
 V

A
LU

E

 

 

pDev
pBatch
rDev
rBatch
fDev
fBatch

Figure 3: The precision(p), recall(r) and F1(f) BLEU score on the dev(Dev) and batch(Batch) sets based
on the comparison with news-test2009 set.

71



Proceedings of the Joint 5th Workshop on Statistical Machine Translation and MetricsMATR, pages 72–76,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

The University of Maryland Statistical Machine Translation System for
the Fifth Workshop on Machine Translation

Vladimir Eidelman†, Chris Dyer†‡, and Philip Resnik†‡

†UMIACS Laboratory for Computational Linguistics and Information Processing
‡Department of Linguistics

University of Maryland, College Park
{vlad,redpony,resnik}@umiacs.umd.edu

Abstract

This paper describes the system we devel-
oped to improve German-English transla-
tion of News text for the shared task of
the Fifth Workshop on Statistical Machine
Translation. Working within cdec, an
open source modular framework for ma-
chine translation, we explore the benefits
of several modifications to our hierarchical
phrase-based model, including segmenta-
tion lattices, minimum Bayes Risk de-
coding, grammar extraction methods, and
varying language models. Furthermore,
we analyze decoder speed and memory
performance across our set of models and
show there is an important trade-off that
needs to be made.

1 Introduction

For the shared translation task of the Fifth Work-
shop on Machine Translation (WMT10), we par-
ticipated in German to English translation under
the constraint setting. We were especially inter-
ested in translating from German due to set of
challenges it poses for translation. Namely, Ger-
man possesses a rich inflectional morphology, pro-
ductive compounding, and significant word re-
ordering with respect to English. Therefore, we
directed our system design and experimentation
toward addressing these complications and mini-
mizing their negative impact on translation qual-
ity.

The rest of this paper is structured as follows.
After a brief description of the baseline system
in Section 2, we detail the steps taken to improve
upon it in Section 3, followed by experimental re-
sults and analysis of decoder performance metrics.

2 Baseline system

As our baseline system, we employ a hierarchical
phrase-based translation model, which is formally
based on the notion of a synchronous context-free
grammar (SCFG) (Chiang, 2007). These gram-
mars contain pairs of CFG rules with aligned non-
terminals, and by introducing these nonterminals
into the grammar, such a system is able to uti-
lize both word and phrase level reordering to cap-
ture the hierarchical structure of language. SCFG
translation models have been shown to be well
suited for German-English translation, as they are
able to both exploit lexical information for and ef-
ficiently compute all possible reorderings using a
CKY-based decoder (Dyer et al., 2009).

Our system is implemented within cdec, an ef-
ficient and modular open source framework for
aligning, training, and decoding with a num-
ber of different translation models, including
SCFGs (Dyer et al., 2010).1 cdec’s modular
framework facilitates seamless integration of a
translation model with different language models,
pruning strategies and inference algorithms. As
input, cdec expects a string, lattice, or context-free
forest, and uses it to generate a hypergraph repre-
sentation, which represents the full translation for-
est without any pruning. The forest can now be
rescored, by intersecting it with a language model
for instance, to obtain output translations. The
above capabilities of cdec allow us to perform the
experiments described below, which would other-
wise be quite cumbersome to carry out in another
system.

The set of features used in our model were the
rule translation relative frequency P (e|f), a target
n-gram language model P (e), a ‘pass-through’
penalty when passing a source language word
to the target side without translating it, lexical
translation probabilities Plex(e|f) and Plex(f |e),

1http://cdec-decoder.org

72



a count of the number of times that arity-0,1, or 2
SCFG rules were used, a count of the total num-
ber of rules used, a source word penalty, a target
word penalty, the segmentation model cost, and a
count of the number of times the glue rule is used.
The number of non-terminals allowed in a syn-
chronous grammar rule was restricted to two, and
the non-terminal span limit was 12 for non-glue
grammars. The hierarchical phrase-base transla-
tion grammar was extracted using a suffix array
rule extractor (Lopez, 2007).

2.1 Data preparation
In order to extract the translation grammar nec-
essary for our model, we used the provided Eu-
roparl and News Commentary parallel training
data. The lowercased and tokenized training data
was then filtered for length and aligned using the
GIZA++ implementation of IBM Model 4 (Och
and Ney, 2003) to obtain one-to-many alignments
in both directions and symmetrized by combining
both into a single alignment using the grow-diag-
final-and method (Koehn et al., 2003). We con-
structed a 5-gram language model using the SRI
language modeling toolkit (Stolcke, 2002) from
the provided English monolingual training data
and the non-Europarl portions of the parallel data
with modified Kneser-Ney smoothing (Chen and
Goodman, 1996). Since the beginnings and ends
of sentences often display unique characteristics
that are not easily captured within the context of
the model, and have previously been demonstrated
to significantly improve performance (Dyer et al.,
2009), we explicitly annotate beginning and end
of sentence markers as part of our translation
process. We used the 2525 sentences in news-
test2009 as our dev set on which we tuned the fea-
ture weights, and report results on the 2489 sen-
tences of the news-test2010 test set.

2.2 Viterbi envelope semiring training
To optimize the feature weights for our model,
we use Viterbi envelope semiring training (VEST),
which is an implementation of the minimum er-
ror rate training (MERT) algorithm (Dyer et al.,
2010; Och, 2003) for training with an arbitrary
loss function. VEST reinterprets MERT within
a semiring framework, which is a useful mathe-
matical abstraction for defining two general oper-
ations, addition (⊕) and multiplication (⊗) over
a set of values. Formally, a semiring is a 5-tuple
(K,⊕,⊗, 0, 1), where addition must be commu-

nicative and associative, multiplication must be as-
sociative and must distribute over addition, and an
identity element exists for both. For VEST, hav-
ing K be the set of line segments, ⊕ be the union
of them, and⊗ be Minkowski addition of the lines
represented as points in the dual plane, allows us
to compute the necessary MERT line search with
the INSIDE algorithm.2 The error function we use
is BLEU (Papineni et al., 2002), and the decoder is
configured to use cube pruning (Huang and Chi-
ang, 2007) with a limit of 100 candidates at each
node. During decoding of the test set, we raise
the cube pruning limit to 1000 candidates at each
node.

2.3 Compound segmentation lattices

To deal with the aforementioned problem in Ger-
man of productive compounding, where words
are formed by the concatenation of several mor-
phemes and the orthography does not delineate the
morpheme boundaries, we utilize word segmen-
tation lattices. These lattices serve to encode al-
ternative ways of segmenting compound words,
and as such, when presented as the input to the
system allow the decoder to automatically choose
which segmentation is best for translation, leading
to markedly improved results (Dyer, 2009).

In order to construct diverse and accurate seg-
mentation lattices, we built a maximum entropy
model of compound word splitting which makes
use of a small number of dense features, such
as frequency of hypothesized morphemes as sep-
arate units in a monolingual corpus, number of
predicted morphemes, and number of letters in
a predicted morpheme. The feature weights are
tuned to maximize conditional log-likelihood us-
ing a small amount of manually created reference
lattices which encode linguistically plausible seg-
mentations for a selected set of compound words.3

To create lattices for the dev and test sets, a lat-
tice consisting of all possible segmentations for
every word consisting of more than 6 letters was
created, and the paths were weighted by the pos-
terior probability assigned by the segmentation
model. Then, max-marginals were computed us-
ing the forward-backward algorithm and used to
prune out paths that were greater than a factor of
2.3 from the best path, as recommended by Dyer

2This algorithm is equivalent to the hypergraph MERT al-
gorithm described by Kumar et al. (2009).

3The reference segmentation lattices used for training are
available in the cdec distribution.
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(2009).4 To create the translation model for lattice
input, we segmented the training data using the
1-best segmentation predicted by the segmenta-
tion model, and word aligned this with the English
side. This version of the parallel corpus was con-
catenated with the original training parallel cor-
pus.

3 Experimental variation

This section describes the experiments we per-
formed in attempting to assess the challenges
posed by current methods and our exploration of
new ones.

3.1 Bloom filter language model
Language models play a crucial role in transla-
tion performance, both in terms of quality, and in
terms of practical aspects such as decoder memory
usage and speed. Unfortunately, these two con-
cerns tend to trade-off one another, as increasing
to a higher-order more complex language model
improves performance, but comes at the cost of
increased size and difficulty in deployment. Ide-
ally, the language model will be loaded into mem-
ory locally by the decoder, but given memory con-
straints, it is entirely possible that the only option
is to resort to a remote language model server that
needs to be queried, thus introducing significant
decoding speed delays.

One possible alternative is a randomized lan-
guage model (RandLM) (Talbot and Osborne,
2007). Using Bloom filters, which are a ran-
domized data structure for set representation, we
can construct language models which signifi-
cantly decrease space requirements, thus becom-
ing amenable to being stored locally in memory,
while only introducing a quantifiable number of
false positives. In order to assess what the im-
pact on translation quality would be, we trained
a system identical to the one described above, ex-
cept using a RandLM. Conveniently, it is possi-
ble to construct a RandLM directly from an exist-
ing SRILM, which is the route we followed in us-
ing the SRILM described in Section 2.1 to create
our RandLM.5 Table 1 shows the comparison of
SRILM and RandLM with respect to performance
on BLEU and TER (Snover et al., 2006) on the test
set.

4While normally the forward-backward algorithm com-
putes sum-marginals, by changing the addition operator to
max, we can obtain max-marginals.

5Default settings were used for constructing the RandLM.

Language Model BLEU TER

RandLM 22.4 69.1
SRILM 23.1 68.0

Table 1: Impact of language model on translation

3.2 Minimum Bayes risk decoding
During minimum error rate training, the decoder
employs a maximum derivation decision rule.
However, upon exploration of alternative strate-
gies, we have found benefits to using a mini-
mum risk decision rule (Kumar and Byrne, 2004),
wherein we want the translation E of the input F
that has the least expected loss, again as measured
by some loss function L:

Ê = arg min
E′

EP (E|F )[L(E,E′)]

= arg min
E′

∑
E

P (E|F )L(E,E′)

Using our system, we generate a unique 500-
best list of translations to approximate the poste-
rior distribution P (E|F ) and the set of possible
translations. Assuming H(E,F ) is the weight of
the decoder’s current path, this can be written as:

P (E|F ) ∝ expαH(E,F )

where α is a free parameter which depends on
the models feature functions and weights as well
as pruning method employed, and thus needs to
be separately empirically optimized on a held out
development set. For this submission, we used
α = 0.5 and BLEU as the loss function. Table 2
shows the results on the test set for MBR decod-
ing.

Language Model Decoder BLEU TER

RandLM
Max-D 22.4 69.1
MBR 22.7 68.8

SRILM
Max-D 23.1 68.0
MBR 23.4 67.7

Table 2: Comparison of maximum derivation ver-
sus MBR decoding

3.3 Grammar extraction
Although the grammars employed in a SCFG
model allow increased expressivity and translation
quality, they do so at the cost of having a large
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Language Model Grammar Decoder Memory (GB) Decoder time (Sec/Sentence)
Local SRILM corpus 14.293 ± 1.228 5.254 ± 3.768
Local SRILM sentence 10.964 ± .964 5.517 ± 3.884

Remote SRILM corpus 3.771 ± .235 15.252 ± 10.878
Remote SRILM sentence .443 ± .235 14.751 ± 10.370

RandLM corpus 7.901 ± .721 9.398 ± 6.965
RandLM sentence 4.612 ± .699 9.561 ± 7.149

Table 3: Decoding memory and speed requirements for language model and grammar extraction varia-
tions

number of rules, thus efficiently storing and ac-
cessing grammar rules can become a major prob-
lem. Since a grammar consists of the set of rules
extracted from a parallel corpus containing tens of
millions of words, the resulting number of rules
can be in the millions. Besides storing the whole
grammar locally in memory, other approaches
have been developed, such as suffix arrays, which
lookup and extract rules on the fly from the phrase
table (Lopez, 2007). Thus, the memory require-
ments for decoding have either been for the gram-
mar, when extracted beforehand, or the corpus, for
suffix arrays. In cdec, however, loading grammars
for single sentences from a disk is very fast relative
to decoding time, thus we explore the additional
possibility of having sentence-specific grammars
extracted and loaded on an as-needed basis by the
decoder. This strategy is shown to massively re-
duce the memory footprint of the decoder, while
having no observable impact on decoding speed,
introducing the possibility of more computational
resources for translation. Thus, in addition to the
large corpus grammar extracted in Section 2.1,
we extract sentence-specific grammars for each of
the test sentences. We measure the performance
across using both grammar extraction mechanisms
and the three different language model configu-
rations: local SRILM, remote SRILM, and Ran-
dLM.

As Table 3 shows, there is a marked trade-
off between memory usage and decoding speed.
Using a local SRILM regardless of grammar in-
creases decoding speed by a factor of 3 compared
to the remote SRILM, and approximately a fac-
tor of 2 against the RandLM. However, this speed
comes at the cost of its memory footprint. With a
corpus grammar, the memory footprint of the lo-
cal SRILM is twice as large as the RandLM, and
almost 4 times as large as the remote SRILM. Us-
ing sentence-specific grammars, the difference be-

comes increasingly glaring, as the remote SRILM
memory footprint drops to ≈450MB, a factor of
nearly 24 compared to the local SRILM and a fac-
tor of 10 compared to the process size with the
RandLM. Thus, using the remote SRILM reduces
the memory footprint substantially but at the cost
of significantly slower decoding speed, and con-
versely, using the local SRILM produces increased
decoder speed but introduces a substantial mem-
ory overhead. The RandLM provides a median
between the two extremes: reduced memory and
(relatively) fast decoding at the price of somewhat
decreased translation quality. Since we are using
a relatively large beam of 1000 candidates for de-
coding, the time presented in Table 3 does not rep-
resent an accurate basis for comparison of cdec to
other decoders, which should be done using the
results presented in Dyer et al. (2010).

We also tried one other grammar extraction
configuration, which was with so-called ‘loose’
phrase extraction heuristics, which permit un-
aligned words at the edges of phrases (Ayan and
Dorr, 2006). When decoded using the SRILM and
MBR, this achieved the best performance for our
system, with a BLEU score of 23.6 and TER of
67.7.

4 Conclusion

We presented the University of Maryland hier-
archical phrase-based system for the WMT2010
shared translation task. Using cdec, we experi-
mented with a number of methods that are shown
above to lead to improved German-to-English
translation quality over our baseline according to
BLEU and TER evaluation. These include methods
to directly address German morphological com-
plexity, such as appropriate feature functions, seg-
mentation lattices, and a model for automatically
constructing the lattices, as well as alternative de-
coding strategies, such as MBR. We also presented
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several language model configuration alternatives,
as well as grammar extraction methods, and em-
phasized the trade-off that must be made between
decoding time, memory overhead, and translation
quality in current statistical machine translation
systems.
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Abstract

We describe our hybrid machine trans-
lation system which has been developed
for and used in the WMT10 shared task.
We compute translations from a rule-
based MT system and combine the re-
sulting translation “templates” with par-
tial phrases from a state-of-the-art phrase-
based, statistical MT engine. Phrase sub-
stitution is guided by several decision
factors, a continuation of previous work
within our group. For the shared task,
we have computed translations for six lan-
guage pairs including English, German,
French and Spanish. Our experiments
have shown that our shallow substitu-
tion approach can effectively improve the
translation result from the RBMT system;
however it has also become clear that a
deeper integration is needed to further im-
prove translation quality.

1 Introduction

In recent years the quality of machine translation
(MT) output has improved greatly, although each
paradigm suffers from its own particular kind of
errors: statistical machine translation (SMT) of-
ten shows poor syntax, while rule-based engines
(RBMT) experience a lack in vocabulary. Hybrid
systems try to avoid these typical errors by com-
bining techniques from both paradigms in a most
useful manner.

In this paper we present the improved version of
the hybrid system we developed last year’s shared
task (Federmann et al., 2009). We take the out-
put from an RBMT engine as basis for our hybrid
translations and substitute noun phrases by trans-
lations from an SMT engine. Even though a gen-
eral increase in quality could be observed, our sys-
tem introduced errors of its own during the substi-

tution process. In an internal error analysis, these
degradations were classified as follows:

- the translation by the SMT engine is incorrect
- the structure degrades through substitution

(because of e.g. capitalization errors, double
prepositions, etc.)

- the phrase substitution goes astray (caused by
alignment problems, etc.)

Errors of the first class cannot be corrected, as
we have no way of knowing when the translation
by the SMT engine is incorrect. The other two
classes could be eliminated, however, by introduc-
ing additional steps for pre- and post-processing
as well as improving the hybrid algorithm itself.
Our current error analysis based on the results of
this year’s shared task does not show these types
of errors anymore.

Additionally, we extended our coverage to also
include the language pairs English↔French and
English↔Spanish in both directions as well as
English→German, compared to last year’s initial
experiments for German→English only. We were
able to achieve an increase in translation quality
for this language set, which shows that the substi-
tution method works for different language config-
urations.

2 Architecture

Our hybrid translation system takes translation
output from a) the Lucy RBMT system (Alonso
and Thurmair, 2003) and b) a Moses-based SMT
system (Koehn et al., 2007). We then identify
noun phrases inside the rule-based translation and
compute the most likely correspondences in the
statistical translation output. For these, we apply a
factored substitution method that decides whether
the original RBMT phrase should be kept or rather
be replaced by the Moses phrase. As this shallow
substitution process may introduce problems at
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phrase boundaries, we afterwards perform several
post-processing steps to cleanup and finalize the
hybrid translation result. A schematic overview
of our hybrid system and its main components is
given in figure 1.

Figure 1: Schematic overview of the hybrid MT
system architecture.

2.1 Input to the Hybrid System

Lucy RBMT System We obtain the translation
as well as linguistic structures from the RBMT
system. An internal evaluation has shown that
these structures are usually of a high quality which
supports our initial decision to consider the RBMT
output as an appropriate “template” for our hybrid
translation approach. The Lucy translation output
can include additional markup that allows to iden-
tify unknown words or other, local phenomena.

The Lucy system is a transfer-based MT system
that performs translation in three phases, namely
analysis, transfer, and generation. Intermediate
tree structures for each of the translation phases
can be extracted from the Lucy system to guide
the hybrid system. Sadly, only the 1-best path
through these three phases is given, so no alterna-
tive translation possibilities can be extracted from
the given data; a fact that clearly limits the poten-
tial for more deeply integrated hybrid translation
approaches. Nevertheless, the availability of the
1-best trees already allows to improve the transla-
tion quality of the RBMT system as we will show
in this paper.

Moses SMT System We used a state-of-the-art
Moses SMT system to create statistical phrase-
based translations of our input text. Moses has
been modified so that it returns the translation re-
sults together with the bidirectional word align-
ments between the source texts and the transla-
tions. Again, we make use of markup which helps
to identify unknown words as these will later guide
the factored substitution method. Both of the
translation models and the language models within
our SMT systems were only trained with lower-
cased and tokenized Europarl training data. The
system used sets of feature weights determined us-
ing data sets also from Europarl (test2008). In
addition, we used LDC gigaword corpus to train
large scale n-gram language models to be used in
our hybrid system. We tokenized the source texts
using the standard tokenizers available from the
shared task website. The SMT translations are re-
cased before being fed into the hybrid system to-
gether with the word alignment information.The
hybrid system can easily be adapted to support
other statistical translation engines. If the align-
ment information is not available, a suitable align-
ment tool would be necessary to compute it as the
alignment is a key requirement for the hybrid sys-
tem.

2.2 Aligning RBMT and SMT Output

We compute alignment in several components of
the hybrid system, namely:

source-text-to-tree: we first find an alignment
between the source text and the correspond-
ing analysis tree(s). As Lucy tends to sub-
divide large sentences into several smaller
units, it sometimes becomes necessary to
align more than one tree structure to a given
source sentence.

analysis-transfer-generation: for each of the
analysis trees, we re-construct the path from
its tree nodes, via the transfer tree, and their
corresponding generation tree nodes.

tree-to-target-text: similarly to the first align-
ment process, we find a mapping between
generation tree nodes and the actual transla-
tion output of the RBMT system.

source-text-to-tokenized: as the Lucy RBMT
system works on non-tokenized input text
and our Moses system takes tokenized input,
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we need to align the source text to its tok-
enized form.

Given the aforementioned alignments, we can then
correlate phrases from the rule-based translation
with their counterparts from the statistical trans-
lation, both on source or target side. As our
hybrid approach relies on the identification of
such phrase pairs, the computation of the different
alignments is critical to obtain good combination
performance.

Please note that all these tree-based alignments
can be computed with a very high accuracy. How-
ever, due to the nature of statistical word align-
ment, the same does not hold for the alignment
obtained from the Moses system. If the alignment
process has produced erroneous phrase tables, it is
very likely that Lucy phrases and their “aligned”
SMT matches simply will not fit. Or put the other
way round: the better the underlying SMT word
alignment, the greater the potential of the hybrid
substitution approach.

2.3 Factored Substitution

Given the results of the alignment process, we can
then identify “interesting” phrases for substitution.
Following our experimental setup from last year’s
shared task, we again decided to focus on noun
phrases as these seem to be best-suited for in-place
swapping of phrases. Our initial assumption is that
SMT phrases are better on a lexical level, hence
we aim to replace Lucy’s noun phrases by their
Moses counterparts.

Still, we want to perform the substitution in a
controlled manner in order to avoid problems or
non-matching insertions. For this, we have (man-
ually) derived a set of factors that are checked for
each of the phrase pairs that are processed. The
factors are described briefly below:

identical? simply checks whether two candidate
phrases are identical.

too complex? a Lucy phrase is “too complex”
to substitute if it contains more than 2
embedded noun phrases.

many-to-one? this factor checks if a Lucy phrase
containing more than one word is mapped to
a Moses phrase with only one token.

contains pronoun? checks if the Lucy phrase
contains a pronoun.

contains verb? checks if the Lucy phrase con-
tains a verb.

unknown? checks whether one of the phrases is
marked as “unknown”.

length mismatch computes the number of words
for both phrases and checks if the absolute
difference is too large.

language model computes language model
scores for both phrases and checks which is
more likely according to the LM.

All of these factors have been designed and ad-
justed during an internal development phase using
data from previous shared tasks.

2.4 Post-processing Steps

After the hybrid translation has been computed,
we perform several post-processing steps to clean
up and finalize the result:

cleanup first, we perform basic cleanup opera-
tions such as whitespace normalization, cap-
italizing the first word in each sentence, etc.

multi-words then, we take care of proper han-
dling of multi-word expressions. Using the
tree structures from the RBMT system we
eliminate superfluous whitespace and join
multi-words, even if they were separated in
the SMT phrase.

prepositions finally, we give prepositions a spe-
cial treatment. Experience from last year’s
shared task had shown that things like double
prepositions contributed to a large extent to
the amount of avoidable errors. We tried to
circumvent this class of error by identifying
the correct prepositions; erroneous preposi-
tions are removed.

3 Hybrid Translation Analysis

We evaluated the intermediate outputs using
BLEU (Papineni et al., 2001) against human refer-
ences as in table 3. The BLEU score is calculated
in lower case after the text tokenization. The trans-
lation systems compared are Moses, Lucy, Google
and our hybrid system with different configura-
tions:

Hybrid: we use the language model with case
information and substitute some NPs in Lucy
outputs by Moses outputs.

Hybrid LLM: same as Hybrid but we use a
larger language model.
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Table 1: Intermediate results of BLEU[%] scores for WMT10 shared task.

System de→en en→de fr→en en→fr es→en en→es
Moses 18.32 12.66 22.26 20.06 24.28 24.72
Lucy 16.85 12.38 18.49 17.61 21.09 20.85
Google 25.64 18.51 28.53 28.70 32.77 32.20
Hybrid 17.29 13.05 18.92 19.58 22.53 23.55
Hybrid LLM 17.37 13.73 18.93 19.76 22.61 23.66
Hybrid SG 17.43 14.40 19.67 20.55 24.37 24.99
Hybrid NCLM 17.38 14.42 19.56 20.55 24.41 24.92

Hybrid SG: same as Hybrid but the NP substitu-
tions are based on Google output instead of
Moses translations.

Hybrid NCLM: same as Hybrid but we use the
language model without case information.

We participated in the translation evaluation in
six language pairs: German to English (de→en),
English to German (en→de), French to English
(fr→en), English to French (en→fr), Spanish to
English (es→en) and English to Spanish (en→es).
As shown in table 3, the Moses translation sys-
tem achieves better results overall than the Lucy
system does. Google’s system outperforms other
systems in all language pairs. The hybrid transla-
tion as described in section 2 improves the Lucy
translation quality with a BLEU score up to 2.7%
absolutely.

As we apply a larger language model or a lan-
guage model without case information, the trans-
lation performance can be improved further. One
major problem in the hybrid translation is that the
Moses outputs are still not good enough to replace
the Lucy outputs, therefore we experimented on
a hybrid translation of Google and Lucy systems
and substitute some unrelaible NP translations by
the Google’s translations. The results in the line
of ’Hybrid SG’ shows that the hybrid translation
quality can be enhanced if the translation system
where we select substitutions is better.

4 Internal Evaluation of Results

In the analysis of the remaining issues, the fol-
lowing main sources of problems can be distin-
guished:

- Lucy’s output contains structural errors that
cannot be fixed by the chosen approach.

- Lucy results contain errors that could have
been corrected by alternative expressions

from SMT, but the constraints in our system
were too restrictive to let that happen.

- The SMT engine we use generates subopti-
mal results that find their way into the hybrid
result.

- SMT results that are good are incorporated
into the hybrid results in a wrong way.

We have inspected a part of the results and classi-
fied the problems according to these criteria. As
this work is still ongoing, it is too early to report
numerical results for the relative frequencies of the
different causes of the error. However, we can
already see that three of these four cases appear
frequently enough to justify further attention. We
observed several cases in which the parser in the
Lucy system was confused by unknown expres-
sions and delivered results that could have been
significantly improved by a more robust parsing
approach. We also encountered several cases in
which an expression from SMT was used although
the original Lucy output would have been better.
Also we still observe problems finding to correct
correspondences between Lucy output and SMT
output, which leads to situations where material is
inserted in the wrong place, which can lead to the
loss of content words in the output.

5 Conclusion and Outlook

In our contribution to the shared task we have ap-
plied the hybrid architecture from (Federmann et
al., 2009) to six language pairs. We have identi-
fied and fixed many of the problems we had ob-
served last year, and we think that, in addition to
the increased coverage in laguage pairs, the overall
quality has been significantly increased.

However, in the last section we characterized
three main sources of problems that will require
further attention. We will address these problems
in the near future in the following way:
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1. We will investigate in more detail the align-
ment issue that leads to occasional loss of
content words, and we expect that a careful
inspection and correction of the code will in
all likelihood give us a good remedy.

2. The problem of picking expressions from the
SMT output that appear more probable to the
language model although they are inferior to
the original expression from the RBMT sys-
tem is more difficult to fix. We will try to find
better thresholds and biases that can at least
reduce the number of cases in which this type
of degradation happen.

3. Finally, we will also address the robustness
issue that leads to suboptimal structures from
the RBMT engine caused by parsing failures.

Our close collaboration with Lucy enables us to
address these issues in a very effective way via the
inspection and classification of intermediate struc-
tures and, if these structures indicate parsing prob-
lems, the generation of variants of the input sen-
tence that facilitate correct parsing.
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Abstract

We present the Carnegie Mellon Univer-
sity Stat-XFER group submission to the
WMT 2010 shared translation task. Up-
dates to our syntax-based SMT system
mainly fell in the areas of new feature for-
mulations in the translation model and im-
proved filtering of SCFG rules. Compared
to our WMT 2009 submission, we report
a gain of 1.73 BLEU by using the new
features and decoding environment, and a
gain of up to 0.52 BLEU from improved
grammar selection.

1 Introduction

From its earlier focus on linguistically rich ma-
chine translation for resource-poor languages, the
statistical transfer MT group at Carnegie Mellon
University has expanded in recent years to the in-
creasingly successful domain of syntax-based sta-
tistical MT in large-data scenarios. Our submis-
sion to the 2010 Workshop on Machine Transla-
tion is a syntax-based SMT system with a syn-
chonous context-free grammar (SCFG), where the
SCFG rules are derived from full constituency
parse trees on both the source and target sides of
parallel training sentences. We participated in the
French-to-English shared translation task.

This year, we focused our efforts on making
more and better use of syntactic grammar. Much
of the work went into formulating a more expan-
sive feature set in the translation model and a new
method of assigning scores to phrase pairs and
grammar rules. Following a change of decoder
that allowed us to experiment with systems using
much larger syntactic grammars than previously,
we also adapted a technique to more intelligently

pre-filter grammar rules to those most likely to be
useful.

2 System Overview

We built our system on a partial selection of
the provided French–English training data, us-
ing the Europarl, News Commentary, and UN
sets, but ignoring the Giga-FrEn data. After
tokenization and some pruning of our training
data, this left us with a corpus of approximately
8.6 million sentence pairs. We word-aligned the
corpus with MGIZA++ (Gao and Vogel, 2008),
a multi-threaded implementation of the standard
word alignment tool GIZA++ (Och and Ney,
2003). Word alignments were symmetrized with
the “grow-diag-final-and” heuristic. We automati-
cally parsed the French side of the corpus with the
Berkeley parser (Petrov and Klein, 2007), while
we used the fast vanilla PCFG model of the Stan-
ford parser (Klein and Manning, 2003) for the
English side. These steps resulted in a parallel
parsed corpus from which to extract phrase pairs
and grammar rules.

Phrase extraction involves three distinct steps.
In the first, we perform standard (non-syntactic)
phrase extraction according to the heuristics of
phrase-based SMT (Koehn et al., 2003). In the
second, we obtain syntactic phrase pairs using
the tree-to-tree matching method of Lavie et al.
(2008). Briefly, this method aligns nodes in par-
allel parse trees by projecting up from the word
alignments. A source-tree nodes will be aligned
to a target-tree nodet if the word alignments in the
yield of s all land within the yield oft, and vice
versa. This node alignment is similar in spirit to
the subtree alignment method of Zhechev and Way
(2008), except our method is based on the spe-
cific Viterbi word alignment links found for each
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sentence rather than on the general word trans-
lation probabilities computed for the corpus as a
whole. This enables us to use efficient dynamic
programming to infer node alignments, rather than
resorting to a greedy search or the enumeration of
all possible alignments. Finally, in the third step,
we use the node alignments from syntactic phrase
pair extraction to extract grammar rules. Each
aligned node in a tree pair specifies a decompo-
sition point for breaking the parallel trees into a
series of SCFG rules. Like Galley et al. (2006),
we allow “composed” (non-minimal) rules when
they build entirely on lexical items. However, to
control the size of the grammar, we do not produce
composed rules that build on other non-terminals,
nor do we produce multiple possible rules when
we encounter unaligned words. Another differ-
ence is that we discard internal structure of com-
posed lexical rules so that we produce SCFG rules
rather than synchronous tree substitution grammar
rules.

The extracted phrase pairs and grammar rules
are collected together and scored according to a
variety of features (Section 3). Instead of decod-
ing with the very large complete set of extracted
grammar rules, we select only a small number of
rules meeting certain criteria (Section 4).

In contrast to previous years, when we used the
Stat-XFER decoder, this year we switched to the
the Joshua decoder (Li et al., 2009) to take advan-
tage of its more efficient architecture and imple-
mentation of modern decoding techniques, such as
cube pruning and multi-threading. We also man-
aged system-building workflows with LoonyBin
(Clark and Lavie, 2010), a toolkit for managing
multi-step experiments across different servers or
computing clusters. Section 5 details our experi-
mental results.

3 Translation Model Construction

One major improvement in our system this year
is the feature scores we applied to our grammar
and phrase pairs. Inspired largely by the Syntax-
Augmented MT system (Zollmann and Venu-
gopal, 2006), our translation model contains 22
features in addition to the language model. In con-
trast to earlier formulations of our features (Han-
neman and Lavie, 2009), our maximum-likelihood
features are now based on a strict separation be-
tween counts drawn from non-syntactic phrase ex-
traction heuristics and our syntactic rule extractor;

no feature is estimated from counts in both spaces.
We define an aggregate rule instance as a 5-

tuple r = (L,S, T,Cphr, Csyn) that contains a
left-hand-side labelL, a sequence of terminals
and non-terminals for the source (S) and target
(T ) right-hand sides, and aggregated counts from
phrase-based SMT extraction heuristicsCphr and
the syntactic rule extractorCsyn.

In preparation for feature scoring, we:

1. Run phrase instance extraction using stan-
dard phrase-based SMT heuristics to obtain
tuples (PHR, S, T,Cphr, ∅) where S and T

never contain non-terminals

2. Run syntactic rule instance extraction as de-
scribed in Section 2 above to obtain tuples
(L,S, T, ∅, Csyn)

3. Share non-syntactic counts such that, for
any two tuplesr1 = (PHR, S, T,Cphr, ∅)
and r2 = (L2, S, T, ∅, Csyn) with equiv-
alent S and T values, we producer2 =
(L2, S, T,Cphr, Csyn)

Note that there is no longer any need to retain
PHR rules(PHR, S, T ) that have syntactic equiv-
alents(L 6= PHR, S, T ) since they have the same
features In addition, we assume there will be no
tuples whereS andT contain non-terminals while
Cphr = 0 andCsyn > 0. That is, the syntactic
phrases are a subset of non-syntactic phrases.

3.1 Maximum-Likelihood Features

Our most traditional features arePphr(T |S) and
Pphr(S |T ), estimated using only countsCphr.
These features apply only to rules not con-
taining any non-terminals. They are equiva-
lent to the phraseP (T |S) and P (S |T ) fea-
tures from the Moses decoder, even whenL 6=
PHR. In contrast, we usedPsyn∪phr(L,S |T ) and
Psyn∪phr(L, T |S) last year, which applied to all
rules. The new features are no longer subject to
increased sparsity as the number of non-terminals
in the grammar increases.

We also have grammar rule probabili-
ties Psyn(T |S), Psyn(S |T ), Psyn(L |S),
Psyn(L |T ), and Psyn(L |S, T ) estimated using
Csyn; these apply only to rules whereS and T

contain non-terminals. By no longer including
counts from phrase-based SMT extraction heuris-
tics in these features, we encourage rules where
L 6= PHR since the smaller counts from the rule
learner would have otherwise been overshadowed
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by the much larger counts from the phrase-based
SMT heuristics.

Finally, we estimate “not labelable” (NL) fea-
turesPsyn(NL |S) andPsyn(NL |T ). With R de-
noting the set of all extracted rules,

Psyn(NL |S) =
Csyn∑

r′∈R s.t. S′=S C ′
syn

(1)

Psyn(NL |T ) =
Csyn∑

r′∈R s.t. T ′=T C ′
syn

(2)

We use additive smoothing (withn = 1 for our ex-
periments) to avoid a probability of 0 when there
is no syntactic label for an(S, T ) pair. These fea-
tures can encourage syntactic rules when syntax
is likely given a particular string since probability
mass is often distributed among several different
syntactic labels.

3.2 Instance Features

We add several features that use sufficient statis-
tics local to each rule. First, we add three binary
low-count features that take on the value 1 when
the frequency of the rule is exactly 1, 2, or 3. There
are also two indicator features related to syntax:
one each that fires whenL = PHR and when
L 6= PHR. Other indicator features analyze the
abstractness of grammar rules:AS = 1 when the
source side contains only non-terminals,AT = 1
when the target side contains only non-terminals,
TGTINSERTION = 1 when AS = 1, AT = 0,
SRCDELETION = 1 whenAS = 0, AT = 1, and
INTERLEAVED = 1 whenAS = 0, AT = 0.

Bidirectional lexical probabilities for each rule
are calculated from a unigram lexicon MLE-
estimated over aligned word pairs in the training
corpus, as is the default in Moses.

Finally, we include a glue rule indicator feature
that fires whenever a glue rule is applied during
decoding. In the Joshua decoder, these monotonic
rules stitch syntactic parse fragments together at
no model cost.

4 Grammar Selection

With extracted grammars typically reaching tens
of millions of unique rules — not to mention
phrase pairs — our systems clearly face an en-
gineering challenge when attempting to include
the full grammar at decoding time. Iglesias et al.
(2009) classified SCFG rules according to the pat-
tern of terminals and non-terminals on the rules’
right-hand sides, and found that certain patterns

could be entirely left out of the grammar without
loss of MT quality. In particular, large classes of
monotonic rules could be removed without a loss
in automatic metric scores, while small classes of
reordering rules contributed much more to the suc-
cess of the system. Inspired by that approach, we
passed our full set of extracted grammar rule in-
stances through a filter after scoring. Using the
rule notation from Section 3, the filter retained
only those rules that matched one of the follow-
ing patterns:

S = X1 w, T = w X1

S = w X1, T = X1 w

S = X1 X2, T = X2 X1

S = X1 X2, T = X1 X2

whereX represents any non-terminal andw rep-
resents any span of one or more terminals. The
choice of the specific reordering patterns above
captures our intuition that binary swaps are a fun-
damental ordering divergence between languages,
while the inclusion of the abstract monotonic pat-
tern (X1 X2,X1 X2) ensures that the decoder is
not disproportionately biased towards applying re-
ordering rules without supporting lexical evidence
merely because in-order rules are left out.

Orthogonally to the pattern-based pruning, we
also selected grammars by sorting grammar rules
in decreasing order of frequency count and using
the topn in the decoder. We experimented with
n = 0, 100, 1000, and 10,000. In all cases of
grammar selection, we disallowed rules that in-
serted unaligned target-side terminals unless the
inserted terminals were among the top 100 most
frequent unigrams in the target-side vocabulary.

5 Results and Analysis

5.1 Comparison with WMT 2009 Results

We performed our initial development work on
an updated version of our previous WMT sub-
mission (Hanneman et al., 2009) so that the ef-
fects of our changes could be directly compared.
Our 2009 system was trained from the full Eu-
roparl and News Commentary data available that
year, plus the pre-release version of the Giga-FrEn
data, for a total of 9.4 million sentence pairs. We
used the news-dev2009a set for minimum error-
rate training and tested system performance on
news-dev2009b. To maintain continuity with our
previously reported scores, we report new scores
here using the same training, tuning, and test-
ing sets, using the uncased versions of IBM-style
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System Configuration METEOR BLEU

1. WMT ’09 submission 0.5263 0.2073
2. Joshua decoder 0.5231 0.2158
3. New TM features 0.5348 0.2246

Table 1: Dev test results (on news-dev2009b) from
our WMT 2009 system when updating decoding
environment and feature formulations.

System Configuration METEOR BLEU

1. n = 100 0.5314 0.2200
2. n = 100, filtered 0.5341 0.2242
3. n = 1000 0.5324 0.2206
4. n = 1000, filtered 0.5330 0.2233
5. n = 10,000 0.5332 0.2198
6. n = 10,000, filtered 0.5350 0.2250

Table 2: Dev test results (on news-dev2009b) from
our WMT 2009 system with and without pattern-
based grammar selection.

BLEU 1.04 (Papineni et al., 2002) and METEOR
0.6 (Lavie and Agarwal, 2007).

Table 1 shows the effect of our new scoring and
decoding environment. Line 2 uses the same ex-
tracted phrase pairs and grammar rules as line 1,
but the system is tuned and tested with the Joshua
decoder instead of Stat-XFER. For line 3, we re-
scored the extracted phrase pairs from lines 1 and
2 using the updated features discussed in Sec-
tion 3.1 The difference in automatic metric scores
shows a significant benefit from both the new de-
coder and the updated feature formulations: 0.8
BLEU points from the change in decoder, and 0.9
BLEU points from the expanded set of 22 transla-
tion model features.

Our next test was to examine the usefulness of
the pattern-based grammar selection described in
Section 4. For various numbers of rulesn, Ta-
ble 2 shows the scores obtained with and without
filtering the grammar before then most frequent
rules are skimmed off for use. We observe a small
but consistent gain in scores from the grammar se-
lection process, up to half a BLEU point in the
largest-grammar systems (lines 5 and 6).

1In line 2, we did not control for difference in formulation
of the translation length feature: Stat-XFER uses a length
ratio, while Joshua uses a target word count. Line 3 does
not include 26 manually selected grammar rules present in
lines 1 and 2; this is because our new feature scoring requires
information from the grammar rules that was not present in
our 2009 extracted resources.

Source Target

un rôle AP1 ADJP1 roles
l’ instabilité AP1 ADJP1 instability
l’ argent PP1 NP1 money
une pression AP1 ADJP1 pressure
la gouvernance AP1 ADJP1 governance
la concurrence AP1 ADJP1 competition
des preuves AP1 ADJP1 evidence
les outils AP1 ADJP1 tools
des changements AP1 ADJP1 changes

Table 3: Rules fitting the pattern(S = w X1, T =
X1 w) that applied on the news-test2010 test set.

5.2 WMT 2010 Results and Analysis

We built the WMT 2010 version of our system
from the training data described in Section 2. (The
system falls under the strictly constrained track:
we used neither the Giga-FrEn data for training
nor the LDC Gigaword corpora for language mod-
eling.) We used the provided news-test2008 set
for system tuning, while news-test2009 served
as our 2010 dev test set. Based on the results
in Table 2, our official submission to this year’s
shared task was constructed as in line 6, with
10,000 syntactic grammar rules chosen after a
pattern-based grammar selection step. On the
news-test2010 test set, this system scored 0.2327
on case-insensitive IBM-style BLEU 1.04, 0.5614
on METEOR 0.6, and 0.5519 on METEOR 1.0
(Lavie and Denkowski, 2009).

The actual application of grammar rules in the
system is quite surprising. Despite having a gram-
mar of 10,000 rules at its disposal, the decoder
chose to only apply a total of 20 unique rules
in 392 application instances in the 2489-sentence
news-test2010 set. On a per-sentence basis, this
is actually fewer rule applications than our sys-
tem performed last year with a 26-rule handpicked
grammar! The most frequently applied rules are
fully abstract, monotonic structure-building rules,
such as for stitching together compound noun
phrases with adverbial phrases or prepositional
phrases. Nine of the 20 rules, listed in Table 3,
demonstrate the effect of our pattern-based gram-
mar selection. These partially lexicalized rules fit
the pattern(S = w X1, T = X1 w) and han-
dle cases of lexicalized binary reordering between
French and English. Though the overall impact of
these rules on automatic metric scores is presum-
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ably quite small, we believe that the key to effec-
tive syntactic grammars in our MT approach lies
in retaining precise rules of this type for common
linguistically motivated reordering patterns.

The above pattern of rule applications is also
observed in our dev test set, news-test2009, where
16 distinct rules apply a total of 352 times. Seven
of the fully abstract rules and three of the lexical-
ized rules that applied on news-test2009 also ap-
plied on news-test2010, while a further two ab-
stract and four lexicalized rules applied on news-
test2009 alone. We thus have a general trend of a
set of general rules applying with higher frequency
across test sets, while the set of lexicalized rules
used varies according to the particular set.

Since, overall, we still do not see as much gram-
mar application in our systems as we would like,
we plan to concentrate future work on further im-
proving this aspect. This includes a more detailed
study of grammar filtering or refinement to select
the most useful rules. We would also like to ex-
plore the effect of the features of Section 3 individ-
ually, on different language pairs, and using differ-
ent grammar types.
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Abstract
FBK participated in the WMT 2010
Machine Translation shared task with
phrase-based Statistical Machine Transla-
tion systems based on the Moses decoder
for English-German and German-English
translation. Our work concentrates on ex-
ploiting the available language modelling
resources by using linear mixtures of large
6-gram language models and on address-
ing linguistic differences between English
and German with methods based on word
lattices. In particular, we use lattices to in-
tegrate a morphological analyser for Ger-
man into our system, and we present some
initial work on rule-based word reorder-
ing.

1 System overview

The Human Language Technologies group at Fon-
dazione Bruno Kessler (FBK) participated in the
WMT 2010 Machine Translation (MT) evaluation
with systems for English-German and German-
English translation. While the English-German
system we submitted was relatively simple, we
put some more effort into the inverse translation
direction to make better use of the abundance
of language modelling data available for English
and to address the richness of German morphol-
ogy, which makes it hard for a Statistical Machine
Translation (SMT) system to achieve good vocab-
ulary coverage. In the remainder of this section,
an overview of the common features of our sys-
tems will be given. The next two sections provide
a more detailed description of our approaches to
language modelling, morphological preprocessing
and word reordering.

Both of our systems were based on the Moses
decoder (Koehn et al., 2007). They were simi-
lar to the WMT 2010 Moses baseline system. In-
stead of lowercasing the training data and adding

a recasing step, we retained the data in document
case throughout our system, except for the mor-
phologically normalised word forms described in
section 3. Our phrase tables were trained with the
standard Moses training script, then filtered based
on statistical significance according to the method
described by Johnson et al. (2007). Finally, we
used Minimum Bayes Risk decoding (Kumar and
Byrne, 2004) based on the BLEU score (Papineni
et al., 2002).

2 Language modelling

At the 2009 NIST MT evaluation, our system ob-
tained good results using a mixture of linearly in-
terpolated language models (LMs) combining data
from different sources. As the training data pro-
vided for the present evaluation campaign again
included a large set of language modelling corpora
from different sources, especially for English as
a target language, we decided to adopt the same
strategy. The partial corpora for English and their
sizes can be found in table 1. Our base mod-
els of the English Gigaword texts were trained
on version 3 of the corpus (LDC2007T07). We
trained separate language models for the new data
from the years 2007 and 2008 included in ver-
sion 4 (LDC2009T13). Apart from the mono-
lingual English data, we also included language
models trained on the English part of the addi-
tional parallel datasets supplied for the French-
English and Czech-English tasks. All the mod-
els were estimated as 6-gram models with Kneser-
Ney smoothing using the IRSTLM language mod-
elling toolkit (Federico et al., 2008).

For technical reasons, we were unable to use all
the language models during decoding. We there-
fore selected a subset of the models with the fol-
lowing data selection procedure:

1. For a linear mixture of the complete set of
24 language models, we estimated a set of
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Corpus n-grams
Europarl v5 115,702,157
News 1,437,562,740
News commentary 10 10,381,511
Gigaword v3: 6 models 7,990,828,834
Gigaword 2007/08: 6 models 1,418,281,597
109 fr-en 1,190,593,051
UNDOC fr-en 333,120,732
CzEng: 7 models 153,355,518
Total: 24 models 12,649,826,140

Table 1: Language modelling corpora for English

LMs Perplexity
DEV EVAL

2 188.57 181.38
5 163.68 158.99

10 156.43 151.73
15 154.71 144.98
20 154.39 144.91
24 154.42 144.92

Table 2: Perplexities of LM mixtures

optimal interpolation weights to minimise
the perplexity of the mixture model on the
news-test2008 development set.

2. By sorting the mixture coefficients in de-
scending order, we obtained an ordering of
the language models by their importance with
respect to the development set. We created
partial mixtures by selecting the top n mod-
els according to this order and retraining the
mixture weights with the same algorithm.

Computing the perplexities of these partial
mixtures on the news-test2008 (DEV) and
newstest2009 (EVAL) corpora shows that signif-
icant improvements can be obtained up to a mix-
tures size of about 15 elements. As this size still
turned out to be too large to be managed by our
systems, we used a 5-element mixture in our final
submission (see table 3 for details about the mix-
ture and table 4 for the evaluation results of the
submitted systems).

For the English-German system, the only cor-
pora available for the target language were Eu-
roparl v5, News commentary v10 and the mono-
lingual News corpus. Similar experiments showed
that the News corpus was by far the most impor-
tant for the text genre to be translated and that
including language models trained on the other

Weight Language model
0.368023 News
0.188156 109 fr-en
0.174802 Gigaword v3: NYT
0.144465 Gigaword v3: AFP
0.124553 Gigaword v3: APW

Table 3: 5-element LM mixture used for decoding

BLEU-cased BLEU
en-de
primary 15.5 15.8
secondary 15.3 15.6

primary: only News language model
secondary: linear mixture of 3 LMs

de-en
primary 20.9 21.9
secondary 20.3 21.3

primary: morph. reduction, linear mixture of 5 LMs
secondary: reordering, only News LM

Table 4: Evaluation results of submitted systems

corpora could even degrade system performance.
We therefore decided not to use Europarl or News
commentary for language modelling in our pri-
mary submission. However, we submitted a sec-
ondary system using a mixture of language models
based on all three corpora.

3 Morphological reduction and
decompounding of German

Compounding is a highly productive part of Ger-
man noun morphology. Unlike in English, Ger-
man compound nouns are usually spelt as sin-
gle words, which greatly increases the vocabulary.
For a Machine Translation system, this property
of the language causes a high number of out-of-
vocabulary (OOV) words. It is likely that many
compounds in an input text have not been seen in
the training corpus. We addressed this problem by
splitting compounds in the German source text.

Compound splitting was done using the Gert-
wol morphological analyser (Koskenniemi and
Haapalainen, 1996), a linguistically informed sys-
tem based on two-level finite state morphology.
Since Gertwol outputs all possible analyses of a
word form without taking into account the context,
the output has to be disambiguated. For this pur-
pose, we used part-of-speech (POS) tags obtained
from the TreeTagger (Schmid, 1994) along with
a set of POS-based heuristic disambiguation rules
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provided to us by the Institute of Computational
Linguistics of the University of Zurich.

As a side effect, Gertwol outputs the base forms
of all words that it processes: Nominative singu-
lar of nouns, infinitive of verbs etc. We decided to
combine the tokens analysed by Gertwol, whether
or not they had been decompounded and lower-
cased, in a further attempt to reduce data sparse-
ness, with their original form in a word lattice
(see fig. 1) and to let the decoder make the choice
between the two according to the translations the
phrase table can provide for each.

Our word lattices are similar to those used by
Dyer et al. (2008) for handling word segmentation
in Chinese and Arabic. For each word that was
segmented by Gertwol, we provide exactly one al-
ternative edge labelled with the component words
and base forms as identified by Gertwol, after re-
moving linking morphemes. The edge transition
probabilities are used to identify the source of an
edge: their values are e−1 = 0.36788 for edges de-
riving from Gertwol analysis and e0 = 1 for edges
carrying unprocessed words. Tokens whose de-
compounded base form according to Gertwol is
identical to the surface form in the input are rep-
resented by a single edge with transition proba-
bility e−0.5 = 0.606531. These transition proba-
bilities translate into a binary feature with values
−1, −0.5 and 0 after taking logarithms in the de-
coder. The feature weight is determined by Min-
imum Error-Rate Training (Och, 2003), together
with the weights of the other feature functions
used in the decoder. During system training, the
processed version of the training corpus was con-
catenated with the unprocessed text.

Experiments show that decompounding and
morphological analysis have a significant impact
on the performance of the MT system. After
these steps, the OOV rate of the newstest2009

test set decreases from 5.88 % to 3.21 %. Us-
ing only the News language model, the BLEU
score of our development system (measured on
the newstest2009 corpus) increases from 18.77
to 19.31. There is an interesting interaction with
the language models. While using a linear mixture
of 15 language models instead of just the News
LM does not improve the performance of the base-
line system (BLEU score 18.78 instead of 18.77),
the BLEU score of the 15-LM system increases to
20.08 when adding morphological reduction. In
the baseline system, the additional language mod-

els did not have a noticeable effect on translation
quality; however, their impact was realised in the
decompounding system.

4 Word reordering

Current SMT systems are based on the assump-
tion that the word order of the source and the tar-
get languages are fundamentally similar. While
the models permit some local reordering, system-
atic differences in word order involving move-
ments of more than a few words pose major prob-
lems. In particular, Statistical Machine Transla-
tion between German and English is notoriously
impacted by the different fundamental word order
in subordinate clauses, where German Subject–
Object–Verb (SOV) order contrasts with English
Subject–Verb–Object (SVO) order.

In our English-German system, we made the
observation that the verb in an SVO subordi-
nate clause following a punctuation mark fre-
quently gets moved before the preceding punctu-
ation. This movement is triggered by the Ger-
man language model, which prefers verbs pre-
ceding punctuation as consistent with SOV or-
der, and it is facilitated by the fact that the dis-
tance from the verb to the end of the preceding
clause is often smaller than the distance to the end
of the current phrase, so moving the verb back-
wards results in a better score from the distance-
based reordering model. This tendency can be
counteracted effectively by enabling the Moses
decoder’s monotone-at-punctuation feature,
which makes sure that words are not reordered
across punctuation marks. The result is a mod-
est gain from 14.28 to 14.38 BLEU points
(newstest2009).

In the German-English system, we applied a
chunk-based technique to produce lattices repre-
senting multiple permutations of the test sentences
in order to enable long-range reorderings of verb
phrases. This approach is similar to the reorder-
ing technique based on part-of-speech tags pre-
sented by Niehues and Kolss (2009), which re-
sults in the addition of a large number of reorder-
ing paths to the lattices. By contrast, we assume
that verb reorderings only occur between shallow
syntax chunks, and not within them. This makes it
possible to limit the number of long-range reorder-
ing options in an effective way.

We used the TreeTagger to perform shallow
syntax chunking of the German text. By man-
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Figure 1: Word lattice for morphological reduction

Sonst [drohe]VC , dass auch [weitere Länder]NC [vom Einbruch]PC [betroffen sein würden]VC .

Figure 2: Chunk reordering lattice

BLEU
test-09 test-10

Baseline 18.77 20.1
+ chunk-based reordering 18.94 20.3

Morphological reduction 19.31 20.6
+ chunk-based reordering 19.79 21.1

note: only News LM, case-sensitive evaluation

Table 5: Results with morphological reduction and
chunk reordering on newstest 2009/2010

ual inspection of a data sample, we then identi-
fied a few recurrent patterns of long reorderings
involving the verbs. In particular, we focused on
clause-final verbs in German SOV clauses, which
we move to the left in order to approximate the En-
glish SVO word order. For each sentence a chunk-
based lattice is created, which is then expanded
into a word lattice like the one shown in fig. 2. The
lattice representation provides the decoder with up
to three possible reorderings for a particular verb
chunk. It always retains the original word order as
an alternative input.

For technical reasons, we were unable to pre-
pare a system with reordering, morphological re-
duction and all language models in time for the
shared task. Our secondary submission with re-
ordering is therefore not comparable with our best
system, which includes more language models
and morphological reduction. In subsequent ex-
periments, we combined morphological reduction
with chunk-based reordering (table 5). When mor-
phological reduction is used, the reordering ap-
proach yields an improvement of about 0.5 BLEU
percentage points.

5 Conclusions

There are three important features specific to the
FBK systems at WMT 2010: mixtures of large
language models, German morphological reduc-
tion and decompounding and word reordering.
Our approach to using large language models
proved successful at the 2009 NIST MT evalua-
tion. In the present evaluation, its effectiveness
was reduced by a number of technical problems,
which were mostly due to the limitations of disk
access throughput in our parallel computing en-
vironment. We are working on methods to re-
duce and distribute disk accesses to large lan-
guage models, which will be implemented in the
IRSTLM language modelling toolkit (Federico et
al., 2008). By doing so, we hope to overcome the
current limitations and exploit the power of lan-
guage model mixtures more fully.

The Gertwol-based morphological reduction
and decompounding component we used is a
working solution that results in a significant im-
provement in translation quality. It is an alterna-
tive to the popular statistical compound splitting
methods, such as the one by Koehn and Knight
(2003), incorporating a greater amount of linguis-
tic knowledge and offering morphological reduc-
tion even of simplex words to their base form in
addition. It would be interesting to compare the
relative performance of the two approaches sys-
tematically.

Word reordering between German and English
is a complex problem. Encouraged by the success
of chunk-based verb reordering lattices on Arabic-
English (Bisazza and Federico, 2010), we tried to
adapt the same approach to the German-English
language pair. It turned out that there is a larger
variety of long reordering patterns in this case.
Nevertheless, some experiments performed after
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the official evaluation showed promising results.
We plan to pursue this work in several directions:
Defining a lattice weighting scheme that distin-
guishes between original word order and reorder-
ing paths could help the decoder select the more
promising path through the lattice. Applying sim-
ilar reordering rules to the training corpus would
reduce the mismatch between the training data and
the reordered input sentences. Finally, it would be
useful to explore the impact of different distortion
limits on the decoding of reordering lattices in or-
der to find an optimal trade-off between decoder-
driven short-range and lattice-driven long-range
reordering.
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Abstract
In this paper we describe the statisti-
cal machine translation system of the
RWTH Aachen University developed for
the translation task of the Fifth Workshop
on Statistical Machine Translation. State-
of-the-art phrase-based and hierarchical
statistical MT systems are augmented
with appropriate morpho-syntactic en-
hancements, as well as alternative phrase
training methods and extended lexicon
models. For some tasks, a system combi-
nation of the best systems was used to gen-
erate a final hypothesis. We participated
in the constrained condition of German-
English and French-English in each trans-
lation direction.

1 Introduction

This paper describes the statistical MT system
used for our participation in the WMT 2010 shared
translation task. We used it as an opportunity to in-
corporate novel methods which have been investi-
gated at RWTH over the last year and which have
proven to be successful in other evaluations.

For all tasks we used standard alignment and
training tools as well as our in-house phrase-
based and hierarchical statistical MT decoders.
When German was involved, morpho-syntactic
preprocessing was applied. An alternative phrase-
training method and additional models were tested
and investigated with respect to their effect for the
different language pairs. For two of the language
pairs we could improve performance by system
combination.

An overview of the systems and models will fol-
low in Section 2 and 3, which describe the base-
line architecture, followed by descriptions of the
additional system components. Morpho-syntactic
analysis and other preprocessing issues are cov-
ered by Section 4. Finally, translation results for

the different languages and system variants are
presented in Section 5.

2 Translation Systems

For the WMT 2010 Evaluation we used stan-
dard phrase-based and hierarchical translation sys-
tems. Alignments were trained with a variant of
GIZA++. Target language models are 4-gram lan-
guage models trained with the SRI toolkit, using
Kneser-Ney discounting with interpolation.

2.1 Phrase-Based System
Our phrase-based translation system is similar to
the one described in (Zens and Ney, 2008). Phrase
pairs are extracted from a word-aligned bilingual
corpus and their translation probability in both di-
rections is estimated by relative frequencies. Ad-
ditional models include a standard n-gram lan-
guage model, phrase-level IBM1, word-, phrase-
and distortion-penalties and a discriminative re-
ordering model as described in (Zens and Ney,
2006).

2.2 Hierarchical System
Our hierarchical phrase-based system is similar to
the one described in (Chiang, 2007). It allows for
gaps in the phrases by employing a context-free
grammar and a CYK-like parsing during the de-
coding step. It has similar features as the phrase-
based system mentioned above. For some sys-
tems, we only allowed the non-terminals in hierar-
chical phrases to be substituted with initial phrases
as in (Iglesias et al., 2009), which gave better re-
sults on some language pairs. We will refer to this
as “shallow rules”.

2.3 System Combination
The RWTH approach to MT system combination
of the French→English systems as well as the
German→English systems is a refined version of
the ROVER approach in ASR (Fiscus, 1997) with

93



German→English French→English English→French
BLEU # Phrases BLEU # Phrases BLEU # Phrases

Standard 19.7 128M 25.5 225M 23.7 261M
FA 20.0 12M 25.9 35M 24.0 33M

Table 1: BLEU scores on Test and phrase table sizes with and without forced alignment (FA). For
German→English and English→French phrase table interpolation was applied.

additional steps to cope with reordering between
different hypotheses, and to use true casing infor-
mation from the input hypotheses. The basic con-
cept of the approach has been described by Ma-
tusov et al. (2006). Several improvements have
been added later (Matusov et al., 2008). This ap-
proach includes an enhanced alignment and re-
ordering framework. Alignments between the sys-
tems are learned by GIZA++, a one-to-one align-
ment is generated from the learned state occupa-
tion probabilities.

From these alignments, a confusion network
(CN) is then built using one of the hypotheses as
“skeleton” or “primary” hypothesis. We do not
make a hard decision on which of the hypothe-
ses to use for that, but instead combine all pos-
sible CNs into a single lattice. Majority voting on
the generated lattice is performed using the prior
probabilities for each system as well as other sta-
tistical models such as a special trigram language
model. This language model is also learned on
the input hypotheses. The intention is to favor
longer phrases contained in individual hypotheses.
The translation with the best total score within this
lattice is selected as consensus translation. Scal-
ing factors of these models are optimized similar
to MERT using the Downhill Simplex algorithm.
As the objective function for this optimization, we
selected a linear combination of BLEU and TER
with a weight of 2 on the former; a combination
that has proven to deliver stable results on sev-
eral MT evaluation measures in preceding experi-
ments.

In contrast to previous years, we now include a
separate consensus true casing step to exploit the
true casing capabilities of some of the input sys-
tems: After generating a (lower cased) consensus
translation from the CN, we sum up the counts of
different casing variants of each word in a sen-
tence over the input hypotheses, and use the ma-
jority casing over those. In previous experiments,
this showed to work significantly better than us-
ing a fixed non-consensus true caser, and main-

tains flexibility on the input systems.

3 New Additional Models

3.1 Forced Alignment
For the German→English, French→English and
English→French language tasks we applied a
forced alignment procedure to train the phrase
translation model with the EM algorithm, sim-
ilar to the one described in (DeNero et al.,
2006). Here, the phrase translation probabil-
ities are estimated from their relative frequen-
cies in the phrase-aligned training data. The
phrase alignment is produced by a modified
version of the translation decoder. In addi-
tion to providing a statistically well-founded
phrase model, this has the benefit of produc-
ing smaller phrase tables and thus allowing
more rapid experiments. For the language pairs
German→English and English→French the best
results were achieved by log-linear interpolation
of the standard phrase table with the generative
model. For French→English we directly used the
model trained by forced alignment. A detailed
description of the training procedure is given in
(Wuebker et al., 2010). Table 1 shows the system
performances and phrase table sizes with the stan-
dard phrase table and the one trained with forced
alignment after the first EM iteration. We can see
that the generative model reduces the phrase table
size by 85-90% while increasing performance by
0.3% to 0.4% BLEU.

3.2 Extended Lexicon Models
In previous work, RWTH was able to show the
positive impact of extended lexicon models that
cope with lexical context beyond the limited hori-
zon of phrase pairs and n-gram language models.

Mauser et al. (2009) report improvements of
up to +1% in BLEU on large-scale systems for
Chinese→English and Arabic→English by incor-
porating discriminative and trigger-based lexicon
models into a state-of-the-art phrase-based de-
coder. They discuss how the two types of lexicon
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models help to select content words by capturing
long-distance effects.

The triplet model is a straightforward extension
of the IBM model 1 with a second trigger, and like
the former is trained iteratively using the EM al-
gorithm. In search, the triggers are usually on the
source side, i.e., p(e|f, f ′) is modeled. The path-
constrained triplet model restricts the first source
trigger to the aligned target word, whereas the sec-
ond trigger can move along the whole source sen-
tence. See (Hasan et al., 2008) for a detailed de-
scription and variants of the model and its training.

For the WMT 2010 evaluation, triplets mod-
eling p(e|f, f ′) were trained and applied di-
rectly in search for all relevant language pairs.
Path-constrained models were trained on the in-
domain news-commentary data only and on the
news-commentary plus the Europarl data. Al-
though experience from similar setups indicates
that triplet lexicon models can be beneficial for
machine translation between the languages En-
glish, French, and German, on this year’s WMT
translation tasks slight improvements on the devel-
opment sets did not or only partially carry over to
the held-out test sets. Nevertheless, systems with
triplets were used for system combination, as ex-
tended lexicon models often help to predict con-
tent words and to capture long-range dependen-
cies. Thus they can help to find a strong consensus
hypothesis.

3.3 Unsupervised Training

Due to the small size of the English→German re-
sources available for language modeling as well as
for lexicon extraction, we decided to apply the un-
supervised adaptation suggested in (Schwenk and
Senellart, 2009). We use a baseline SMT system to
translate in-domain monolingual source data, fil-
ter the translations according to a decoder score
normalized by sentence length, add this synthetic
bilingual data to the original one and rebuild the
SMT system from scratch.

The motivation behind the method is that the
phrase table will adapt to the genre, and thus
let phrases which are domain related have higher
probabilities. Two phenomena are observed from
phrase tables and the corresponding translations:

• Phrase translation probabilities are changed,
making the system choose better phrase
translation candidates.

Running Words
English German

Bilingual 44.3M 43.4M
Dict. 1.4M 1.2M
AFP 610.7M
AFP unsup. 152.0M 157.3M

Table 2: Overview on data for unsupervised train-
ing.

BLEU
Dev Test

baseline 15.0 14.7
+dict. 15.1 14.6
+unsup.+dict 15.4 14.9

Table 3: Results for unsupervised training method.

• Phrases which appear repeatedly in the do-
main get higher probabilities, so that the de-
coder can better segment the sentence.

To implement this idea, we translate the AFP part
of the English LDC Gigaword v4.0 and obtain the
synthetic data.

To decrease the number of OOV words, we use
dictionaries from the stardict directory as addi-
tional bilingual data to translate the AFP corpus.
We filter sentences with OOV words and sentences
longer than 100 tokens. A summary of the addi-
tional data used is shown in Table 2.

We tried to use the best 10%, 20% and 40% of
the synthetic data, where the 40% option worked
best. A summary of the results is given in Table 3.

Although this is our best result for the
English→German task, it was not submitted, be-
cause the use of the dictionary is not allowed in
the constrained track.

4 Preprocessing

4.1 Large Parallel Data

In addition to the provided parallel Europarl and
news-commentary corpora, also the large French-
English news corpus (about 22.5 Mio. sentence
pairs) and the French-English UN corpus (about
7.2 Mio. sentence pairs) were available. Since
model training and tuning with such large cor-
pora takes a very long time, we extracted about
2 Mio. sentence pairs of both of these corpora. We
filter sentences with the following properties:
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• Only sentences of minimum length of 4 to-
kens were considered.

• At least 92% of the vocabulary of each sen-
tence occur in the development set.

• The ratio of the vocabulary size of a sen-
tence and the number of its tokens is mini-
mum 80%.

4.2 Morpho-Syntactic Analysis
German, as a flexible and morphologically rich
language, raises a couple of problems in machine
translation. We picked two major problems and
tackled them with morpho-syntactic pre- and post-
processing: compound splitting and long-range
verb reordering.

For the translation from German into English,
German compound words were split using the
frequency-based method described in (Koehn and
Knight, 2003). Thereby, we forbid certain words
and syllables to be split. For the other trans-
lation direction, the English text was first trans-
lated into the modified German language with
split compounds. The generated output was then
postprocessed by re-merging the previously gen-
erated components using the method described in
(Popović et al., 2006).

Additionally, for the German→English phrase-
based system, the long-range POS-based reorder-
ing rules described in (Popović and Ney, 2006)
were applied on the training and test corpora as a
preprocessing step. Thereby, German verbs which
occur at the end of a clause, like infinitives and
past participles, are moved towards the beginning
of that clause. With this, we improved our baseline
phrase-based system by 0.6% BLEU.

5 Experimental Results

For all translation directions, we used the provided
parallel corpora (Europarl, news) to train the trans-
lation models and the monolingual corpora to train

BLEU
Dev Test

phrase-based baseline 19.9 19.2
phrase-based (+POS+mero+giga) 21.0 20.3
hierarchical baseline 20.2 19.6
hierarchical (+giga) 20.5 20.1
system combination 21.4 20.4

Table 4: Results for the German→English task.

the language models. We improved the French-
English systems by enriching the data with parts of
the large addional data, extracted with the method
described in Section 4.1. Depending on the sys-
tem this gave an improvement of 0.2-0.7% BLEU.
We also made use of the large giga-news as well
as the LDC Gigaword corpora for the French and
English language models. All systems were opti-
mized for BLEU score on the development data,
newstest2008. The newstest2009 data is
used as a blind test set.

In the following, we will give the BLEU scores
for all language tasks of the baseline system and
the best setup for both, the phrase-based and the
hierarchical system. We will use the following
notations to indicate the several methods we used:

(+POS) POS-based verb reordering
(+mero) maximum entropy reordering
(+giga) including giga-news and

LDC Gigaword in LM
(fa) trained by forced alignment

(shallow) allow only shallow rules

We applied system combination of up to 6 sys-
tems with several setups. The submitted systems
are marked in tables 4-7.

6 Conclusion

For the participation in the WMT 2010 shared
translation task, RWTH used state-of-the-art
phrase-based and hierarchical translation systems.
To deal with the rich morphology and word or-
der differences in German, compound splitting
and long range verb reordering were applied in a
preprocessing step. For the French-English lan-
guage pairs, RWTH extracted parts of the large
news corpus and the UN corpus as additional
training data. Further, training the phrase trans-
lation model with forced alignment yielded im-
provements in BLEU. To obtain the final hypothe-
sis for the French→English and German→English

BLEU
Dev Test

phrase-based baseline 14.8 14.5
phrase-based (+mero) 15.0 14.7
hierarchical baseline 14.2 13.9
hierarchical (shallow) 14.5 14.3

Table 5: Results for the English→German task.
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BLEU
Dev Test

phrase-based baseline 21.8 25.1
phrase-based (fa+giga) 23.0 26.1
hierarchical baseline 21.9 25.0
hierarchical (shallow+giga) 22.7 25.6
system combination 23.1 26.1

Table 6: Results for the French→English task.

BLEU
Dev Test

phrase-based baseline 20.9 23.2
phrase-based (fa+mero+giga) 23.0 24.6
hierarchical baseline 20.6 22.5
hierarchical (shallow,+giga) 22.4 24.3

Table 7: Results for the English→French task.

language pairs, RWTH applied system combina-
tion. Altogether, by application of these meth-
ods RWTH was able to increase performance in
BLEU by 0.8% for German→English, 0.2% for
English→German, 1.0% for French→English and
1.4% for English→French on the test set over the
respective baseline systems.
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Abstract

This paper describes the 2010 phrase-based
statistical machine translation system de-
veloped at the TALP Research Center of
the UPC1 in cooperation with BMIC2 and
VMU3. In phrase-based SMT, the phrase
table is the main tool in translation. It is
created extracting phrases from an aligned
parallel corpus and then computing trans-
lation model scores with them. Performing
a collocation segmentation over the source
and target corpus before the alignment
causes that di�erent and larger phrases
are extracted from the same original doc-
uments. We performed this segmentation
and used the union of this phrase set with
the phrase set extracted from the non-
segmented corpus to compute the phrase
table. We present the con�gurations con-
sidered and also report results obtained
with internal and o�cial test sets.

1 Introduction

The TALP Research Center of the UPC1 in coop-
eration with BMIC2 and VMU3 participated in the
Spanish-to-English WMT task. Our primary sub-
mission was a phrase-based SMT system enhanced
with POS tags and our contrastive submission was
an augmented phrase-based system using colloca-
tion segmentation (Costa-jussà et al., 2010), which
mainly is a way of introducing new phrases in the
translation table. This paper presents the descrip-
tion of both systems together with the results that
we obtained in the evaluation task and is organized
as follows: �rst, Section 2 and 3 present a brief de-
scription of a phrase-based SMT, followed by a gen-
eral explanation of collocation segmentation. Sec-
tion 4 presents the experimental framework, corpus
used and a description of the di�erent systems built
for the translation task; the section ends showing
the results we obtained over the o�cial test set. Fi-
nally, section 5 presents the conclusions obtained
from the experiments.

1Universitat Politècnica de Catalunya
2Barcelona Media Innovation Center
3Vytautas Magnus University

2 Phrase-based SMT

This approach to SMT performs the translation
splitting the source sentence in segments and as-
signing to each segment a bilingual phrase from
a phrase-table. Bilingual phrases are translation
units that contain source words and target words,
e.g. < unidad de traducción | translation unit >,
and have di�erent scores associated to them. These
bilingual phrases are then sorted in order to max-
imize a linear combination of feature functions.
Such strategy is known as the log-linear model
(Och and Ney, 2003) and it is formally de�ned as:

ê = arg max
e

[
M∑

m=1

λmhm (e, f)

]
(1)

where hm are di�erent feature functions with
weights λm. The two main feature functions
are the translation model (TM) and the target
language model (LM). Additional models include
POS target language models, lexical weights, word
penalty and reordering models among others.

3 Collocation segmentation

Collocation segmentation is the process of de-
tecting boundaries between collocation segments
within a text (Daudaravicius and Marcinkeviciene,
2004). A collocation segment is a piece of text be-
tween boundaries. The boundaries are established
in two steps using two di�erent measures: the Dice
score and a Average Minimum Law (AML).
The Dice score is used to measure the associa-

tion strength between two words. It has been used
before in the collocation compiler XTract (Smadja,
1993) and in the lexicon extraction system Cham-
pollion (Smadja et al., 1996). It is de�ned as fol-
lows:

Dice (x; y) =
2f (x, y)

f (x) + f (y)
(2)

where f (x, y) is the frequency of co-occurrence of
x and y, and f (x) and f (y) the frequencies of
occurrence of x and y anywhere in the text. It gives
high scores when x and y occur in conjunction.
The �rst step then establishes a boundary between

98



two adjacent words when the Dice score is lower
than a threshold t = exp (−8). Such a threshold
was established following the results obtained in
(Costa-jussà et al., 2010), where an integration of
this technique and a SMT system was performed
over the Bible corpus.

The second step of the procedure uses the AML.
It de�nes a boundary between words xi−1 and xi

when:

Dice (xi−2;xi−1) +Dice (xi;xi+1)

2
> Dice (xi−1;xi)

(3)

That is, the boundary is set when the Dice value
between words xi and xi−1 is lower than the aver-
age of preceding and following values.

4 Experimental Framework

All systems were built using Moses (Koehn et al.,
2007), a state-of-the-art software for phrase-based
SMT. For preprocessing Spanish, we used Freeling
(Atserias et al., 2006), an open source library of
natural language analyzers. For English, we used
TnT (Brants, 2000) and Moses' tokenizer. The
language models were built using SRILM (Stolcke,
2002).

4.1 Corpus

This year, the translation task provided four dif-
ferent sources to collect corpora for the Spanish-
English pair. Bilingual corpora included version 5
of the Europarl Corpus (Koehn, 2005), the News
Commentary corpus and the United Nations cor-
pus. Additional English corpora was available from
the News corpus. The organizers also allowed the
use of the English Gigaword Third and Fourth Edi-
tion, released by the LDC. As for development
and internal test, the test sets from 2008 and 2009
translation tasks were available.

For our experiments, we selected as training data
the union of the Europarl and the News Commen-
tary. Development was performed with a section
of the 2008 test set and the 2009 test set was se-
lected as internal test. We deleted all empty lines,
removed pairs that were longer than 40 words, ei-
ther in Spanish or English; and also removed pairs
whose ratio between number of words were bigger
than 3.

As a preprocess, all corpora were lower-cased
and tokenized. The Spanish corpus was tokenized
and POS tags were extracted using Freeling, which
split clitics from verbs and also separated words
like �del� into �de el�. In order to build a POS tar-
get language model, we also obtained POS tags
from the English corpus using the TnT tagger.
Statistics of the selected corpus can be seen in Ta-
ble 1.

Corpora Spanish English

Training sent 1, 180, 623 1, 180, 623
Running words 26, 454, 280 25, 291, 370
Vocabulary 118, 073 89, 248

Development sent 1, 729 1, 729
Running words 37, 092 34, 774
Vocabulary 7, 025 6, 199

Internal test sent 2, 525 2, 525
Running words 69, 565 65, 595
Vocabulary 10, 539 8, 907

O�cial test sent 2, 489 -
Running words 66, 714 -
Vocabulary 10, 725 -

Table 1: Statistics for the training, development
and test sets.

Internal test O�cial test

Adjectives 137 72
Common nouns 369 188
Proper nouns 408 2, 106

Verbs 213 128
Others 119 168

Total 1246 2662

Table 2: Unknown words found in internal and
o�cial test sets

It is important to notice that neither the United
Nations nor the Gigaword corpus were used for
bilingual training. Nevertheless, the English part
from the United Nations and the monolingual
News corpus were used to build the language model
of our systems.

4.1.1 Unknown words

We analyzed the content from the internal and of-
�cial test and realized that they both contained
many words that were not seen in the training data.
Table 2 shows the number of unknown words found
in both sets, classi�ed according to their POS.
In average, we may expect an unknown word

every two sentences in the internal test and more
than one per sentence in the o�cial test set. It can
also be seen that most of those unknown words are
proper nouns, representing 32% and 79% of the
unknown sets, respectively. Common nouns were
the second most frequent type of unknown words,
followed by verbs and adjectives.

4.2 Systems

We submitted two di�erent systems for the trans-
lation task. First a baseline using the training data
mentioned before; and then an augmented system,
where the baseline-extracted phrase list was ex-
tended with additional phrases coming from a seg-
mented version of the training corpus.
We also considered an additional system built
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with two di�erent decoding path, a standard path
from words to words and POS and an alternative
path from stems to words and POS in the target
side. At the end, we did not submit this system
to the translation task because it did not provide
better results than the previous two in our internal
test.
The set of feature functions used include: source-

to-target and target-to-source relative frequen-
cies, source-to-target and target-to-source lexical
weights, word and phrase penalties, a target lan-
guage model, a POS target language model, and a
lexicalized reordering model (Tillman, 2004).

4.2.1 Considering stems as an alternate

decoding path.

Using Moses' framework for factored translation
models we de�ned a system with two decoding
paths: one decoding path using words and the
other decoding path using stems in the source lan-
guage and words in the target language. Both de-
coding paths only had a single translation step.
The possibility of using multiple alternative decod-
ing path was developed by Birch et. al. (2007).
This system tried to solve the problem with the

unknown words. Because Spanish is morphologi-
cally richer than English, this alternative decoding
path allowed the decoder translate words that were
not seen in the training data and shared the same
root with other known words.

4.2.2 Expanding the phrase table using

collocation segmentation.

In order to build the augmented phrase table with
the technique mentioned in section 3, we seg-
mented each language of the bilingual corpus in-
dependently and then, using the collocation seg-
ments as words, we aligned the corpus and ex-
tracted the phrases from it. Once the phrases were
extracted, the segments of each phrase were split
again in words to have standard phrases. Finally,
we use the union of this phrases and the phrases
extracted from the baseline system to compute the
�nal phrase table. A diagram of the whole proce-
dure can be seen in �gure 1.
The objective of this integration is to add new

phrases in the translation table and to enhance
the relative frequency of the phrases that were ex-
tracted from both methods.

4.2.3 Language model interpolation.

Because SMT systems are trained with a bilingual
corpus, they ended highly tied to the domain the
corpus belong to. Therefore, when the documents
we want to translate belong to a di�erent domain,
additional domain adaptation techniques are rec-
ommended to build the system. Those techniques
usually employ additional corpora that correspond
to the domain we want to translate from.

internal test

baseline 24.25
baseline+stem 23.45
augmented 23.9

Table 3: Internal test results.

test testcased−detok

baseline 26.1 25.1
augmented 26.1 25.1

Table 4: Results from translation task

The test set for this translation task comes from
the news domain, but most of our bilingual cor-
pora belonged to a political domain, the Europarl.
Therefore we use the additional monolingual cor-
pus to adapt the language model to the news do-
main.

The strategy used followed the experiment per-
formed last year in (R. Fonollosa et al., 2009).
We used SRILM during the whole process. All
language models were order �ve and used modi-
�ed Kneser-Ney discount and interpolation. First,
we build three di�erent language models accord-
ing to their domain: Europarl, United Nations and
news; then, we obtained the perplexity of each lan-
guage model over the News Commentary develop-
ment corpus; next, we used compute-best-mix to
obtain weights for each language model that di-
minish the global perplexity. Finally, the models
were combined using those weights.

In our experiments all systems used the resulting
language model, therefore the di�erence obtained
in our results were cause only by the translation
model.

4.3 Results

We present results from the three systems devel-
oped this year. First, the baseline, which included
all the features mentioned in section 4.2; then, the
system with an alternative decoding path, called
baseline+stem; and �nally the augmented system,
which integrated collocation segmentation to the
baseline. Internal test results can be seen in table
3. Automatic scores provided by the WMT 2010
organizers for the o�cial test can be found in ta-
ble 4. All BLEU scores are case-insensitive and
tokenized except for the o�cial test set which also
contains case-sensitive and non-tokenized score.

We obtained a BLEU score of 26.1 and 25.1 for
our case-insensitive and sensitive outputs, respec-
tively. The highest score was obtained by Uni-
versity of Cambridge, with 30.5 and 29.1 BLEU
points.
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Figure 1: Example of the expansion of the phrase table using collocation segmentation. New phrases
added by the collocation-based system are marked with a ∗∗.

4.3.1 Comparing systems

Once we obtained the translation outputs from the
baseline and the augmented system, we performed
a manual comparison of them. Even though we
did not �nd any signi�cant advantages of the aug-
mented system over the baseline, the collocation
segmentation strategy chose a better morphologi-
cal structures in some cases as can be seen in Table
5 (only sentence sub-segments are shown):

5 Conclusion

We presented two di�erent submissions for the
Spanish-English language pair. The language
model for both system was built interpolating two
big out-of-domain language models and one smaller
in-domain language model. The �rst system was a
baseline with POS target language model; and the
second one an augmented system, that integrates
the baseline with collocation segmentation. Re-
sults over the o�cial test set showed no di�erence
in BLEU between these two, even though internal
results showed that the baseline obtained a better
score.

We also considered adding an additional decod-
ing path from stems to words in the baseline but
internal tests showed that it did not improve trans-
lation quality either. The high number of unknown
words found in Spanish suggested us that consider-
ing in parallel the simple form of stems could help

us achieve better results. Nevertheless, a deeper
study of the unknown set showed us that most
of those words were proper nouns, which do not
have in�ection and therefore cannot bene�ted from
stems.

Finally, despite that internal test did not showed
an improvement with the augmented system, we
submitted it as a secondary run looking for the
e�ect these phrases could have over human evalu-
ation.

Acknowledgment

The research leading to these results has received
funding from the European Community's Seventh
Framework Programme (FP7/2007-2013) under
grant agreement number 247762, from the Span-
ish Ministry of Science and Innovation through the
Buceador project (TEC2009-14094-C04-01) and
the Juan de la Cierva fellowship program. The
authors also wants to thank the Barcelona Media
Innovation Centre for its support and permission
to publish this research.

References

Jordi Atserias, Bernardino Casas, Elisabet
Comelles, Meritxell González, Lluís Padró, and
Muntsa Padró. 2006. FreeLing 1.3: Syntactic
and semantic services in an open-source NLP

101



Original: sabiendo que está recibiendo el premio
Baseline: knowing that it receive the prize
Augmented: knowing that he is receiving the prize
Original: muchos de mis amigos pre�eren no separarla.
Baseline: many of my friends prefer not to separate them.
Augmented: many of my friends prefer not to separate it.
Original: Los estadounidenses contarán con un teléfono móvil
Baseline: The Americans have a mobile phone
Augmented: The Americans will have a mobile phone
Original: es plenamente consciente del camino más largo que debe emprender

Baseline: is fully aware of the longest journey must undertake

Augmented: is fully aware of the longest journey that need to be taken

Table 5: Comparison between baseline and augmented outputs

library. In Proceedings of the �fth interna-
tional conference on Language Resources and
Evaluation (LREC 2006), ELRA, Genoa, Italy,
May.

Alexandra Birch, Miles Osborne, and Philipp
Koehn. 2007. Ccg supertags in factored statis-
tical machine translation. In StatMT '07: Pro-
ceedings of the Second Workshop on Statistical
Machine Translation, pages 9�16, Morristown,
NJ, USA. Association for Computational Lin-
guistics.

Thorsten Brants. 2000. TnT � a statistical part-
of-speech tagger. In Proceedings of the Sixth
Applied Natural Language Processing (ANLP-
2000), Seattle, WA.

Marta R. Costa-jussà, Vidas Daudaravicius, and
Rafael E. Banchs. 2010. Integration of statisti-
cal collocation segmentations in a phrase-based
statistical machine translation system. In 14th
Annual Conference of the European Association
for Machine Translation.

Vidas Daudaravicius and Ruta Marcinkeviciene.
2004. Gravity counts for the boundaries of col-
locations. International Journal of Corpus Lin-
guistics, 9:321�348(28).

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, Chris Dyer, Ond°ej Bojar,
Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open Source Toolkit for Statistical Ma-
chine Translation. In ACL '07: Proceedings of
the 45th Annual Meeting of the ACL on Interac-
tive Poster and Demonstration Sessions, pages
177�180, Morristown, NJ, USA. Association for
Computational Linguistics.

Philipp Koehn. 2005. Europarl: A Parallel Corpus
for Statistical Machine Translation. In Machine
Translation Summit.

Franz Josef Och and Hermann Ney. 2003. A Sys-
tematic Comparison of Various Statistical Align-
ment Models. Computational Linguistics, 29:19�
51.

José A. R. Fonollosa, Maxim Khalilov, Marta R.
Costa-jussá, José B. Mariño, Carlos A. Hen-
ríquez Q., Adolfo Hernández H., and Rafael E.
Banchs. 2009. The TALP-UPC phrase-based
translation system for EACL-WMT 2009. In
Proceedings of the Fourth Workshop on Statis-
tical Machine Translation, pages 85�89, Athens,
Greece, March. Association for Computational
Linguistics.

Frank A. Smadja, Kathleen McKeown, and
Vasileios Hatzivassiloglou. 1996. Translating
collocations for bilingual lexicons: A statistical
approach. Computational Linguistics, 22(1):1�
38.

Frank Smadja. 1993. Retrieving collocations from
text: Xtract. Comput. Linguist., 19(1):143�177.

Andreas Stolcke. 2002. SRILM � an extensible
language modeling toolkit. pages 901�904.

Christoph Tillman. 2004. A Unigram Orientation
Model for Statistical Machine Translation. In
HLT-NAACL.

102



Proceedings of the Joint 5th Workshop on Statistical Machine Translation and MetricsMATR, pages 103–109,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

The RALI Machine Translation System for WMT 2010
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Abstract

We describe our system for the translation
task of WMT 2010. This system, devel-
oped for the English-French and French-
English directions, is based on Moses and
was trained using only the resources sup-
plied for the workshop. We report exper-
iments to enhance it with out-of-domain
parallel corpora sub-sampling, N-best list
post-processing and a French grammatical
checker.

1 Introduction

This paper presents the phrase-based machine
translation system developed at RALI in order
to participate in both the French-English and
English-French translation tasks. In these two
tasks, we used all the corpora supplied for the con-
straint data condition apart from the LDC Giga-
word corpora.

We describe its different components in Sec-
tion 2. Section 3 reports our experiments to sub-
sample the available out-of-domain corpora in or-
der to adapt the translation models to the news
domain. Section 4, dedicated to post-processing,
presents how N-best lists are reranked and how the
French 1-best output is corrected by a grammatical
checker. Section 5 studies how the original source
language of news acts upon translation quality. We
conclude in Section 6.

2 System Architecture

2.1 Pre-processing

The available corpora were pre-processed using
an in-house script that normalizes quotes, dashes,
spaces and ligatures. We also reaccentuated
French words starting with a capital letter. We
significantly cleaned up the parallel Giga word

corpus (noted as gw hereafter), keeping 18.1 M

of the original 22.5 M sentence pairs. For exam-
ple, sentence pairs with numerous numbers, non-
alphanumeric characters or words starting with
capital letters were removed.

Moreover, training material was tokenized with
the tool provided for the workshop and truecased,
meaning that the words occuring after a strong
punctuation mark were lowercased when they be-
longed to a dictionary of common all-lowercased
forms; the others were left unchanged. In order
to reduce the number of words unknown to the
translation models, all numbers were serialized,
i.e. mapped to a special unique token. The origi-
nal numbers are then placed back in the translation
in the same order as they appear in the source sen-
tence. Since translations are mostly monotonic be-
tween French and English, this simple algorithm
works well most of the time.

2.2 Language Models

We trained Kneser-Ney discounted 5-gram lan-
guage models (LMs) on each available corpus us-
ing the SRILM toolkit (Stolcke, 2002). These
LMs were combined through linear interpola-
tion: first, an out-of-domain LM was built from
Europarl, UN and gw; then, this model was
combined with the two in-domain LMs trained
on news-commentary and news.shuffled, which
will be referred to as nc and ns in the remainder
of the article. Weights were fixed by optimizing
the perplexity of a development corpus made of
news-test2008 and news-syscomb2009 texts.

In order to reduce the size of the LMs, we
limited the vocabulary of our models to 1 M
words for English and French. The words of
these vocabularies were selected from the com-
putation of the number of their occurences us-
ing the method proposed by Venkataraman and
Wang (2003). The out-of-vocabulary rate mea-
sured on news-test2009 and news-test2010

with a so-built vocabulary varies between 0.6 %

103



and 0.8 % for both English and French, while it
was between 0.4 % and 0.7 % before the vocabu-
lary was pruned.

To train the LM on the 48 M-sentence English
ns corpus, 32 Gb RAM were required and up to
16 Gb RAM, for the other corpora. To reduce the
memory needs during decoding, LMs were pruned
using the SRILM prune option.

2.3 Alignment and Translation Models

All parallel corpora were aligned with
Giza++ (Och and Ney, 2003). Our transla-
tion models are phrase-based models (PBMs)
built with Moses (Koehn et al., 2007) with the
following non-default settings:

• maximum sentence length of 80 words,

• limit on the number of phrase translations
loaded for each phrase fixed to 30.

Weights of LM, phrase table and lexicalized
reordering model scores were optimized on the
development corpus thanks to the MERT algo-
rithm (Och, 2003).

2.4 Experiments

This section reports experiments done on the
news-test2009 corpus for testing various config-
urations. In these first experiments, we trained
LMs and translation models on the Europarl cor-
pus.

Case We tested two methods to handle case. The
first one lowercases all training data and docu-
ments to translate, while the second one normal-
izes all training data and documents into their nat-
ural case. These two methods require a post-
processing recapitalization but this last step is
more basic for the truecase method. Training mod-
els on lowercased material led to a 23.15 % case-
insensitive BLEU and a 21.61 % case-sensitive
BLEU; from truecased corpora, we obtained a
23.24 % case-insensitive BLEU and a 22.13 %
case-sensitive BLEU. As truecasing induces an in-
crease of the two metrics, we built all our mod-
els in truecase. The results shown in the remain-
der of this paper are reported in terms of case-
insensitive BLEU which showed last year a bet-
ter correlation with human judgments than case-
sensitive BLEU for the two languages we con-
sider (Callison-Burch et al., 2009).

Tokenization Two tokenizers were tested: one
provided for the workshop and another we devel-
oped. They differ mainly in the processing of com-
pound words: our in-house tokenizer splits these
words (e.g. percentage-wise is turned into percent-

age - wise), which improves the lexical coverage of
the models trained on the corpus. This feature
does not exist in the WMT tool. However, us-
ing the WMT tokenizer, we measured a 23.24 %
BLEU, while our in-house tokenizer yielded a
lower BLEU of 22.85 %. Follow these results
prompted us to use the WMT tokenizer.

Serialization In order to test the effect of se-
rialization, i.e. the mapping of all numbers to
a special unique token, we measured the BLEU
score obtained by a PBM trained on Europarl for
English-French, when numbers are left unchanged
(Table 1, line 1) or serialized (line 2). These
results exhibit a slight decrease of BLEU when
serialization is performed. Moreover, if BLEU
is computed using a serialized reference (line 3),
which is equivalent to ignoring deserialization er-
rors, a minor gain of BLEU is observed, which
validates our recovering method. Since resorting
to serialization/deserialization yields comparable
performance to a system not using it, while reduc-
ing the model’s size, we chose to use it.

BLEU
no serialization 23.24
corpus serialization 23.13
corpus and reference serialization 23.27

Table 1: BLEU measured for English-French on
news-test2009 when training on Europarl.

LM Table 2 reports the perplexity measured on
news-test2009 for French (column 1) and En-
glish (column 3) LMs learned on different cor-
pora and interpolated using the development cor-
pus. We also provide the BLEU score (column 2)
for English-French obtained from translation mod-
els trained on Europarl and nc. As expected, us-
ing in-domain corpora (line 2) for English-French
led to better results than using out-of-domain data
(line 3). The best perplexities and BLEU score
are obtained when LMs trained on all the available
corpora are combined (line 4). The last three lines
exhibit how LMs perform when they are trained on
in-domain corpora without pruning them. While
the gzipped 5-gram LM (last line) obtained in
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such a manner occupies 1.4 Gb on hard disk, the
gzipped pruned 5-gram LM (line 4) trained using
all corpora occupies 0.9 Gb and yields the same
BLEU score. This last LM was used in all the ex-
periments reported in the subsequent sections.

corpora
Fr En

ppl BLEU ppl
nc 327 22.44 454
nc + ns 125 25.69 166
Europarl + UN + Gw 156 24.91 225

all corpora 113 26.01 151
nc + ns (3g, unpruned) 138 25.32 -
nc + ns (4g, unpruned) 124 25.86 -
nc + ns (5g, unpruned) 120 26.04 -

Table 2: LMs perplexities and BLEU scores mea-
sured on news-test2009. Translation models
used here were trained on nc and Europarl.

3 Domain adaptation

As the only news parallel corpus provided for
the workshop contains 85k sentence pairs, we
must resort to other parallel out-of-domain cor-
pora in order to build reliable translation models.
If in-domain and out-of-domain LMs are usually
mixed with the well-studied interpolation tech-
niques, training translation models from data of
different domains has received less attention (Fos-
ter and Kuhn, 2007; Bertoldi and Federico, 2009).
Therefore, there is still no widely accepted tech-
nique for this last purpose.

3.1 Effects of the training data size

We investigated how increasing training data acts
upon BLEU score. Table 3 shows a high increase
of 2.7 points w.r.t. the use of nc alone (line 1)
when building the phrase table and the reordering
model from nc and either the 1.7 M-sentence-pair
Europarl (line 2) or a 1.7 M-sentence-pair cor-
pus extracted from the 3 out-of-domain corpora:
Europarl, UN and Gw (line 3). Training a PBM on
merged parallel corpora is not necessarily the best
way to combine data from different domains. We
repeated 20 times nc before adding it to Europarl

so as to have the same amount of out-of-domain
and in-domain material. This method turned out
to be less successful since it led to a minor 0.15
BLEU decrease (line 4) w.r.t. our previous system.

Following the motto “no data is better than more

corpora En→Fr Fr→En
nc 23.29 23.23
nc + Europarl 26.01 -
nc + 1.7 M random pairs 26.02 26.68
20×nc + Europarl 25.86 -
nc + 8.7 M pairs (part 0) 26.44 27.65
nc + 8.7 M pairs (part 1) 26.68 27.46
nc + 8.7 M pairs (part 2) 26.54 27.50
3 models merged 26.86 27.56

Table 3: BLEU (in %) measured on news-
test2009 for English-French and French-English
when translations models and lexicalized reorder-
ing models are built using various amount of data
in addition to nc.

data”, a PBM was built using all the parallel cor-
pora at our disposal. Since the overall parallel sen-
tences were too numerous for our computational
resources to be simultaneously used, we randomly
split out-of-domain corpora into 3 parts of 8.7 M
sentence pairs each and then combined them with
nc. PBMs were trained on each of these parts
(lines 5 to 7), which yields respectively 0.5 and
0.8 BLEU gain for English-French and French-
English w.r.t. the use of 1.7 M out-of-domain sen-
tence pairs. The more significant improvement no-
ticed for the French-English direction is probably
explained by the fact that the French language is
morphologically richer than English. The 3 PBMs
were then combined by merging the 3 phrase ta-
bles. To do so, the 5 phrase table scores computed
by Moses were mixed using the geometric average
and a 6th score was added, which counts the num-
ber of phrase tables where the given phrase pair
occurs. We ended up with a phrase table contain-
ing 623 M entries, only 9 % and 4 % of them being
in 2 and 3 tables respectively. The resulting phrase
table led to a slight improvement of BLEU scores
(last line) w.r.t. the previous models, except for the
model trained on part 0 for French-English.

3.2 Corpus sub-sampling
Whereas using all corpora improves translation
quality, it requires a huge amount of memory and
disk space. We investigate in this section ways to
select sentence pairs among large out-of-domain
corpora.

Unknown words The main interest of adding
new training material relies on the finding of
words missing in the phrase table. According to
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this principle, nc was extended with new sentence
pairs containing an unknown word (Table 4, line 2)
or a word that belongs to our LM vocabulary and
that occurs less than 3 times in the current cor-
pus (line 3). This resulted in adding 400 k pairs
in the first case and 950 k in the second one, with
BLEU scores close or even better than those ob-
tained with 1.7 M.

corpora En→Fr Fr→En
nc + 1.7 M random pairs 26.02 26.68
nc + 400k pairs (occ = 1) 25.67 -
nc + 950k pairs (occ = 3) 26.13 -
nc + Joshua sub-sampling 26.98 27.68
nc + IR (1-g q, w/ repet) 25.81 -
nc + IR (1-g q, no repet) 26.56 27.54
nc + IR (1,2-g q, w/ repet) 26.26 -
nc + IR (1,2-g q, no repet) 26.53 -
nc + 8.7 M pairs 26.68 27.65
+ IR score (1g q, no repet) 26.93 27.65
3 large models merged 26.86 27.56
+ IR score (1g q, no repet) 26.98 27.74

Table 4: BLEU measured on news-test2009 for
English-French and French-English using transla-
tion models trained on nc and a subset of out-of-
domain corpora.

Unknown n-grams We applied the sub-
sampling method available in the Joshua
toolkit (Li et al., 2009). This method adds a
new sentence pair when it contains new n-grams
(with 1 ≤ n ≤ 12) occurring less than 20 times in
the current corpus, which led us to add 1.5 M pairs
for English-French and 1.4 M for French-English.
A significant improvement of BLEU is observed
using this method (0.8 for English-French and
1.0 for French-English) w.r.t. the use of 1.7 M
randomly selected pairs. However, this method
has the major drawback of needing to build a new
phrase table for each document to translate.

Information retrieval Information retrieval
(IR) methods have been used in the past to sub-
sample parallel corpora (Hildebrand et al., 2005;
Lü et al., 2007). These studies use sentences
belonging to the development and test corpora as
queries to select the k most similar source sen-
tences in an indexed parallel corpus. The retrieved
sentence pairs constitute a training corpus for
the translation models. In order to alleviate the
fact that a new PBM has to be learned for each

new test corpus, we built queries using sentences
contained in the monolingual ns corpus, leading
to the selection of sentence pairs stylistically
close to those in the news domain. The source
sentences of the three out-of-domain corpora
were indexed using Lemur.1 Two types of queries
were built from ns sentences after removing stop
words: the first one is limited to unigrams, the
second one contains both unigrams and bigrams,
with a weight for bigrams twice as high as for
unigrams. The interest of the latter query type is
based on the hypothesis that bigrams are more
domain-dependent than unigrams. Another choice
that needs to be made when using IR methods is
concerning the retention of redundant sentences
in the final corpus.

Lines 5 to 8 of Table 4 show the results obtained
when sentence pairs were gathered up to the size
of Europarl, i.e. 1.7 M pairs. 10 sentences were
retrieved per query in various configurations: with
or without bigrams inside queries, with or without
duplicate sentence pairs in the training corpus. Re-
sults demonstrate the interest of the approach since
the BLEU scores are close to those obtained us-
ing the previous tested method based on n-grams
of the test data. Taking bigrams into account does
not improve results and adding only once new sen-
tences is more relevant than duplicating them.

Since using all data led to even better perfor-
mances (see last line of Table 3), we used infor-
mation provided by the IR method in the PBMs
trained on nc + 8.7 M out-of-domain sentence
pairs or taking into account all the training ma-
terial. To this end, we included a new score in
the phrase tables which is fixed to 1 for entries
that are in the phrase table trained on sentences
retrieved with unigram queries without repetition
(see line 6 of Table 4), and 0 otherwise. Therefore,
this score aims at boosting the weight of phrases
that were found in sentences close to the news do-
main. The results reported in the 4 last lines of Ta-
ble 4 show minor but consistent gains when adding
this score. The outputs of the PBMs trained on
all the training corpus and which obtained the best
BLEU scores on news-test2009 were submitted
as contrastive runs. The two first lines of Table 5
report the results on this years’s test data, when
the score related to the retrieved corpus is incor-
porated or not. These results still exhibit a minor
improvement when adding this score.

1www.lemurproject.org
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En→Fr Fr→En
BLEU BLEU-cased TER BLEU BLEU-cased TER

PBM 27.5 26.5 62.2 27.8 26.9 61.2
+IR score 27.7 26.6 62.1 28.0 27.0 61.0
+N-best list reranking 27.9 26.8 62.1 28.0 27.0 61.2
+grammatical checker 28.0 26.9 62.0 - - -

Table 5: Official results of our system on news-test2010.

4 Post-processing

4.1 N-best List Reranking

Our best PBM enhanced by IR methods was em-
ployed to generate 500-best lists. These lists were
reranked combining the global decoder score with
the length ratio between source and target sen-
tences, and the proportions of source sentence n-
grams that are in the news monolingual corpora
(with 1 ≤ n ≤ 5). Weights of these 7 scores are
optimized via MERT on news-test2009. Lines 2
and 3 of Table 5 provide the results obtained be-
fore and after N-best list reranking. They show a
tiny gain for all metrics for English-French, while
the results remain constant for French-English.
Nevertheless, we decided to use those translations
for the French-English task as our primary run.

4.2 Grammatical Checker

PBM outputs contain a significant number of
grammatical errors, even when LMs are trained
on large data sets. We tested the use of a gram-
matical checker for the French language: Antidote
RX distributed by Druide informatique inc.2 This
software was applied in a systematic way on the
first translation generated after N-best reranking.
Thus, as soon as the software suggests one or sev-
eral choices that it considers as more correct than
the original translation, the first proposal is kept.
The checked translation is our first run for English-
French.

Antidote RX changed at least one word in
26 % of the news-test2010 sentences. The most
frequent type of corrections are agreement errors,
like in the following example where the agreement
between the subject nombre (number) is correctly
made with the adjective coupé (cut), thanks to the
full syntactic parsing of the French sentence.
Source: [...] the number of revaccinations could then be

cut [...]
Reranking: [...] le nombre de revaccinations pourrait

2www.druide.com

alors être coupées [...]
+Grammatical checker: [...] le nombre de revacci-

nations pourrait alors être coupé [...]

The example below exhibits a good decision
made by the grammatical checker on the mood of
the French verb être (to be).
Source: It will be a long time before anything else will be
on offer in Iraq.

Reranking: Il faudra beaucoup de temps avant que tout

le reste sera offert en Irak.

+Grammatical checker: Il faudra beaucoup de temps

avant que tout le reste soit offert en Irak.

A last interesting type of corrected errors con-
cerns negation. Antidote has indeed the capacity
to add the French particle ne when it is missing in
the expressions ne ... pas, ne ... plus, aucun ne, per-

sonne ne or rien ne. The results obtained using the
grammatical checker are reported in the last line
of Table 5. The automatic evaluation shows only a
minor improvement but we expect the changes in-
duced by this tool to be more significant for human
annotators.

5 Effects of the Original Source
Language of Articles on Translation

During our experiments, we found that translation
quality is highly variable depending on the origi-
nal source language of the news sentences. This
phenomenon is correlated to the previous work of
Kurokawa et al. (2009) that showed that whether
or not a piece of text is an original or a trans-
lation has an impact on translation performance.
The main reason that explains our observations
is probably that the topics and the vocabulary of
news originally expressed in languages other than
French and English tend to differ more from those
of the training materials used to train PBM mod-
els for these two languages. In order to take into
account this phenomenon, MERT tuning was re-
peated for each original source language, using the
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same PBM models trained on all parallel corpora
and incorporating an IR score.

Columns 1 and 3 of Table 5 display the BLEU
measured using our previous global MERT op-
timization made on 2553 sentence pairs, while
columns 2 and 4 show the results obtained when
running MERT on subsets of the development ma-
terial, made of around 700 sentence pairs each.
The BLEU measured on the whole 2010 test set
is reported in the last line. As expected, language-
dependent MERT tends to increase the LM weight
for English and French. However, an absolute
0.35 % BLEU decrease is globally observed for
English-French using this approach and a 0.21 %
improvement for French-English.

En→Fr Fr→En
MERT global lang dep global lang dep

Cz 21.95 21.45 21.84 21.85
En 30.80 29.84 33.73 35.00
Fr 37.59 36.96 31.59 32.62
De 16.60 16.73 17.41 17.76
Es 24.52 24.45 29.25 28.31

total 27.64 27.39 27.99 28.20

Table 6: BLEU scores measured on parts of
news-test2010 according to the original source
language.

6 Conclusion

This paper presented our statistical machine trans-
lation system developed for the translation task us-
ing Moses. Our submitted runs were generated
from models trained on all the corpora made avail-
able for the workshop, as this method had pro-
vided the best results in our experiments. This
system was enhanced using IR methods which
exploits news monolingual copora, N-best list
reranking and a French grammatical checker.

This was our first participation where such a
huge amount data was involved. Training models
on so many sentences is challenging from an engi-
neering point of view and requires important com-
putational resources and storage capacities. The
time spent in handling voluminous data prevented
us from testing more approaches. We suggest that
the next edition of the workshop could integrate
a task restraining the number of parameters in the
models trained.
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Abstract

In this paper, we describe Exodus, a joint
pilot project of the European Commission’s
Directorate-General for Translation (DGT)
and the European Parliament’s Directorate-
General for Translation (DG TRAD) which
explores the potential of deploying new ap-
proaches to machine translation in European
institutions. We have participated in the
English-to-French track of this year’s WMT10
shared translation task using a system trained
on data previously extracted from large in-
house translation memories.

1 Project Background

1.1 Translation at EU Institutions

The European Union’s policy on multilingualism1 re-
quires enormous amounts of documents to be trans-
lated into the 23 official languages (which yield 506
translation directions). To cope with this task, the EU
has the biggest translation service in the world, em-
ploying almost 5000 internal staff as translators (out of
which 1750 at the European Commission (EC) and 760
at the European Parliament (EP) alone), backed up by
more than 2000 support staff. In 2009, the total output
of the Commission’s Directorate-General for Transla-
tion (DGT) and the Parliament’s Directorate-General
for Translation (DG TRAD) together was more than 3
million translated pages. Thus, it is not surprising that
the cost of all translation and interpreting services of
all the EU institutions amounts to 1% of the annual EU
budget (2008 figures). According to our estimations,
this is more than e 1 billion per year.

1.2 Machine Translation and Other Translation
Technologies at EU Institutions

In order to make the translators’ work more efficient so
that they can translate more pages in the same time,
a number of tools like terminology databases, bilin-
gual concordancers, and, most importantly, translation
memories are at their disposition, most of which are
heavily used.

1http://ec.europa.eu/education/
languages/eu-language-policy/index en.htm

In real translation production scenarios, Machine
Translation is usually used to complement transla-
tion memory tools (TM tool). Translation memories
are databases that contain text segments (usually sen-
tences) that are stored together with their translations.
Each such pair of source and target language segments
is called a translation unit. Translation units also con-
tain useful meta-data (creation date, document type,
client, etc.) that allow us to filter the data both for trans-
lation and machine translation purposes.

A TM tool tries to match the segments within a doc-
ument that needs to be translated with segments in the
translation memory and propose translations. If the
memory contains an identical string then we have a so-
called exact or 100% match which yields a very reliable
translation. Approximate or partial matches are called
fuzzy matches and usually, the minimum value of a
fuzzy match is set to 65%–70%. Lower matches are
not considered as usable since they demand more edit-
ing time than typing a translation from scratch. First
experiments have shown that the quality of SMT out-
put for certain language pairs is equal or similar to 70%
fuzzy matches.

Consequently, the cases where machine translation
can play a helpful role in this context is when, for a seg-
ment to be translated, there is no exact match and the
available fuzzy matches do not exceed a certain thresh-
old. This threshold in our case is expected to be 85% or
lower. To this end, there exists a system called ECMT
(European Commission Machine Translation; also ac-
cessible to other European institutions) which is a rule-
based system.

However, only certain translation directions are cov-
ered by ECMT, and its maintenance is quite compli-
cated and requires quite a lot of dedicated and special-
ized human resources. In the light of these facts and
with the addition of the languages of (prospective) new
member states, statistical approaches to machine trans-
lation seem to offer a viable alternative.

First of all, SMT is data-driven, i.e. it exploits par-
allel corpora of which there are plenty at the EU in-
stitutions in the form of translation memories. Trans-
lation memories have two main advantages over other
parallel corpora. First of all, they contain almost ex-
clusively perfectly aligned segments, as each segment
is stored together with its translation, and secondly,
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they contain cleaner data since their content is regu-
larly maintained by linguists and database administra-
tors. SMT systems are quicker to develop and easier
to maintain than rule-based systems. The availability
of free, open-source software like Moses2 (Koehn et
al., 2007), GIZA++3 (Och and Ney, 2003) and the like
constitutes a further argument in their favor.

Early experiments with Moses were started by mem-
bers of DGT’s Portuguese Language Department as
early as summer 2008 (Leal Fontes and Machado,
2009), then turned into a wider interinstitutional project
with the codename Exodus, currently combining re-
sources from European Commission’s DGT and Euro-
pean Parliament’s DGTRAD. Exodus is the first joint
project of the interinstitutional Language Technology
Watch group where a number of EU institutions join
forces in the field of language technology.

2 Participation in WMT 2010 Shared
Task

After the English-Portuguese experiments, the first lan-
guage pair for which we developed a system with
a sizeable amount of training data was English-to-
French. This system has been developed for testing
at the European Parliament. As English-to-French is
also one of the eight translation directions evaluated in
this year’s shared translation task, we decided to partic-
ipate. The reasons behind this decision are manifold:
We would like to

• know where we stand in comparison to other sys-
tems,

• learn about what system adaptations are the most
beneficial,

• make our project known to potential collaborators,

• compare the WMT10 evaluation results to the out-
come of our in-house evaluation.

There is, however, one major difference between the
evaluation as carried out in WMT10 and our in-house
evaluation: The test data of WMT10 consists exclu-
sively of news articles and is thus out-of-domain for
our system intended for use within the European Parlia-
ment. This means that the impact of training our system
on the in-domain data we obtain from our translation
memories cannot be assessed properly, i.e. taking into
consideration our specific translation production needs.

Therefore, we would like to invite other interested
groups to also translate our in-domain test data with
the goal of seeing how our translation scenario could
benefit from their setups. Due to legal issues, however,
we unfortunately cannot provide our internal training
data at this moment.

2http://www.statmt.org/moses/
3http://www.fjoch.com/GIZA++.html

3 Data Used

To build our English-to-French MT system, we did
not use any of the data provided by the organizers of
the WMT10 shared translation task. Instead, we used
data that was extracted from the translation memories
at the core of EURAMIS (European Advanced Multi-
lingual Information System; (Theologitis, 1997; Blatt,
1998)) which are the fruit of thousands of man-years
contributed by translators at EU institutions who, each
day, upload the majority of the segments they translate.

Initially (before pre-processing), our EN-FR cor-
pus contained 10,446,450 segments and included doc-
uments both from the Commission and the EP from
common legislative procedures. These segments were
extracted in November 2009 from 7 translation memo-
ries hosted in Euramis. Currently, we do not have in-
formation about the exact document types coming from
the Commission’s databases. The Parliament’s docu-
ment types used include, among others:

• legislative documents such as draft reports, final
reports, amendments, opinions, etc.,

• documents for the plenary such as questions, res-
olutions or session amendments,

• committee and delegation documents,

• documents concerning the ACP4 and the EMPA5,

• internal documents such as budget estimates, staff
regulations, rules of procedure, etc.,

• calls for tender.

Any sensitive or classified documents or
Commission-internal documents that do not be-
long to common legislative procedures have been
excluded from the data.

In terms of preprocessing, we performed several
steps. First, we obtained translation memory exchange
(TMX) files from EURAMIS and converted them to
UTF-8 text as the Euramis native character encoding
is UCS-2. Then we removed certain control charac-
ters which otherwise would have halted processing, we
extracted the two single-language corpora into a plain-
text file, tokenized and lowercased the data. Finally,
we separated the corpus into training data (9,300,682
segments), and data for tuning and testing – 500 seg-
ments each. These segments did not exceed a max-
imum length of 60 tokens and were excluded from
the preparation of the translation and language models.
The models were then trained on the remaining seg-
ments. The maximum length of 60 tokens was applied
here as well.

4African, Caribbean and Pacific Group of States
5Euro-Mediterranean Parliamentary Assembly
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Metric Score
BLEU 18.8
BLEU-cased 16.9
TER 0.747

Table 1: Automatic scores calculated for Exodus in
WMT10

4 Building the Models and Decoding

The parallel data described above was used to train an
English-to-French translation model and a French tar-
get language model. This was done on a server running
Sun Solaris with 64 GB of RAM and 8 double core
CPU’s @1800 Mhz (albeit shared with other processes
running simultaneously).

In general, we simply used a vanilla Moses instal-
lation at this point, leaving the integration of more so-
phisticated features to a later moment, i.e. after a thor-
ough analysis of the results of the present evaluation
campaign when we will know which adaptations yield
the most significant improvements.

For the word alignments, we chose MGIZA (Gao
and Vogel, 2008), using seven threads per MGIZA in-
stance, with the parallel option, i.e. one MGIZA in-
stance per pair direction running in parallel. The target
language model is a 7-gram, binarized IRSTLM (Fed-
erico et al., 2008). The weights of the distortion, trans-
lation and language models were optimized with re-
spect to BLEU scores (Papineni et al., 2002) on a given
held-out set of sentences with Minimum Error Rate
Training (MERT; (Och, 2003)) in 15 iterations.

After the actual translation with Moses, an additional
recasing ”translation” model was applied in the same
manner. Finally, the translation output underwent min-
imal automatic postprocessing based on regular expres-
sion replacements. This was mainly undertaken in or-
der to fix the distribution of whitespace and some re-
maining capitalization issues.

5 Results

5.1 WMT10 Evaluation

In one of the tasks of the WMT10 human evaluation
campaign, people were asked to rank competing trans-
lations. From each 1-through-5 ranking of a set of 5
system outputs, 10 pairwise comparisons are extracted.
Then, for each system, a score is computed that tells
how often it was ranked equally or better than the other
system. For our system, this score is 32.35%, meaning
it ranked 17th out of 19 systems for English-to-French.
A number of automatic scores were also calculated and
appear in Table 1.

5.2 Evaluation at the European Parliament

As the goal behind building our system has been to pro-
vide a tool to translators at EU institutions, we have
also had it evaluated by two of our colleagues, both

Evaluator A Evaluator B Overall
Reference 1.75 2.06 1.97
ECMT 3.34 3.31 3.32
Google 3.59 3.28 3.37
Exodus 3.52 3.45 3.47

Table 2: Average relative rank (on a scale from 1 to 5)

OK Edited Bad
Reference 29 30 2
ECMT 8 57 2
Google 7 33 5
Exodus 13 62 12

Table 3: Results of Editing Task (“OK” means “No cor-
rections needed”; “Bad” means “Unable to correct”)

native speakers of French and working as professional
translators of the French Language Unit at the Parlia-
ment’s DG TRAD.

For this purpose, we had 1742 sentences of in-house
documents translated by our system as well as by
the rule-based ECMT and the statistics-based Google
Translate.6,7 We developed an online evaluation tool
based on the one used by the WMT evaluation cam-
paign in the last years (Callison-Burch et al., 2009)
where we asked the evaluators to perform three differ-
ent tasks.

In the first one, they were shown the three automatic
translations plus a human reference in random order
and asked to rank the four versions relative to each
other on a scale from 1 to 5. The average relative ranks
can be seen in Table 2.

The second task consisted of post-editing a given
translation. Again, the sentence might come from one
of three MT systems, or be a human translation. The
absolute number of items that did not need any correc-
tions, had to be edited, or were impossible to correct
are shown in Table 3.

For the third and last task, only translations of our
own system were displayed. Here, the evaluators
should simply assign them to one of four quality cat-
egories as proposed by (Roturier, 2009), and addition-
ally tick boxes standing for the presence of 13 different
types of errors in the sentence concerning word order,
punctuation, or different types of syntactic/semantic
problems. A total of 150 segments were judged. For
the categorization results, see Tables 4 and 5.

5.3 Evaluation at the European Commission

On a side note, the Portuguese Language Department
also performed a manual evaluation (Leal Fontes and
Machado, 2009) which involved 14 of their managers
and translators, comparing their Moses-based system to

6http://translate.google.com
7As about a third of the source documents are not public,

we could not send those to Google Translate.
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Items Proportion
Excellent 28 18.6%
Good 42 28%
Medium 45 30%
Poor 35 23.3%

Table 4: Results of Categorization Task: Quality Cate-
gories

Error type Occurrences
Word order
Single word 11
Sequence of words 42
Incorrect word(s)
Wrong lexical choice 51
Wrong terminology choice 6
Incorrect form 77
Extra word(s) 21
Missing word(s) 14
Style 44
Idioms 1
Untranslated word(s) 5
Punctuation 24
Letter case 7
Other 5

Table 5: Results of Categorization Task: Error Types

ECMT and Google. Table 6 shows how many people
considered Moses better, similar, or worse compared to
ECMT and Google, respectively.

Moses-based SMT did well in fields where ECMT
is systematically used (e.g. Justice and Home Affairs
and Trade) and showed a big improvement over ECMT
in terminology-intensive domains (e.g. Fisheries). As
of early 2009, more than half of their translators (58%)
now already use ECMT systematically in production,
i.e. for all English and French originals. 85% use it for
specific language combinations or for certain domains
only. On a voluntary basis, they have been replacing
ECMT with Moses-based SMT for the translation of
day-to-day incoming documents. Over a three-month
period, more than 2500 pages have been translated in
this manner, and the translators of the Portuguese de-
partment declared themselves ready to switch over to
an SMT system as soon as it should become available.

Compared to Better Similar Worse
ECMT 7 5 2
Google 5 5 3

Table 6: Portuguese Language Department evaluation
results of Moses-based MT system

6 Discussion of Results

As expected, our system did not rank among the top
competitors in the WMT10 shared task. This is mainly
due to the data we trained on, which is of a very spe-
cific domain (common legislative procedures of Eu-
ropean Institutions) and relatively small in size when
compared to what others used for this language combi-
nation. In addition, we more or less used Moses out-of-
the-box with no sophisticated add-ons or optimization.

In the internal evaluation, our system beat neither
Google Translate nor ECMT overall but it did show a
similar performance. This is all the more encourag-
ing as Exodus has been built within less than a month,
while ECMT has been developed and maintained in ex-
cess of 30 years, and while Google Translate is based
on manpower and computing resources that a public
administration body usually cannot provide.

Finally, the successful trials of SMT software at the
EC’s Portuguese department seem to indicate that such
a system holds enormous potential, especially when a
serious adaptation to specific language combinations
and domains is taken into consideration.

7 Outlook

Further use and development of SMT at EU institutions
depends on the outcome of internal evaluations, among
other factors. We plan to extend our activities to other
language pairs, an English-to-Greek machine transla-
tion project already having started. Given a continu-
ation of the currently promising results, Exodus will
eventually be integrated into the CAT (computer-aided
translation) tools used by EU translators.8 Further-
more, we would like to release an extended EuroParl
corpus not only containing parliamentary proceedings
but also other types of public documents. We estimate
that such a step should foster research to the benefit of
both EU institutions and machine translation in gen-
eral.

8 Conclusions

We have presented Exodus, a joint pilot project of
the European Commission’s Directorate-General for
Translation (DGT) and the European Parliament’s
Directorate-General for Translation (DG TRAD) with
the aim of exploring the potential of deploying new
approaches to machine translation in European insti-
tutions.

Our system is based on a fairly vanilla Moses instal-
lation and trained on data extracted from large in-house
translation memories covering a range of EU docu-
ments. The obtained models use 7-grams.

We applied the Exodus system to this year’s WMT10
shared English-to-French translation task. As the test

8However, speed issues will have to be addressed before
as the current system is not able to provide translations in real
time.
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data stems from a different domain than the one tar-
geted by our system, we did not outperform the com-
petitors. However, results from in-house evaluation are
promising and indicate the big potential of SMT for
European Institutions.
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Abstract

We report on efforts to build large-scale
translation systems for eight European
language pairs. We achieve most gains
from the use of larger training corpora and
basic modeling, but also show promising
results from integrating more linguistic an-
notation.

1 Introduction

We participated in the shared translation task of
the ACL Workshop for Statistical Machine Trans-
lation 2010 in all language pairs. We continued
our efforts to integrate linguistic annotation into
the translation process, using factored and tree-
based translation models. On average we out-
performed our submission from last year by 2.16
BLEU points on the same newstest2009 test set.

While the submitted system follows the factored
phrase-based approach, we also built hierarchical
and syntax-based models for the English–German
language pair and report on its performance on the
development test sets. All our systems are based
on the Moses toolkit (Koehn et al., 2007).

We achieved gains over the systems from last
year by consistently exploiting all available train-
ing data, using large-scale domain-interpolated,
and consistent use of the factored translation
model to integrate n-gram models over speech
tags. We also experimented with novel domain
adaptation methods, with mixed results.

2 Baseline System

The baseline system uses all available training
data, except for the large UN and 109 corpora, as
well as the optional LDC Gigaword corpus. It uses
a straight-forward setup of the Moses decoder.

Some relevant parameter settings are:

• maximum sentence length 80 words

• tokenization with hyphen splitting

• truecasing

• grow-diag-final-and alignment heuristic

• msd-bidirectional-fe lexicalized reordering

• interpolated 5-gram language model

• tuning on newsdev2009

• testing during development on newstest2009

• MBR decoding

• no reordering over punctuation

• cube pruning

We used most of these setting in our submission
last year (Koehn and Haddow, 2009).

The main difference to our baseline system
from the submission from last year is the use of ad-
ditional training data: larger releases of the News
Commentary, Europarl, Czeng, and monolingual
news corpora. The first two parallel corpora in-
creased roughly 10-20% in size, while the Czeng
parallel corpus and the monolingual news corpora
are five times and twice as big, respectively.

We also handled some of the corpus preparation
steps with more care to avoid some data incon-
sistency problems from last year (affecting mostly
the French language pairs).

An overview of the results is given in Table 1.
The baseline outperforms our submission from
last year by an average of +1.25 points. The gains
for the individual language pairs track the increase
in training data (most significantly for the Czech–
English pairs), and the French–English data pro-
cessing issue.

Note that last year’s submission used special
handling of the German–English language pair,
which we did not replicate in the baseline system,
but report on below.

The table also contains results on the extensions
discussed in the next section.
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Language Pair ’09 Baseline GT Smooth. UN Data Factored Beam
Spanish-English 24.41 25.25 (+0.76) 25.48 (+0.23) 26.03 (+0.55) 26.20 (+0.17) 26.22 (+0.02)

French-English 23.88 25.23 (+1.35) 25.37 (+0.14) 25.92 (+0.55) 26.13 (+0.21) 26.07 (–0.08)

German-English 18.51 19.47 (+0.96) 19.51 (+0.04) - 21.09 (+0.24) 21.10 (+0.01)

Czech-English 18.49 20.74 (+2.25) 21.19 (+0.45) - 21.33 (+0.14) 21.32 (–0.01)

English-Spanish 23.27 24.20 (+0.93) 24.65 (+0.45) 24.65 (+0.30) 24.37 (–0.28) 24.42 (+0.05)

English-French 22.50 23.83 (+1.33) 23.72 (–0.11) 24.70 (+0.98) 24.74 (+0.04) 24.92 (+0.18)

English-German 14.22 14.68 (+0.46) 14.81 (+0.13) - 15.28 (+0.47) 15.34 (+0.06)

English-Czech 12.64 14.63 (+1.99) 14.68 (+0.05) - - -
avg +1.25 +0.17 +0.60 +0.14 +0.03

Table 1: Overview of results: baseline system and extensions. On average we outperformed our sub-
mission from last year by 1.87 BLEU points on the same newstest2009 test set. For additional gains for
French–English and German–English, please see Tables 7 and 8.

Czech–English
Corpus Num. Tokens Pplx. Weight
EU 29,238,799 582 0.054
Fiction 15,441,105 429 0.028
Navajo 561,144 671 0.002
News (czeng) 2,909,322 288 0.127
News (mono) 1,148,480,525 175 0.599
Subtitles 23,914,244 526 0.019
Techdoc 8,322,958 851 0.099
Web 4,469,177 441 0.073

French–English
Corpus Num. Tokens Pplx. Weight
Europarl 50,132,615 352 0.105
News Com. 2,101,921 311 0.204
UN 216,052,412 383 0.089
News 1,148,480,525 175 0.601

Table 2: English LM interpolation: number of to-
kens, perplexity, and interpolation weight for the
different corpora

2.1 Interpolated Language Model

The WMT training data exhibits an increasing di-
versity of corpora: Europarl, News Commentary,
UN, 109, News — and seven different sources
within the Czeng corpus.

It is well known that domain adaptation is an
important step in optimizing machine translation
systems. A relatively simple and straight-forward
method is the linear interpolation of the language
model, as we explored previously (Koehn and
Schroeder, 2007; Schwenk and Koehn, 2008).

We trained domain-specific language models
separately and then linearly interpolated them us-
ing SRILM toolkit (Stolke, 2002) with weights op-

Language Pair Cased Uncased
Spanish-English 25.25 26.36 (+1.11)
French-English 25.23 26.29 (+1.06)
German-English 19.47 20.63 (+1.16)
Czech-English 20.74 21.76 (+1.02)
English-Spanish 24.20 25.47 (+1.27)
English-French 23.83 25.02 (+1.19)
English-German 14.68 15.18 (+0.50)
English-Czech 14.63 15.13 (+0.50)
avg +0.98

Table 3: Effect of truecasing: cased and uncased
BLEU scores

timized on the development set newsdev2009.
See Table 2 for numbers on perplexity, corpus

sizes, and interpolation weights. Note, for in-
stance, the relatively high weight for the News
Commentary corpus (0.204) compared to the Eu-
roparl corpus (0.105) in the English language
model for the French-English system, despite the
latter being about 25 times bigger.

2.2 Truecasing

As last year, we deal with uppercase and lowercase
forms of the same words by truecasing the corpus.
This means that we change each surface word oc-
currence of a word to its natural case, e.g., the, Eu-
rope. During truecasing, we change the first word
of a sentence to its most frequent casing. During
de-truecasing, we uppercase the first letter of the
first word of a sentence.

See Table 3 for the performance of this method.
In this table, we compare the cased and uncased
BLEU scores, and observe that we lose on average
roughly one BLEU point due to wrong casing.
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Count Count of Count Discount Count*
1 357,929,182 0.140 0.140
2 24,966,751 0.487 0.975
3 8,112,930 0.671 2.014
4 4,084,365 0.714 2.858
5 2,334,274 0.817 4.088

Table 4: Good Turing smoothing, as in the
French–English model: counts, counts of counts,
discounting factor and discounted count

3 Extensions

In this section, we describe extensions over the
baseline system. On average, these give us im-
provements of about 1 BLEU point over the base-
line.

3.1 Good Turing Smoothing

Traditionally, we use raw counts to estimate con-
ditional probabilities for phrase translation. How-
ever, this method gives dubious results for rare
counts. The most blatant case is the single oc-
currence of a foreign phrase, whose sole English
translation will receive the translation probability
1
1 = 1.

Foster et al. (2006) applied ideas from language
model smoothing to the translation model. Good
Turing smoothing (Good, 1953) uses counts of
counts statistics to assess how likely we will see
a word (or, in our case, a phrase) again, if we have
seen it n times in the training corpus. Instead of
using the raw counts, adapted (lower) counts are
used in the estimation of the conditional probabil-
ity distribution.

The count of counts are collected for the phrase
pairs. See Table 4 for details on how this ef-
fects the French–English model. For instance,
we find singleton 357,929,182 phrase pairs and
24,966,751 phrase pairs that occur twice. The
Good Turing formula tells us to adapt singleton
counts to 24,966,751

357,929,182 = 0.14. This means for our
degenerate example of a single occurrence of a
single French phrase that its single English transla-
tion has probability 0.14

1 = 0.14 (we do not adjust
the denominator).

Good Turing smoothing of the translation table
gives us a gain of +0.17 BLEU points on average,
and improvements for 7 out of 8 language pairs.
For details refer back to Table 1.

Model BLEU

Baseline 14.81
Part-of-Speech 15.03 (+0.22)
Morphogical 15.28 (+0.47)

Table 5: English–German: use of morphological
and part-of-speech n-gram models

3.2 UN Data
While we already used the UN data in the lan-
guage model for the Spanish–English and French–
English language pairs, we now also add it to the
translation model.

The corpus is very large, four times bigger than
the already used training data, but relatively out
of domain, as indicated by the high perplexity and
low interpolation weight during language model
interpolation (recall Table 2).

Adding the corpus to the four systems gives im-
provements of +0.60 BLEU points on average.
For details refer back to Table 1.

3.3 POS n-gram Model
The factored model approach (Koehn and Hoang,
2007) allows us to integrate 7-gram models over
part-of-speech tags. The part-of-speech tags are
produced during decoding by the phrase mapping
of surface words on the source side to a factored
representation of surface words and their part-of-
speech tags on the target side in one translation
step.

We previously used this additional scoring com-
ponent for the German–English language pairs
with success. Thus we now applied to it all other
language pairs (except for English–Czech due to
the lack of a Czech part-of-speech tagger).

We used the following part-of-speech taggers:

• English: mxpost1

• German: LoPar2

• French: TreeTagger3

• Spanish: TreeTagger

For English–German, we also used morpholog-
ical tags, which give better performance than just
basic part-of-speech tags (+0.46 vs. +0.22, see Ta-
ble 5). We observe gains for all language pairs
except for English–Spanish, possibly due to the

1www.inf.ed.ac.uk/resources/nlp/local doc/MXPOST.html
2www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/

LoPar.html
3www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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Model BLEU

Baseline 14.81
Part-of-Speech 15.03 (+0.22)
Morphogical 15.28 (+0.47)

Table 6: English–German: use of morphological
and part-of-speech n-gram models

Language Pair Baseline with 109

French–English 25.92 27.15 (+1.23)
English–French 24.70 24.80 (+0.10)

Table 7: Use of large French–English corpus

faulty use of the Spanish part-of-speech tagger.
We gain +0.14 BLEU points on average (includ-
ing the –0.28 drop for Spanish). For details refer
back to Table 1.

3.4 Bigger Beam Sizes

As a final general improvement, we adjusted the
beam settings during decoding. We increased the
pop-limit from 5,000 to 20,000 and the translation
table limit from the default 20 to 50.

The decoder is quite fast, partly due to multi-
threaded decoding using 4 cores machines (Had-
dow, 2010). Increasing the beam sizes slowed
down decoding speed from about 2 seconds per
sentence to about 8 sec/sentence.

However, this resulted only in minimal gains,
on average +0.03 BLEU. For details refer back to
Table 1.

3.5 109 Corpus

Last year, due to time constraints, we were not
able to use the billion word 109 corpus for the
French–English language pairs. This is largest
publicly available parallel corpus, and it does
strain computing resources, for instance forcing
us to use multi-threaded GIZA++ (Gao and Vogel,
2008).

Table 7 shows the gains obtained from us-
ing this corpus in both the translation model and
the language model opposed to a baseline sys-
tem trained with otherwise the same settings. For
French–English we see large gains (+1.23), but not
for English–French (+0.10).

Our official submission for the French–English
language pairs used these models. They did not in-
clude a part-of-speech language model and bigger
beam sizes.

Model BLEU

Baseline 19.51
+ compound splitting 20.09 (+0.58)
+ pre-reordering 20.03 (+0.52)
+ both 20.85 (+1.34)

Table 8: Special handling of German–English

Language Pair Baseline Weighted TM
Spanish-English 26.20 26.15 (–0.05)
French-English 26.11 26.30 (+0.19)
German-English 21.09 20.81 (–0.28)
Czech-English 21.33 21.21 (–0.12)
English-German 15.28 15.01 (–0.27)
avg. –0.11

Table 9: Interpolating the translation model with
language model weights

3.6 German–English

For the German–English language direction, we
used two additional processing steps that have
shown to be successful in the past, and again re-
sulted in significant gains.

We split large words based on word frequen-
cies to tackle the problem of word compounds in
German (Koehn and Knight, 2003). Secondly, we
re-order the German input to the decoder (and the
German side of the training data) to align more
closely to the English target language (Collins
et al., 2005).

The two methods improve +0.58 and +0.52 over
the baseline individually, and +1.34 when com-
bined. See also Table 8.

3.7 Translation Model Interpolation

Finally, we explored a novel domain adaption
method for the translation model. Since the in-
terpolation of language models is very success-
ful, we want to interpolate translation models sim-
ilarly. Given interpolation weights, the resulting
translation table is a weighted linear interpolation
of the individual translation models trained sepa-
rately for each domain.

However, while for language models we have a
effective method to find the interpolation weights
(optimizing perplexity on a development set), we
do not have such a method for the translation
model. Thus, we simply recycle the weights we
obtained from language model interpolation (ex-
cluding the weighting for monolingual corpora).
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Model BLEU

phrase-based 14.81
factored phrase-based 15.28
hierarchical 14.86
target syntax 14.66

Table 10: Tree-based models for English–German

Over the Spanish–English baseline system, we
obtained gains of +0.39 BLEU points. Unfortu-
nately, we did not see comparable gains on the sys-
tems optimized by the preceding steps. In fact, in
4 out of 5 language pairs, we observed lower BLEU

scores. See Table 9 for details.
We did not use this method in our submission.

4 Tree-Based Models

A major extension of the capabilities of the Moses
system is the accommodation of tree-based mod-
els (Hoang et al., 2009). While we have not yet
carried out sufficient experimentation and opti-
mization of the implementation, we took the occa-
sion of the shared translation task as a opportunity
to build large-scale systems using such models.

We build two translation systems: One using
tree-based models without additional linguistic an-
notation, which are known as hierarchical phrase-
based models (Chiang, 2005), and another sys-
tem that uses linguistic annotation on the target
side, which are known under many names such as
string-to-tree models or syntactified target models
(Marcu et al., 2006).

Both models are trained using a very similar
pipeline as for the phrase model. The main dif-
ference is that the translation rules do not have to
be contiguous phrases, but may contain gaps with
are labeled and co-ordinated by non-terminal sym-
bols. Decoding with such models requires a very
different algorithm, which is related to syntactic
chart parsing.

In the target syntax model, the target gaps and
the entire target phrase must map to constituents
in the parse tree. This restriction may be relaxed
by adding constituent labels such as DET+ADJ or
NP\DET to group neighboring constituents or indi-
cate constituents that lack an initial child, respec-
tively (Zollmann and Venugopal, 2006).

We applied these models to the English–
German language direction, which is of particu-
lar interest to us due to the rich target side mor-
phology and large degree of reordering, resulting

in relatively poor performance. See Table 10 for
experimental results with the two traditional mod-
els (phrase-based model and a factored model that
includes a 7-gram morphological tag model) and
the two newer models (hierarchical and target syn-
tax). The performance of the phrase-based, hierar-
chical, and target syntax model are close in terms
of BLEU.

5 Conclusions

We obtained substantial gains over our systems
from last year for all language pairs. To a large
part, these gains are due to additional training data
and our ability to exploit them.

We also saw gains from adding linguistic an-
notation (in form of 7-gram models over part-of-
speech tags) and promising results for tree-based
models. At this point, we are quite satisfied be-
ing able to build competitive systems with these
new models, which opens up major new research
directions.

Everything we described here is part of the open
source Moses toolkit. Thus, all our experiments
should be replicable with publicly available re-
sources.
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Abstract
This paper describes the development of
French–English and English–French ma-
chine translation systems for the 2010
WMT shared task evaluation. These sys-
tems were standard phrase-based statisti-
cal systems based on the Moses decoder,
trained on the provided data only. Most
of our efforts were devoted to the choice
and extraction of bilingual data used for
training. We filtered out some bilingual
corpora and pruned the phrase table. We
also investigated the impact of adding two
types of additional bilingual texts, ex-
tracted automatically from the available
monolingual data. We first collected bilin-
gual data by performing automatic trans-
lations of monolingual texts. The second
type of bilingual text was harvested from
comparable corpora with Information Re-
trieval techniques.

1 Introduction

This paper describes the machine translation sys-
tems developed by the Computer Science labora-
tory at the University of Le Mans (LIUM) for the
2010 WMT shared task evaluation. We only con-
sidered the translation between French and En-
glish (in both directions). The main differences
with respect to previous year’s system (Schwenk
et al., 2009) are as follows: restriction to the data
recommended for the workshop, usage of the (fil-
tered) French–English gigaword bitext, pruning of
the phrase table, and usage of automatic trans-
lations of the monolingual news corpus to im-
prove the translation model. We also used a larger
amount of bilingual data extracted from compara-
ble corpora than was done in 2009. These different
points are described in the rest of the paper, to-
gether with a summary of the experimental results
showing the impact of each component.

2 Resources Used

The following sections describe how the resources
provided or allowed in the shared task were used
to train the translation and language models of the
system.

2.1 Bilingual data

Our system was developed in two stages. First,
a baseline system was built to generate automatic
translations of some of the monolingual data avail-
able. These automatic translations may be used
directly with the source texts to build additional
bitexts, or as queries of an Information Retrieval
(IR) system to extract new bitexts from compara-
ble corpora. In a second stage, these additional
bilingual data were incorporated to the system (see
Section 4 and Tables 1 and 2).

The latest version of the News-Commentary
(NC) corpus, of the Europarl (Eparl) corpus (ver-
sion 5), and of the United Nations (UN) corpus
were used. We also took as training data a sub-
set of the French–English Gigaword (109) cor-
pus. Since a significant part of the data was
crawled from the web, we thought that many sen-
tence pairs may be only approximate translations
of each other. We applied a lexical filter to dis-
card them. Furthermore, some sentences of this
corpus were extracted from web page menus and
are not grammatical. Although we could have
used a part of the menu items as a dictionary, for
simplicity we applied an n-gram language model
(LM) filter to remove all non-grammatical sen-
tences. Thanks to this filter, sentences out of the
language model domain (in this case, mainly the
news domain), may also have been discarded be-
cause they contain many unknown or unfrequent
n-grams. The lexical filter was based on the IBM
model 1 cost (Brown et al., 1993) of each side of
a sentence pair given the other side, normalised
with respect to both sentence lengths. This filter
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was trained on a corpus composed of Eparl, NC,
and UN data. The language model filter was an
n-gram LM cost of the target sentence (see Sec-
tion 3), normalised with respect to its length. This
filter was trained with all monolingual resources
available except the 109 data. We generated a first
subset, 109

1, selecting sentence pairs with a lexi-
cal cost inferior to 4 and an LM cost inferior to
2.3. The corpus selected in this way contains 115
million words in the English side (out of 580 mil-
lion in the original corpus). Close to the evaluation
deadline we decided to generate a second corpus
(109

2) by raising the LM cost threshold to 2.6. The
109

2 corpus contains 232 million words on the En-
glish side (twice as much as in the 109

1 corpus).
In the French side of the bilingual corpora, for

the French–English direction only, the contrac-
tions ‘du’ (‘of the’), ‘au’ and ‘aux’ (‘to the’ singu-
lar and plural) were substituted by their expanded
forms (‘de le’, ‘à le’ and ‘à les’).

2.2 Use of Automatic Translations and
Comparable corpora

Available human translated bitexts such as the UN
corpus seem to be out-of domain for this task.
We used two types of automatically extracted re-
sources to adapt our system to the task domain.

First, we generated automatic translations of the
French News corpus provided (231M words), and
selected the sentences with a normalised transla-
tion cost (returned by the decoder) inferior to a
threshold. The resulting bitext has no new words
in the English side, since all words of the transla-
tion output come from the translation model, but
it contains new combinations (phrases) of known
words, and reinforces the probability of some
phrase pairs (Schwenk, 2008).

Second, as in last year’s evaluation, we auto-
matically extracted and aligned parallel sentences
from comparable in-domain corpora. This year
we used the AFP and APW news texts since there
are available in the French and English LDC Gi-
gaword corpora. The general architecture of our
parallel sentence extraction system is described in
detail by Abdul-Rauf and Schwenk (2009). We
first translated 91M words from French into En-
glish using our first stage SMT system. These En-
glish sentences were then used to search for trans-
lations in the English AFP and APW texts of the
Gigaword corpus using information retrieval tech-
niques. The Lemur toolkit (Ogilvie and Callan,

2001) was used for this purpose. Search was lim-
ited to a window of ±5 days of the date of the
French news text. The retrieved candidate sen-
tences were then filtered using the Translation Er-
ror Rate (TER) with respect to the automatic trans-
lations. In this study, sentences with a TER be-
low 65% for the French–English system and 75%
for the English–French system were kept. Sen-
tences with a large length difference (French ver-
sus English) or containing a large fraction of num-
bers were also discarded. By these means, about
15M words of additional bitexts were obtained to
include in the French–English system, and 21M
words to include in the English–French system.
Note that these additional bitexts do not depend
on the translation direction. The most suitable
amount of additional data was just different in
the French–English and English–French transla-
tion directions.

2.3 Monolingual data

The French and English target language models
were trained on all provided monolingual data. In
addition, LDC’s Gigaword collection was used for
both languages. Data corresponding to the devel-
opment and test periods were removed from the
Gigaword collections.

2.4 Development data

All development was done on news-test2008, and
newstest2009 was used as internal test set. For all
corpora except the French side of the bitexts used
to train the French–English system (see above),
the default Moses tokenization was used. How-
ever, we added abbreviations for the French tok-
enizer. All our models are case sensitive and in-
clude punctuation. The BLEU scores reported in
this paper were calculated with the multi-bleu.perl
tool and are case sensitive. The BLEU score
was one of metrics with the best correlation with
human ratings in last year evaluation (Callison-
Burch et al., 2009) for the French–English and
English–French directions.

3 Architecture of the SMT system

The goal of statistical machine translation (SMT)
is to produce a target sentence e from a source
sentence f . It is today common practice to use
phrases as translation units (Koehn et al., 2003;
Och and Ney, 2003) and a log linear framework in
order to introduce several models explaining the
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translation process:

e∗ = arg max
e
p(e|f)

= arg max
e
{exp(

∑
i

λihi(e, f))} (1)

The feature functions hi are the system mod-
els and the λi weights are typically optimized to
maximize a scoring function on a development
set (Och and Ney, 2002). In our system fourteen
features functions were used, namely phrase and
lexical translation probabilities in both directions,
seven features for the lexicalized distortion model,
a word and a phrase penalty and a target language
model (LM).

The system is based on the Moses SMT toolkit
(Koehn et al., 2007) and constructed as follows.
First, word alignments in both directions are cal-
culated. We used a multi-threaded version of the
GIZA++ tool (Gao and Vogel, 2008).1 This speeds
up the process and corrects an error of GIZA++
that can appear with rare words.

Phrases and lexical reorderings are extracted
using the default settings of the Moses toolkit.
The parameters of Moses were tuned on news-
test2008, using the ‘new’ MERT tool. We repeated
the training process three times, each with a differ-
ent seed value for the optimisation algorithm. In
this way we have an rough idea of the error intro-
duced by the tuning process.

4-gram back-off LMs were used. The word
list contains all the words of the bitext used to
train the translation model and all words that ap-
pear at least ten times in the monolingual corpora.
Words of the monolingual corpora containing spe-
cial characters or sequences of uppercase charac-
ters were not included in the word list. Separate
LMs were build on each data source with the SRI
LM toolkit (Stolcke, 2002) and then linearly in-
terpolated, optimizing the coefficients with an EM
procedure. The perplexities of these LMs were
103.4 for French and 149.2 for English.

4 Results and Discussion

The results of our SMT system for the French–
English and English–French tasks are summarized
in Tables 1 and 2, respectively. The MT metric
scores are the average of three optimisations per-
formed with different seeds (see Section 3). The

1The source is available at http://www.cs.cmu.
edu/˜qing/

numbers in parentheses are the standard deviation
of these three values. The standard deviation gives
a lower bound of the significance of the difference
between two systems. If the difference between
two average scores is less than the sum of the stan-
dard deviations, we can say that this difference is
not significant. The reverse is not true. Note that
most of the improvements shown in the tables are
small and not significant. However many of the
gains are cumulative and the sum of several small
gains makes a significant difference.

Phrase-table Pruning

We tried to prune the phrase-table as proposed by
Johnson et. al. (2007), and available in moses
(‘sigtest-filter’). We used the α − ε filter2. As
lines 3 and 4 of Table 1, and lines 3 and 4 of Ta-
ble 2 reveal, in addition to the reduction 43% of
the phrase-table, a small gain in BLEU score (0.15
and 0.11 respectively) was obtained with the prun-
ing.

Baseline French–English System

The first section of Table 1 (lines 1 to 5) shows re-
sults of the development of the baseline SMT sys-
tem, used to generate automatic translations. Al-
though being out-of-domain data, the introduction
of the UN corpus yields an improvement of one
BLEU point with respect to Eparl+NC. Adding the
109

1 corpus, we gain 0.7 BLEU point more. Ac-
tually, we obtained the same score with the 109

1

added directly to Eparl+NC (line 5). However, we
choose to include the UN corpus to generate trans-
lations to have a larger vocabulary. The system
highlighted in bold (line 4) is the one we choose
to generate our English translations.

Although no French translations were gener-
ated, we did similar experiments in the English–
French direction (lines 1 to 4 of Table 2). In this
direction, the 109

1 corpus is still more valuable than
the UN corpus when added to Eparl+NC, but with
less difference in terms of BLEU score. In this di-

2The p-value of two-by-two contingency tables (describ-
ing the degree of association between a source and a target
phrase) is calculated with Fisher exact test. This probability
is interpreted as the probability of observing by chance an as-
sociation that is at least as strong as the given one, and hence
as its significance. An important special case of a table oc-
curs when a phrase pair occurs exactly once in the corpus,
and each of the component phrases occurs exactly once in its
side of the parallel corpus (1-1-1 phrase pairs). In this case
the negative log of the p-value is α = logN (N is number of
sentence pairs in the corpus). α − ε is the largest threshold
that results in all of the 1-1-1 phrase pairs being included.
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rection, we obtain a gain by adding the UN corpus
to Eparl+NC+109

1.

Filtering the 109 Corpus
Lines 5 to 7 of Table 1 show the impact of filtering
the 109 corpus. The system trained on the full 109

corpus added to Eparl+NC achieves a BLEU score
of 26.83. Substituting the full 109 corpus by 109

1 (5
times smaller), i.e. using the first filtering settings,
we gain 0.13 BLEU point. Using 109

2 instead of
109

1, we gain another 0.16 BLEU point, that is 0.3
in total. With respect to not using the 109 data at
all (as we did last year), we gain 0.8 BLEU point.

Impact of the Additional Bitexts
With the baseline French–English SMT system
(see above), we translated the French News cor-
pus to generated an additional bitext (News). We
also translated some parts of the French LDC Gi-
gaword corpus, to serve as queries to our IR sys-
tem (see section 2.2). The resulting additional bi-
text is referred to as IR. Lines 8 to 13 of Table 1
and lines 6 to 12 of Table 2 summarize the system
development including the additional bitexts.

With the News additional bitext added to
Eparl+NC, we obtain a system of similar perfor-
mance as the baseline system used to generate
the automatic translations, but with less than 30%
of the data. This holds in both translation direc-
tions. Adding the News corpus to a larger corpus,
such as Eparl+NC+109

1, has less impact but still
yields some improvement: 0.15 BLEU point in
French–English and 0.3 in English–French. Thus,
the News bitext translated from French to English
may have more impact when translating from En-
glish to French than in the opposite direction. Note
that the number of additional phrase-table entries
per additional running word is twice as high for
the News bitext than for the other corpora. For
example, with respect to Eparl+NC+UN+109

1 (Ta-
ble 2), Eparl+NC+UN+109

1+News has 56M more
words and 116M more entries in the phrase-table,
thus the ratio is more than 2. For all other cor-
pora, the ratio is equal to 1 or less. This is un-
expected, particularly in this case where the News
bitext has no new English vocabulary with respect
to the Eparl+NC+UN+109

1 corpus, from which its
English side was generated.

With the IR additional bitext added to
Eparl+NC, we obtain a system of similar perfor-
mance as the system trained on Eparl+NC+UN,
while the IR bitext is 10 times smaller than the

UN corpus. Added to Eparl+NC+109
1+News, the

IR bitext allows gains of 0.13 and 0.2 BLEU point
respectively in the French–English and English–
French directions.

Comparing the systems trained on
Eparl+NC+109

1 or Eparl+NC+109
2 to the sys-

tems trained on the same corpora plus News+IR,
we can estimate the cumulative impact of the
additional bitexts. The gain is around 0.3 BLEU
point for French–English and around 0.5 BLEU
point for English–French.

Final System

In both translation directions our best system was
the one trained on Eparl+NC+109

2+News+IR. We
further achieved small improvements (0.3 BLEU
point) by pruning the phrase-table (as above) and
by using a language model with no cut-off together
with increasing the beam size and/or the maxi-
mum number of translation table entries per input
phrase. Note that the English LM with cut-off had
a size of 6G, and the one with no cut-off had a
size of 29G. It was too much to fit in our 72G
machines so we pruned it with the SRILM prun-
ing tool down to a size of 19G. The French LM
with cut-off had a size of 2G and the one with
no cut-off had a size of 9G. These sizes corre-
spond to the binary format. Taking as example the
French–English direction, the running time went
from 8600 seconds for the system of line 14 (with
a threshold pruning coefficient of 0.4 and a LM
with cut-off) to 28200 seconds for the system sub-
mitted (with the LM without cut-off pruned by the
SRILM tool and a threshold pruning coefficient of
0.00001).

5 Conclusions and Further Work

We presented the development of our machine
translation system for the French–English and
English–French 2010 WMT shared task. Our sys-
tem was actually a standard phrase-based SMT
system based on the Moses decoder. Its original-
ity mostly lied in the choice and extraction of the
training data used.

We decided to use a part of the 109 French–
English corpus. We found this resource useful,
even without filtering. We nevertheless gained 0.3
BLEU point by selecting sentences based on an
IBM Model 1 filter and a language model filter.

We pruned the phrase table with the ‘sigtest-
filter’ distributed in Moses, yielding improve-
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Bitext #Fr Words P-table Mem news-test2008 newstest2009
(M) size (M) (G) BLEU BLEU

1 Eparl+NC 52 66 19.3 22.80 (0.03) 25.31 (0.2)
2 Eparl+NC+UN 275 250 22.8 23.38 (0.1) 26.30 (0.2)
3 Eparl+NC+UN+109

1 406 376 25.1 23.81 (0.05) 27.0 (0.2)
4 Eparl+NC+UN+109

1 pruned 406 215 21.4 23.96 (0.1) 27.15 (0.18)
5 Eparl+NC+109

1 183 198 22.1 23.83 (0.07) 26.96 (0.04)
6 Eparl+NC+109

2 320 319 24.1 23.95 (0.03) 27.12 (0.1)
7 Eparl+NC+109 733 580 29.5 23.65 (0.09) 26.83 (0.2)
8 Eparl+NC+News 111 188 19.5 23.46 (0.1) 26.95 (0.2)
9 Eparl+NC+109

1+News 242 317 22.5 23.77 (0.04) 27.11 (0.04)
10 Eparl+NC+IR 68 78 19.5 22.97 (0.03) 26.20 (0.1)
11 Eparl+NC+News+IR 127 198 20.1 23.62 (0.01) 27.04 (0.06)
12 Eparl+NC+109

1+News+IR 258 327 22.8 23.75 (0.05) 27.24 (0.05)
13 Eparl+NC+109

2+News+IR 395 441 24.4 23.87 (0.03) 27.43 (0.08)
14 Eparl+NC+109

2+News+IR pruned 395 285 62.5 24.04 27.72
(+larger beam, +no-cutoff LM)

Table 1: French–English results: number of French words (in million), number of entries in the phrase-
table (in million), memory needed during decoding (in gigabytes) and BLEU scores in the development
(news-test2008) and internal test (newstest2009) sets for the different systems developped. The BLEU
scores and the number in parentheses are the average and standard deviation over 3 values (see Section 3.)

ments of 0.1 to 0.2 BLEU point for a 43% reduc-
tion of the phrase-table size.

We used additional bitexts extracted automati-
cally from the available monolingual corpora. The
first type of additional bitext is generated with au-
tomatic translations of the monolingual data with
a baseline SMT system. The second one is ex-
tracted from comparable corpora, with Informa-
tion Retrieval techniques. With the additional bi-
texts we gained 0.3 and 0.5 BLEU point for the
French–English and English–French systems, re-
spectively.

Next year we want to perform an improved se-
lection of parallel training data with re-sampling
techniques. We also want to use a continuous
space language model (Schwenk, 2007) in an n-
best list rescoring step after decoding. Finally, we
plan to train different types of systems (such as
a hierarchical SMT system and a Statistical Post-
Editing system) and combine their outputs with
the MANY open source system combination soft-
ware (Barrault, 2010).
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Abstract 

 

NRC’s Portage system participated in the Eng-

lish-French (E-F) and French-English (F-E) 

translation tasks of the ACL WMT 2010 eval-

uation. The most notable improvement over 

earlier versions of Portage is an efficient im-

plementation of lattice MERT. While Portage 

has typically performed well in Chinese to 

English MT evaluations, most recently in the 

NIST09 evaluation, our participation in WMT 

2010 revealed some interesting differences be-

tween Chinese-English and E-F/F-E transla-
tion, and alerted us to certain weak spots in 

our system. Most of this paper discusses the 

problems we found in our system and ways of 

fixing them. We learned several lessons that 

we think will be of general interest.  

1 Introduction 

Portage, the statistical machine translation sys-
tem of the National Research Council of Canada 

(NRC), is a two-pass phrase-based system. The 
translation tasks to which it is most often applied 

are Chinese to English, English to French (hen-

ceforth “E-F”), and French to English (hence-
forth “F-E”): in recent years we worked on Chi-

nese-English translation for the GALE project 

and for NIST evaluations, and English and 

French are Canada’s two official languages. In 
WMT 2010, Portage scored 28.5 BLEU (un-

cased) for F-E, but only 27.0 BLEU (uncased) 

for E-F. For both language pairs, Portage tru-
ecasing caused a loss of 1.4 BLEU; other WMT 

systems typically lost around 1.0 BLEU after 

truecasing. In Canada, about 80% of translations 
between English and French are from English to 

French, so we would have preferred better results 

for that direction. This paper first describes the 

version of Portage that participated in WMT 

2010. It then analyzes problems with the system 
and describes the solutions we found for some of 

them.  

2 Portage system description 

2.1 Core engine and training data 

The NRC system uses a standard two-pass 

phrase-based approach. Major features in the 
first-pass loglinear model include phrase tables 

derived from symmetrized IBM2 alignments and 

symmetrized HMM alignments, a distance-based 

distortion model, a lexicalized distortion model, 
and language models (LMs) that can be either 

static or else dynamic mixtures. Each phrase ta-

ble used was a merged one, created by separately 
training an IBM2-based and an HMM-based 

joint count table on the same data and then add-

ing the counts. Each includes relative frequency 
estimates and lexical estimates (based on Zens 

and Ney, 2004) of forward and backward condi-

tional probabilities. The lexicalized distortion 

probabilities are also obtained by adding IBM2 
and HMM counts. They involve 6 features (mo-

notone, swap and discontinuous features for fol-

lowing and preceding phrase) and are condi-
tioned on phrase pairs in a model similar to that 

of Moses (Koehn et al., 2005); a MAP-based 

backoff smoothing scheme is used to combat 

data sparseness when estimating these probabili-
ties. Dynamic mixture LMs are linear mixtures 

of ngram models trained on parallel sub-corpora 

with weights set to minimize perplexity of the 
current source text as described in (Foster and 

Kuhn, 2007); henceforth, we’ll call them “dy-

namic LMs”.  
Decoding uses the cube-pruning algorithm of 

(Huang and Chiang, 2007) with a 7-word distor-

tion limit. Contrary to the usual implementation 

of distortion limits, we allow a new phrase to end 
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more than 7 words past the first non-covered 

word, as long as the new phrase starts within 7 

words from the first non-covered word. Notwith-

standing the distortion limit, contiguous phrases 
can always be swapped. Out-of-vocabulary 

(OOV) source words are passed through un-

changed to the target. Loglinear weights are 
tuned with Och's max-BLEU algorithm over lat-

tices (Macherey et al., 2008); more details about 

lattice MERT are given in the next section. The 
second pass rescores 1000-best lists produced by 

the first pass, with additional features including 

various LM and IBM-model probabilities; ngram, 

length, and reordering posterior probabilities and 
frequencies; and quote and parenthesis mismatch 

indicators. To improve the quality of the maxima 

found by MERT when using large sets of partial-
ly-overlapping rescoring features, we use greedy 

feature selection, first expanding from a baseline 

set, then pruning. 
We restricted our training data to data that was 

directly available through the workshop's web-

site; we didn’t use the LDC resources mentioned 

on the website (e.g., French Gigaword, English 
Gigaword). Below, “mono” refers to all mono-

lingual data (Europarl, news-commentary, and 

shuffle); “mono” English is roughly three times 
bigger than “mono” French (50.6 M lines in 

“mono” English, 17.7 M lines in “mono” French). 

“Domain” refers to all WMT parallel training 

data except GigaFrEn (i.e., Europarl, news-
commentary, and UN).   

2.2 Preprocessing and postprocessing 

We used our own English and French pre- and 

post-processing tools, rather than those available 
from the WMT web site. For training, all English 

and French text is tokenized with a language-

specific tokenizer and then mapped to lowercase. 
Truecasing uses an HMM approach, with lexical 

probabilities derived from “mono” and transition 

probabilities from a 3-gram LM trained on tru-

ecase “mono”. A subsequent rule-based pass ca-
pitalizes sentence-initial words. A final detokeni-

zation step undoes the tokenization. 

2.3 System configurations for WMT 2010 

In the weeks preceding the evaluation, we tried 
several ways of arranging the resources available 

to us. We picked the configurations that gave the 

highest BLEU scores on WMT2009 Newstest. 

We found that tuning with lattice MERT rather 
than N-best MERT allowed us to employ more 

parameters and obtain better results.  

E-F system components: 

1. Phrase table trained on “domain”;  

2. Phrase table trained on GigaFrEn;  

3. Lexicalized distortion model trained on 

“domain”;  
4. Distance-based distortion model; 

5. 5-gram French LM trained on “mono”;  

6. 4-gram LM trained on French half of 
GigaFrEn;  

7. Dynamic LM composed of 4 LMs, each 

trained on the French half of a parallel 
corpus (5-gram LM trained on “domain”, 

4-gram LM on GigaFrEn, 5-gram LM on 

news-commentary and 5-gram LM on 

UN). 
 

The F-E system is a mirror image of the E-F sys-

tem.  

3 Details of lattice MERT (LMERT) 

Our system’s implementation of LMERT (Ma-

cherey et al., 2008) is the most notable recent 
change in our system. As more and more features 

are included in the loglinear model, especially if 

they are correlated, N-best MERT (Och, 2003) 
shows more and more instability, because of 

convergence to local optima (Foster and Kuhn, 

2009). We had been looking for methods that 

promise more stability and better convergence. 
LMERT seemed to fit the bill. It optimizes over 

the complete lattice of candidate translations af-

ter a decoding run. This avoids some of the prob-
lems of N-best lists, which lack variety, leading 

to poor local optima and the need for many de-

coder runs. 
Though the algorithm is straightforward and is 

highly parallelizable, attention must be paid to 

space and time resource issues during implemen-

tation. Lattices output by our decoder were large 
and needed to be shrunk dramatically for the al-

gorithm to function well. Fortunately, this could 

be achieved via the finite state equivalence algo-
rithm for minimizing deterministic finite state 

machines. The second helpful idea was to sepa-

rate out the features that were a function of the 
phrase associated with an arc (e.g., translation 

length and translation model probability fea-

tures). These features could then be stored in a 

smaller phrase-feature table. Features associated 
with language or distortion models could be han-

dled in a larger transition-feature table. 

The above ideas, plus careful coding of data 
structures, brought the memory footprint down 

sufficiently to allow us to use complete lattices 

from the decoder and optimize over the complete 
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development set for NIST09 Chinese-English. 

However, combining lattices between decoder 

runs again resulted in excessive memory re-

quirements. We achieved acceptable perfor-
mance by searching only the lattice from the lat-

est decoder run; perhaps information from earlier 

runs, though critical for convergence in N-best 
MERT, isn’t as important for LMERT.  

Until a reviewer suggested it, we had not 

thought of pruning lattices to a specified graph 
density as a solution for our memory problems. 

This is referred to in a single sentence in (Ma-

cherey et al., 2008), which does not specify its 

implementation or its impact on performance, 
and is an option of OpenFst (we didn’t use 

OpenFst). We will certainly experiment with lat-

tice pruning in future.  
Powell's algorithm (PA), which is at the core 

of MERT, has good convergence when features 

are mostly independent and do not depart much 
from a simple coordinate search; it can run into 

problems when there are many correlated fea-

tures (as with multiple translation and language 

models). Figure 1 shows the kind of case where 
PA works well. The contours of the function be-

ing optimized are relatively smooth, facilitating 

learning of new search directions from gradients. 
Figure 2 shows a more difficult case: there is 

a single optimum, but noise dominates and PA 

has difficulty finding new directions. Search of-

ten iterates over the original co-ordinates, miss-
ing optima that are nearby but in directions not 

discoverable from local gradients. Probes in ran-

dom directions can do better than iteration over 
the same directions (this is similar to the method 

proposed for N-best MERT by Cer et al., 2008). 

Each 1-dimensional MERT optimization is exact, 
so if our probe stabs a region with better scores, 

it will be discovered. Figures 1 and 2 only hint 

at the problem: in reality, 2-dimensional search 

isn’t a problem. The difficulties occur as the di-
mension grows: in high dimensions, it is more 

important to get good directions and they are 

harder to find. 
For WMT 2010, we crafted a compromise 

with the best properties of PA, yet allowing for a 

more aggressive search in more directions. We 
start with PA. As long as PA is adding new di-

rection vectors, it is continued. When PA stops 

adding new directions, random rotation (ortho-

gonal transformation) of the coordinates is per-
formed and PA is restarted in the new space. PA 

almost always fails to introduce new directions 

within the new coordinates, then fails again, so 
another set of random coordinates is chosen. This 

process repeats until convergence. In future 

work, we will look at incorporating random res-

tarts into the algorithm as additional insurance 

against premature convergence.  
Our LMERT implementation has room for 

improvement: it may still run into over-fitting 

problems with many correlated features. Howev-
er, during preparation for the evaluation, we no-

ticed that LMERT converged better than N-best 

MERT, allowing models with more features and 
higher BLEU to be chosen.  

After the WMT submission, we discovered 

that our LMERT implementation had a bug; our 

submission was tuned with this buggy LMERT. 
Comparison between our E-F submission tuned 

with N-best MERT and the same system tuned 

with bug-fixed LMERT shows BLEU gains of 
+1.5-3.5 for LMERT (on dev, WMT2009, and 

WMT2010, with no rescoring). However, N-best 

MERT performed very poorly in this particular 
case; we usually obtain a gain due to LMERT of 

+0.2-1.0 (e.g., for the submitted F-E system).  

 

 
Figure 1: Convergence for PA (Smooth Feature 

Space)  
 

 
Figure 2: Convergence for PA with Random Rotation 

(Rough Feature Space) 
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4 Problems and Solutions 

4.1 Fixing LMERT  

Just after the evaluation, we noticed a discrepan-

cy for E-F between BLEU scores computed dur-
ing LMERT optimization and scores from the 1-

best list immediately after decoding. Our 

LMERT code had a bug that garbled any ac-
cented word in the version of the French refer-

ence in memory; previous LMERT experiments 

had English as target language, so the bug hadn’t 

showed up. The bug didn’t affect characters in 
the 7-bit ASCII set, such as English ones, only 

accented characters. Words in candidate transla-

tions were not garbled, so correct translations 
with accents received a lower BLEU score than 

they should have. As Table 1 shows, this bug 

cost us about 0.5 BLEU for WMT 2010 E-F after 

rescoring (according to NRC’s internal version 
of BLEU, which differs slightly from WMT’s 

BLEU). Despite this bug, the system tuned with 

buggy LMERT (and submitted) was still better 
than the best system we obtained with N-best 

MERT. The bug didn’t affect F-E scores.  

 

 Dev WMT2009 WMT2010 

LMERT (bug) 25.26 26.85 27.55 

LMERT 

 (no bug) 

25.43 26.89 28.07 

 
Table 1: LMERT bug fix (E-F BLEU after rescoring) 

4.2 Fixing odd translations 

After the evaluation, we carefully studied the 

system outputs on the WMT 2010 test data, par-

ticularly for E-F. Apart from truecasing errors, 
we noticed two kinds of bad behaviour: transla-

tions of proper names and apparent passthrough 

of English words to the French side.  
Examples of E-F translations of proper names 

from our WMT 2010 submission (each from a 

different sentence): 

 

Mr. Onderka → M. Roman, Lukáš Marvan → G. 

Lukáš, Janey → The, Janette Tozer → Janette, 

Aysel Tugluk → joints tugluk, Tawa Hallae → 

Ottawa, Oleson →  production,  Alcobendas →  ; 

 

When the LMERT bug was fixed, some but 
not all of these bad translations were corrected 

(e.g., 3 of the 8 examples above were corrected). 

Our system passes OOV words through un-

changed. Thus, the names above aren’t OOVs, 
but words that occur rarely in the training data, 

and for which bad alignments have a dispropor-

tionate effect. We realized that when a source 

word begins with a capital, that may be a signal 

that it should be passed through. We thus de-
signed a passthrough feature function that applies 

to all capitalized forms not at the start of a sen-

tence (and also to forms at the sentence start if 
they’re capitalized elsewhere). Sequences of one 

or more capitalized forms are grouped into a 

phrase suggestion (e.g., Barack Obama → bar-

rack obama) which competes with phrase table 
entries and is assigned a weight by MERT. 

The passthrough feature function yields a tiny 

improvement over the E-F system with the bug-

fixed LMERT on the dev corpus (WMT2008): 
+0.06 BLEU (without rescoring). It yields a larg-

er improvement on our test corpus: +0.27 BLEU 

(without rescoring). Furthermore, it corrects all 
the examples from the WMT 2010 test shown 

above (after the LMERT bug fix 5 of the 8 ex-

amples above still had problems, but when the 
passthrough function is incorporated all of them 

go away). Though the BLEU gain is small, we 

are happy to have almost eradicated this type of 

error, which human beings find very annoying.  
The opposite type of error is apparent pass-

through. For instance, “we’re” appeared 12 times 

in the WMT 2010 test data, and was translated 6 
times into French as “we’re” - even though better 

translations had higher forward probabilities. The 

source of the problem is the backward probabili-
ty P(E=“we’re”|F=“we’re”), which is 1.0; the 

backward probabilities for valid French transla-

tions of “we’re” are lower. Because of the high 

probability P(E=“we’re”|F=“we’re”) within the 
loglinear combination, the decoder often chooses 

“we’re” as the French translation of “we’re”. 

The (E=“we’re”, F=“we’re”) pair in WMT 
2010 phrase tables arose from two sentence pairs 

where the “French” translation of an English sen-

tence is a copy of that English sentence. In both, 

the original English sentence contains “we’re”. 
Naturally, the English words on the “French” 

side are word-aligned with their identical twins 

on the English side. Generally, if the training 
data has sentence pairs where the “French” sen-

tence contains words from the English sentence, 

those words will get high backward probabilities 
of being translated as themselves. This problem 

may not show up as an apparent passthrough; 

instead, it may cause MERT to lower the weight 

of the backward probability component, thus 
hurting performance.  

We estimated English contamination of the 

French side of the parallel training data by ma-
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nually inspecting a random sample of “French” 

sentences containing common English function 

words. Manual inspection is needed for accurate 

estimation: a legitimate French sentence might 
contain mostly English words if, e.g., it is short 

and cites the title of an English work (this 

wouldn’t count as contamination). The degree of 
contamination is roughly 0.05% for Europarl, 

0.5% for news-commentary, 0.5% for UN, and 

1% for GigaFrEn (in these corpora the French is 
also contaminated by other languages, particular-

ly German). Foreign contamination of English 

for these corpora appears to be much less fre-

quent.  
Contamination can take strange forms. We ex-

pected to see English sentences copied over in-

tact to the French side, and we did, but we did 
not expect to see so many “French” sentences 

that interleaved short English word sequences 

with short French word sequences, apparently 
because text with an English and a French col-

umn had been copied by taking lines from alter-

nate columns. We found many of these inter-

leaved “French” sentences, and found some of 
them in exactly this form on the Web (i.e., the 

corruption didn’t occur during WMT data collec-

tion). The details may not matter: whenever the 
“French” training sentence contains words from 

its English twin, there can be serious damage via 

backward probabilities. 

To test this hypothesis, we filtered all parallel 
and monolingual training data for the E-F system 

with a language guessing tool called text_cat 

(Cavnar and Trenkle, 1994). From parallel data, 
we filtered out sentence pairs whose French side 

had a high probability of not being French; from 

LM training data, sentences with a high non-
French probability. We set the filtering level by 

inspecting the guesser’s assessment of news-

commentary sentences, choosing a rather aggres-

sive level that eliminated 0.7% of news-
commentary sentence pairs. We used the same 

level to filter Europarl (0.8% of sentence pairs 

removed), UN (3.4%), GigaFrEn (4.7%), and 
“mono” (4.3% of sentences).  

 

 Dev WMT2009 WMT2010 

Baseline 25.23 26.47 27.72 

Filtered 25.45 26.66 27.98 
 

Table 2: Data filtering (E-F BLEU, no rescoring) 

 

Table 2 shows the results: a small but consis-
tent gain (about +0.2 BLEU without rescoring). 

We have not yet confirmed the hypothesis that 

copies of source-language words in the paired 

target sentence within training data can damage 

system performance via backward probabilities.  

4.3 Fixing problems with LM training   

Post-evaluation, we realized that our arrange-
ment of the training data for the LMs for both 

language directions was flawed. The grouping 

together of disparate corpora in “mono” and 
“domain” didn’t allow higher-quality, truly in-

domain corpora to be weighted more heavily 

(e.g., the news corpora should have higher 
weights than Europarl, but they are lumped to-

gether in “mono”). There are also potentially 

harmful overlaps between LMs (e.g., GigaFrEn 

is used both inside and outside the dynamic LM).  
We trained a new set of French LMs for the E-

F system, which replaced all the French LMs 

(#5-7) described in section 2.3 in the E-F system: 
1. 5-gram LM trained on news-commentary 

and shuffle;  

2. Dynamic LM based on 4 5-gram LMs 

trained on French side of parallel data 
(LM trained on GigaFrEn, LM on UN, 

LM on Europarl, and LM on news-

commentary). 
We did not apply the passthrough function or 

language filtering (section 4.2) to any of the 

training data for any component (LMs, TMs, dis-
tortion models) of this system; we did use the 

bug-fixed version of LMERT (section 4.1). 

The experiments with these new French LMs 

for the E-F system yielded a small decrease of 
NRC BLEU on dev (-0.15) and small increases 

on WMT Newstest 2009 and Newstest 2010 

(+0.2 and +0.4 respectively without rescoring). 
We didn’t do F-E experiments of this type.  

4.4 Pooling improvements   

The improvements above were (individual un-

cased E-F BLEU gains without rescoring in 

brackets): LMERT bug fix (about +0.5); pass-
through feature function (+0.1-0.3); language 

filtering for French (+0.2). There was also a 

small gain on test data by rearranging E-F LM 
training data, though the loss on “dev” suggests 

this may be a statistical fluctuation. We built 

these four improvements into the evaluation E-F 
system, along with quote normalization: in all 

training and test data, diverse single quotes were 

mapped onto the ascii single quote, and diverse 

double quotes were mapped onto the ascii double 
quote. The average result on WMT2009 and 

WMT2010 was +1.7 BLEU points compared to 

the original system, so there may be synergy be-
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tween the improvements. The original system 

had gained +0.3 from rescoring, while the final 

improved system only gained +0.1 from rescor-

ing: a post-evaluation rescored gain of +1.5.  
An experiment in which we dropped lexica-

lized distortion from the improved system 

showed that this component yields about +0.2 
BLEU. Much earlier, when we were still training 

systems with N-best MERT, incorporation of the 

6-feature lexicalized distortion often caused 
scores to go down (by as much as 2.8 BLEU). 

This illustrates how LMERT can make incorpo-

ration of many more features worthwhile.  

4.5 Fixing truecasing  

Our truecaser doesn’t work as well as truecasers 
of other WMT groups: we lost 1.4 BLEU by tru-

ecasing in both language directions, while others 

lost 1.0 or less. To improve our truecaser, we 
tried: 1. Training it on all relevant data and 2. 

Collecting 3-gram case-pattern statistics instead 

of unigrams. Neither of these helped significant-

ly. One way of improving the truecaser would be 
to let case information from source words influ-

ence the case of the corresponding target words. 

Alternatively, one of the reviewers stated that 
several labs involved in WMT have no separate 

truecaser and simply train on truecase text. We 

had previously tried this approach for NIST Chi-
nese-English and discarded it because of its poor 

performance. We are currently re-trying it on 

WMT data; if it works better than having a sepa-

rate truecaser, this was yet another area where 
lessons from Chinese-English were misleading. 

5 Lessons  

LMERT is an improvement over N-best MERT. 

The submitted system was one for which N-best 

MERT happened to work very badly, so we got 

ridiculously large gains of +1.5-3.5 BLEU for 
non-buggy LMERT over N-best MERT. These 

results are outliers: in experiments with similar 

configurations, we typically get +0.2-1.0 for 
LMERT over N-best MERT. Post-evaluation, 

four minor improvements – a case-based pass-

through function, language filtering, LM rear-

rangement, and quote normalization – collective-
ly gave a nice improvement. Nothing we tried 

helped truecaser performance significantly, 

though we have some ideas on how to proceed. 
We learned some lessons from WMT 2010. 

Always test your system on the relevant lan-

guage pair. Our original version of LMERT was 
developed on Chinese-English and worked well 

there, but had a bug that surfaced only when the 

target language had accents.  

European language pairs are more porous to 

information than Chinese-English. Our WMT 
system reflected design decisions for Chinese-

English, and thus didn’t exploit case information 

in the source: it passed through OOVs to the tar-
get, but didn’t pass through upper-case words 

that are likely to be proper nouns.  

It is beneficial to remove foreign-language 
contamination from the training data.  

When entering an evaluation one hasn’t parti-

cipated in for several years, always read system 

papers from the previous year. Some of the 
WMT 2008 system papers mention passthrough 

of some non-OOVs, filtering out of noisy train-

ing data, and using the case of a source word to 
predict the case of the corresponding target word. 
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Abstract

We describe the progress we have made in
the past year on Joshua (Li et al., 2009a),
an open source toolkit for parsing based
machine translation. The new functional-
ity includes: support for translation gram-
mars with a rich set of syntactic nonter-
minals, the ability for external modules to
posit constraints on how spans in the in-
put sentence should be translated, lattice
parsing for dealing with input uncertainty,
a semiring framework that provides a uni-
fied way of doing various dynamic pro-
gramming calculations, variational decod-
ing for approximating the intractable MAP
decoding, hypergraph-based discrimina-
tive training for better feature engineering,
a parallelized MERT module, document-
level and tail-based MERT, visualization
of the derivation trees, and a cleaner
pipeline for MT experiments.

1 Introduction

Joshua is an open-source toolkit for parsing-based
machine translation that is written in Java. The
initial release of Joshua (Li et al., 2009a) was a
re-implementation of the Hiero system (Chiang,
2007) and all its associated algorithms, includ-
ing: chart parsing, n-gram language model inte-
gration, beam and cube pruning, and k-best ex-
traction. The Joshua 1.0 release also included
re-implementations of suffix array grammar ex-
traction (Lopez, 2007; Schwartz and Callison-
Burch, 2010) and minimum error rate training
(Och, 2003; Zaidan, 2009). Additionally, it in-
cluded parallel and distributed computing tech-
niques for scalability (Li and Khudanpur, 2008).

This paper describes the additions to the toolkit
over the past year, which together form the 2.0 re-
lease. The software has been heavily used by the

authors and several other groups in their daily re-
search, and has been substantially refined since the
first release. The most important new functions in
the toolkit are:

• Support for any style of synchronous context
free grammar (SCFG) including syntax aug-
ment machine translation (SAMT) grammars
(Zollmann and Venugopal, 2006)

• Support for external modules to posit transla-
tions for spans in the input sentence that con-
strain decoding (Irvine et al., 2010)

• Lattice parsing for dealing with input un-
certainty, including ambiguous output from
speech recognizers or Chinese word seg-
menters (Dyer et al., 2008)

• A semiring architecture over hypergraphs
that allows many inference operations to be
implemented easily and elegantly (Li and
Eisner, 2009)

• Improvements to decoding through varia-
tional decoding and other approximate meth-
ods that overcome intractable MAP decoding
(Li et al., 2009b)

• Hypergraph-based discriminative training for
better feature engineering (Li and Khudan-
pur, 2009b)

• A parallelization of MERT’s computations,
and supporting document-level and tail-based
optimization (Zaidan, 2010)

• Visualization of the derivation trees and hy-
pergraphs (Weese and Callison-Burch, 2010)

• A convenient framework for designing and
running reproducible machine translation ex-
periments (Schwartz, under review)

The sections below give short descriptions for
each of these new functions.
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2 Support for Syntax-based Translation

The initial release of Joshua supported only
Hiero-style SCFGs, which use a single nontermi-
nal symbol X. This release includes support for ar-
bitrary SCFGs, including ones that use a rich set
of linguistic nonterminal symbols. In particular
we have added support for Zollmann and Venu-
gopal (2006)’s syntax-augmented machine trans-
lation. SAMT grammar extraction is identical to
Hiero grammar extraction, except that one side of
the parallel corpus is parsed, and syntactic labels
replace the X nonterminals in Hiero-style rules.
Instead of extracting this Hiero rule from the bi-
text
[X]⇒ [X,1] sans [X,2] | [X,1] without [X,2]

the nonterminals can be labeled according to
which constituents cover the nonterminal span on
the parsed side of the bitext. This constrains what
types of phrases the decoder can use when produc-
ing a translation.
[VP]⇒ [VBN] sans [NP] | [VBN] without [NP]
[NP]⇒ [NP] sans [NP] | [NP] without [NP]

Unlike GHKM (Galley et al., 2004), SAMT has
the same coverage as Hiero, because it allows
non-constituent phrases to get syntactic labels us-
ing CCG-style slash notation. Experimentally, we
have found that the derivations created using syn-
tactically motivated grammars exhibit more coher-
ent syntactic structure than Hiero and typically re-
sult in better reordering, especially for languages
with word orders that diverge from English, like
Urdu (Baker et al., 2009).

3 Specifying Constraints on Translation

Integrating output from specialized modules
(like transliterators, morphological analyzers, and
modality translators) into the MT pipeline can
improve translation performance, particularly for
low-resource languages. We have implemented
an XML interface that allows external modules
to propose alternate translation rules (constraints)
for a particular word span to the decoder (Irvine
et al., 2010). Processing that is separate from
the MT engine can suggest translations for some
set of source side words and phrases. The XML
format allows for both hard constraints, which
must be used, and soft constraints, which compete
with standard extracted translation rules, as well
as specifying associated feature weights. In ad-
dition to specifying translations, the XML format
allows constraints on the lefthand side of SCFG

rules, which allows constraints like forcing a par-
ticular span to be translated as an NP. We modi-
fied Joshua’s chart-based decoder to support these
constraints.

4 Semiring Parsing

In Joshua, we use a hypergraph (or packed forest)
to compactly represent the exponentially many
derivation trees generated by the decoder for an
input sentence. Given a hypergraph, we may per-
form many atomic inference operations, such as
finding one-best or k-best translations, or com-
puting expectations over the hypergraph. For
each such operation, we could implement a ded-
icated dynamic programming algorithm. How-
ever, a more general framework to specify these
algorithms is semiring-weighted parsing (Good-
man, 1999). We have implemented the in-
side algorithm, the outside algorithm, and the
inside-outside speedup described by Li and Eis-
ner (2009), plut the first-order expectation semir-
ing (Eisner, 2002) and its second-order version (Li
and Eisner, 2009). All of these use our newly im-
plemented semiring framework.

The first- and second-order expectation semi-
rings can also be used to compute many interesting
quantities over hypergraphs. These quantities in-
clude expected translation length, feature expec-
tation, entropy, cross-entropy, Kullback-Leibler
divergence, Bayes risk, variance of hypothesis
length, gradient of entropy and Bayes risk, covari-
ance and Hessian matrix, and so on.

5 Word Lattice Input

We generalized the bottom-up parsing algorithm
that generates the translation hypergraph so that
it supports translation of word lattices instead of
just sentences. Our implementation’s runtime and
memory overhead is proportional to the size of the
lattice, rather than the number of paths in the lat-
tice (Dyer et al., 2008). Accepting lattice-based
input allows the decoder to explore a distribution
over input sentences, allowing it to select the best
translation from among all of them. This is es-
pecially useful when Joshua is used to translate
the output of statistical preprocessing components,
such as speech recognizers or Chinese word seg-
menters, which can encode their alternative analy-
ses as confusion networks or lattices.
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6 Variational Decoding

Statistical models in machine translation exhibit
spurious ambiguity. That is, the probability of an
output string is split among many distinct deriva-
tions (e.g., trees or segmentations) that have the
same yield. In principle, the goodness of a string
is measured by the total probability of its many
derivations. However, finding the best string dur-
ing decoding is then NP-hard. The first version of
Joshua implemented the Viterbi approximation,
which measures the goodness of a translation us-
ing only its most probable derivation.

The Viterbi approximation is efficient, but it ig-
nores most of the derivations in the hypergraph.
We implemented variational decoding (Li et al.,
2009b), which works as follows. First, given a for-
eign string (or lattice), the MT system produces a
hypergraph, which encodes a probability distribu-
tion p over possible output strings and their deriva-
tions. Second, a distribution q is selected that ap-
proximates p as well as possible but comes from
a family of distributions Q in which inference is
tractable. Third, the best string according to q
(instead of p) is found. In our implementation,
the q distribution is parameterized by an n-gram
model, under which the second and third steps can
be performed efficiently and exactly via dynamic
programming. In this way, variational decoding
considers all derivations in the hypergraph but still
allows tractable decoding.

7 Hypergraph-based Discriminative
Training

Discriminative training with a large number of
features has potential to improve the MT perfor-
mance. We have implemented the hypergraph-
based minimum risk training (Li and Eisner,
2009), which minimizes the expected loss of the
reference translations. The minimum-risk objec-
tive can be optimized by a gradient-based method,
where the risk and its gradient can be computed
using a second-order expectation semiring. For
optimization, we use both L-BFGS (Liu et al.,
1989) and Rprop (Riedmiller and Braun, 1993).

We have also implemented the average Percep-
tron algorithm and forest-reranking (Li and Khu-
danpur, 2009b). Since the reference translation
may not be in the hypergraph due to pruning or in-
herent defficiency of the translation grammar, we
need to use an oracle translation (i.e., the transla-
tion in the hypergraph that is most simmilar to the

reference translation) as a surrogate for training.
We implemented the oracle extraction algorithm
described by Li and Khudanpur (2009a) for this
purpose.

Given the current infrastructure, other training
methods (e.g., maximum conditional likelihood or
MIRA as used by Chiang et al. (2009)) can also be
easily supported with minimum coding. We plan
to implement a large number of feature functions
in Joshua so that exhaustive feature engineering is
possible for MT.

8 Minimum Error Rate Training

Joshua’s MERT module optimizes parameter
weights so as to maximize performance on a de-
velopment set as measuered by an automatic eval-
uation metric, such as Bleu (Och, 2003).

We have parallelized our MERT module in
two ways: parallelizing the computation of met-
ric scores, and parallelizing the search over pa-
rameters. The computation of metric scores is
a computational concern when tuning to a met-
ric that is slow to compute, such as translation
edit rate (Snover et al., 2006). Since scoring a
candidate is independent from scoring any other
candidate, we parallelize this computation using a
multi-threaded solution1. Similarly, we parallelize
the optimization of the intermediate initial weight
vectors, also using a multi-threaded solution.

Another feature is the module’s awareness of
document information, and the capability to per-
form optimization of document-based variants of
the automatic metric (Zaidan, 2010). For example,
in document-based Bleu, a Bleu score is calculated
for each document, and the tuned score is the aver-
age of those document scores. The MERT module
can furthermore be instructed to target a specific
subset of those documents, namely the tail subset,
where only the subset of documents with the low-
est document Bleu scores are considered.2

More details on the MERT method and the im-
plementation can be found in Zaidan (2009).3

1Based on sample code by Kenneth Heafield.
2This feature is of interest to GALE teams, for instance,

since GALE’s evaluation criteria place a lot of focus on trans-
lation quality of tail documents.

3The module is also available as a standalone applica-
tion, Z-MERT, that can be used with other MT systems.
(Software and documentation at: http://cs.jhu.edu/
˜ozaidan/zmert.)
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9 Visualization

We created tools for visualizing two of the
main data structures used in Joshua (Weese and
Callison-Burch, 2010). The first visualizer dis-
plays hypergraphs. The user can choose from a
set of input sentences, then call the decoder to
build the hypergraph. The second visualizer dis-
plays derivation trees. Setting a flag in the con-
figuration file causes the decoder to output parse
trees instead of strings, where each nonterminal is
annotated with its source-side span. The visual-
izer can read in multiple n-best lists in this format,
then display the resulting derivation trees side-by-
side. We have found that visually inspecting these
derivation trees is useful for debugging grammars.

We would like to add visualization tools for
more parts of the pipeline. For example, a chart
visualizer would make it easier for researchers to
tell where search errors were happening during
decoding, and why. An alignment visualizer for
aligned parallel corpora might help to determine
how grammar extraction could be improved.

10 Pipeline for Running MT
Experiments

Reproducing other researchers’ machine transla-
tion experiments is difficult because the pipeline is
too complex to fully detail in short conference pa-
pers. We have put together a workflow framework
for designing and running reproducible machine
translation experiments using Joshua (Schwartz,
under review). Each step in the machine transla-
tion workflow (data preprocessing, grammar train-
ing, MERT, decoding, etc) is modeled by a Make
script that defines how to run the tools used in that
step, and an auxiliary configuration file that de-
fines the exact parameters to be used in that step
for a particular experimental setup. Workflows
configured using this framework allow a complete
experiment to be run – from downloading data and
software through scoring the final translated re-
sults – by executing a single Makefile.

This framework encourages researchers to sup-
plement research publications with links to the
complete set of scripts and configurations that
were actually used to run the experiment. The
Johns Hopkins University submission for the
WMT10 shared translation task was implemented
in this framework, so it can be easily and exactly
reproduced.
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Abstract

This paper describes our phrase-based Sta-
tistical Machine Translation (SMT) sys-
tem for the WMT10 Translation Task. We
submitted translations for the German to
English and English to German transla-
tion tasks. Compared to state-of-the-art
phrase-based systems we preformed addi-
tional preprocessing and used a discrim-
inative word alignment approach. The
word reordering was modeled using POS
information and we extended the transla-
tion model with additional features.

1 Introduction

In this paper we describe the systems that we
built for our participation in the Shared Trans-
lation Task of the ACL 2010 Joint Fifth Work-
shop on Statistical Machine Translation and Met-
ricsMATR. Our translations are generated using
a state-of-the-art phrase-based translation system
and applying different extensions and modifica-
tions including Discriminative Word Alignment,
a POS-based reordering model and bilingual lan-
guage models using POS and stem information.

Depending on the source and target languages,
the proposed models differ in their benefit for the
translation task and also expose different correl-
ative effects. The Sections 2 to 4 introduce the
characteristics of the baseline system and the sup-
plementary models. In Section 5 we present the
performance of the system variants applying the
different models and chose the systems used for
creating the submissions for the English-German
and German-English translation task. Section 6
draws conclusions and suggests directions for fu-
ture work.

2 Baseline System

The baseline systems for the translation directions
German-English and English-German are both de-
veloped using Discriminative Word Alignment
(Niehues and Vogel, 2008) and the Moses Toolkit
(Koehn et al., 2007) for extracting phrase pairs
and generating the phrase table from the discrimi-
native word alignments. The difficult reordering
between German and English was modeled us-
ing POS-based reordering rules. These rules were
learned using a word-aligned parallel corpus. The
POS tags for the reordering models are generated
using the TreeTagger (Schmid, 1994) for all lan-
guages.

Translation is performed by the STTK Decoder
(Vogel, 2003) and all systems are optimized to-
wards BLEU using Minimum Error Rate Training
as proposed in Venugopal et al. (2005).

2.1 Training, Development and Test Data

We used the data provided for the WMT for train-
ing, optimizing and testing our systems: Our
training corpus consists of Europarl and News
Commentary data, for optimization we use new-
stest2008 as development set and newstest2009 as
test set.

The baseline language models are trained on
the target language part of the Europarl and News
Commentary corpora. Additional, bigger lan-
guage models were trained on monolingual cor-
pora. For both systems the News corpus was used
while an English language model was also trained
on the even bigger Gigaword corpus.

2.2 Preprocessing

The training data was preprocessed before used for
training. In this step different normalizations were
done like mapping different types of quotes. In
the end the first word of every sentence was smart-
cased.
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For the German text, additional preprocessing
steps were applied. First, the older German data
uses the old German orthography whereas the
newer parts of the corpus use the new German
orthography. We tried to normalize the text by
converting the whole text to the new German or-
thography. In a first step, we search for words that
are only correct according to the old writing rules.
Therefore, we selected all words in the corpus, that
are correct according to the hunspell lexicon1 us-
ing the old rules, but not correct according to the
hunspell lexicon using the new rules. In a second
step we tried to find the correct spelling according
to the new rules. We first applied rules describing
how words changed from one spelling system to
the other, for example replacing ’ß’ by ’ss’. If the
new word is a correct word according to the hun-
spell lexicon using the new spelling rules, we map
the words.

When translating from German to English, we
apply compound splitting as described in Koehn
and Knight (2003) to the German corpus.

As a last preprocessing step we remove sen-
tences that are too long and empty lines to obtain
the final training corpus.

3 Word Reordering Model

Reordering was applied on the source side prior
to decoding through the generation of lattices en-
coding possible reorderings of each source sen-
tence that better match the word sequence in the
target language. These possible reorderings were
learned based on the POS of the source language
words in the training corpus and the information
about alignments between source and target lan-
guage words in the corpus. For short-range re-
orderings, continuous reordering rules were ap-
plied to the test sentences (Rottmann and Vogel,
2007). To model the long-range reorderings be-
tween German and English, different types of non-
continuous reordering rules were applied depend-
ing on the translation direction. (Niehues and
Kolss, 2009). When translating from English to
German, most of the changes in word order con-
sist in a shift to the right while typical word shifts
in German to English translations take place in the
reverse direction.

1http://hunspell.sourceforge.net/

4 Translation Model

The translation model was trained on the parallel
corpus and the word alignment was generated by
a discriminative word alignment model, which is
described below. The phrase table was trained us-
ing the Moses training scripts, but for the German
to English system we used a different phrase ex-
traction method described in detail in Section 4.2.
In addition, we applied phrase table smoothing as
described in Foster et al. (2006). Furthermore, we
extended the translation model by additional fea-
tures for unaligned words and introduced bilingual
language models.

4.1 Word Alignment

In most phrase-based SMT systems the heuristic
grow-diag-final-and is used to combine the align-
ments generated by GIZA++ from both direc-
tions. Then these alignments are used to extract
the phrase pairs.

We used a discriminative word alignment model
(DWA) to generate the alignments as described in
Niehues and Vogel (2008) instead. This model is
trained on a small amount of hand-aligned data
and uses the lexical probability as well as the fer-
tilities generated by the PGIZA++2 Toolkit and
POS information. We used all local features, the
GIZA and indicator fertility features as well as
first order features for 6 directions. The model was
trained in three steps, first using maximum likeli-
hood optimization and afterwards it was optimized
towards the alignment error rate. For more details
see Niehues and Vogel (2008).

4.2 Lattice Phrase Extraction

In translations from German to English, we often
have the case that the English verb is aligned to
both parts of the German verb. Since this phrase
pair is not continuous on the German side, it can-
not be extracted. The phrase could be extracted, if
we also reorder the training corpus.

For the test sentences the POS-based reordering
allows us to change the word order in the source
sentence so that the sentence can be translated
more easily. If we apply this also to the train-
ing sentences, we would be able to extract the
phrase pairs for originally discontinuous phrases
and could apply them during translation of the re-
ordered test sentences.

2http://www.cs.cmu.edu/˜qing/
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Therefore, we build lattices that encode the dif-
ferent reorderings for every training sentence, as
described in Niehues et al. (2009). Then we can
not only extract phrase pairs from the monotone
source path, but also from the reordered paths. So
it would be possible to extract the example men-
tioned before, if both parts of the verb were put
together by a reordering rule. To limit the num-
ber of extracted phrase pairs, we extract a source
phrase only once per sentence even if it may be
found on different paths. Furthermore, we do not
use the weights in the lattice.

If we used the same rules as for reordering the
test sets, the lattice would be so big that the num-
ber of extracted phrase pairs would be still too
high. As mentioned before, the word reordering
is mainly a problem at the phrase extraction stage
if one word is aligned to two words which are
far away from each other in the sentence. There-
fore, the short-range reordering rules do not help
much in this case. So, only the long-range reorder-
ing rules were used to generate the lattices for the
training corpus.

4.3 Unaligned Word Feature
Guzman et al. (2009) analyzed the role of the word
alignment in the phrase extraction process. To bet-
ter model the relation between word alignment and
the phrase extraction process, they introduced two
new features into the log-linear model. One fea-
ture counts the number of unaligned words on the
source side and the other one does the same for the
target side. Using these additional features they
showed improvements on the Chinese to English
translation task. In order to investigate the impact
on closer related languages like English and Ger-
man, we incorporated those two features into our
systems.

4.4 Bilingual Word language model
Motivated by the improvements in translation
quality that could be achieved by using the n-gram
based approach to statistical machine translation,
for example by Allauzen et al. (2009), we tried
to integrate a bilingual language model into our
phrase-based translation system.

To be able to integrate the approach easily into a
standard phrase-based SMT system, a token in the
bilingual language model is defined to consist of
a target word and all source words it is aligned to.
The tokens are ordered according to the target lan-
guage word order. Then the additional tokens can

be introduced into the decoder as an additional tar-
get factor. Consequently, no additional implemen-
tation work is needed to integrate this feature.

If we have the German sentence Ich bin nach
Hause gegangen with the English translation I
went home, the resulting bilingual text would look
like this: I Ich went bin gegangen home Hause.

As shown in the example, one problem with this
approach is that unaligned source words are ig-
nored in the model. One solution could be to have
a second bilingual text ordered according to the
source side. But since the target sentence and not
the source sentence is generated from left to right
during decoding, the integration of a source side
language model is more complex. Therefore, as
a first approach we only used a language model
based on the target word order.

4.5 Bilingual POS language model

The main advantage of POS-based information
is that there are less data sparsity problems and
therefore a longer context can be considered. Con-
sequently, if we want to use this information in the
translation model of a phrase-based SMT system,
the POS-based phrase pairs should be longer than
the word-based ones. But this is not possible in
many decoders or it leads to additional computa-
tion overhead.

If we instead use a bilingual POS-based lan-
guage model, the context length of the language
model is independent from the other models. Con-
sequently, a longer context can be considered for
the POS-based language model than for the word-
based bilingual language model or the phrase
pairs.

Instead of using POS-based information, this
approach can also be applied with other additional
linguistic word-level information like word stems.

5 Results

We submitted translations for English-German
and German-English for the Shared Translation
Task. In the following we present the experiments
we conducted for both translation directions ap-
plying the aforementioned models and extensions
to the baseline systems. The performance of each
individual system configuration was measured ap-
plying the BLEU metric. All BLEU scores are cal-
culated on the lower-cased translation hypotheses.
The individual systems that were used to create the
submission are indicated in bold.
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5.1 English-German

The baseline system for English-German applies
short-range reordering rules and discriminative
word alignment. The language model is trained
on the News corpus. By expanding the coverage
of the rules to enable long-range reordering, the
score on the test set could be slightly improved.
We then combined the target language part of the
Europarl and News Commentary corpora with the
News corpus to build a bigger language model
which resulted in an increase of 0.11 BLEU points
on the development set and an increase of 0.25
points on the test set. Applying the bilingual lan-
guage model as described above led to 0.04 points
improvement on the test set.

Table 1: Translation results for English-German
(BLEU Score)

System Dev Test
Baseline 15.30 15.40
+ Long-range Reordering 15.25 15.44
+ EPNC LM 15.36 15.69
+ bilingual Word LM 15.37 15.73
+ bilingual POS LM 15.42 15.67
+ unaligned Word Feature 15.65 15.66
+ bilingual Stem LM 15.57 15.74

This system was used to create the submis-
sion to the Shared Translation Task of the WMT
2010. After submission we performed additional
experiments which only led to inconclusive re-
sults. Adding the bilingual POS language model
and introducing the unaligned word feature to the
phrase table only improved on the development
set, while the scores on the test set decreased. A
third bilingual language model based on stem in-
formation again only showed noteworthy effects
on the development set.

5.2 German-English

For the German to English translation system,
the baseline system already uses short-range re-
ordering rules and the discriminative word align-
ment. This system applies only the language
model trained on the News corpus. By adding the
possibility to model long-range reorderings with
POS-based rules, we could improve the system by
0.6 BLEU points. Adding the big language model
using also the English Gigaword corpus we could
improve by 0.3 BLEU points. We got an addi-

tional improvement by 0.1 BLEU points by adding
lattice phrase extraction.

Both the word-based and POS-based bilingual
language model could improve the translation
quality measured in BLEU. Together they im-
proved the system performance by 0.2 BLEU
points.

The best results could be achieved by using also
the unaligned word feature for source and target
words leading to the best performance on the test
set (22.09).

Table 2: Translation results for German-English
(BLEU Score)

System Dev Test
Baseline 20.94 20.83
+ Long-range Reordering 21.52 21.43
+ Gigaword LM 21.90 21.71
+ Lattice Phrase Extraction 21.94 21.81
+ bilingual Word LM 21.94 21.87
+ bilingual POS LM 22.02 22.05
+ unaligned Word Feature 22.09 22.09

6 Conclusions

For our participation in the WMT 2010 we built
translation systems for German to English and En-
glish to German. We addressed to the difficult
word reordering when translating from or to Ger-
man by using POS-based reordering rules during
decoding and by using lattice-based phrase extrac-
tion during training. By applying those methods
we achieved substantially better results for both
translation directions.

Furthermore, we tried to improve the translation
quality by introducing additional features to the
translation model. On the one hand we included
bilingual language models based on different word
factors into the log-linear model. This led to very
slight improvements which differed also with re-
spect to language and data set. We will investigate
in the future whether further improvements are
achievable with this approach. On the other hand
we included the unaligned word feature which has
been applied successfully for other language pairs.
The improvements we could gain with this method
are not as big as the ones reported for other lan-
guages, but still the performance of our systems
could be improved using this feature.
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Abstract

This paper describes the DCU machine
translation system in the evaluation cam-
paign of the Joint Fifth Workshop on Sta-
tistical Machine Translation and Metrics
in ACL-2010. We describe the modular
design of our multi-engine machine trans-
lation (MT) system with particular focus
on the components used in this partici-
pation. We participated in the English–
Spanish and English–Czech translation
tasks, in which we employed our multi-
engine architecture to translate. We also
participated in the system combination
task which was carried out by the MBR
decoder and confusion network decoder.

1 Introduction

In this paper, we present the DCU multi-engine
MT system MATREX (Machine Translation using
Examples). This system exploits example-based
MT, statistical MT (SMT), and system combina-
tion techniques.

We participated in the English–Spanish (en–
es) and English–Czech (en–cs) translation
tasks. For these two tasks, we employ several
individual MT systems: 1) Baseline: phrase-
based SMT (Koehn et al., 2007); 2) EBMT:
Monolingually chunking both source and target
sides of the dataset using a marker-based chunker
(Gough and Way, 2004); 3) Factored translation
model (Koehn and Hoang, 2007); 4) Source-side
context-informed (SSCI) systems (Stroppa et al.,
2007); 5) the moses-chart (a Moses imple-
mentation of the hierarchical phrase-based (HPB)
approach of Chiang (2007)) and 6) Apertium (For-
cada et al., 2009) rule-based machine translation
(RBMT). Finally, we use a word-level combina-
tion framework (Rosti et al., 2007) to combine the

multiple translation hypotheses and employ a new
rescoring model to generate the final translation.

For the system combination task, we first use
the minimum Bayes-risk (MBR) (Kumar and
Byrne, 2004) decoder to select the best hypoth-
esis as the alignment reference for the confusion
network (CN) (Mangu et al., 2000). We then build
the CN using the TER metric (Snover et al., 2006),
and finally search for the best translation.

The remainder of this paper is organised as fol-
lows: Section 2 details the various components of
our system, in particular the multi-engine strate-
gies used for the shared task. In Section 3, we
outline the complete system setup for the shared
task and provide evaluation results on the test set.
Section 4 concludes the paper.

2 The MATREX System

2.1 System Architecture

The MATREX system is a combination-based
multi-engine architecture, which exploits as-
pects of both the EBMT and SMT paradigms.
The architecture includes various individual sys-
tems: phrase-based, example-based, hierarchical
phrase-based and tree-based MT.

The combination structure uses the MBR and
CN decoders, and is based on a word-level com-
bination strategy (Du et al., 2009). In the final
stage, we use a new rescoring module to process
theN -best list generated by the combination mod-
ule. Figure 1 illustrates the architecture.

2.2 Example-Based Machine Translation

The EBMT system uses a language-specific, re-
duced set of closed-class marker morphemes or
lexemes (Gough and Way, 2004) to define a way
to segment sentences into chunks, which are then
aligned using an edit-distance-style algorithm, in
which edit costs depend on word-to-word transla-143



Figure 1: System Framework.

tion probabilities and the amount of word-to-word
cognates (Stroppa and Way, 2006).

Once these phrase pairs were obtained they
were merged with the phrase pairs extracted by
the baseline system adding word alignment infor-
mation.

2.3 Apertium RBMT

Apertium1 is a free/open-source platform for
RBMT. The current version of the en–es system
in Apertium was used for the system combination
task (section 2.7), and its morphological analysers
and part-of-speech taggers were used to build a
factored Moses model.

2.4 Factored Translation Model

We also used a factored model for the en–es
translation task. Factored models (Koehn and
Hoang, 2007) facilitate the translation by break-
ing it down into several factors which are further
combined using a log-linear model (Och and Ney,
2002).

We used three factors in our factored translation
model, which are used in two different decoding
paths: a surface form (SF) to SF translation factor,
a lemma to lemma translation factor, and a part-of-
speech (PoS) to PoS translation factor.

Finally, we used two decoding paths based on

1http://www.apertium.org

the above three translation factors: an SF to SF
decoding path and a path which maps lemma to
lemma, PoS to PoS, and an SF generated using
the TL lemma and PoS. The lemmas and PoS for
en and es were obtained using Apertium (sec-
tion 2.3).

2.5 Source-Side Context-informed PB-SMT

One natural way to express a context-informed
feature (ĥMBL) is to view it as the conditional
probability of the target phrases (êk) given the
source phrase (f̂k) and its source-side context in-
formation (CI):

ĥMBL = logP (êk|f̂k,CI(f̂k)) (1)

We use a memory-based machine learning
(MBL) classifier (TRIBL:2 Daelemans and
van den Bosch (2005)) that is able to estimate
P (êk|f̂k,CI(f̂k)) by similarity-based reasoning
over memorized nearest-neighbour examples of
source–target phrase translations. In equation (1),
SSCI may include any feature (lexical, syntactic,
etc.), which can provide useful information to
disambiguate a given source phrase. In addition
to using local words and PoS-tags as features,
as in (Stroppa et al., 2007), we incorporate
grammatical dependency relations (Haque et al.,
2009a) and supertags (Haque et al., 2009b) as
syntactic source context features in the log-linear
PB-SMT model.

In addition to the above feature, we derived a
simple binary feature ĥbest, defined in (2):

ĥbest =

{
1 if êk maximizes P (êk|f̂k,CI(f̂k))
0 otherwise

(2)
We performed experiments by integrating these

two features, ĥMBL and ĥbest, directly into the
log-linear framework of Moses.

2.6 Hierarchical PB-SMT model

For the en–cs translation task, we built
a weighted synchronous context-free grammar
model (Chiang, 2007) of translation that uses
the bilingual phrase pairs of PB-SMT as a start-
ing point to learn hierarchical rules. We used
the open-source Tree-Based translation system
moses-chart3 to perform this experiment.

2An implementation of TRIBL is freely available as part
of the TiMBL software package, which can be downloaded
from http://ilk.uvt.nl/timbl

3http://www.statmt.org/moses/?n=Moses.SyntaxTutorial144



2.7 System Combination
For multiple system combination, we used an
MBR-CN framework (Du et al., 2009, 2010) as
shown in Figure 1. Due to the varying word or-
der in the MT hypotheses, it is essential to define
the backbone which determines the general word
order of the CN. Instead of using a single system
output as the skeleton, we employ an MBR de-
coder to select the best single system output Er
from the merged N -best list by minimizing the
BLEU (Papineni et al., 2002) loss, as in (3):

r = arg min
i

Ns∑

j=1

(1− BLEU(Ej , Ei)) (3)

where Ns indicates the number of translations in
the merged N -best list, and {Ei}Nsi=1 are the trans-
lations themselves. In our task, we only merge the
1-best output of each individual system.

The CN is built by aligning other hypotheses
against the backbone, based on the TER metric.
Null words are allowed in the alignment. Ei-
ther votes or different confidence measures are as-
signed to each word in the network. Each arc in
the CN represents an alternative word at that po-
sition in the sentence and the number of votes for
each word is counted when constructing the net-
work. The features we used are as follows:

• word posterior probability (Fiscus, 1997);
• 3, 4-gram target language model;
• word length penalty;
• Null word length penalty;

We use MERT (Och, 2003) to tune the weights
of the CN.

2.8 Rescoring
Rescoring is a very important part in post-
processing which can select a better hypothesis
from the N -best list. We augmented our previ-
ous rescoring model (Du et al., 2009) with more
large-scale data. The features we used include:

• Direct and inverse IBM model;
• 3, 4-gram target language model;
• 3, 4, 5-gram PoS language model (Schmid,

1994; Ratnaparkhi, 1996);
• Sentence length posterior probability (Zens

and Ney, 2006);
• N -gram posterior probabilities within theN -

Best list (Zens and Ney, 2006);
• Minimum Bayes Risk probability;
• Length ratio between source and target sen-

tence;

The weights are optimized via MERT.

3 Experimental Setup

This section describes our experimental setup for
the en–cs and en–es translation tasks.

3.1 Data

Bilingual data: In the experiments we used data
sets provided by the workshop organizers. For the
en–cs translation table extraction we employed
both parallel corpora (News-Commentary10 and
CzEng 0.9), and for the en–es experiments, we
used the Europarl(Koehn, 2005), News Commen-
tary and United Nations parallel data. We used a
maximum sentence length of 80 for en–es and
40 for en–cs. Detailed statistics are shown in Ta-
ble 1.

Corpus Langs. Sent. Source
tokens

Target
tokens

Europarl en–es 1.6M 43M 45M
News-comm en–es 97k 2.4M 2.7M
UN en–es 5.9M 160M 190M
News-Comm en–cs 85k 1.8M 1.6M
CzEng en–cs 7.8M 80M 69M

Table 1: Statistics of en–cs and en–es parallel data.

Monolingual data: For language modeling pur-
poses, in addition to the target parts of the bilin-
gual data, we used the monolingual News corpus
for cs; and the Gigaword corpus for es. For both
languages, we used the SRILM toolkit (Stolcke,
2002) to train a 5-gram language model using all
monolingual data provided. However, for en–es
we used the IRSTLM toolkit (Federico and Cet-
tolo, 2007) to train a 5-gram language model using
the es Gigaword corpus. Both language models
use modified Kneser-Ney smoothing (Chen and
Goodman, 1996). Statistics for the monolingual
corpora are given in Table 2.

Corpus Language Sentences Tokens
E/N/NC/UN es 9,6M 290M
Gigaword es 40M 1,2G
News cs 13M 210M

Table 2: Statistics of Monolingual Data. E/N/NC/UN
refers to Europarl/News/News Commentary/United Nations
corpora.

For all the systems except Apertium, we first
lowercase and tokenize all the monolingual and
bilingual data using the tools provided by the
WMT10 organizers. After translation, system
combination output is detokenised and true-cased.145



3.2 English–Czech (en–cs) Experiments
The CzEng corpus (Bojar and Žabokrtský, 2009)
is a collection of parallel texts from sources of dif-
ferent quality and as such it contains some noise.
As the first step, we discarded those sentence pairs
having more than 10% of non-Latin characters.

The CzEng corpus is quite large (8M sen-
tence pairs). Although we were able to build
a vanilla SMT system on all parallel data avail-
able (News-Commentary + CzEng), we also at-
tempted to build additional systems using News-
Commentary data (which we considered in-
domain) and various in-domain subsets of CzEng
hoping to achieve better results on domain-
specific data.

For our first system, we selected 128,218 sen-
tence pairs from CzEng labeled as news. For the
other two systems, we selected subsets of 2M and
4M sentence pairs identified as most similar to
the development sets (as a sample of in-domain
data) based on cosine similarity of their represen-
tation in a TF-IDF weighted vector space model
(cf. Byrne et al. (2003)). We also applied the
pseudo-relevavance-feedback technique for query
expansion (Manning et al., 2008) to select another
subset with 2M sentence pairs.

We used the output of 15 systems for sys-
tem combination for the en–cs translation task.
Among these, 5 systems were built using Moses
and varying the size of the training data (DCU-
All, DCU-Ex2M, DCU-4M, DCU-2M and DCU-
News); 9 context-informed PB-SMT systems
(DCU-SSCI-*) using (combinations of) various
context features (word, PoS, supertags and depen-
dency relations) trained only on the News Com-
mentary data (marked with ‡ in Table 4); and one
system using the moses-chart decoder, also
trained on the news commentary data.

3.3 English–Spanish (en–es) Experiments
Three baseline systems using Moses were built,
where we varied the amount of training data used:

• epn: This system uses all of the Europarl and
News-Commentary parallel data.
• UN-half: This system uses the data suplied

to “epn”, plus an additional 2.1M sentences
pairs randomly selected from the United Na-
tions corpus.
• all: This system uses all of the available par-

allel data.

For en–es we also obtained output from the
factored model (trained only on the news com-

mentary corpus) and the Apertium RBMT sys-
tem. We also derived phrase alignments using the
MaTrEx EBMT system (Stroppa and Way, 2006),
and added those phrase translations in the Moses
phrase table. The systems marked with ? use a
language model built using the Spanish Gigaword
corpus, in addition to the one built using the pro-
vided monolingual data. These 6 sets of system
outputs are then used for system combination.

3.4 Experimental Results
The evaluation results for en–es and en–cs ex-
periments are shown in Table 3 and Table 4 re-
spectively. The output of the systems marked †
were submitted in the shared tasks.

System BLEU NIST METEOR TER
DCU-half †? 29.77% 7.68 59.86% 59.55%
DCU-all †? 29.63% 7.66 59.82% 59.74%
DCU-epn †? 29.45% 7.66 59.71% 59.64%
DCU-ebmt †? 29.38% 7.62 59.59% 60.11%
DCU-factor 22.58% 6.56 54.94% 67.65%
DCU-apertium 19.22% 6.37 49.68% 67.68%
DCU-system-
combination † 30.42% 7.78 60.56% 58.71%

Table 3: en–es experimental results.

System BLEU NIST METEOR TER
DCU-All 10.91% 4.60 39.18% 81.76%
DCU-Ex2M 10.63% 4.56 39.12% 81.96%
DCU-4M 10.61% 4.56 39.26% 82.04%
DCU-2M 10.48% 4.58 39.35% 81.56%
DCU-Chart 9.34% 4.25 37.04% 83.87%
DCU-News 8.64% 4.16 36.27% 84.96%
DCU-SSCI-ccg‡ 8.26% 4.02 34.76% 85.58%
DCU-SSCI-
supertag-pair‡ 8.11% 3.95 34.93% 86.63%
DCU-SSCI-
ccg-ltag‡ 8.09% 3.96 34.90% 86.62%
DCU-SSCI-PR‡ 8.06% 4.00 34.89% 85.99%
DCU-SSCI-base‡ 8.05% 3.97 34.61% 86.02%
DCU-SSCI-PRIR‡ 8.03% 3.99 34.81% 85.98%
DCU-SSCI-ltag‡ 8.00% 3.95 34.57% 86.41%
DCU-SSCI-PoS‡ 7.91% 3.94 34.57% 86.51%
DCU-SSCI-word‡ 7.57% 3.88 34.16% 87.14%
DCU-system-
combination † 13.22% 4.98 40.39% 78.59%

Table 4: en–cs experimental results.

4 Conclusion

This paper presents the Dublin City University
MT system in WMT2010 shared task campaign.
This was DCU’s first attempt to translate from en
to es and cs in any shared task. We developed a
multi-engine framework which combined the out-
puts of several individual MT systems and gener-
ated a newN -best list after CN decoding. Then by146



using some global features, the rescoring model
generated the final translation output. The experi-
mental results demonstrated that the combination
module and rescoring module are effective in our
framework for both language pairs, and produce
statistically significant improvements as measured
by bootstrap resampling methods (Koehn, 2004)
on BLEU over the single best system.
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Abstract

This paper describes the Cunei Machine
Translation Platform and how it was used
in the WMT ’10 German to English and
Czech to English translation tasks.

1 The Cunei Machine Translation
Platform

The Cunei Machine Translation Platform (Phillips
and Brown, 2009) is open-source software
and freely available at http://www.cunei.
org/. Like Moses (Koehn et al., 2007) and
Joshua (Li et al., 2009), Cunei provides a statisti-
cal decoder that combines partial translations (ei-
ther phase pairs or grammar rules) in order to com-
pose a coherent sentence in the target language.
What makes Cunei unique is that it models the
translation task with a non-parametric model that
assesses the relevance of each translation instance.

The process begins by encoding in a lattice all
possible contiguous phrases from the input.1 For
each source phrase in the lattice, Cunei locates in-
stances of it in the corpus and then identifies the
aligned target phrase(s). This much is standard to
most data-driven MT systems. The typical step at
this stage is to model a phrase pair by computing
relative frequencies over the collection of transla-
tion instances. This model for the phrase pair will
never change and knowledge of the translation in-
stances can subsequently be discarded. In contrast
to using a phrase pair as the basic unit of modeling,
Cunei models each translation instance. A dis-
tance function, represented by a log-linear model,
scores the relevance of each translation instance.
Our model then sums the scores of translation in-
stances that predict the same target hypothesis.

The advantage of this approach is that it pro-
vides a flexible framework for novel sources of

1Cunei offers limited support for non-contiguous phrases,
similar in concept to grammar rules, but this setting was dis-
abled in our experiments.

information. The non-parametric model still uses
information gleaned over all translation instances,
but it permits us to define a distance function that
operates over one translation instance at a time.
This enables us to score a wide-variety of informa-
tion represented by the translation instance with
respect to the input and the target hypothesis un-
der consideration. For example, we could compute
how similar one translation instance’s parse tree or
morpho-syntactic information is to the input. Fur-
thermore, this information will vary throughout
the corpus with some translation instances exhibit-
ing higher similarity to the input. Our approach
captures that these instances are more relevant and
they will have a larger effect on the model. For
the WMT ’10 task, we exploited instance-specific
context and alignment features which will be dis-
cussed in more detail below.

1.1 Formalism

Cunei’s model is a hybrid between the approaches
of Statistical MT and Example-Based MT. A typ-
ical SMT model will score a phrase pair with
source s, target t, log features φ, and weights
λ using a log-linear model, as shown in Equa-
tion 1 of Figure 1. There is no prototypical model
for EBMT, but Equation 2 demonstrates a reason-
able framework where evidence for the phrase pair
is accumulated over all instances of translation.
Each instance of translation from the corpus has
a source s′ and target t′. In the most limited case
s = s′ and t = t′, but typically an EBMT sys-
tem will have some notion of similarity and use
instances of translation that do not exactly match
the input.

Cunei’s model is defined in such a way that we
maintain the distance function φ(s, s′, t′, t) from
the EBMT model, but compute it in a much more
efficient manner. In particular, we remove the real-
space summation within a logarithm that makes it
impractical to tune model weights. However, our
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score(s, t) =
∑
k

λkφk(s, t) (1)

score(s, t) = ln
∑
s′,t′

e
∑

k λkφk(s,s′,t′,t) (2)

score(s, t) = δ +
∑
k

λk

(∑
(s′,t′)∈C φk(s, s

′, t′, t)e
∑

i λiφi(s,s
′,t′,t)∑

(s′,t′)∈C e
∑

i λiφi(s,s′,t′,t)

)
(3)

Figure 1: Translation model scores according to SMT (1), EBMT (2), and Cunei (2)

model preserves the first-order derivative of Equa-
tion 2, which is useful during optimization to lo-
cally approximate the hypothesis space. While the
inner term initially appears complex, it is simply
the expectation of each feature under the distribu-
tion of translation instances and can be efficiently
computed with an online update. Last, the in-
troduction of δ, a slack variable, is necessary to
additionally ensure that the score of this model
is equal to Equation 2. Specifying the model in
this manner ties together the two different mod-
eling approaches pursued by SMT and EBMT;
the SMT model of Equation 1 is merely a spe-
cial case of our model when the features for all
instances of a translation are constant such that
φk(s, s

′, t′, t) = φk(s, t) ∀s′, t′.
Indeed, this distinction illuminates the primary

advantage of our model. Each feature is calcu-
lated particular to one translation instance in the
corpus and each translation instance is scored in-
dividually. The model is then responsible for ag-
gregating knowledge across multiple instances of
translation. Unlike the SMT model, our aggregate
model does not maintain feature independence.
Each instance of translation represents a joint set
of features. The higher the score of a translation
instance, the more all its features inform the ag-
gregate model. Thus, our model is biased toward
feature values that represent relevant translation
instances.

1.2 Context

Not all translations found in a corpus are equally
useful. Often, when dealing with data of vary-
ing quality, training a SMT system on all of the
data degrades performance. A common work-
around is to perform some sort of sub-sampling
that selects a small quantity of novel phrase pairs
from the large out-of-domain corpus such that they
do not overwhelm the number of phrase pairs ex-

tracted from the smaller in-domain corpus.
Instead of building our model from a heuristic

sub-sample, we utilize Cunei’s modeling approach
to explicitly identify the relevance of each transla-
tion instance. We add features to the model that
identify when a translation instance occurs within
the same context as the input. This permits us to
train on all available data by dynamically weight-
ing each instance of a translation.

First, we capture the broader context or genre of
a translation instance by comparing the document
in the corpus from which it was extracted to the
input document. These documents are modeled as
a bag of words, and we use common document-
level distance metrics from the field of information
retrieval. Specifically, we implement as features
document-level precision, recall, cosine distance
and Jensen-Shannon distance (Lin, 1991).

In order to capture local, intra-sentential con-
text, we compare the words immediately to the left
and right of each translation instance with the in-
put. We add one feature that counts the total num-
ber of adjacent words that match the input and a
second feature that penalizes translation instances
whose adjacent context only (or mostly) occurs in
one direction. As a variation on the same concept,
we also add four binary features that indicate when
a unigram or bigram match is present on the left or
right hand side.

The corpus in which an instance is located can
also substantially alter the style of a translation.
For example, both the German to English and the
Czech to English corpora consisted of in-domain
News Commenary and out-of-domain Europarl
text. When creating the index, Cunei stores the
name of the corpus that is associated with each
sentence. From this information we create a set
of binary features for each instance of translation
that indicate from which corpus the instance origi-
nated. The weights for these origin features can be
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conceived as mixture weights specifying the rele-
vance of each corpus.

1.3 Alignment

After a match is found on the source-side of the
corpus, Cunei must determine the target phrase to
which it aligns. The phrase alignment is treated as
a hidden variable and not specified during train-
ing. Ideally, the full alignment process would
be carried out dynamically at run-time. Unfor-
tunately, even a simple word alignment such as
IBM Model-1 is too expensive. Instead, we run a
word aligner offline and our on-line phrase align-
ment computes features over the the word align-
ments. The phrase alignment features are then
components of the model for each translation in-
stance. While the calculations are not exactly the
same, conceptually this work is modeled after (Vo-
gel, 2005).

For each source-side match in the corpus, an
alignment matrix is loaded for the complete sen-
tence in which the match resides. This align-
ment matrix contains scores for all word corre-
spondences in the sentence pair and can be created
using GIZA++ (Och and Ney, 2003) or the Berke-
ley aligner (Liang et al., 2006). Intuitively, when a
source phrase is aligned to a target phrase, this im-
plies that the remainder of the source sentence that
is not specified by the source phrase is aligned to
the remainder of the target sentence not specified
by the target phrase. Separate features compute
the probability that the word alignments for to-
kens within the phrase are concentrated within the
phrase boundaries and that the word alignments
for tokens outside the phrase are concentrated out-
side the phrase boundaries. In addition, words
with no alignment links or weak alignments links
demonstrate uncertainty in modeling. To capture
this effect, we incorporate two more features that
count the number of uncertain alignments present
in the source phrase and the target phrase.

The features described above assess the phrase
alignment likelihood for a particular translation in-
stance. Because they operate over all the word
alignments present in a sentence, the alignment
scores are contextual and usually vary from in-
stance to instance. As the model weights change,
so too will the phrase alignment scores. Each
source phrase is modeled as having some proba-
bility of aligning to every possible target phrase
within a given sentence. However, it is not prac-

tical to compute all possible phrase alignments,
so we extract translation instances using only a
few high-scoring phrase alignments for each oc-
currence of a source phrase in the corpus.2 As dis-
cussed previously, these extracted translation in-
stances form the basic modeling unit in Cunei.

1.4 Optimization

Cunei’s built-in optimization code closely follows
the approach of (Smith and Eisner, 2006), which
minimizes the expectation of the loss function over
the distribution of translations present in the n-
best list. Following (Smith and Eisner, 2006), we
implemented log(BLEU) as the loss function such
that the objective function can be decomposed as
the expected value of BLEU’s brevity penalty and
the expected value of BLEU’s precision score.
The optimization process slowly anneals the dis-
tribution of the n-best list in order to avoid local
minima. This begins with a near uniform distribu-
tion of translations and eventually reaches a distri-
bution where, for each sentence, nearly all of the
probability mass resides on the top translation (and
corresponds closely with the actual 1-best BLEU
score). In addition, Cunei supports the ability to
decode sentences toward a particular set of refer-
ences. This is used to prime the optimization pro-
cess in the first iteration with high-scoring, obtain-
able translations.

2 The WMT ’10 Translation Task

For the WMT ’10 Translation Task we built two
systems. The first translated from German to En-
glish and was trained with the provided News
Commentary and Europarl (Koehn, 2005) corpora.
The second system translated from Czech to En-
glish and used the CzEng 0.9 corpus (Bojar and
Žabokrtský, 2009), which is a collection of many
different texts and includes the Europarl. To val-
idate our results, we also trained a Moses system
with the same corpus, alignments, and language
model.

2.1 Corpus Preparation

A large number of hand-crafted regular expres-
sions were used to remove noise (control char-
acters, null bytes, etc.), normalize (hard spaces
vs. soft spaces, different forms of quotations,

2This is controlled by a score ratio that typically selects
2-6 translation instances per occurrence of a source phrase.
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render XML codes as characters, etc.), and tok-
enize (abbreviations, numbers, punctuation, etc.).
However, these rules are fairly generic and appli-
cable to most Western languages. In particular,
we did not perform any morphologically-sensitive
segmentation. From the clean text we calculated
the expected word and character ratios between
the source language and the target language. Then
we proceeded to remove sentence pairs according
to the following heuristics:

• A sentence exceeded 125 words

• A sentence exceeded 1,000 characters

• The square of the difference between the
actual and expected words divided by the
square of the standard deviation exceeded 5

• The square of the difference between the ac-
tual and expected characters divided by the
square of the standard deviation exceeded 5

All of these processing routines are included as
part of the Cunei distribution and are configurable
options. An overview of the resulting corpora is
shown in Table 1.

Finally, we used the GIZA++ toolkit (Och and
Ney, 2003) to induce word alignments in both di-
rections for each language pair. The resulting cor-
pus and word alignments were provided to Moses
and Cunei for training. Each system used their
respective phrase extraction and model estimation
routines.

2.2 Language Model
We intentionally selected two language pairs that
translated into English so that we could share one
language model between them. We used the large
monolingual English News text made available
through the workshop and augmented this with
the Xinhua and AFP sections of the English Gi-
gaword corpus (Parker and others, 2009). In all,
approximately one billion words of English text
were fed to the SRILM toolkit (Stolcke, 2002) to
construct a single English 5-gram language model
with Kneser-Ney smoothing.

2.3 Experiments
The newswire evaluation sets from the prior two
years were selected as development data. 636 sen-
tences were sampled from WMT ’09 for tuning
and all 2,051 sentences from WMT ’08 were re-
served for testing. Finally, a blind evaluation was

also performed with the new WMT ’10 test set.
All systems were tuned toward BLEU (Papineni
et al., 2002) and all evaluation metrics were run
on lowercased, tokenized text.

The results in Table 2 and Table 3 show the per-
formance of Cunei3 against the Moses system we
also built with the same data. The first Cunei sys-
tem we built included all the alignment features
discussed in §1.3. These per-instance alignment
features are essential to Cunei’s run-time phrase
extraction and cannot be disabled. The second,
and complete, system added to this all the context
features described in §1.2. Cunei, in general, per-
forms significantly better than Moses in German
and is competitive with Moses in Czech. However,
we hoped to see a larger gain from the addition of
the context features.

In order to better understand our results and see
if there was greater potential for the context fea-
tures, we selectively added a few of the features at
a time to the German system. These experiments
are reported in Table 4. What is interesting here
is that most subsets of context features did better
than the whole and none degraded the baseline (at
least according to BLEU) on the test sets. We did
not expect a fully additive gain from the combina-
tion, as many of the context features do represent
different ways of capturing the same phenomena.
However, we were still surprised to find an appar-
ently detrimental interaction among the full set of
context features.

Theoretically adding new features should only
improve a system as a feature can always by ig-
nored by assigning it a weight of zero. How-
ever, new features expand the hypothesis space
and provide the model with more degrees of free-
dom which may make it easier to get stuck in lo-
cal minima. While the gradient-based, annealing
method for optimization that we use tends work
better than MERT (Och, 2003), it is still suscep-
tible to these issues. Indeed, the variation on the
tuning set–while relatively inconsequential–is ev-
idence that this is occurring and that we have not
found the global optimum. Further investigation is
necessary into the interaction between the context
features and techniques for robust optimization.

3These results have been updated since the official
WMT ’10 submission as a result of minor bug-fixes and code
improvements to Cunei.

152



German English Czech English
Tokens 41,245,188 43,064,069 63,776,164 72,325,831
Sentences 1574044 6181270

Table 1: Corpus Statistics

2.4 Conclusion

We used the Cunei Machine Translation Platform
to build German to English and Czech to English
systems for the WMT ’10 evaluation. In both
systems we experimented with per-instance align-
ment and context features. Our addition of the
context features resulted in only minor improve-
ment, but a deeper analysis of the individual fea-
tures suggests greater potential. Overall, Cunei
performed strongly in our evaluation against a
comparable Moses system. We acknowledge that
the actual features we selected are not particu-
larly novel. Instead, the importance of this work
is the simplicity with which instance-specific fea-
tures can be jointly modeled and integrated within
Cunei as a result of its unique modeling approach.
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Abstract

This paper describes the Cambridge Uni-
versity Engineering Department submis-
sion to the Fifth Workshop on Statistical
Machine Translation. We report results for
the French-English and Spanish-English
shared translation tasks in both directions.
The CUED system is based on HiFST, a
hierarchical phrase-based decoder imple-
mented using weighted finite-state trans-
ducers. In the French-English task, we
investigate the use of context-dependent
alignment models. We also show that
lattice minimum Bayes-risk decoding is
an effective framework for multi-source
translation, leading to large gains in BLEU
score.

1 Introduction

This paper describes the Cambridge University
Engineering Department (CUED) system submis-
sion to the ACL 2010 Fifth Workshop on Statis-
tical Machine Translation (WMT10). Our trans-
lation system is HiFST (Iglesias et al., 2009a), a
hierarchical phrase-based decoder that generates
translation lattices directly. Decoding is guided
by a CYK parser based on a synchronous context-
free grammar induced from automatic word align-
ments (Chiang, 2007). The decoder is imple-
mented with Weighted Finite State Transducers
(WFSTs) using standard operations available in
the OpenFst libraries (Allauzen et al., 2007). The
use of WFSTs allows fast and efficient exploration
of a vast translation search space, avoiding search
errors in decoding. It also allows better integration
with other steps in our translation pipeline such as
5-gram language model (LM) rescoring and lattice
minimum Bayes-risk (LMBR) decoding.

1Now a member of the Department of Engineering, Uni-
versity of Cambridge, Cambridge, CB2 1PZ, U.K.

# Sentences # Tokens # Types
(A)Europarl+News-Commentary
FR

1.7 M
52.4M 139.7k

EN 47.6M 121.6k
(B)Europarl+News-Commentary+UN
FR

8.7 M
277.9M 421.0k

EN 241.4M 482.1k
(C)Europarl+News-Commentary+UN+Giga
FR

30.2 M
962.4M 2.4M

EN 815.3M 2.7M

Table 1: Parallel data sets used for French-to-
English experiments.

We participated in the French-English and
Spanish-English translation shared tasks in each
translation direction. This paper describes the de-
velopment of these systems. Additionally, we re-
port multi-source translation experiments that lead
to very large gains in BLEU score.

The paper is organised as follows. Section 2
describes each step in the development of our sys-
tem for submission, from pre-processing to post-
processing. Section 3 presents and discusses re-
sults and Section 4 describes an additional experi-
ment on multi-source translation.

2 System Development

We built three French-English and two Spanish-
English systems, trained on different portions of
the parallel data sets available for this shared task.
Statistics for the different parallel sets are sum-
marised in Tables 1 and 2. No additional parallel
data was used. As will be shown, the largest paral-
lel corpus gave the best results in French, but this
was not the case in Spanish.

2.1 Pre-processing

The data was minimally cleaned by replacing
HTML-related metatags by their corresponding
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# Sentences # Tokens # Types
(A) Europarl + News-Commentary
SP

1.7M
49.4M 167.2k

EN 47.0M 122.7k
(B) Europarl + News-Commentary + UN
SP

6.5M
205.6M 420.8k

EN 192.0M 402.8k

Table 2: Parallel data sets used for Spanish-to-
English experiments.

UTF8 token (e.g., replacing “&amp” by “&”) as
this interacts with tokenization. Data was then to-
kenized and lowercased, so mixed case is added as
post-processing.

2.2 Alignments

Parallel data was aligned using the MTTK toolkit
(Deng and Byrne, 2005). In the English-to-French
and English-to-Spanish directions, we trained
a word-to-phrase HMM model with maximum
phrase length of 2. In the French to English and
Spanish to English directions, we trained a word-
to-phrase HMM Model with a bigram translation
table and maximum phrase length of 4.

We also trained context-dependent alignment
models (Brunning et al., 2009) for the French-
English medium-size (B) dataset. The context of
a word is based on its part-of-speech and the part-
of-speech tags of the surrounding words. These
tags were obtained by applying the TnT Tagger
(Brants, 2000) for English and the TreeTagger
(Schmid, 1994) for French. Decision tree clus-
tering based on optimisation of the EM auxiliary
function was used to group contexts that trans-
late similarly. Unfortunately, time constraints pre-
vented us from training context-dependent models
for the larger (C) dataset.

2.3 Language Model

For each target language, we used the SRILM
Toolkit (Stolcke, 2002) to estimate separate 4-
gram LMs with Kneser-Ney smoothing (Kneser
and Ney, 1995), for each of the corpora listed in
Tables 3, 4 and 5. The LM vocabulary was ad-
justed to the parallel data set used. The compo-
nent models of each language pair were then in-
terpolated to form a single LM for use in first-pass
translation decoding. For French-to-English trans-
lation, the interpolation weights were optimised
for perplexity on a development set.

Corpus # Sentences # Tokens
EU + NC + UN 9.0M 246.4M
CNA 1.3M 34.8M
LTW 12.9M 298.7M
XIN 16.0M 352.5M
AFP 30.4M 710.6M
APW 62.1M 1268.6M
NYT 73.6M 1622.5M
Giga 21.4M 573.8M
News 48.7M 1128.4M
Total 275.4M 6236.4M

Table 3: English monolingual training corpora.

Corpus # Sentences # Tokens
EU + NC + UN 9.0M 282.8
AFP 25.2M 696.0M
APW 12.7M 300.6M
News 15.2M 373.5M
Giga 21.4M 684.4M
Total 83.5 M 2337.3M

Table 4: French monolingual training corpora.

Corpus # Sentences # Tokens
NC + News 4.0M 110.8M
EU + Gigaword (5g) 249.4M 1351.5M
Total 253.4 M 1462.3M

Table 5: Spanish monolingual training corpora.

The Spanish-English first pass LM was trained
directly on the NC+News portion of monolingual
data, as we did not find improvements by using
Europarl. The second pass rescoring LM used all
available data.

2.4 Grammar Extraction and Decoding

After unioning the Viterbi alignments, phrase-
based rules of up to five source words in length
were extracted, hierarchical rules with up to two
non-contiguous non-terminals in the source side
were then extracted applying the restrictions de-
scribed in (Chiang, 2007). For Spanish-English
and French-English tasks, we used a shallow-1
grammar where hierarchical rules are allowed to
be applied only once on top of phrase-based rules.
This has been shown to perform as well as a
fully hierarchical grammar for a Europarl Spanish-
English task (Iglesias et al., 2009b).

For translation, we used the HiFST de-
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coder (Iglesias et al., 2009a). HiFST is a hierarchi-
cal decoder that builds target word lattices guided
by a probabilistic synchronous context-free gram-
mar. AssumingN to be the set of non-terminals
andT the set of terminals or words, then we can
define the grammar as a setR = {Rr} of rules
Rr : N → 〈γr,αr〉 / pr, whereN ∈ N; and
γ, α ∈ {N ∪T}+.

HiFST translates in three steps. The first step
is a variant of the CYK algorithm (Chappelier and
Rajman, 1998), in which we apply hypothesis re-
combination without pruning. Only the source
language sentence is parsed using the correspond-
ing source-side context-free grammar with rules
N → γ. Each cell in the CYK grid is specified
by a non-terminal symbol and position:(N,x, y),
spanningsx+y−1

x on the source sentences1...sJ .
For the second step, we use a recursive algo-

rithm to construct word lattices with all possi-
ble translations produced by the hierarchical rules.
Construction proceeds by traversing the CYK grid
along the back-pointers established in parsing. In
each cell(N,x, y) of the CYK grid, we build a
target language word latticeL(N,x, y) containing
every translation ofsx+y−1

x from every derivation
headed byN . For efficiency, this lattice can use
pointers to lattices on other cells of the grid.

In the third step, we apply the word-based LM
via standard WFST composition with failure tran-
sitions, and perform likelihood-based pruning (Al-
lauzen et al., 2007) based on the combined trans-
lation and LM scores.

As explained before, we are using shallow-1 hi-
erarchical grammars (de Gispert et al., 2010) in
our experiments for WMT2010. One very inter-
esting aspect is that HiFST is able to build ex-
act search spaces with this model, i.e. there is no
pruning in search that may lead to spurious under-
generation errors.

2.5 Parameter Optimisation

Minimum error rate training (MERT) (Och, 2003)
under the BLEU score (Papineni et al., 2001) opti-
mises the weights of the following decoder fea-
tures with respect to thenewstest2008 develop-
ment set: target LM, number of usages of the
glue rule, word and rule insertion penalties, word
deletion scale factor, source-to-target and target-
to-source translation models, source-to-target and
target-to-source lexical models, and three binary
rule count features inspired by Bender et al. (2007)

indicating whether a rule occurs once, twice, or
more than twice in the parallel training data.

2.6 Lattice Rescoring

One of the advantages of HiFST is direct gener-
ation of large translation lattices encoding many
alternative translation hypotheses. These first-pass
lattices are rescored with second-pass higher-order
LMs prior to LMBR.

2.6.1 5-gram LM Lattice Rescoring

We build sentence-specific, zero-cutoff stupid-
backoff (Brants et al., 2007) 5-gram LMs esti-
mated over approximately 6.2 billion words for
English, 2.3 billion words for French, and 1.4 bil-
lion words for Spanish. For the English-French
task, the second-pass LM training data is the same
monolingual data used for the first-pass LMs (as
summarised in Tables 3, 4). The Spanish second-
pass 5-gram LM includes an additional 1.4 billion
words of monolingual data from the Spanish Giga-
Word Second Edition (Mendonca et al., 2009) and
Europarl, which were not included in the first-pass
LM (see Table 5).

2.6.2 LMBR Decoding

Minimum Bayes-risk (MBR) decoding (Kumar
and Byrne, 2004) over the full evidence space
of the 5-gram rescored lattices was applied to
select the translation hypothesis that maximises
the conditional expected gain under the linearised
sentence-level BLEU score (Tromble et al., 2008;
Blackwood and Byrne, 2010). The unigram preci-
sion p and average recall ratior were set as de-
scribed in Tromble et al. (2008) using thenew-
stest2008 development set.

2.7 Hypothesis Combination

Linearised lattice minimum Bayes-risk decoding
(Tromble et al., 2008) can also be used as an ef-
fective framework for multiple lattice combination
(de Gispert et al., 2010). For the French-English
language pair, we used LMBR to combine transla-
tion lattices produced by systems trained on alter-
native data sets.

2.8 Post-processing

For both Spanish-English and French-English sys-
tems, the recasing procedure was performed with
the SRILM toolkit. For the Spanish-English sys-
tem, we created models from the GigaWord set
corresponding to each system output language.
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Task Configuration newstest2008 newstest2009 newstest2010

FR→ EN

HiFST (A) 23.4 26.4 –
HiFST (B) 24.0 27.3 –
HiFST (B)CD 24.2 27.6 28.0
+5g+LMBR 24.6 28.4 28.9
HiFST (C) 24.7 28.4 28.5
+5g+LMBR 25.3 29.1 29.3
LMBR (B)CD+(C) 25.6 29.3 29.6

EN→ FR

HiFST (A) 22.5 24.2 –
HiFST (B) 23.4 24.8 –
HiFST (B)CD 23.3 24.8 26.7
+5g+LMBR 23.7 25.3 27.1
HiFST (C) 23.6 25.6 27.4
+5g+LMBR 23.9 25.8 27.8
LMBR (B)CD+(C) 24.2 26.1 28.2

Table 6: Translation Results for the French-English (FR-EN) language pair, shown in single-reference
lowercase IBM BLEU. Bold results correspond to submitted systems.

For the French-English system, the English model
was trained using the monolingual News corpus
and the target side of the News-Commentary cor-
pus, whereas the French model was trained using
all available constrained French data.

English, Spanish and French outputs were also
detokenized before submission. In French, words
separated by apostrophes were joined.

3 Results and Discussion

French–English Language Pair

Results are reported in Table 6. We can see
that using more parallel data consistently improves
performance. In the French-to-English direction,
the system HiFST (B) improves over HiFST (A)
by +0.9 BLEU and HiFST (C) improves over
HiFST (B) by +1.1 BLEU on thenewstest2009
development set prior to any rescoring. The
same trend can be observed in the English-to-
French direction (+0.6 BLEU and +0.8 BLEU im-
provement). The use of context dependent align-
ment models gives a small improvement in the
French-to-English direction: system (B)CD im-
proves by +0.3 BLEU over system (B) onnew-
stest2009. In the English-to-French direction,
there is no improvement nor degradation in per-
formance. 5-gram and LMBR rescoring also give
consistent improvement throughout the datasets.
Finally, combination between the medium-size
system (B)CD and the full-size system (C) gives
further small gains in BLEU over LMBR on each
individual system.

Spanish–English Language Pair

Results are reported in Table 7. We report experi-
mental results on two systems. The HiFST(A) sys-
tem is built on the Europarl + News-Commentary
training set. Systems HiFST (B),(B2) and (B3)
use UN data in different ways. System (B) simply
uses all the data for the standard rule extraction
procedure. System HiFST (B2) includes UN data
to build alignment models and therefore reinforce
alignments obtained from smaller dataset (A), but
extracts rules only from dataset (A). HiFST (B3)
combines hierarchical phrases extracted for sys-
tem (A) with phrases extracted from system (B).
Unfortunately, these three larger data strategies
lead to degradation over using only the smaller
dataset (A). For this reason, our best systems only
use the Euparl + News-Commentary parallel data.
This is surprising given that additional data was
helpful for the French-English task. Solving this
issue is left for future work.

4 Multi-Source Translation Experiments

Multi-source translation (Och and Ney, 2001;
Schroeder et al., 2009) is possible whenever mul-
tiple translations of the source language input sen-
tence are available. The motivation for multi-
source translation is that some of the ambiguity
that must be resolved in translating between one
pair of languages may not be present in a differ-
ent pair. In the following experiments, multiple
LMBR is applied for the first time to the task of
multi-source translation.
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Task Configuration newstest2008 newstest2009 newstest2010

SP→ EN

HiFST (A) 24.6 26.0 29.1
+5g+LMBR 25.4 27.0 30.5
HiFST (B) 23.7 25.4 –
HiFST (B2) 24.3 25.7 –
HiFST (B3) 24.2 25.6 –

EN→ SP
HiFST (A) 23.9 24.5 28.0
+5g+LMBR 24.7 25.5 29.1

Table 7: Translation Results for the Spanish-English (SP-EN) language pair, shown in lowercase IBM
BLEU. Bold results correspond to submitted systems.

Configuration newstest2008 newstest2009 newstest2010

FR→EN
HiFST+5g 24.8 28.5 28.8
+LMBR 25.3 29.0 29.2

ES→EN
HiFST+5g 25.2 26.8 30.1
+LMBR 25.4 26.9 30.3

FR→EN + ES→EN LMBR 27.2 30.4 32.0

Table 8: Lowercase IBM BLEU for single-system LMBR and multiple LMBR multi-source translation
of French (FR) and Spanish (ES) into English (EN).

Separate second-pass 5-gram rescored lattices
EFR and EES are generated for each test set sen-
tence using the French-to-English and Spanish-to-
English HiFST translation systems. The MBR hy-
pothesis space is formed as the union of these lat-
tices. In a similar manner to MBR decoding over
multiple k-best lists in de Gispert et al. (2009),
the path posterior probability of eachn-gramu re-
quired for linearised LMBR is computed as a lin-
ear interpolation of the posterior probabilities ac-
cording to each individual lattice so thatp(u|E) =
λFR p(u|EFR) + λES p(u|EES), wherep(u|E) is the
sum of the posterior probabilities of all paths con-
taining then-gramu. The interpolation weights
λFR + λES = 1 are optimised for BLEU score on
the development setnewstest2008.

The results of single-system and multi-source
LMBR decoding are shown in Table 8. The opti-
mised interpolation weights wereλFR = 0.55 and
λES = 0.45. Single-system LMBR gives relatively
small gains on these test sets. Much larger gains
are obtained through multi-source MBR combina-
tion. Compared to the best of the single-system 5-
gram rescored lattices, the BLEU score improves
by +2.0 fornewstest2008, +1.9 fornewstest2009,
and +1.9 fornewstest2010. For scoring with re-
spect to a single reference, these are very large
gains indeed.

5 Summary

We have described the CUED submission to
WMT10 using HiFST, a hierarchical phrase-based
translation system. Results are very competitive in
terms of automatic metric for both English-French
and English-Spanish tasks in both directions. In
the French-English task, we have seen that the UN
and Giga additional parallel data are helpful. It
is surprising that UN data did not help for the
Spanish-English language pair.

Future work includes investigating this issue,
developing detokenization tailored to each output
language and applying context dependent align-
ment models to larger parallel datasets.
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Abstract

This paper describes the system submit-
ted by the Laboratory of Informatics of
Grenoble (LIG) for the fifth Workshop
on Statistical Machine Translation. We
participated to the news shared transla-
tion task for the French-English language
pair. We investigated differents techniques
to simply deal with Out-Of-Vocabulary
words in a statistical phrase-based ma-
chine translation system and analyze their
impact on translation quality. The final
submission is a combination between a
standard phrase-based system using the
Moses decoder, with appropriate setups
and pre-processing, and a lemmatized sys-
tem to deal with Out-Of-Vocabulary con-
jugated verbs.

1 Introduction

We participated, for the first time, to the shared
news translation task of the fifth Workshop on Ma-
chine Translation (WMT 2010) for the French-
English language pair. The submission was
performed using a standard phrase-based trans-
lation system with appropriate setups and pre-
processings in order to deal with system’s un-
known words. Indeed, as shown in (Carpuat,
2009), (Habash, 2008) and (Niessen, 2004), han-
dling Ou-of-Vocabulary words with techniques
like lemmatization, phrase table extension or mor-
phological pre-processing is a way to improve
translation quality. After a short presentation of
our baseline system setups we discuss the effect
of Out-Of-Vocabulary words in the system and in-
troduce some ideas we chose to implement. In the
last part, we evaluate their impact on translation
quality using automatic and human evaluations.

2 Baseline System Setup

2.1 Used Resources

We used the provided Europarl and News par-
allel corpora (total 1,638,440 sentences) to train
the translation model and the News monolin-
gual corpora (48,653,884 sentences) to train the
language model. The 2008 News test corpora
(news-test2008; 2,028 sentences) was used to tune
the produced system and last year’s test corpora
(news-test2009; 3,027 sentences) was used for
evaluation purposes. These corpora will be ref-
ered to asDevandTestlater in the paper. As pre-
processing steps, we applied the PERL scripts pro-
vided with the corpora to lowercase and tokenise
the data.

2.2 Language modeling

The target language model is a standard n-gram
language model trained using the SRI language
modeling toolkit (Stocke, 2002) on the news
monolingual corpus. The smoothing technique we
applied is the modified Kneser-Ney discounting
with interpolation.

2.3 Translation modeling

The translation model was trained using the par-
allel corpus described earlier (Europarl+News).
First, the corpus was word aligned and then, the
pairs of source and corresponding target phrases
were extracted from the word-aligned bilingual
training corpus using the scripts provided with
the Moses decoder (Koehn et al., 2007). The re-
sult is a phrase-table containing all the aligned
phrases. This phrase-table, produced by the trans-
lation modeling, is used to extract several transla-
tions models. In our experiment we used thirteen
standard translation models: six distortion models,
a lexicon word-based and a phrase-based transla-
tion model for both direction, and a phrase, word
and distortion penalty.
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2.4 Tuning and decoding

For the decoding (i.e. translation of the test
set), the system uses a log-linear combination of
the previous target language model and the thir-
teen translation models extracted from the phrase-
table. As the system can be beforehand tuned by
adjusting log-linear combination weights on a de-
velopement corpus, we used the Minimum Error
Rate Training (MERT) method, by (Och, 2003).

3 Ways of Improvements

3.1 Discussion about Out-Of-Vocabulary
words in PBMT systems

Phrase-based statistical machine translation
(PBMT) use phrases as units in the translation
process. A phrase is a sequence ofn consecutive
words known by the system. During the training,
these phrases are automaticaly learned and each
source phrase is mapped with its corresponding
target phrase. Throughout test set decoding, a
word not being part of this vocabulary list is
labeled as “Out-Of-Vocabulary” (OOV) and, as it
doesn’t appear in the translation table, the system
is unable to translate it. During the decoding,
Out-Of-Vocabulary words lead to “broken”
phrases and degrade translation quality. For these
reasons, we present some techniques to handle
Out-Of-Vocabulary words in a PBMT system and
combine these techniques before evaluating them.

In a preliminary study, we automatically ex-
tracted and manually analyzed OOVs of a 1000
sentences sample extracted from the test cor-
pus (news-test2009). There were altogether 487
OOVs tokens wich include 64.34% proper nouns
and words in foreign languages, 17.62% common
nouns, 15.16% conjugated verbs, 1.84% errors in
source corpus and 1.02% numbers. Note that, as
our system is configured to copy systematically
the OOVs in the produced translated sentence, the
rewriting of proper nouns and words in foreign
language is straightforward in that case. However,
we still have to deal with common nouns and con-
jugated verbs.

Initial sentence:

“Cela ne marchera pas”souligna-t-ilpar la suite.

Normalised sentence:

“Cela ne marchera pas”il soulignapar la suite

Figure 1: Normalisation of the euphonious “t”

3.2 Term expansion with dictionary

The first idea is to expand the vocabulary size,
more specifically minimizing Out-Of-Vocabulary
common nouns adding a French-English dictio-
nary during the training process. In our experi-
ment, we used a free dictionnary made available
by the Wiktionary1 collaborative project (wich
aims to produce free-content multilingual dictio-
naries). The provided dictionnary, containing
15,200 entries, is added to the bilingual training
corpus before phrase-table extraction.

3.3 Lemmatization of the French source
verbs

To avoid Out-Of-Vocabulary conjugated verbs one
idea is to lemmatize verbs in the source train-
ing and test corpus to train a so-called lemma-
tized system. We used the freely available French
lemmatiser LIATAGG (Béchet, 2001). But, ap-
plying lemmatization leads to a loss of informa-
tion (tense, person, number) which may affect
deeply the translation quality. Thus, we decided
to use the lematized system only when OOV verbs
are present in the source sentence to be trans-
lated. Consequently, we differentiate two kinds
of sentences: -sentences containing at least one
OOV conjugated verb, and - sentences which do
not have any conjugated verb (these latter sen-
tences obviously don’t need any lemmatization!).
Thereby, we decided to build a combined trans-
lation system which call the lemmatized system
only when the source sentence contains at least
one Out-Of-Vocabulary conjugated verb (other-
wise, the sentence will be translated by the stan-
dard system). To detect sentences with Out-Of-
Vocabulary conjugated verb we translate each sen-
tence with both systems (lemmatized and stan-
dard), count OOV and use the lemmatized transla-
tion only if it contains less OOV than the standard
translation. For example, a translation containing
k Out-Of-Vocabulary conjugated verbs andn oth-
ers Out-Of-Vocabulary words (in totalk+n OOV)
with the standard system, contains, most probably,
only n Out-Of-Vocabulary words with the lemma-
tised system because the conjugated verbs will be
lemmatized, recognized and translated by the sys-
tem.

1http://wiki.webz.cz/dict/
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3.4 Normalization of a special French form

We observed, in the French source corpra, a spe-
cial French form which generates almost always
Out-Of-Vocabulary words in the English transla-
tion. The special French form, named euphonious
“t”, consists of adding the letter “t” between a verb
(ended by “a”, “e” or “c”) and a personal pronoun
and, then, inverse them in order to facilitate the
prononciation. The sequence is represented by:
verb-t-pronoun like annonca-t-elle, arrive-t-il, a-
t-on, etc. This form concerns 1.75% of the French
sentences in the test corpus whereas these account
for 0.66% and 0.78% respetively in the training
and the developement corpora. The normalized
proposed form, illustrated below in figure 1, con-
tains the subject pronoun (in first posistion) and
the verb (in the second position). This change has
no influence on the French source sentence and ac-
cordingly on the correctness and fluency of the En-
glish translation.

3.5 Adaptation of the language model

Finally, for each system, we decided to apply dif-
ferent language models and to look at those who
perfom well. In addition to the 5-gram language
model, we trained and tested 3-gram and 4-gram
language models with two different kinds of vo-
cabularies : - the first one (conventional, refered to
as n-gram in table 3) contains an open-vocabulary
extracted from the monolingual English training
data, and - the second one (refered to as n-gram-
vocab in table 3) contains a closed-vocabulary ex-
tracted from the English part of the bilingual train-
ing data. In both cases, language model probabil-
ities are trained from the monolingual LM train-
ing data but, in the second case, the lexicon is re-
stricted to the one of the phrase-table.

4 Experimental results

In the automatic evaluation, the reported evalu-
ation metric is the BLEU score (Papineni et al.,
2002) computed by MTEval version 13a. The re-
sults are reported in table 1. Note that in our ex-
periments, according to the resampling method of
(Koehn, 2004), there are significative variations
(improvement or deterioration), with 95% cer-
tainty, only if the difference between two BLEU
scores represent, at least, 0.33 points. To complete
this automatic evaluation, we performed a human
analysis of the systems outputs.

4.1 Standard systems

4.1.1 Term expansion with dictionary

Regarding the results of automatic evaluation (ta-
ble 1, system (2)), adding the dictionary do not
leads to a significant improvement. The OOV
rate and system perplexity are reduced but, ignor-
ing the tuned system which presents lower per-
formance, the BLEU score decreases significatly
on the test set. The BLEU score of the system
augmented with the dictionary is 24.50 whereas
the baseline one is 24.94. So we can conclude
that there is not a meaningfull positive contribu-
tion, probably because the size of the dictionary
is very small regarding the bilingual training cor-
pus. We found out very few Out-Of-Vocabulary
words of the standard system recognized by the
system with the dictionary, see figure 2 for exam-
ple (among them :coupon, cafard, blonde, retar-
dataire, médicaments, pamplemousse, etc.). But,
as the dictionnary is very small, most OOV com-
mon words likehôtesseandclignotantare still un-
known. Regarding the output sentences, we note
that there are very few differences and the quality
is equivalent. The dictionary used is to small to
extend the system’s vocabulary and most of words
still Out-Of-Vocabulary are conjugated verbs and
unrecognized forms.

Baseline system:

A cafardfled before the danger, but if he felt fear?

System with dictionary:

A bluesfled before the danger, but if he felt fear?

Figure 2: Example of sentence with an OOV com-
mon noun

4.1.2 Normalisation of special French form

Considering the BLEU score, the normalization of
French euphonious “t” have, apparently, very few
repercussion on the translation result (table 1, sys-
tem (3)) but the human analysis indicates that, in
our context, the normalisation of euphonious “t”
brings a clear improvement as seen in example 3.
Consequently, this preprocessing is kept in the fi-
nal system.

4.1.3 Tuning

We can see in table 1 that the usual tuning with
Minimum Error Rate Training algorithm deterio-
rates systematically performance scores on the test
set, for all systems. This can be explained by the
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System OOVs ppl Dev score Test score
(1) Baseline 2.32% 207 29.72 (19.93) 23.77 (24.94)
(2) + dictionary 2.30% 204 30.01 (23.92) 24.32 (24.50)
(3) + normalization 2.31% 204 30.07 (19.90) 23.99 (24.98)
(4) + normalization + Dev data 2.30% 204 / (/) / (25,05)

Table 1: Standard systems BLEU scores with tuning (without tuning)/ LM 5-gram

Baseline system:

“It will not work” souligna-t-ilafterwards.

System with normalisation:

“It will not work” he stressedafterwards.

Figure 3: Example of sentence with a “verb-t-
pronoun” form

gap between the developement and test corpora (ie
the Dev set may be not representative of the Test
set). So, even if it is recommanded in the standard
process, we do not tune our system (we use the de-
fault weights proposed by the Moses decoder) and
add the developement corpus to train it. In this
case, the training set contains 1,640,468 sentences
(the initial 1,638,440 sentences and the 2,028 sen-
tences of the developement set). This slightly im-
proves the system (from 24.98, the BLEU score
raise to 25,05 after adding the developpement set
to the training).

4.2 Lemmatised systems

Results of lemmatised systems are reported on ta-
ble 2. First, we can notice that, in this particular
case, the tuning (with MERT method) is manda-
tory to adapt the weights of the log linear model.
Our analysis of the tuned weight of the lemma-
tised system shows that, in particular, the word
penalty model has a very low weight (this favours
short sentences) and the lexical word-based trans-
lation models have a very low weight (no use of
the lexical translation probability). We also no-
tice that the lemmatization leads to a real drop-off
of OOV rate (fall from 2.32% for the baseline, to
2.23% for the lemmatized system) and perplexity
(fall from 207 for the baseline, to 178 for the lem-
matized system). We can observe a clear decrease
of the performance with the lemmatized system
(BLEU score of 20.50) compared with a non-
lemmatized one (BLEU score of 24.94). This can
be significatively improved applying euphonious
“t” normalization to the source data (BLEU score
of 22.14). Almost all French OOV conjugated

verbs with the standard system were recognized
by the lemmatized one (trierait, joues, testaient,
immerǵee, économiseraient, baisserait, prépares,
etc.) but the small decrease of the translation qual-
ity can be explained, among other things, by sev-
eral tense errors. See illustration in figure 4. So,
we conclude that the systematic normalization of
French verbs, as a pre-process, reduce the Out-Of-
Vocabulary conjugated verbs but decrease slighly
the final translation quality. The use of such a sys-
tem is helpfull especially when the sentence con-
tains conjugated verbs (see example 5).

4.3 Adaptation of the language model

We applied five differents language models (3-
gram and 4-gram language models with selected
vocabulary or not and a 5-gram language model)
to the four standard systems and the two lemma-
tised one. The results, reported in table 3, show
that BLEU score can be significantly different de-
pending on the language model used. For exam-
ple, the fifth system (5) obtained a BLEU score of
21.48 with a 3-gram language model and a BLEU
score of 22.84 with a 4-gram language model. We
can also notice that five out of our six systems out-
perform using a language model with selected vo-
cabulary (n-gram-vocab). One possible explana-
tion is that with LM using selected vocabulary (n-
gram-vocab), there is no loss of probability mass
for english words not present in the translation ta-
ble.

4.4 Final combined system

Considering the previous observations, we believe
that the best choice is to apply the lemmatized
system only if necessary i.e. only if the sentence
contains OOV conjugated verbs, otherwise, a stan-
dard system should be used. We consider system
(4), with 4-gram-vocab language model (selected
vocabulary) without tuning, as the best standard
system and system (6), with 3-gram-vocab lan-
guage model (selected vocabulary) not tuned ei-
ther, as the best lemmatized system. The final
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System OOVs ppl Dev score Test score
(5) lemmatization 2.23% 178 20.97 (8.57) 20.50 (8.56)
(6) lemmatization + normalization 2.18% 175 27.81 (9.20) 22.14 (10.82)

Table 2: Lemmatised systems BLEU scores with tuning (without tuning)/ LM 5-gram

Baseline system: You will be limitedby the absence of exit for headphones.

Lemmatised system: You are limitedby the lack of exit for ordinary headphones.

reference: You will be limitedby the absence of output on ordinary headphones.

Figure 4: Example of sentences without OOV verbs

system translations are those of the lemmatized
system (6) when we translate sentences with one
or more Out-Of-Vocabulary conjugated verbs and
those of the un-lemmatized system (4) otherwise.
Around 6% of test set sentences were translated
by the lemmatized system. Considering the results
reported in table 4, the combined system’s BLEU
score is comparable to the standard one (25.11
against 25.17).

System Test score sentences
(4) Standard sys. 25.17 94 %
(6) Lemmatised sys. 22.89 6%
(7) Combined 25.11 100 %

Table 4: Combined system’s results and % trans-
lated sentences by each system

5 Human evaluation

We compared two data set. The first set (selected
sent.) contains 301 sentences selected from test
data by the combined system (7) to be translated
by the lemmatized system (6) whereas the second
set (random sent.) contains 301 sentences ran-
domly picked up. The latter is our control data set.
We compared for both groups the translation hy-
pothesis given by the lemmatized system and the
standard one.

We performed a subjective evaluation with the
NIST five points scales to measure fluency and ad-
equacy of each sentences through SECtraw inter-
face (Huynh et al., 2009).We involved a total of 6
volunteers judges (3 for each set). We evaluated
the inter-annotator agreement using a generalized
version of Kappa. The results show aslight to fair
agreement according (Landis, 1977).

The evaluation results, detailled in table 5 and 6,
showed that both fluency and adequacy were im-

proved using our combined system. Indeed, for a
random input (random sent.), the lemmatized sys-
tem lowers the translations quality (fluency and
adequacy are degraded for, respectively, 35.8%
and 37.5% of the sentences), while it improves
the quality for sentences selected by the combined
system (for ”selected sent.”, fluency and adequacy
are improved or stable for 81% of the sentences).

Adequacy selected sent. random sent.
(6)≥ (4) 81% 62.4%
(6) < (4) 18.9% 37.5%

Table 5: Subjective evaluation of sentences ade-
quacy ((6) lemmatized system - (4) standard sys-
tem)

Fluency selected sent. random sent.
(6)≥ (4) 81% 64.1%
(6)<(4) 18.9% 35.8%

Table 6: Subjective evaluation of sentences flu-
ency ((6) lemmatized system - (4) standard sys-
tem)

6 Conclusion and Discussion

We have described the system used for our sub-
mission to the WMT’10 shared translation task for
the French-English language pair.

We propose dsome very simple techniques to
improve rapidely a statistical machine translation.
Those techniques particularly aim at handling
Out-Of-Vocabulary words in statistical phrase-
based machine translation and lead an improved
fluency in translation results. The submited sys-
tem (see section 4.4) is a combination between a
standard system and a lemmatized system with ap-
propriate setup.
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Baseline system: At the end of trade, the stock market in the negativebascula.

Lemmatised system: At the end of trade, the stock market exchangestumbledinto the negative.

Baseline system: You can chooseconseillera.

Lemmatised system: We wouldadviseyou, how to choose.

Figure 5: Example of sentences with OOV conjugated verbs

System 3-gram 3-gram-vocab 4-gram 4-gram-vocab 5-gram
(1) 24.60 24.95 24.94 25.11 24.94
(2) 25.14 25.17 24.50 23.49 24.50
(3) 24.88 25.00 24.98 25.15 24.98
(4) 24.92 24.99 25.05 25.17 25.05
(5) 21.48 19.48 22.84 20.18 20.50
(6) 22.60 22.89 22.14 22.24 22.14

Table 3: Systems’s results on test set with differents language models

This system evaluation showed a positive influ-
ence on translation quality, indeed, while the im-
provements on automatic metrics are small, man-
ual inspection suggests a significant improvements
of translation fluency and adequacy.

In future work, we plan to investigate and de-
velop more sophisticated methods to deal with
Out-Of-Vocabulary words, still relying on the an-
alyze of our system output. We believe, for ex-
ample, that an appropriate way to use the dictio-
nary, a sensible pre-processings of French source
texts (in particular normalization of some specific
French forms) and a factorial lemmatization with
the tense information can highly reduce OOV rate
and improve translation quality.
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Hervé Blanchon, Christian Boitet and Cong-Phap
Huynh. 2009. A Web Service Enabling Grad-
able Post-edition of Pre-translations Produced by
Existing Translation Tools: Practical Use to Provide
High-quality Translation of an Online Encyclopedia.
MT Summit XII, Beyond Translation Memories: New
Tools for Translators Workshop, pp 20–27. Ottawa,
Canada.

166



Proceedings of the Joint 5th Workshop on Statistical Machine Translation and MetricsMATR, pages 167–171,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Linear Inversion Transduction Grammar Alignments
as a Second Translation Path

Markus SAERS and Joakim NIVRE
Computational Linguistics Group
Dept. of Linguistics and Philology

Uppsala University
Sweden

first.last@lingfil.uu.se

Dekai WU
Human Language Technology Center

Dept. of Computer Science and Engineering
HKUST

Hong Kong
dekai@cs.ust.hk

Abstract

We explore the possibility of using
Stochastic Bracketing Linear Inversion
Transduction Grammars for a full-scale
German–English translation task, both on
their own and in conjunction with align-
ments induced with GIZA++. The ratio-
nale for transduction grammars, the details
of the system and some results are pre-
sented.

1 Introduction

Lately, there has been some interest in using In-
version Transduction Grammars (ITGs) for align-
ment purposes. The main problem with ITGs is the
time complexity, O(Gn6) doesn’t scale well. By
limiting the grammar to a bracketing ITG (BITG),
the grammar constant (G) can be eliminated, but
O(n6) is still prohibitive for large data sets.

There has been some work on approximate in-
ference of ITGs. Zhang et al. (2008) present a
method for evaluating spans in the sentence pair
to determine whether they should be excluded or
not. The algorithm has a best case time com-
plexity of O(n3). Saers, Nivre & Wu (2009) in-
troduce a beam pruning scheme, which reduces
time complexity to O(bn3). They also show
that severe pruning is possible without significant
deterioration in alignment quality (as measured
by downstream translation quality). Haghighi et
al. (2009) use a simpler aligner as guidance for
pruning, which reduces the time complexity by
two orders of magnitude. Their work also par-
tially implements the phrasal ITGs for translation-
driven segmentation introduced in Wu (1997), al-
though they only allow for one-to-many align-
ments, rather than many-to-many alignments. A
more extreme approach is taken in Saers, Nivre
& Wu (2010). Not only is the search severely
pruned, but the grammar itself is limited to a lin-

earized form, getting rid of branching within a sin-
gle parse. Although a small deterioration in down-
stream translation quality is noted (compared to
harshly pruned SBITGs), the grammar can be in-
duced in linear time.

In this paper we apply SBLITGs to a full size
German–English WMT’10 translation task. We
also use differentiated translation paths to com-
bine SBLITG translation models with a standard
GIZA++ translation model.

2 Background

A transduction grammar is a grammar that gener-
ates a pair of languages. In a transduction gram-
mar, the terminal symbols consist of pairs of to-
kens where the first is taken from the vocabulary
of one of the languages, and the second from the
vocabulary of the other. Transduction grammars
have to our knowledge been restricted to trans-
duce between languages no more complex than
context-free languages (CFLs). Transduction be-
tween CFLs was first described in Lewis & Stearns
(1968), and then further explored in Aho & Ull-
man (1972). The main motivation for explor-
ing this was to build programming language com-
pilers, which essentially translate between source
code and machine code. There are two types of
transduction grammars between CFLs described in
the computer science literature: simple transduc-
tion grammars (STGs) and syntax-directed trans-
duction grammars (SDTGs). The difference be-
tween them is that STGs are monotone, whereas
SDTGs allow unlimited reordering in rule produc-
tions. Both allow the use of singletons to insert
and delete tokens from either language. A sin-
gleton is a biterminal where one of the tokens is
the empty string (ε). Neither STGs nor SDTGs
are intuitively useful in translating natural lan-
guages, since STGs have no way to model reorder-
ing, and SDTGs require exponential time to be in-
duced from examples (parallel corpora). Since
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compilers in general work on well defined, manu-
ally specified programming languages, there is no
need to induce them from examples, so the expo-
nential complexity is not a problem in this setting
– SDTGs can transduce in O(n3) time, so once the
grammar is known they can be used to translate
efficiently.

In natural language translation, the grammar is
generally not known, in fact, state-of-the art trans-
lation systems rely heavily on machine learning.
For transduction grammars, this means that they
have to be induced from parallel corpora.

An inversion transduction grammar (ITG)
strikes a good balance between STGs and SDTGs,
as it allows some reordering, while requiring only
polynomial time to be induced from parallel cor-
pora. The allowed reordering is either the iden-
tity permutation of the production, or the inver-
sion permutation. Restricting the permutations in
this way ensures that an ITG can be expressed in
two-normal form, which is the key property for
avoiding exponential time complexity in biparsing
(parsing of a sentence pair).

An ITG in two-normal form (representing the
transduction between L1 and L2) is written with
identity productions in square brackets, and in-
verted productions in angle brackets. Each such
rule can be construed to represent two (one L1 and
one L2) synchronized CFG rules:

ITGL1,L2 CFGL1 CFGL2

A→ [ B C ] A→ B C A→ B C
A→ 〈 B C 〉 A→ B C A→ C B
A→ e/f A→ e A→ f

Inducing an ITG from a parallel corpus is still slow,
as the time complexity is O(Gn6). Several ways
to get around this has been proposed (Zhang et al.,
2008; Haghighi et al., 2009; Saers et al., 2009;
Saers et al., 2010).

Taking a closer look at the linear ITGs (Saers et
al., 2010), there are five rules in normal form. De-
composing these five rule types into monolingual
rule types reveals that the monolingual grammars
are linear grammars (LGs):

LITGL1,L2 LGL1 LGL2

A→ [ e/f C ] A→ e C A→ f C
A→ [ B e/f ] A→ B e A→ B f
A→ 〈 e/f C 〉 A→ e C A→ C f
A→ 〈 B e/f 〉 A→ B e A→ f B

A→ ε/ε A→ ε A→ ε

This means that LITGs are transduction grammars
that transduce between linear languages.

There is also a nice parallel in search time com-
plexities between CFGs and ITGs on the one hand,
and LGs and LITGs on the other. Searching for
all possible parses given a sentence is O(n3) for
CFGs, and O(n2) for LGs. Searching for all possi-
ble biparses given a bisentence is O(n6) for ITGs,
and O(n4) for LITGs. This is consistent with
thinking of biparsing as finding every L2 parse for
every L1 parse. Biparsing consists of assigning a
joint structure to a sentence pair, rather than as-
signing a structure to a sentence.

In this paper, only stochastic bracketing gram-
mars (SBITGs and SBLITGs) were used. A brack-
eting grammar has only one nonterminal symbol,
denoted X . A stochastic grammar is one where
each rule is associated with a probability, such that

∀X

∑
φ

p(X → φ) = 1


While training a Stochastic Bracketing ITG

(SBITG) or LITG (SBLITG) with EM, expectations
of probabilities over the biparse-forest are calcu-
lated. These expectations approach the true prob-
abilities, and can be used as approximations. The
probabilities over the biparse-forest can be used
to select the one-best parse-tree, which in turn
forces an alignment over the sentence pair. The
alignments given by SBITGs and SBLITGs has been
shown to give better translation quality than bidi-
rectional IBM-models, when applied to short sen-
tence corpora (Saers and Wu, 2009; Saers et al.,
2009; Saers et al., 2010). In this paper we ex-
plore whether this hold for SBLITGs on standard
sentence corpora.

3 Setup

The baseline system for the shared task was a
phrase based translation model based on bidi-
rectional IBM- (Brown et al., 1993) and HMM-
models (Vogel et al., 1996) combined with the
grow-diag-final-and heuristic. This is
computed with the GIZA++ tool (Och and Ney,
2003) and the Moses toolkit (Koehn et al., 2007).
The language model was a 5-gram SRILM (Stol-
cke, 2002). Parameters in the final translation sys-
tem were determined with Minimum Error-Rate
Training (Och, 2003), and translation quality was
assessed with the automatic measures BLEU (Pap-
ineni et al., 2002) and NIST (Doddington, 2002).
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Corpus Type Size
German–English Europarl out of domain 1,219,343 sentence pairs
German–English news commentary in-domain 86,941 sentence pairs
English news commentary in-domain 48,653,884 sentences
German–English news commentary in-domain tuning data 2,051 sentence pairs
German–English news commentary in-domain test data 2,489 sentence pairs

Table 1: Corpora available for the German–English translation task after baseline cleaning.

System BLEU NIST
GIZA++ 17.88 5.9748
SBLITG 17.61 5.8846
SBLITG (only Europarl) 17.46 5.8491
SBLITG (only news) 15.49 5.4987
GIZA++ and SBLITG 17.66 5.9650
GIZA++ and SBLITG (only Europarl) 17.58 5.9819
GIZA++ and SBLITG (only news) 17.48 5.9693

Table 2: Results for the German–English translation task.

We chose to focus on the German–English
translation task. The corpora resources available
for that task is summarized in Table 1. We used the
entire news commentary monolingual data con-
catenated with the English side of the Europarl
bilingual data to train the language model. In ret-
rospect, this was probably a bad choice, as others
seem to prefer the use of two language models in-
stead.

We contrasted the baseline system with pure
SBLITG systems trained on different parts of the
training data, as well as combined systems, where
the SBLITG systems were combined with the base-
line system. The combination was done by adding
the SBLITG translation model as a second transla-
tion path to the base line system.

To train our SBLITG systems, we used the algo-
rithm described in Saers et al. (2010). We set the
beam size parameter to 50, and ran expectation-
maximization for 10 iterations or until the log-
probability of the training corpus started deterio-
rating. After the grammar was induced we ob-
tained the one-best parse for each sentence pair,
which also dictates a word alignment over that
sentence pair, which we used instead of the word
alignments provided by GIZA++. From that point,
training did not differ from the baseline procedure.

We trained a total of three pure SBLITG system,
one with only the news commentary part of the
corpus, one with only the Europarl part, and one

with both. We also combined all three SBLITG

systems with the baseline system to see whether
the additional translation paths would help.

The system we submitted corresponds to the
“GIZA++ and SBLITG (only news)” system, but
with RandLM (Talbot and Osborne, 2007) as lan-
guage model rather than SRILM. This was because
we lacked the necessary RAM resources to calcu-
late the full SRILM model before the system sub-
mission deadline.

4 Results

The results for the development test set are sum-
marized in Table 2. The submitted system
achieved a BLEU score of 0.1759 and a NIST

score of 5.9579 for cased output on this year’s test
set (these numbers are not comparable to those
in Table 2). To our surprise, adding the addi-
tional phrases as a second translation path does
not seem to help. Instead a small deterioration
in BLEU is noted (0.22–0.40 points), whereas the
differences in NIST are mixed (-0.0098–+0.0071
points). Over all the variations were very small.
The pure SBLITG systems perform consistently
below baseline, which could indicate that the
grammar class is unable to capture the reorderings
found in longer sentence pairs adequately in one
parse. The variation between the pure SBLITG sys-
tems can be explained by the size of the training
data: more data – better quality.
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5 Conclusions

We tried to use SBLITGs as word aligners on full
size sentences, which has not been done to date,
and noted that the formalism seems unable to ac-
count for the full complexity of longer sentence
pairs. We also tried combining the translation
models acquired with SBLITG alignments to the
baseline system, and noted very small differences,
tending to a deterioration in quality. The fact that
SBLITGs seem unable to capture the complex re-
lationship between an English and a German sen-
tence in one parse means that we need to find ei-
ther some more complex model or some way to
use the entire parse forest to arrive at the align-
ment.
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Abstract
In this paper, the system submitted by
the PRHLT group for the Fifth Work-
shop on Statistical Machine Translation of
ACL2010 is presented. On this evalua-
tion campaign, we have worked on the
English–Spanish language pair, putting
special emphasis on two problems derived
from the large amount of data available.
The first one, how to optimize the use of
the monolingual data within the language
model, and the second one, how to make
good use of all the bilingual data provided
without making use of unnecessary com-
putational resources.

1 Introduction

For this year’s translation shared task, the Pat-
tern Recognition and Human Language Technolo-
gies (PRHLT) research group of the Universidad
Politécnica de Valencia submitted runs for the
English–Spanish translation task. In this paper, we
report the configuration of such a system, together
with preliminary experiments performed to estab-
lish the final setup.

As in 2009, the central focus of the Shared Task
is on Domain Adaptation, where a system typi-
cally trained using out-of-domain data is adjusted
to translate news commentaries.

For the preliminary experiments, we used only a
small amount of the largest available bilingual cor-
pus, i.e. the United Nations corpus, by including
into our system only those sentences which were
considered similar.

Language model interpolation using a develop-
ment set was explored in this work, together with
a technique to cope with the problem of ”out of
vocabulary words”.

Finally, a reordering constraint using walls and
zones was used in order to improve the perfor-
mance of the submitted system.

In the final evaluation, our system was ranked
fifth, considering only primary runs.

2 Language Model interpolation

Nowadays, it is quite common to have very large
amounts of monolingual data available from sev-
eral different domains. Despite of this fact, in
most of the cases we are only interested in trans-
lating from one specific domain, as is the case in
this year’s shared task, where the provided mono-
lingual training data belonged to European parlia-
mentary proceedings, news related domains, and
the United Nations corpus, which consists of data
crawled from the web.

Although the most obvious thing to do is to con-
catenate all the data available and train a single
language model on the whole data, we also inves-
tigated a “smarter” use of such data, by training
one language model for each of the available cor-
pora.

3 Similar sentences selection

Currently, it is common to of huge bilingual cor-
pora for SMT. For some common language pairs,
corpora of millions of parallel sentences are avail-
able. In some of the cases big corpora are used
as out-of-domain corpora. For example, in the
case of the shared task, we try to translate a news
text using a small in-domain bilingual news corpus
(News Commentary) and two big out-of-domain
corpora: Europarl and United Nations.

Europarl is a medium size corpus and can be
completely incorporated to the training set. How-
ever, the use of the UN corpus requires a big com-
putational effort. In order to alleviate this prob-
lem, we have chosen only those bilingual sen-
tences from the United Nations that are similar to
the in-domain corpus sentences. As a similarity
measure, we have chosen the alignment score.

Alignment scores have already been used as a
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filter for noisy corpora (Khadivi and Ney, 2005).
We trained an IBM model 4 using GIZA++ (Och
and Ney, 2003) with the in-domain corpus and
computed the alignment scores over the United
Nations sentences. We assume that the alignment
score is a good measure of similarity.

An important factor in the alignment score is
the length of the sentences, so we clustered the
bilingual sentences in groups with the same sum of
source and target language sentence sizes. In each
of the groups, the higher the alignment score is,
the more similar the sentence is to the in-domain
corpus sentences. Hence, we computed the aver-
age alignment score for each one of the clusters
obtained for the corpus considered in-domain (i.e.
the News-Commentary corpus). This being done,
we assessed the similarity of a given sentence by
computing the probability of such sentence with
respect to the alignment model of the in-domain
corpus, and established the following similarity
levels:

• Level 1: Sentences with an alignment score
equal or higher than the in-domain average.

• Level 2: Sentences with an alignment score
equal or higher than the in-domain average,
minus one standard deviation.

• Level 3: Sentences with an alignment score
equal or higher than the in-domain average,
minus two standard deviations.

Naturally, such similarity levels establish parti-
tions of the out-of-domain corpus. Then, such par-
titions were included into the training set used for
building the SMT system, and re-built the com-
plete system from scratch.

4 Out of Vocabulary Recovery

As stated in the previous section, in order to avoid
a big computational effort, we do not use the
whole United Nations corpus to train the trans-
lation system. Out of vocabulary words are a
common problem for machine translation systems.
When translating the test set, there are test words
that are not in the reduced training set (out of vo-
cabulary words). Some of those out of vocabulary
words are present in the sentences discarded from
the United Nations Corpus. Thus, recovering the
discarded sentences with out of vocabulary words
is needed.

The out of vocabulary words recovery method
is simple: the out of vocabulary words from the
test, when taking into account the reduced training
set, are obtained and then discarded sentences that
contain at least one of them are retrieved. Then,
those sentences are added to the reduced training
set.

Finally, alignments with the resulting training
set were computed and the usual training proce-
dure for phrase-based systems was performed.

5 Walls and zones

In translation, as in other linguistics areas, punc-
tuation marks are essential as they help to un-
derstand the intention of a message and organise
the ideas to avoid ambiguity. They also indicate
pauses, hierarchies and emphasis.

In our system, punctuation marks have been
taken into account during decoding. Traditionally,
in SMT punctuation marks are treated as words
and this has undesirable effects (Koehn and Had-
dow, 2009). For example, commas have a high
probability of occurrence and many possible trans-
lations are generated. Most of them are not consis-
tent across languages. This introduces too much
noise to the phrase tables.

(Koehn and Haddow, 2009) established a
framework to specify reordering constraints with
walls and zones, where commas and end
of sentence are not mixed with various clauses.
Gains between 0.1 and 0.2 of BLEU are reported.
Specifying zones and walls with XML tags
in input sentences allows us to identify structured
fragments that the Moses decoder uses with the
following restrictions:

1. If a <zone> tag is detected, then a block
is identified and must be translated until a
</zone> tag is found. The text between tags
<zone> and </zone> is identified and trans-
lated as a block.

2. If the decoder detects a <wall/> tag, the text
is divided into a prefix and suffix and Moses
must translate all the words of the prefix be-
fore the suffix.

3. If both zones and walls are specified,
then local walls are considered where
the constraint 2 applies only to the area es-
tablished by zones.
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corpus Language |S| |W | |V |

Europarl v5
Spanish

1272K
28M 154K

English 27M 106K

NC
Spanish

81K
1.8M 54K

English 1.6M 39K

Table 1: Main figures of the Europarl v5 and
News-Commentary (NC) corpora. K/M stands
for thousands/millions. |S| is the number of sen-
tences, |W | the number of running words, and |V |
the vocabulary size. Statistics are reported on the
tokenised and lowercased corpora.

We used quotation marks, parentheses, brackets
and dashes as zone delimiters. Quotation marks
(when appearing once in the sentence), com-
mas, colons, semicolons, exclamation and ques-
tion marks and periods are used as wall delimiters.

The use of zone delimiters do not alter the per-
formance. When using walls, a gain of 0.1
BLEU is obtained in our best model.

6 Experiments

6.1 Experimental setup

For building our SMT systems, the open-source
SMT toolkit Moses (Koehn et al., 2007) was used
in its standard setup. The decoder includes a log-
linear model comprising a phrase-based transla-
tion model, a language model, a lexicalised dis-
tortion model and word and phrase penalties. The
weights of the log-linear interpolation were opti-
mised by means of MERT (Och, 2003). In addi-
tion, a 5-gram LM with Kneser-Ney (Kneser and
Ney, 1995) smoothing and interpolation was built
by means of the SRILM (Stolcke, 2002) toolkit.

For building our baseline system, the News-
Commentary and Europarl v5 (Koehn, 2005) data
were employed, with maximum sentence length
set to 40 in the case of the data used to build the
translation models, and without restriction in the
case of the LM. Statistics of the bilingual data can
be seen in Table 1.

In all the experiments reported, MERT was run
on the 2008 test set, whereas the test set 2009 was
considered as test set as such. In addition, all the
experiments described below were performed in
lowercase and tokenised conditions. For the fi-
nal run, the detokenisation and recasing was per-
formed according to the technique described in the
Workshop baseline description.

corpus |S| |W | |V |
Europarl 1822K 51M 172K

NC 108K 3M 68K
UN 6.2M 214M 411K

News 3.9M 107M 512K

Table 2: Main figures of the Spanish resources
provided: Europarl v5, News-Commentary (NC),
United Nations (UN) and News-shuffled (News).

6.2 Language Model interpolation

The final system submitted to the shared task
included a linear interpolation of four language
models, one for each of the monolingual resources
available for Spanish (see Table 2). The results
can be seen in Table 3. As a first experiment, only
the in-domain corpus, i.e. the News-Commentary
data (NC data) was used for building the LM.
Then, all the available monolingual Spanish data
was included into a single LM, by concatenat-
ing all the data together (pooled). Next, in
interpolated, one LM for each one of the
provided monolingual resources was trained, and
then they were linearly interpolated so as to min-
imise the perplexity of the 2008 test set, and fed
such interpolation to the SMT system. We found
out that weights were distributed quite unevenly,
since the News-shuffled LM received a weight of
0.67, whereas the other three corpora received a
weight of 0.11 each. It must be noted that even
the in-domain LM received a weight of 0.11 (less
than the News-shuffled LM). The reason for this
might be that, although the in-domain LM should
be more appropriate and should receive a higher
weight, the News-shuffled corpus is also news re-
lated (hence not really out-of-domain), but much
larger. For this reason, the result of using only
such LM (News) was also analysed. As expected,
the translation quality dropped slightly. Never-
theless, since the differences are not statistically
significant, we used the News-shuffled LM for in-
ternal development purposes, and the interpolated
LM only whenever an improvement prooved to be
useful.

6.3 Including UN data

We analysed the impact of the selection technique
detailed in Section 3. In this case, the LM used
was the interpolated LM described in the previous
section. The result can be seen in Table 4. As
it can be seen, translation quality as measured by
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Table 3: Effect of considering different LMs
LM used BLEU
NC data 21.86
pooled 23.53
interpolated 24.97
news 24.79

BLEU improves constantly as the number of sen-
tences selected increases. However, further sen-
tences were not included for computational rea-
sons.

In the same table, we also report the effect of
adding the UN sentences selected by our out-of-
vocabulary technique described in Section 4. In
this context, it should be noted that MERT was
not rerun once such sentences had been selected,
since such sentences are related with the test set,
and not with the development set on which MERT
is run.

Table 4: Effect of including selected sentences
system BLEU
baseline 24.97
+ oovs 25.08
+ Level 1 24.98
+ Level 2 25.07
+ Level 3 25.13

6.4 Final system

Since the News-shuffled, UN and Europarl cor-
pora are large corpora, a new LM interpolation
was estimated by using a 6-gram LM on each one
of these corpora, obtaining a gain of 0.17 BLEU
points by doing so. Further increments in the n-
gram order did not show further improvements.

In addition, preliminary experimentation re-
vealed that the use of walls, as described in
Section 5, also provided slight improvements, al-
though using zones or combining both did not
prove to improve further. Hence, only walls
were included into the final system.

Lastly, the final system submitted to the Work-
shop was the result of combining all the techniques
described above. Such combination yielded a fi-
nal BLEU score of 25.31 on the 2009 test set, and
28.76 BLEU score on the 2010 test set, both in
tokenised and lowercased conditions.

7 Conclusions and future work

In this paper, the SMT system presented by the
UPV-PRHLT team for WMT 2010 has been de-
scribed. Specifically, preliminary results about
how to make use of larger data collections for
translating more focused test sets have been pre-
sented.

In this context, there are still some things which
need a deeper investigation, since the results pre-
sented here give only a small insight about the po-
tential of the similar sentence selection technique
described.

However, a deeper analysis is needed in order
to assess the potential of such technique and other
strategies should be implemented to explore new
kids of reordering constraints.
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Abstract

We present the Johns Hopkins Univer-
sity submission to the 2010 WMT shared
translation task. We describe processing
steps using open data and open source
software used in our submission, and pro-
vide the scripts and configurations re-
quired to train, tune, and test our machine
translation system.

1 Introduction

Research investigating natural language process-
ing and computational linguistics can and should
have an extremely low barrier to entry. The data
with which we work is customarily available in
common electronic formats. The computational
techniques which we apply can typically be per-
formed on commodity computing resources which
are widely available. In short, there should be no
reason why small research groups and even lone
researchers should not be able to join and make
substantive contributions furthering our field. The
reality is less encouraging.

Many published articles describe novel tech-
niques and provide interesting results, yet fail to
describe technical details in sufficient detail to al-
low their results to be reproduced by other re-
searchers. While there are notable and laudable
exceptions, many publications fail to provide the
source code and scripts necessary to reproduce re-
sults. The use of restricted data, not freely avail-
able for download by any interested researcher
only compounds these problems. Pedersen (2008)
rightly argues that the implementation details so
often ignored in publications are in fact essential
for our research to be reproducible science.

Reproducibility in machine translation is made
more challenging by the complexity of experi-
mental workflows. Results in machine translation

∗Research conducted as a visiting researcher at Johns
Hopkins University

tasks are dependent on a cascade of processing
steps and configurations. While interesting sub-
sets of these usually appear in experimental de-
scriptions, many steps (preprocessing techniques,
alignment parameters, translation rule extraction
parameters, language model parameters, list of
features used) are invariably omitted, even though
these configurations are often critical to reproduc-
ing results.

This paper describes the Johns Hopkins Univer-
sity submission to the 2010 Workshop on Statis-
tical Machine Translation shared translation task.
Links to the software, scripts, and configurations
used to run the experiments described herein are
provided. The remainder of this paper is struc-
tured as follows. Section 2 lists the major ex-
amples of publicly available open source machine
translation systems, parallel corpora, and machine
translation workflow management systems. Sec-
tion 3 describes the experimental workflow used
to run the shared task translations, with the corre-
sponding experimental design in section 4. Sec-
tion 5 presents the shared task results.

2 Related Work

The last four years have witnessed the implemen-
tation and release of numerous open source ma-
chine translation systems. The widely used Moses
system (Koehn et al., 2007) implements the stan-
dard phrase-based translation model. Parsing-
based translation models are implemented by
Joshua (Li et al., 2009), SAMT (Zollmann and
Venugopal, 2006), and cdec (Dyer et al., 2010).
Cunei (Phillips and Brown, 2009) implements
statistical example-based translation. Olteanu et
al. (2006) and Schwartz (2008) respectively pro-
vide additional open-source implementations of
phrase-based and hierarchical decoders.

The SRILM (Stolcke, 2002), IRSTLM (Fed-
erico et al., 2008), and RandLM (Talbot and Os-
borne, 2007) toolkits enable efficient training and
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Figure 1: Machine translation workflow. Square nodes in grey indicate software and scripts.
The scripts and configuration files used to implement and run this workflow are available
for download at http://sourceforge.net/projects/joshua/files/joshua/1.3/
wmt2010-experiment.tgz/download
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querying of n-gram language models.
Freely available parallel corpora for numer-

ous European languages have also been released
in recent years. These include the Europarl
(Koehn, 2005) and JRC-Acquis (Steinberger et al.,
2006) legislative corpora, each of which includes
data for most EU language pairs. The smaller
News Commentary corpora (Callison-Burch et al.,
2007; Callison-Burch et al., 2008) provide smaller
amounts of parallel data in the news genre. The re-
cent Fr-En 109 (Callison-Burch et al., 2009) cor-
pus aggregates huge numbers of parallel French-
English sentences from the web.

Open source systems to address the complex
workflows required to run non-trivial machine
translation experiments have also been developed.
These include experiment.perl (Koehn et
al., 2010), developed as a workflow management
system at the University of Edinburgh, and Loony-
Bin (Clark et al., 2010), a general hyperworkflow
management utility from Carnegie Melon Univer-
sity.

3 Managing Experiment Workflows

Running a statistical machine translation system to
achieve state-of-the-art performance involves the
configuration and execution of numerous interde-
pendent intermediate tools. To manage task de-
pendencies and tool configuration, our shared task
workflow consists of a set of dependency scripts
written for GNU Make (Stallman et al., 2006).

Figure 1 shows a graph depicting the steps in
our experimental workflow, and the dependencies
between steps. Each node in the graph represents
a step in the workflow; each step is implemented
as a Make script that defines how to run the tools
required in that step. In each experiment, an ad-
ditional configuration script is provided for each
experimental step, defining the parameters to be
used when running that step in the current experi-
ment. Optional front-end wrapper scripts can also
be provided, allowing for a complete experiment
to be run - from downloading data and software
through truecasing translated results - by execut-
ing a single make file.

This framework is also conducive to paralleliza-
tion. Many tasks, such as preprocessing numerous
training files, are not dependent on one another.
In such cases make can be configured to exe-
cute multiple processes simultaneously on a single
multi-processor machine. In cases where sched-

uled distributed computing environments such as
the Sun Grid Engine are configured, make files can
be processed by scheduler-aware make variants
(distmake, SGE qmake, Sun Studio dmake)
which distribute outstanding tasks to available dis-
tributed machines using the relevant distributed
scheduler.

4 Experimental Configuration

Experimental workflows were configured1 and run
for six language pairs in the translation shared
task: English-French, English-German, English-
Spanish, French-English, German-English, and
Spanish-English.

In all experiments, only data freely available
for download was used. No restricted data from
the LDC or other sources was used. Table 1 lists
the parallel corpora used in training the translation
model for each experiment. The monolingual cor-
pora used in training each target language model
are listed in table 2. In all experiments, news-
test2008 was used as a development tuning corpus
during minimum error rate training; newstest2009
was used as a development test set. The shared
task data set newstest2010 was used as a final blind
test set.

All data was automatically downloaded, un-
zipped, and preprocessed prior to use. Files pro-
vided in XML format were converted to plain text
by selecting lines with <seg> tags, then removing
the beginning and end tags for each segment; this
processing was applied using GNU grep and sed.
The tokenize.perl and lowercase.perl
scripts provided for the shared task2 were applied
to all data.

Interpolated n-gram language models for the
four target languages were built using the SRI
Language Model Toolkit3, with n-gram order set
to 5. The Chen and Goodman (1998) technique
for modified Kneser-Ney discounting (Kneser and
Ney, 1995) was applied during language model
training.

Following Li et al. (2009), a subset of the avail-
able training sentences was selected via subsam-

1http://sourceforge.net/projects/joshua/files/joshua/1.3/wmt2010-
experiment.tgz/download

2http://www.statmt.org/wmt08/scripts.tgz with md5sum:
tokenize.perl 45cd1832827131013245eca76481441a
lowercase.perl a1958ab429b1e29d379063c3b9cd7062

3http://www-speech.sri.com/projects/srilm
SRILM version 1.5.7. Our experimental workflow requires
that SRILM be compiled separately, with the $SRILM envi-
ronment variable set to the install location.
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Source Target Parallel Corpora
German English news-commentary10.de-en europarl-v5.de-en
English German news-commentary10.de-en europarl-v5.de-en
French English news-commentary10.fr-en europarl-v5.fr-en giga-fren.release2 undoc.2000.en-fr
English French news-commentary10.fr-en europarl-v5.fr-en giga-fren.release2 undoc.2000.en-fr
Spanish English news-commentary10.es-en europarl-v5.es-en undoc.2000.en-es
English Spanish news-commentary10.es-en europarl-v5.es-en undoc.2000.en-es

Table 1: Parallel training data used for training translation model, per language pair

Target Monolingual Corpora
English europarl-v5.en news-commentary10.en news.en.shuffled undoc.2000.en-fr.en giga-fren.release2.en
French europarl-v5.fr news-commentary10.fr news.fr.shuffled undoc.2000.en-fr.fr giga-fren.release2.fr
German europarl-v5.de news-commentary10.de news.de.shuffled
Spanish europarl-v5.es news-commentary10.es news.es.shuffled undoc.2000.en-es.es

Table 2: Monolingual training data used for training language model, per target language

pling; training sentences are selected based on the
estimated likelihood of each sentence being useful
later for translating a particular test corpus.

Given a subsampled parallel training corpus,
word alignment is performed using the Berkeley
aligner4 (Liang et al., 2006).

For each language pair, a synchronous context
free translation grammar is extracted for a particu-
lar test set, following the methods of Lopez (2008)
as implemented in (Schwartz and Callison-Burch,
2010). For the largest training sets (French-
English and English-French) the original (Lopez,
2008) implementation included with Hiero was
used to save time during training5.

Because of the use of subsampling, the ex-
tracted translation grammars are targeted for use
with a specific test set. Our experiments were be-
gun prior to the release of the blind newstest2010
shared task test set. Subsampling was performed
for the development tuning set, news-test2008,
and the development test set, newstest2009. Once
the newstest2010 test set was released, the process
of subsampling, alignment, and grammar extrac-
tion was repeated to obtain translation grammars
targeted for use with the shared task test set.

Our experiments used hierarchical phrase-based
grammars containing exactly two nonterminals -
the wildcard nonterminal X, and S, used to glue

4http://berkeleyaligner.googlecode.com/files/berkeleyaligner
unsupervised-2.1.tar.gz — Berkeley aligner version 2.1

5It is expected that using the Joshua implementation
should result in nearly identical results, albeit with somewhat
more time required to extract the grammar.

together neighboring constituents. Recent work
has shown that parsing-based machine translation
using SAMT (Zollmann and Venugopal, 2006)
grammars with rich nonterminal sets can demon-
strate substantial gains over hierarchical grammars
for certain language pairs (Baker et al., 2009).
Joshua supports such grammars; the experimental
workflow presented here could easily be extended
in future research to incorporate the use of SAMT
grammars with additional language pairs.

The Z-MERT implementation (Zaidan, 2009) of
minimum error rate training (Och, 2003) was used
for parameter tuning. Tuned grammars were used
by Joshua to translate all test sets. The Joshua de-
coder produces n-best lists of translations.

Rather than simply selecting the top candidate
from each list, we take the preferred candidate af-
ter perform minimum Bayes risk rescoring (Ku-
mar and Byrne, 2004).

Once a single translation has been extracted
for each sentence in the test set, we repeat the
procedures described above to train language and
translation models for use in translating lower-
cased results into a more human-readable true-
cased form. A truecase language model is
trained as above, but on the tokenized (but not
normalized) monolingual target language corpus.
Monotone word alignments are deterministically
created, mapping normalized lowercase training
text to the original truecase text. As in bilin-
gual translation, subsampling is performed for
the training set, and a translation grammar for
lowercase-to-truecase is extracted. No tuning is
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performed. The Joshua decoder is used to trans-
late the lowercased target language test results into
truecase format. The detokenize.perl and
wrap-xml.perl scripts provided for the shared
task were manually applied to truecased transla-
tion results prior to final submission of results.

The code used for subsampling, grammar ex-
traction, decoding, minimum error rate training,
and minimum Bayes risk rescoring is provided
with Joshua6, with the exception of the original
(Lopez, 2008) grammar extraction implementa-
tion.

5 Experimental Results

The experiments described in sections 3 and
4 above provided truecased translations for
six language pairs in the translation shared
task: English-French, English-German, English-
Spanish, French-English, German-English, and
Spanish-English. Table 3 lists the automatic met-
ric scores for the newstest2010 test set, accord-
ing to the BLEU (Papineni et al., 2002) and TER
(Snover et al., 2006) metrics.

Source Target BLEU BLEU- TER
cased

German English 21.3 19.5 0.660
English German 15.2 14.6 0.738
French English 27.7 26.4 0.614
English French 23.8 22.8 0.681
Spanish English 29.0 27.6 0.595
English Spanish 28.1 26.5 0.596

Table 3: Automatic metric scores for the test set
newstest2010

The submitted system ranked highest among
shared task participants for the German-English
task, according to TER.

In order to provide points of comparison with
the 2009 Workshop on Statistical Machine Trans-
lation shared translation task participants, table
4 lists automatic metric scores for our systems’
translations of the newstest2009 test set, which we
used as a development test set.

6 Steps to Reproduce

The experiments in this paper can be reproduced
by running the make scripts provided in the

6http://sourceforge.net/projects/joshua/files/joshua/1.3/joshua-
1.3.tgz/download — Joshua version 1.3

Source Target BLEU
German English 18.19
English German 13.57
French English 26.41
English French 25.28
Spanish English 25.28
English Spanish 24.02

Table 4: Automatic metric scores for the develop-
ment test set newstest2009

following file: http://sourceforge.net/
projects/joshua/files/joshua/1.3/
wmt2010-experiment.tgz/download.
The README file details how to configure the
workflow for your environment. Note that SRILM
must be downloaded and compiled separately
before running the experimental steps.
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Abstract

In this paper we report on experiments
with three preprocessing strategies for im-
proving translation output in a statistical
MT system. In training, two reordering
strategies were studied: (i) reorder on the
basis of the alignments from Giza++, and
(ii) reorder by moving all verbs to the
end of segments. In translation, out-of-
vocabulary words were preprocessed in a
knowledge-lite fashion to identify a likely
equivalent. All three strategies were im-
plemented for our English↔German sys-
tem submitted to the WMT10 shared task.
Combining them lead to improvements in
both language directions.

1 Introduction

We present the Liu translation system for the con-
strained condition of the WMT10 shared transla-
tion task, between German and English in both di-
rections. The system is based on the 2009 Liu sub-
mission (Holmqvist et al., 2009), that used com-
pound processing, morphological sequence mod-
els, and improved alignment by reordering.

This year we have focused on two issues: trans-
lation of verbs, which is problematic for transla-
tion between English and German since the verb
placement is different with German verbs often be-
ing placed at the end of sentences; and OOVs, out-
of-vocabulary words, which are problematic for
machine translation in general. Verb translation
is targeted by trying to improve alignment, which
we believe is a crucial step for verb translation
since verbs that are far apart are often not aligned
at all. We do this mainly by moving verbs to the
end of sentences previous to alignment, which we
also combine with other alignments. We trans-
form OOVs into known words in a post-processing

step, based on casing, stemming, and splitting of
hyphenated compounds. In addition, we perform
general compound splitting for German both be-
fore training and translation, which also reduces
the OOV rate.

All results in this article are for the develop-
ment test set newstest2009, on truecased output.
We report Bleu scores (Papineni et al., 2002) and
Meteor ranking (without WordNet) scores (Agar-
wal and Lavie, 2008), using percent notation. We
also used other metrics, but as they gave similar
results they are not reported. For significance test-
ing we used approximate randomization (Riezler
and Maxwell, 2005), with p < 0.05.

2 Baseline System

The 2010 Liu system is based on the PBSMT base-
line system for the WMT shared translation task1.
We use the Moses toolkit (Koehn et al., 2007) for
decoding and to train translation models, Giza++
(Och and Ney, 2003) for word alignment, and the
SRILM toolkit (Stolcke, 2002) to train language
models. The main difference to the WMT base-
line is that the Liu system is trained on truecased
data, as in Koehn et al. (2008), instead of lower-
cased data. This means that there is no need for a
full recasing step after translation, instead we only
need to uppercase the first word in each sentence.

2.1 Corpus
We participated in the constrained task, where we
only trained the Liu system on the news and Eu-
roparl corpora provided for the workshop. The
translation and reordering models were trained us-
ing the bilingual Europarl and news commentary
corpora, which we concatenated.

We used two sets of language models, one
where we first trained two models on Europarl
and news commentary, which we then interpolated

1http://www.statmt.org/wmt10/baseline.
html
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with more weight given to the news commentary,
using weights from Koehn and Schroeder (2007).
The second set of language models were trained
on monolingual news data. For tuning we used
every second sentence, in total 1025 sentences, of
news-test2008.

2.2 Training with Limited Computational
Resources

One challenge for us was to train the transla-
tion sytem with limited computational resources.
We trained all systems on one Intel Core 2 CPU,
3.0Ghz, 16 Gb of RAM, 64 bit Linux (RedHat)
machine. This constrained the possibilities of us-
ing the data provided by the workshop to the full.
The main problem was training the language mod-
els, since the monolingual data was very large
compared to the bilingual data.

In order to train language models that were both
fast at runtime, and possible to train with the avail-
able memory, we chose to use the SRILM toolkit
(Stolcke, 2002), with entropy-based pruning, with
10−8 as a threshold. To reduce the model size we
also used lower order models for the large corpus;
4-grams instead of 5-grams for words and 6-grams
instead of 7-grams for the morphological models.
It was still impossible to train on the monolingual
English news corpus, with nearly 50 million sen-
tences, so we split that corpus into three equal size
parts, and trained three models, that were interpo-
lated with equal weights.

3 Morphological Processing

We added morphological processing to the base-
line system, by training additional sequence mod-
els on morphologically enriched part-of-speech
tags, and by compound processing for German.

We utilized the factored translation framework
in Moses, to enrich the baseline system with an
additional target sequence model. For English
we used part-of-speech tags obtained using Tree-
Tagger (Schmid, 1994), enriched with more fine-
grained tags for the number of determiners, in or-
der to target more agreement issues, since nouns
already have number in the tagset. For German
we used morphologically rich tags from RFTag-
ger (Schmid and Laws, 2008), that contains mor-
phological information such as case, number, and
gender for nouns and tense for verbs. We used
the extra factor in an additional sequence model
on the target side, which can improve word order

System Bleu Meteor
Baseline 13.42 48.83
+ morph 13.85 49.69
+ comp 14.24 49.41

Table 1: Results for morphological processing,
English→German

System Bleu Meteor
Baseline 18.34 38.13
+ morph 18.39 37.86
+ comp 18.50 38.47

Table 2: Results for morphological processing,
German→English

and agreement between words. For German the
factor was also used for compound merging.

Prior to training and translation, compound pro-
cessing was performed, using an empirical method
(Koehn and Knight, 2003; Stymne, 2008) that
splits words if they can be split into parts that oc-
cur in a monolingual corpus, choosing the split-
ting option with the highest arithmetic mean of its
part frequencies in the corpus. We split nouns,
adjectives and verbs, into parts that are content
words or particles. We imposed a length limit on
parts of 3 characters for translation from German
and of 6 characters for translation from English,
and we had a stop list of parts that often led to
errors, such as arische (Aryan) in konsularische
(consular). We allowed 10 common letter changes
(Langer, 1998) and hyphens at split points. Com-
pound parts were given a special part-of-speech
tag that matches the head word.

For translation into German, compound parts
were merged into full compounds using a method
described in Stymne and Holmqvist (2008), which
is based on matching of the special part-of-speech
tag for compound parts. A word with a compound
POS-tag were merged with the next word, if their
POS-tags were matching.

Tables 1 and 2 show the results of the addi-
tional morphological processing. Adding the se-
quence models on morphologically enriched part-
of-speech tags gave a significant improvement for
translation into German, but similar or worse re-
sults as the baseline for translation into English.
This is not surprising, since German morphology
is more complex than English morphology. The
addition of compound processing significantly im-
proved the results on Meteor for translation into
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English, and it also reduced the number of OOVs
in the translation output by 20.8%. For translation
into German, compound processing gave a signif-
icant improvement on both metrics compared to
the baseline, and on Bleu compared to the system
with morphological sequence models. Overall, we
believe that both compound splitting and morphol-
ogy are useful; thus all experiments reported in the
sequel are based on the baseline system with mor-
phology models and compound splitting, which
we will call base.

4 Improved Alignment by Reordering

Previous work has shown that translation quality
can be improved by making the source language
more similar to the target language, for instance
in terms of word order (Wang et al., 2007; Xia
and McCord, 2004). In order to harmonize the
word order of the source and target sentence, they
applied hand-crafted or automatically induced re-
ordering rules to the source sentences of the train-
ing corpus. At decoding time, reordering rules
were again applied to input sentences before trans-
lation. The positive effects of such methods seem
to come from a combination of improved align-
ment and improved reordering during translation.

In contrast, we focus on improving the word
alignment by reordering the training corpus. The
training corpus is reordered prior to word align-
ment with Giza++ (Och and Ney, 2003) and then
the word links are re-adjusted back to the original
word positions. From the re-adjusted corpus, we
create phrase tables that allow translation of non-
reordered input text. Consequently, our reordering
only affects the word alignment and the phrase ta-
bles extracted from it.

We investigated two ways of reordering. The
first method is based on word alignments and the
other method is based on moving verbs to sim-
ilar positions in the source and target sentences.
We also investigated different combinations of re-
orderings and alignments. All results for the sys-
tems with improved reordering are shown in Ta-
bles 3 and 4.

4.1 Reordering Based on Alignments

The first reordering method does not require any
syntactic information or rules for reordering. We
simply used symmetrized Giza++ word align-
ments to reorder the words in the source sentences
to reflect the target word order and applied Giza++

System Bleu Meteor
base 14.24 49.41
reorder 14.32 49.58
verb 13.93 49.22
base+verb 14.38 49.72
base+verb+reorder 14.39 49.39

Table 3: Results for improved alignment,
English→German

System Bleu Meteor
base 18.50 38.47
reorder 18.77 38.53
verb 18.61 38.53
base+verb 18.66 38.61
base+verb+reorder 18.73 38.59

Table 4: Results for improved alignment,
German→English

again to the reordered training corpus. The follow-
ing steps were performed to produce the final word
alignment:

1. Word align the training corpus with Giza++.

2. Reorder the source words according to the or-
der of the target words they are aligned to
(store the original source word positions for
later).

3. Word align the reordered source and original
target corpus with Giza++.

4. Re-adjust the new word alignments so that
they align source and target words in the orig-
inal corpus.

The system built on this word alignment (re-
order) had a significant improvement in Bleu score
over the unreordered baseline (base) for transla-
tion into English, and small improvements other-
wise.

4.2 Verb movement

The positions of finite verbs are often very differ-
ent in English and German, where they are often
placed at the end of sentences. In several cases we
noted that finite verbs were misaligned by Giza++.
To improve the alignment of verbs, we moved all
verbs in both English and German to the end of the
sentences prior to word alignment. The reordered
sentences were word aligned with Giza++ and the
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resulting word links were then re-adjusted to align
words in the original corpus.

The system created from this alignment (verb)
resulted in significantly lower scores than base for
translation into German, and similar scores as base
for translation into English.

4.3 Combination Systems

The alignment based on reordered verbs did not
produce a better alignment in terms of Bleu scores
of the resulting translations, which led us to the
conclusion that the alignment was noisy. How-
ever, it is possible that we did correctly align some
words that were misaligned in the baseline align-
ment. To investigate this issue we concatenated
first the baseline and verb alignments, and then all
three alignments, and extracted phrase tables from
the concatenated training sets.

All scores for both combined systems signifi-
cantly outperformed the unfactored baseline, and
were slightly better than base. For translation into
German it was best to use the combination of only
verb and base, which was significantly better than
base on Meteor. This shows that even though the
verb alignments were not good when used in a sin-
gle system, they still could contribute in a combi-
nation system.

5 Preprocessing of OOVs

Out-of-vocabulary words, words that have not
been seen in the training data, are a problem in
statistical machine translation, since no transla-
tions have been observed for them. The standard
strategy is to transfer them as is to the translation
output, which, naive as it sounds, actually works
well in some cases, since many OOVs are numbers
or proper names (Stymne and Holmqvist, 2008).
However, it still results in incomprehensible words
in the output in many cases. We have investi-
gated several ways of changing unknown words
into similar words that have been seen in the train-
ing data, in a preprocessing step.

We also considered another OOV problem,
number formatting, since it differs between En-
glish and German. To address this, we swapped
decimal points/commas, and other delimeters for
unknown numbers in a post-processing step.

In the preprocessing step, we applied a num-
ber of transformations to each OOV word, accept-
ing the first applicable transformation that led to a
known word:

Type German English
total OOVs 1833 1489
casing 124 26
stemming 270 72
hyphenated words 230 124
end hyphens 24 –

Table 5: Number of affected words by OOV-
preprocessing

1. Change the word into a known cased ver-
sion (since we trained a truecased system,
this handles cased variations of words)

2. Stem the word, and if we know the stem,
choose the most common realisation of that
stem (using a Porter stemmer)

3. For hyphenated words, split at the hyphen (if
any of the resulting parts are OOVs, they are
recursively treated as well)

4. Remove hyphens at the end of German words
(that could result from compound splitting)

The first two steps were based on frequency lists
of truecased and stemmed words that we compiled
from the monolingual training corpora.

Inspection of the initial results showed that
proper names were often changed into other words
in English, so we excluded them from the prepro-
cessing by not applying it to words with an initial
capital letter. This happened to a lesser extent for
German, but here it was impossible to use the same
simple heuristic for proper names, since German
nouns also have an initial capital letter.

The number of affected words for the baseline
using the final transformations are shown in Table
5. Even though we managed to transform some
words, we still lack a transformation for the ma-
jority of OOVs. Despite this, there is a tendency of
small improvements on both metrics in the major-
ity of cases in both translation directions, as shown
in Tables 6 and 7.

Figure 1 shows an example of how OOV pro-
cessing affects one sentence for translation from
German to English. In this case splitting a hy-
phenated compound gives a better translation,
even though the word opening is chosen rather
than jack. There is also a stemming change,
where the adjective ausgereiftesten (the most well-
engineered), is changed form superlative to posi-
tive. This results in a more understandable trans-
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DE original Die besten und technisch ausgereiftesten Telefone mit einer 3,5-mm-Öffnung
für normale Kopfhörer kosten bis zu fünfzehntausend Kronen.

DE preprocessed die besten und technisch ausgereifte Telefone mit einer 3,5 mm Öffnung für
normale Kopf Hörer kosten bis zu fünfzehntausend Kronen .

base+verb+reorder The best and technically ausgereiftesten phones with a 3,5-mm-Öffnung for
normal earphones cost up to fifteen thousand kronor.

base+verb+reorder
+OOV

The best and technologically advanced phones with a 3.5 mm opening for nor-
mal earphones cost up to fifteen thousand kronor.

EN reference The best and most technically well-equipped telephones, with a 3.5 mm jack
for ordinary headphones, cost up to fifteen thousand crowns.

Figure 1: Example of the effects of OOV processing for German→English

System Bleu Meteor
base 14.24 49.41
+ OOV 14.26 49.43
base+verb 14.38 49.72
+ OOV 14.42 49.75
+ MBR 14.41 49.77

Table 6: Results for OOV-processing and MBR,
English→German.

System Bleu Meteor
base 18.50 38.47
+ OOV 18.48 38.59
base+verb+reorder 18.73 38.59
+ OOV 18.81 38.70
+ MBR 18.84 38.75

Table 7: Results for OOV-processing and MBR,
German→English.

lation, which, however, is harmful to automatic
scores, since the preceding word, technically,
which is identical to the reference, is changed into
technologically.

This work is related to work by Arora et al.
(2008), who transformed Hindi OOVs by us-
ing morphological analysers, before translation to
Japanese. Our work has the advantage that it is
more knowledge-lite, as it only needs a Porter
stemmer and a monolingual corpus. Mirkin et al.
(2009) used WordNet to replace OOVs by syn-
onyms or hypernyms, and chose the best overall
translation partly based on scoring of the source
transformations. Our OOV handling could po-
tentially be used in combination with both these
strategies.

6 Final Submission

For the final Liu shared task submission we
used the base+verb+reorder+OOV system for
German→English and the base+verb+OOV sys-
tem for English→German, which had the best
overall scores considering all metrics. To these
systems we added minimum Bayes risk (MBR)
decoding (Kumar and Byrne, 2004). In standard
decoding, the top suggestion of the translation sys-
tem is chosen as the system output. In MBR de-
coding the risk is spread by choosing the trans-
lation that is most similar to the N highest scor-
ing translation suggestions from the system, with
N = 100, as suggested in Koehn et al. (2008).
MBR decoding gave hardly any changes in auto-
matic scores, as shown in Tables 6 and 7. The final
system was significantly better than the baseline in
all cases, and significantly better than base on Me-
teor in both translation directions, and on Bleu for
translation into English.

7 Conclusions

As in Holmqvist et al. (2009) reordering by us-
ing Giza++ in two phases had a small, but consis-
tent positive effect. Aligning verbs by co-locating
them at the end of sentences had a largely negative
effect. However, when output from this method
was concatenated with the baseline alignment be-
fore extracting the phrase table, there were con-
sistent improvements. Combining all three align-
ments, however, had mixed effects. Combining re-
ordering in training with a knowledge-lite method
for handling out-of-vocabulary words led to sig-
nificant improvements on Meteor scores for trans-
lation between German and English in both direc-
tions.
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Abstract

We report results of our submissions to
the WMT 2010 shared translation task in
which we applied a system that includes
adaptive language and translation mod-
els. Adaptation is implemented using ex-
ponentially decaying caches storing pre-
vious translations as the history for new
predictions. Evidence from the cache is
then mixed with the global background
model. The main problem in this setup is
error propagation and our submissions es-
sentially failed to improve over the com-
petitive baseline. There are slight im-
provements in lexical choice but the global
performance decreases in terms of BLEU
scores.

1 Motivation

The main motivation of our submission was to
test the use of adaptive language and translation
models in a standard phrase-based SMT setting
for the adaptation to wider context beyond sen-
tence boundaries. Adaptive language models have
a long tradition in the speech recognition commu-
nity and various approaches have been proposed
to reduce model perplexity in this way. The gen-
eral task is to adjust statistical models to essen-
tial properties of natural language which are usu-
ally not captured by standard n-gram models or
other local dependency models. First of all, it is
known that repetition is very common especially
among content words (see, for example, words
like “honey”, “milk”, “land” and “flowing” in fig-
ure 1). In most cases a repeated occurrence of a
content word is much more likely than its first ap-
pearance, which is not predicted in this way by a
static language model. Secondly, the use of ex-
pressions is related to the topic in the current dis-
course and the chance of using the same topic-

related expressions again in running text is higher
than a mixed-topic model would predict.

In translation another phenomenon can be ob-
served, namely the consistency of translations.
Polysemous terms are usually not ambiguous in
their context and, hence, their translations become
consistent according to the contextual sense. Even
the choice between synonymous translations is
rather consistent in translated texts as we can see
in the example of subtitle translations in figure 1
(taken from the OPUS corpus (Tiedemann, 2009)).

The 10 commandments Kerd ma lui
To some land flowing with milk
and honey!
Till ett land fullt av mjölk och
honung.

I’ve never tasted honey.
Jag har aldrig smakat honung.
...
But will sympathy lead us to
this land flowing with milk and
honey?
Men kan sympati leda oss till detta
mjölkens och honungens land?

Mari honey ...
Mari, gumman

Sweetheart,
where are you
going?
Älskling, var
ska du?
...
Who was that,
honey?
Vem var det,
gumman?

Figure 1: Repetition and translation consistency

Ambiguous terms like “honey” are consistently
translated into the Swedish counterpart “honung”
(in the sense of the actual substance) or “gumman”
(in the metaphoric sense). Observe that this is true
even in the latter case where synonymous transla-
tions such as “älskling” would be possible as well.
In other words, deciding to stick to consistent lexi-
cal translations should be preferred in MT because
the chance of alternative translations in repeated
cases is low. Here again, common static transla-
tion models do not capture this property at all.

In the following we explain our attempt to inte-
grate contextual dependencies using cache-based
adaptive models in a standard SMT setup. We
have already successfully applied this technique
to a domain-adaptation task (Tiedemann, 2010).
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Now we would like to investigate the robustness
of this model in a more general case where some
in-domain training data is available and input data
is less repetitive.

2 Cache-based Adaptive Models

The basic idea behind cache-based models is to
mix a large static background model with a small
local model that is dynamically estimated from re-
cent items from the input stream. Dynamic cache
language models have been introduced by (Kuhn
and Mori, 1990) and are often implemented in the
form of linear mixtures:

P (wn|history) = (1 − λ)Pbackground(wn|history) +

λPcache(wn|history)

The background model is usually a standard n-
gram model taking limited amount of local context
from the history into account and the cache model
is often implemented as a simple (unsmoothed)
unigram model using the elements stored in a
fixed-size cache (100-5000 words) to estimate
its parameters. Another improvement can be
achieved by making the importance of cached el-
ements a function of recency. This can be done
by introducing a decaying factor in the estima-
tion of cache probabilities (Clarkson and Robin-
son, 1997):

Pcache(wn|wn−k..wn−1) ≈
1

Z

n−1∑
i=n−k

I(wn = wi)e
−α(n−i)

This is basically the model that we applied in our
experiments as it showed the largest perplexity re-
duction in our previous experiments on domain
adaptation.

Similarly, translation models can be adapted as
well. This is especially useful to account for trans-
lation consistency forcing the decoder to prefer
identical translations for repeated terms. In our
approach we try to model recency again using a
decay factor to compute translation model scores
from the cache in the following way (only for
source language phrases fn for which a transla-
tion option exist in the cache; we use a score of
zero otherwise):

φcache(en|fn) =

∑K

i=1
I(〈en, fn〉 = 〈ei, fi〉) ∗ e−αi∑K

i=1
I(fn = fi)

The importance of a cached translation option ex-
ponentially decays and we normalize the sum of
cached occurrences by the number of translation
options with the same foreign language item that
we condition on.

Plugging this in into a standard phrase-based SMT
engine is rather straightforward. The use of cache-
based language models in SMT have been in-
vestigated before (Raab, 2007). In our case we
used Moses as the base decoder (Koehn et al.,
2007). The cache-based language model can be
integrated in the decoder by simply adjusting the
call to the language modeling toolkit appropri-
ately. We implemented the exponentially decaying
cache model within the standard SRILM toolkit
(Stolcke, 2002) and added command line argu-
ments to Moses to switch to that model and to set
cache parameters such as interpolation, cache size
and decay. Adding the translation model cache is
a bit more tricky. For this we added a new feature
function to the global log-linear model and im-
plemented the decaying cache as explained above
within the decoder. Again, simple command-line
arguments can be used to switch caching on or off
and to adjust cache parameters.

One important issue is to decide when and what
to cache. As we explore a lot of different options
in decoding it is not feasible to adapt the cache
continuously. This would mean a lot of cache op-
erations trying to add and remove hypotheses from
the cache memory. Therefore, we opted for a con-
text model that considers history only from previ-
ous sentences. Once decoding is finished transla-
tion options from the best hypothesis found in de-
coding are put into language and translation model
cache. This is arguably a strong approximation of
the adaptive approach. However, considering our
special concern about wider context across sen-
tence boundaries this seems to be a reasonable
compromise between completeness and efficiency.

Another issue is related to the selection of items
to be cached. As discussed earlier repetition is
most likely to be found among content words.
Similarly, translation consistency is less likely to
be true for function words. In the best case one
would know the likelihood of specific terms to
be repeated. This could be trained on some de-
velopment data possibly in connection with word
classes instead of fully lexicalized parameters in
order to overcome data sparseness and to improve
generality. Even though this idea is very tempt-
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ing it would require a substantial extension of our
model and would introduce language and domain-
specific parameters. Therefore, we just added a
simplistic approach filtering tokens by their length
in characters instead. Assuming that longer items
are more likely to be content words we simply set
a threshold to decide whether to add a term to the
cache or not. This threshold can be adjusted using
command-line arguments.

Finally, we also need to be careful about noise
in the cache. This is essential as the caching ap-
proach is prone to error propagation. However,
detecting noise is difficult. If there would be a no-
tion of noise in translation hypotheses, the decoder
would avoid it. In related work (Nepveu et al.,
2004) have studied cache-based translation mod-
els in connection with interactive machine trans-
lation. In that case, one can assume correct input
after post-editing the translation suggestions. One
way to approach noise reduction in non-interactive
MT is to make use of transition costs in the transla-
tion lattice. Assuming that this cost (which is esti-
mated internally within the decoder during the ex-
pansion of translation hypotheses) refers to some
kind of confidence we can discard translation op-
tions above a certain threshold, which is what we
did in the implementation of our translation model
cache.

3 Experiments

We followed the setup proposed in the shared
translation task. Primarily we concentrated our
efforts on German-English (de-en) and English-
German (en-de) using the constrained track, i.e.
using the provided training and development data
from Europarl and the News domain. Later we
also added experiments for Spanish (es) and En-
glish using a similar setup.

Our baseline system incorporates the following
components: We trained two separate 5-gram lan-
guage models for each language with the standard
smoothing strategies (interpolation and Kneser-
Ney discounting), one for Europarl and one for the
News data. All of them were estimated using the
SRILM toolkit except the English News LM for
which we applied RandLM (Talbot and Osborne,
2007) to cope with the large amount of training
data. We also included two separate translation
models, one for the combined Europarl and News
data and one for the News data only. They were
estimated using the standard tools GIZA++ (Och

and Ney, 2003) and Moses (Koehn et al., 2007)
applying default settings and lowercased training
data. Lexicalized reordering was trained on the
combined data set. All baseline models were then
tuned on the News test data from 2008 using mini-
mum error rate training (MERT) (Och, 2003). The
results in terms of lower-case BLEU scores are
listed in table 1.

n-gram scores
BLEU 1 2 3 4

de-en baseline 21.3 57.4 27.8 15.1 8.6
de-en cache 21.5 58.1 28.1 15.2 8.7
en-de baseline 15.6 52.5 21.7 10.6 5.5
en-de cache 14.4 52.6 21.0 9.9 4.9
es-en baseline 26.7 61.7 32.7 19.9 12.6
es-en cache 26.1 62.6 32.7 19.8 12.5
en-es baseline 26.9 61.5 33.3 20.5 12.9
en-es cache 23.0 60.6 30.4 17.6 10.4

Table 1: Results on the WMT10 test set.

In the adaptation experiments we applied exactly
the same models using the feature weights from
the baseline with the addition of the caching com-
ponents in both, language models and translation
models. Cache parameters are not particularly
tuned for the task in our initial experiments which
could be one reason for the disappointing results
we obtained. Some of them can be integrated in
the MERT procedure, for example, the interpola-
tion weight of the translation cache. However, tun-
ing these parameters with the standard procedures
appears to be difficult as we will see in later ex-
periments presented in section 3.2. Initially we
used settings that appeared to be useful in previ-
ous experiments. In particular, we used a language
model cache of 10,000 words with a decay of
α = 0.0005 and an interpolation weight of 0.001.
A cache was used in all language models except
the English News model for which caching was
not available (because we did not implement this
feature for RandLM). The translation cache size
was set to 5,000 with a decay factor of 0.001. The
weight for the translation cache was set to 0.001.
Furthermore, we filtered items for the translation
cache using a length constraint of 4 characters or
more and a transition cost threshold (log score) of
-4.

The final results of the adaptive runs are shown
in table 1. In all but one case the cache-based re-
sult is below the baseline which is, of course, quite
disappointing. For German-English a small im-
provement can be observed. However, this may
be rather accidental. In general, it seems that
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the adaptive approach cannot cope with the noise
added to the cache.

3.1 Discussion

There are two important observations that should
be mentioned here. First of all, the adaptive ap-
proach assumes coherent text input. However, the
WMT test-set is composed of many short news
headlines with various topics involved. We, there-
fore, also ran the adaptive approach on individual
news segments. The results are illustrated in figure
2.

Basically, the results do not change compared
to the previous run. Still, cache-based models per-
form worse on average except for the German-
English test-set for which we obtained a slight
but insignificant improvement. Figure 2 plots the
BLEU score differences between standard models
and cached models for the individual news items.
We can see a very blurred picture of these indi-
vidual scores and the general conclusion is that
caching failed. One problem is that the individ-
ual news items are very short (around 20 sentences
each) which is probably too little for caching to
show any positive effect. Surprising, however, is
the negative influence of caching even on these
small documents which is quite similar to the runs
on the entire sets. The drop in performance for
English-Spanish is especially striking. We have
no explanation at this point for this exceptional be-
havior.

A second observation is the variation in individ-
ual n-gram precision scores (see table 1). In all but
one case the unigram precision goes up which in-
dicates that the cache models often improve lexical
choice at least in terms of individual words. The
first example in figure 2 could be seen as a slight
improvement due to a consistent lexical choice of
“missile” (instead of “rocket”).

The main problem, however, in the adaptive ap-
proach seems to appear in local contexts which
might be due to the simplistic language modeling
cache. It would be interesting to study possibilities
of integrating local dependencies into the cache
models. However, there are serious problems with
data sparseness. Initial experiments with a bigram
LM cache did not produce any improvements so
far.

Another crucial problem with the cache-based
model is of course error propagation. An exam-
ple which is probably due to this issue can be seen

baseline until the end of the journey , are , in turn , tech-
nical damage to the rocket .

cache until the end of the journey , in turn , technical
damage to the missile .

reference but near the end of the flight there was technical
damage to the missile .

baseline iran has earlier criticism of its human rights
record .

cache iran rejected previous criticism of its human
rights record .

reference iran has dismissed previous criticism of its hu-
man rights record .

baseline facing conservationists is accused of extortion
cache facing conservationists is accused of extortion
reference Nature protection officers accused of blackmail
baseline the leitmeritz-polizei accused the chairman of

the bürgervereinigung ” naturschutzgemein-
schaft leitmeritz ” because of blackmail .

cache the leitmeritz-polizei accused the chairman of
the bürgervereinigung ” naturschutzgemein-
schaft leitmeritz ” because of extortion .

reference The Litomerice police have accused the chair-
man of the Litomerice Nature Protection Soci-
ety civil association of blackmail.

Table 2: German to English example translations.

in table 2 in the last two translations (propagation
of the translation option “extortion”). This prob-
lem is difficult to get around especially in case
of bad baseline translations. One possible idea
would be to implement a two-pass procedure to
run over the entire input first only to fill the cache
and to identify reliable evidence for certain trans-
lation options (possibly focusing on simple trans-
lation tasks such as short sentences). Then, in the
second pass the adaptive model can be applied to
prefer repetition and consistency according to the
parameters learned in the first pass.

3.2 Parameter Optimization
Another question is if the cache parameters re-
quire careful optimization in order to make this
approach effective. An attempt to investigate the
influence of the cache components by simply vary-
ing the interpolation weights gave us the following
results for English-German (see table 3).

fixed cache TM parameters fixed cache LM parameters
λLM BLEU λTM BLEU
0.1 14.12 0.1 12.75
0.01 14.39 0.01 13.04
0.005 14.40 0.005 13.57
0.001 14.44 0.001 14.42
0.0005 14.43 0.0005 14.57

Table 3: Results for English to German with vary-
ing mixture weights.

Looking at these results the tendency of the scores
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Figure 2: BLEU score differences between a standard model and a cached model for individual news
segments from the WMT test-set.

seems to suggest that switching off caching is the
right thing to do (as one might have expected al-
ready from the initial experimental results). We
did not perform the same type of investigation for
the other language pairs but we expect a similar
behavior.

Even though these results did not encourage us
very much to investigate the possibilities of cache
parameter optimization any further we still tried to
look at the integration of the interpolation weights
into the MERT procedure. The weight of the TM
cache is especially suited for MERT as this com-
ponent is implemented in terms of a separate fea-
ture function within the global log-linear model
used in decoding. The LM mixture model, on
the other hand, is implemented internally within
SRILM and therefore not so straightforward to in-
tegrate into standard MERT. We, therefore, dou-
bled the number of LM’s included in the SMT
model using two standard LM’s and two LM’s
with cache (one for Europarl and one for News
in both cases). The latter are actually mixtures as
well using a fixed interpolation weight of λLM =
0.5 between the cached component and the back-
ground model. In this way the cached LM’s bene-
fit from the smoothing with the static background
model. Individual weights for all four LM’s are

then learned in the global MERT procedure. Un-
fortunately, other cache parameters cannot be op-
timized in this way as they do not produce any par-
ticular values for individual translation hypotheses
in decoding.

We applied this tuning setup to the English-
German translation task and ran MERT on the
same development data as before. Actually,
caching slows down translation quite substantially
which makes MERT very slow. Due to the se-
quential caching procedure it is also not possible
to parallelize tuning. Furthermore, the extra pa-
rameters seem to cause problems in convergence
and we had to stop the optimization after 30 iter-
ations when BLEU scores seemed to start stabi-
lizing around 14.9 (in the standard setup only 12
iterations were required to complete tuning). Un-
fortunately, the result is again quite disappointing
(see table 4).

Actually, the final BLEU score after tuning is even
lower than in our initial runs with fixed cache
parameters taken from previous unrelated exper-
iments. This is very surprising and it looks like
that MERT just failed to find settings close to the
global optimum because of some strong local sub-
optimal points in the search space. One would ex-
pect that it should be possible to obtain at least the
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BLEU on dev-set (no caching) 15.2
BLEU on dev-set (with caching) 14.9
Europarl LM 0.000417
News LM 0.057042
Europarl LM (with cache) 0.002429
News LM (with cache) -0.000604
λTM 0.000749
BLEU on test-set (no caching) 15.6
BLEU on test-set (with caching) 12.7

Table 4: Tuning cache parameters.

same score on the development set which was not
the case in our experiment. However, as already
mentioned, we had to interrupt tuning and there
is still some chance that MERT would have im-
proved in later iterations. At least intuitively, there
seems to be some logic behind the tuned weights
(shown in table 4). The out-of-domain LM (Eu-
roparl) obtains a higher weight with caching than
without and the in-domain LM (News) is better
without it and, therefore, the cached version ob-
tains a negative weight. Furthermore, the TM
cache weight is quite similar to the one we used in
the initial experiments. However, applying these
settings to the test-set did not work at all.

4 Conclusions

In our WMT10 experiments cache-based adaptive
models failed to improve translation quality. Pre-
vious experiments have shown that they can be
useful in adapting SMT models to new domains.
However, they seem to have their limitations in the
general case with mixed topics involved. A gen-
eral problem is error propagation and the corrup-
tion of local dependencies due to over-simplified
cache models. Parameter optimization seems to
be difficult as well. These issues should be inves-
tigated further in future research.
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Abstract

This paper describes the Aalto submission
for the German-to-English and the Czech-
to-English translation tasks of the ACL
2010 Joint Fifth Workshop on Statistical
Machine Translation and MetricsMATR.
Statistical machine translation has focused
on using words, and longer phrases con-
structed from words, as tokens in the sys-
tem. In contrast, we apply different mor-
phological decompositions of words using
the unsupervised Morfessor algorithms.
While translation models trained using the
morphological decompositions did not im-
prove the BLEU scores, we show that the
Minimum Bayes Risk combination with
a word-based translation model produces
significant improvements for the German-
to-English translation. However, we did
not see improvements for the Czech-to-
English translations.

1 Introduction

The effect of morphological variation in languages
can be alleviated by using word analysis schemes,
which may include morpheme discovery, part-of-
speech tagging, or other linguistic information.
Words are very convenient and even efficient rep-
resentation in statistical natural language process-
ing, especially with English, but morphologically
rich languages can benefit from more fine-grained
information. For instance, statistical morphs dis-
covered with unsupervised methods result in bet-
ter performance in automatic speech recognition
for highly-inflecting and agglutinative languages
(Hirsimäki et al., 2006; Kurimo et al., 2006).

Virpioja et al. (2007) applied morph-based
models in statistical machine translation (SMT)
between several language pairs without gaining
improvement in BLEU score, but obtaining re-

ductions in out-of-vocabulary rates. They uti-
lized morphs both in the source and in the tar-
get language. Later, de Gispert et al. (2009)
showed that Minimum Bayes Risk (MBR) com-
bination of word-based and morph-based trans-
lation models improves translation with Arabic-
to-English and Finnish-to-English language pairs,
where only the source language utilized morph-
based models. Similar results have been shown for
Finnish-to-English and Finnish-to-German in per-
formance evaluation of various unsupervised mor-
pheme analysis algorithms in Morpho Challenge
2009 competition (Kurimo et al., 2009).

We continue the research described above and
examine how the level of decomposition affects
both the individual morph-based systems and
MBR combinations with the baseline word-based
model. Experiments are conducted with the
WMT10 shared task data for German-to-English
and Czech-to-English language pairs.

2 Methods

In this work, morphological analyses are con-
ducted on the source language data, and each dif-
ferent analysis is applied to create a unique seg-
mentation of words into morphemes. Translation
systems are trained with the Moses toolkit (Koehn
et al., 2007) from each differently segmented ver-
sion of the same source language to the target lan-
guage. Evaluation with BLEU is performed on
both the individual systems and system combina-
tions, using different levels of decomposition.

2.1 Morphological models for words
Morfessor (Creutz and Lagus, 2002; Creutz and
Lagus, 2007, etc.) is a family of methods for
unsupervised morphological segmentation. Mor-
fessor does not limit the number of morphemes
for each word, making it suitable for agglutina-
tive and compounding languages. An analysis of a
single word is a list of non-overlapping segments,
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morphs, stored in the model lexicon. We use both
the Morfessor Baseline (Creutz and Lagus, 2005b)
and the Morfessor Categories-MAP (Creutz and
Lagus, 2005a) algorithms.1 Both are formulated
in a maximum a posteriori (MAP) framework, i.e.,
the learning algorithm tries to optimize the prod-
uct of the model prior and the data likelihood.

The generative model applied by Morfessor
Baseline assumes that the morphs are independent.
The resulting segmentation can be influenced by
using explicit priors for the morph lengths and
frequencies, but their effect is usually minimal.
The training data has a larger effect on the re-
sults: A larger data set allows a larger lexicon,
and thus longer morphs and less morphs per word
(Creutz and Lagus, 2007). Moreover, the model
can be trained with or without taking into account
the word frequencies. If the frequencies are in-
cluded, the more frequent words are usually un-
dersegmented compared to a linguistic analysis,
whereas the rare words are oversegmented (Creutz
and Lagus, 2005b). An easy way to control the
amount of segmentation is to weight the training
data likelihood by a positive factor α. If α > 1,
the increased likelihood results in longer morphs.
If α < 1, the morphs will be shorter and the words
more segmented.

Words that are not present in the training data
can be segmented using an algorithm similar to
Viterbi. The algorithm can be modified to allow
new morphs types to be used by using an approx-
imative cost of adding them into the lexicon (Vir-
pioja and Kohonen, 2009). The modification pre-
vents oversegmentation of unseen word forms. In
machine translation, this is important especially
for proper nouns, for which there is usually no
need for translation.

The Morfessor Categories-MAP algorithm ex-
tends the model by imposing morph categories of
stems, prefixes and suffixes, as well as transition
probabilities between them. In addition, it applies
a hierarchical segmentation model that allows it to
construct new stems from smaller pieces of “non-
morphemes” (Creutz and Lagus, 2007). Due to
these features, it can provide reasonable segmen-
tations also for those words that contain new mor-
phemes. The drawback of the more sophisticated
model is the slower and more complex training al-
gorithm. In addition, the amount of the segmenta-

1The respective software is available at http://www.
cis.hut.fi/projects/morpho/

tion is harder to control.
Morfessor Categories-MAP was applied to sta-

tistical machine translation by Virpioja et al.
(2007) and de Gispert et al. (2009). However,
Kurimo et al. (2009) report that Morfessor Base-
line outperformed Categories-MAP in Finnish-to-
English and German-to-English tasks both with
and without MBR combination, although the dif-
ferences were not statistically significant. In all
the previous cases, the models were trained on
word types, i.e., without using their frequencies.
Here, we also test models trained on word tokens.

2.2 Statistical machine translation

We utilize the Moses toolkit (Koehn et al., 2007)
for statistical machine translation. The default pa-
rameter values are used except with the segmented
source language, where the maximum sentence
length is increased from 80 to 100 tokens to com-
pensate for the larger number of tokens in text.

2.3 Morphological model combination

For combining individual models, we apply Min-
imum Bayes Risk (MBR) system combination
(Sim et al., 2007). N-best lists from multiple
SMT systems trained with different morpholog-
ical analysis methods are merged; the posterior
distributions over the individual lists are interpo-
lated to form a new distribution over the merged
list. MBR hypotheses selection is then performed
using sentence-level BLEU score (Kumar and
Byrne, 2004).

In this work, the focus of the system combina-
tion is not to combine different translation systems
(e.g., Moses and Systran), but to combine systems
trained with the same translation algorithm using
the same source language data with with different
morphological decompositions.

3 Experiments

The German-to-English and Czech-to-English
parts of the ACL WMT10 shared task data were
investigated. Vanilla SMT models were trained
with Moses using word tokens for MBR combi-
nation and comparison purposes. Several different
morphological segmentation models for German
and Czech were trained with Morfessor. Each seg-
mentation model corresponds to a morph-based
SMT model trained with Moses. The word-based
vanilla Moses model is compared to each morph-
based model as well as to several MBR com-
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binations between word-based translation models
and morph-based translation models. Quantitative
evaluation is carried out using the BLEU score
with re-cased and re-tokenized translations.

4 Data

The data used in the experiments consisted
of Czech-to-English (CZ-EN) and German-to-
English (DE-EN) parallel language data from
ACL WMT10. The data was divided into distinct
training, development, and evaluation sets. Statis-
tics and details are shown in Table 1.

Aligned data from Europarl v5 and News
Commentary corpora were included in training
German-to-English SMT models. The English
part from the same data sets was used for train-
ing a 5-gram language model, which was used in
all translation tasks. The Czech-to-English trans-
lation model was trained with CzEng v0.9 (train-
ing section 0) and News Commentary data. The
monolingual German and Czech parts of the train-
ing data sets were used for training the morph seg-
mentation models with Morfessor.

The data sets news-test2009, news-
syscomb2009 and news-syscombtune2010
from the ACL WMT 2009 and WMT 2010,
were used for development. The news-test2008,
news-test2010, and news-syscombtest2010 data
sets were used for evaluation.

4.1 Preprocessing

All data sets were preprocessed before use. XML-
tags were removed, text was tokenized and char-
acters were lowercased for every training, devel-
opment and evaluation set.

Morphological models for German and Czech
were trained using a corpus that was a combina-
tion of the respective training sets. Then the mod-
els were used for segmenting all the data sets, in-
cluding development and evaluation sets, with the
Viterbi algorithm discussed in Section 2.1. The
modification of allowing new morph types for out-
of-vocabulary words was not applied.

The Moses cleaning script performed additional
filtering on the parallel language training data.
Specifically, sentences with over 80 words were
removed from the vanilla Moses word-based mod-
els. For morph-based models the limit was set
to 100 morphs, which is the maximum limit of
the Giza++ alignment tool. After filtering with a
threshold of 100 tokens, the different morph seg-

mentations for DE-EN training data from com-
bined Europarl and News Commentary data sets
ranged from 1 613 556 to 1 624 070 sentences.
Similarly, segmented CZ-EN training data ranged
from 896 163 to 897 744 sentences. The vanilla
words-based model was trained with 1 609 998
sentences for DE-EN and 897 497 sentences for
CZ-EN.

5 Results

The details of the ACL WMT10 submissions are
shown in Table 2. The results of experiments with
different morphological decompositions and MBR
system combinations are shown in Table 3. The
significances of the differences in BLEU scores
between the word-based model (Words) and mod-
els with different morphological decompositions
was measured by dividing each evaluation data set
into 49 subsets of 41–51 sentences, and using the
one-sided Wilcoxon signed rank test (p < 0.05).

5.1 Segmentation

We created several word segmentations with Mor-
fessor baseline and Morfessor Categories-MAP
(CatMAP). Statistics for the different segmenta-
tions are given in Table 3. The amount of seg-
mentation was measured as the average number of
morphs per word (m/w) and as the percentage of
segmented words (s-%) in the training data. In-
creasing the data likelihood weight α in Morfes-
sor Baseline increases the amount of segmentation
for both languages. However, it had little effect
on the proportion of segmented words in the three
evaluation data sets: The proportion of segmented
word tokens was 10–11 % for German and 8–9 %
for Czech, whereas the out-of-vocabulary rate was
7.5–7.8 % for German and 4.8–5.6 % for Czech.

Disregarding the word frequency information
in Morfessor Baseline (nofreq) produced more
morphs per word type and segmented nearly
all words in the training data. The Morfessor
CatMAP algorithm created segmentations with the
largest number of morphs per word, but did not
segment as many words as the Morfessor Baseline
without the frequencies.

5.2 Morph-based translation systems

The models with segmented source language per-
formed worse individually than the word-based
models. The change in the BLEU score was statis-
tically significant in almost all segmentations and

197



Data set Statistics Training Development Evaluation
Sentences Words per sentence SM LM TM

DE CZ EN DE CZ EN DE-EN CZ-EN {DE,CZ}-EN {DE,CZ}-EN

Europarl v5 1 540 549 23.2 25.2 x x x
News Commentary 100 269 21.9 18.9 21.5 x x x x x
CzEng v0.9 (training section 0) 803 286 8.3 9.9 x x
news-test2009 2 525 21.7 18.8 23.2 x
news-syscomb2009 502 19.7 17.2 21.1 x
news-syscombtune2010 455 20.2 17.3 21.0 x
news-test2008 2 051 20.3 17.8 21.7 x
news-test2010 2 489 21.7 18.4 22.3 x
news-syscombtest2010 2 034 22.0 18.6 22.6 x

Table 1: Data sets for the Czech-to-English and German-to-English SMT experiments, including the
number of aligned sentences and the average number of words per sentence in each language. The data
sets used for model training, development and evaluation are marked. Training is divided into German
(DE) and Czech (CZ) segmentation model (SM) training, English (EN) language model (LM) training
and German-to-English (DE-EN) and Czech-to-English (CZ-EN) translation model (TM) training.

Submission Segmentation model for source language BLEU-cased
(news-test2010)

aalto DE-EN WMT10 Morfessor Baseline (α = 0.5) 17.0
aalto DE-EN WMT10 CatMAP Morfessor Categories-MAP 16.5
aalto CZ-EN WMT10 Morfessor Baseline (α = 0.5) 16.2
aalto CZ-EN WMT10 CatMAP Morfessor Categories-MAP 15.9

Table 2: Our submissions for the ACL WMT10 shared task in translation. The translation models are
trained from the segmented source language into unsegmented target language with Moses.

all evaluation sets. Morfessor Baseline (α = 0.5)
was the best individual segmented model for both
German and Czech in the sense that it had the
lowest number of significant decreases the BLEU
score compared to the word-based model. Remov-
ing word frequency information with Morfessor
Baseline and using Morfessor CatMAP gave the
lowest BLEU scores with both source languages.

5.3 Translation system combination

For the DE-EN language pair, all MBR system
combinations between each segmented model and
the word-based model had slightly higher BLUE
scores than the individual word-based model.
Nearly all improvements were statistically signifi-
cant.

The BLEU scores for the MBR combinations
in the CZ-EN language pair were mostly not sig-
nificantly different from the individual word-based
model. Two scores were significantly lower.

6 Discussion

We have applied concatenative morphological
analysis, in which each original word token is seg-
mented into one or more non-overlapping morph
tokens. Our results with different levels of seg-
mentation with Morfessor suggest that the optimal
level of segmentation is language pair dependent
in machine translation.

Our approach for handling rich morphology has
not been able to directly improve the translation
quality. We assume that improvements might still
be possible by carefully tuning the amount of seg-
mentation. The experiments in this paper with
different values of the α parameter for Morfes-
sor Baseline were conducted with the word fre-
quencies. The parameter had little effect on the
proportion of segmented words in the evaluation
data sets, as frequent words were not segmented
at all, and out-of-vocabulary words were likely to
be oversegmented by the Viterbi algorithm. Fu-
ture work includes testing a larger range of val-
ues for α, also for models trained without the
word frequencies, and using the modification of
the Viterbi algorithm proposed in Virpioja and Ko-
honen (2009).

It might also be helpful to only segment selected
words, where the selection would be based on the
potential benefit in the translation process. In gen-
eral, the direct segmentation of words into morphs
is problematic because it increases the number
of tokens in the text and directly increases both
model training and decoding complexity. How-
ever, an efficient segmentation decreases the num-
ber of types and the out-of-vocabulary rate (Virpi-
oja et al., 2007).

We have replicated here the result that an MBR
combination of a morph-based MT system with
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Segmentation (DE) Statistics (DE) BLEU-cased (DE-EN)
news-test2008 news-test2010 news-syscombtest2010

m/w s-% No MBR MBR with No MBR No MBR MBR with
Words Words

Words 1.00 0.0% 16.37 - 17.28 13.22 -
Morfessor Baseline (α = 0.5) 1.82 72.4% 15.19− 16.47+ 17.04◦ 13.28◦ 13.70+

Morfessor Baseline (α = 1.0) 1.65 61.0% 15.14− 16.54+ 16.87− 11.95− 13.66+

Morfessor Baseline (α = 5.0) 1.24 23.7% 15.04− 16.44◦ 16.63− 11.78− 13.43+

Morfessor CatMAP 2.25 67.5% 14.21− 16.42◦ 16.53− 11.15− 13.61+

Morfessor Baseline nofreq 2.24 91.6% 13.98− 16.47+ 16.36− 10.66− 13.58+

Segmentation (CZ) Statistics (CZ) BLEU-cased (CZ-EN)
news-test2008 news-test2010 news-syscombtest2010

m/w s-% No MBR MBR with No MBR No MBR MBR with
Words Words

Words 1.00 0.0% 14.91 - 16.73 12.75 -
Morfessor Baseline (α = 0.5) 1.19 17.7% 13.22− 14.87◦ 16.01− 12.60◦ 12.53−

Morfessor Baseline (α = 1.0) 1.09 8.1% 13.33− 14.88◦ 16.10− 11.29− 12.84◦

Morfessor Baseline (α = 5.0) 1.03 2.9% 13.53− 14.83◦ 15.92− 11.17− 12.85◦

Morfessor CatMAP 2.29 71.9% 11.93− 14.86◦ 15.79− 10.12− 10.79−

Morfessor Baseline nofreq 2.18 90.3% 12.43− 14.96◦ 15.82− 10.13− 12.89◦

Table 3: Results for German-to-English (DE-EN) and Czech-to-English (CZ-EN) translation models.
The source language is segmented with the shown algorithms. The amount of segmentation in the train-
ing data is measured with the average number of morphs per word (m/w) and as proportion of segmented
words (s-%) against the word-based model (Words). The trained translation systems are evaluated in-
dependently (No MBR) and in Minimum Bayes Risk system combination of word-based translation
systems (MBR). Unchanged (◦), significantly higher (+) and lower (−) BLEU scores compared to the
word-based translation model (Words) are marked. The best morph-based model for each column is
emphasized.

a word-based MT system can produce a BLEU
score that is higher than from either of the indi-
vidual systems (de Gispert et al., 2009; Kurimo
et al., 2009). With the DE-EN language pair, the
improvement was statistically significant with all
tested segmentation models. However, the im-
provements were not as large as those obtained
before and the results for the CZ-EN language
pair were not significantly different in most cases.
Whether this is due to the different languages,
training data sets, the domain of the evaluation
data sets, or some problems in the model training,
is currently uncertain.

One very different approach for applying dif-
ferent levels of linguistic analysis is factor mod-
els for SMT (Koehn and Hoang, 2007), where
pre-determined factors (e.g., surface form, lemma
and part-of-speech) are stored as vectors for each
word. This provides better integration of mor-
phosyntactic information and more control of the
process, but the translation models are more com-
plex and the number and factor types in each word
must be fixed.

Our submissions to the ACL WMT10 shared
task utilize unsupervised morphological decompo-
sition models in a straightforward manner. The
individual morph-based models trained with the

source language words segmented into morphs
did not improve the vanilla word-based models
trained with the unsegmented source language.
We have replicated the result for the German-
to-English language pair that an MBR combina-
tion of a word-based and a segmented morph-
based model gives significant improvements to the
BLEU score. However, we did not see improve-
ments for the Czech-to-English translations.
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Malostranské nám. 25, Praha 1, CZ-118 00, Czech Republic
{marecek,popel,zabokrtsky}@ufal.mff.cuni.cz

Abstract

Maximum Entropy Principle has been
used successfully in various NLP tasks. In
this paper we propose a forward transla-
tion model consisting of a set of maxi-
mum entropy classifiers: a separate clas-
sifier is trained for each (sufficiently fre-
quent) source-side lemma. In this way
the estimates of translation probabilities
can be sensitive to a large number of fea-
tures derived from the source sentence (in-
cluding non-local features, features mak-
ing use of sentence syntactic structure,
etc.). When integrated into English-to-
Czech dependency-based translation sce-
nario implemented in the TectoMT frame-
work, the new translation model signif-
icantly outperforms the baseline model
(MLE) in terms of BLEU. The perfor-
mance is further boosted in a configuration
inspired by Hidden Tree Markov Mod-
els which combines the maximum entropy
translation model with the target-language
dependency tree model.

1 Introduction

The principle of maximum entropy states that,
given known constraints, the probability distri-
bution which best represents the current state of
knowledge is the one with the largest entropy.
Maximum entropy models based on this princi-
ple have been widely used in Natural Language
Processing, e.g. for tagging (Ratnaparkhi, 1996),
parsing (Charniak, 2000), and named entity recog-
nition (Bender et al., 2003). Maximum entropy
models have the following form

p(y|x) =
1

Z(x)
exp

∑
i

λifi(x, y)

where fi is a feature function, λi is its weight, and

Z(x) is the normalizing factor

Z(x) =
∑
y

exp
∑

i

λifi(x, y)

In statistical machine translation (SMT), trans-
lation model (TM) p(t|s) is the probability that the
string t from the target language is the translation
of the string s from the source language. Typical
approach in SMT is to use backward translation
model p(s|t) according to Bayes’ rule and noisy-
channel model. However, in this paper we deal
only with the forward (direct) model.1

The idea of using maximum entropy for con-
structing forward translation models is not new. It
naturally allows to make use of various features
potentially important for correct choice of target-
language expressions. Let us adopt a motivat-
ing example of such a feature from (Berger et al.,
1996) (which contains the first usage of maxent
translation model we are aware of): “If house ap-
pears within the next three words (e.g., the phrases
in the house and in the red house), then dans might
be a more likely [French] translation [of in].”

Incorporating non-local features extracted from
the source sentence into the standard noisy-
channel model in which only the backward trans-
lation model is available, is not possible. This
drawback of the noisy-channel approach is typi-
cally compensated by using large target-language
n-gram models, which can – in a result – play a
role similar to that of a more elaborate (more con-
text sensitive) forward translation model. How-
ever, we expect that it would be more beneficial to
exploit both the parallel data and the monolingual
data in a more balance fashion, rather than extract
only a reduced amount of information from the
parallel data and compensate it by large language
model on the target side.

1A backward translation model is used only for pruning
training data in this paper.
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A deeper discussion on the potential advantages
of maximum entropy approach over the noisy-
channel approach can be found in (Foster, 2000)
and (Och and Ney, 2002), in which another suc-
cessful applications of maxent translation models
are shown. Log-linear translation models (instead
of MLE) with rich feature sets are used also in
(Ittycheriah and Roukos, 2007) and (Gimpel and
Smith, 2009); the idea can be traced back to (Pap-
ineni et al., 1997).

What makes our approach different from the
previously published works is that

1. we show how the maximum entropy trans-
lation model can be used in a dependency
framework; we use deep-syntactic depen-
dency trees (as defined in the Prague Depen-
dency Treebank (Hajič et al., 2006)) as the
transfer layer,

2. we combine the maximum entropy transla-
tion model with target-language dependency
tree model and use tree-modified Viterbi
search for finding the optimal lemmas label-
ing of the target-tree nodes.

The rest of the paper is structured as follows. In
Section 2 we give a brief overview of the trans-
lation framework TectoMT in which the experi-
ments are implemented. In Section 3 we describe
how our translation models are constructed. Sec-
tion 4 summarizes the experimental results, and
Section 5 contains a summary.

2 Translation framework

We use tectogrammatical (deep-syntactic) layer of
language representation as the transfer layer in the
presented MT experiments. Tectogrammatics was
introduced in (Sgall, 1967) and further elaborated
within the Prague Dependency Treebank project
(Hajič et al., 2006). On this layer, each sentence
is represented as a tectogrammatical tree, whose
main properties (from the MT viewpoint) are fol-
lowing: (1) nodes represent autosemantic words,
(2) edges represent semantic dependencies (a node
is an argument or a modifier of its parent), (3) there
are no functional words (prepositions, auxiliary
words) in the tree, and the autosemantic words ap-
pear only in their base forms (lemmas). Morpho-
logically indispensable categories (such as number
with nouns or tense with verbs, but not number
with verbs as it is only imposed by agreement) are
stored in separate node attributes (grammatemes).

The intuition behind the decision to use tec-
togrammatics for MT is the following: we be-
lieve that (1) tectogrammatics largely abstracts
from language-specific means (inflection, agglu-
tination, functional words etc.) of expressing
non-lexical meanings and thus tectogrammatical
trees are supposed to be highly similar across lan-
guages,2 (2) it enables a natural transfer factor-
ization,3 (3) and local tree contexts in tectogram-
matical trees carry more information (especially
for lexical choice) than local linear contexts in the
original sentences.4

In order to facilitate transfer of sentence ‘syn-
tactization’, we work with tectogrammatical nodes
enhanced with the formeme attribute (Žabokrtský
et al., 2008), which captures the surface mor-
phosyntactic form of a given tectogrammatical
node in a compact fashion. For example, the
value n:před+4 is used to label semantic nouns
that should appear in an accusative form in a
prepositional group with the preposition před in
Czech. For English we use formemes such as
n:subj (semantic noun (SN) in subject position),
n:for+X (SN with preposition for), n:X+ago (SN
with postposition ago), n:poss (possessive form of
SN), v:because+fin (semantic verb (SV) as a sub-
ordinating finite clause introduced by because),
v:without+ger (SV as a gerund after without), adj:attr
(semantic adjective (SA) in attributive position),
adj:compl (SA in complement position).

We have implemented our experiments in the
TectoMT software framework, which already of-
fers tool chains for analysis and synthesis of Czech
and English sentences (Žabokrtský et al., 2008).
The translation scenario proceeds as follows.

1. The input English text is segmented into sen-
tences and tokens.

2. The tokens are lemmatized and tagged with
Penn Treebank tags using the Morce tagger
(Spoustová et al., 2007).

2This claim is supported by error analysis of output of
tectogrammatics-based MT system presented in (Popel and
Žabok/rtský, 2009), which shows that only 8 % of translation
errors are caused by the (obviously too strong) assumption
that the tectogrammatical tree of a sentence and the tree rep-
resenting its translation are isomorphic.

3Morphological categories can be translated almost inde-
pendently from lemmas, which makes parallel training data
‘denser’, especially when translating from/to a language with
rich inflection such as Czech.

4Recall the house-is-somewhere-around feature in the in-
troduction; again, the fact that we know the dominating (or
dependent) word should allow to construct a more compact
translation model, compared to n-gram models.
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Figure 1: Intermediate sentence representations when translating the English sentence “However, this
very week, he tried to find refuge in Brazil.”, leading to the Czech translation “Přesto se tento právě
týden snažil najı́t útočiště v Brazı́lii.”.

3. Then the Maximum Spanning Tree parser
(McDonald et al., 2005) is applied and a
surface-syntax dependency tree (analytical
tree in the PDT terminology) is created for
each sentence (Figure 1a).

4. This tree is converted to a tectogrammatical
tree (Figure 1b). Each autosemantic word
with its associated functional words is col-
lapsed into a single tectogrammatical node,
labeled with lemma, formeme, and seman-
tically indispensable morphologically cate-
gories; coreference is also resolved. Collaps-
ing edges are depicted by wider lines in the
Figure 1a.

5. The transfer phase follows, whose most dif-
ficult part consists in labeling the tree with
target-side lemmas and formemes5 (changes
of tree topology are required relatively infre-
quently). See Figure 1c.

6. Finally, surface sentence shape (Figure 1d) is
synthesized from the tectogrammatical tree,
which is basically a reverse operation for the

5In this paper we focus on using maximum entropy
for translating lemmas, but it can be used for translating
formemes as well.

tectogrammatical analysis: adding punctua-
tion and functional words, spreading mor-
phological categories according to grammat-
ical agreement, performing inflection (using
Czech morphology database (Hajič, 2004)),
arranging word order etc.

3 Training the two models

In this section we describe two translation mod-
els used in the experiments: a baseline translation
model based on maximum likelihood estimates
(3.2), and a maximum entropy based model (3.3).
Both models are trained using the same data (3.1).

In addition, we describe a target-language tree
model (3.4), which can be combined with both
the translation models using the Hidden Tree
Markov Model approach and tree-modified Viterbi
search, similarly to the approach of (Žabokrtský
and Popel, 2009).

3.1 Data preprocessing common for both
models

We used Czech-English parallel corpus CzEng 0.9
(Bojar and Žabokrtský, 2009) for training the
translation models. CzEng 0.9 contains about
8 million sentence pairs, and also their tectogram-
matical analyses and node-wise alignment.
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We used only trees from training sections (about
80 % of the whole data), which contain around 30
million pairs of aligned tectogrammatical nodes.

From each pair of aligned tectogrammatical
nodes, we extracted triples containing the source
(English) lemma, the target (Czech) lemma, and
the feature vector.

In order to reduce noise in the training data,
we pruned the data in two ways. First, we dis-
regarded all triples whose lemma pair did not oc-
cur at least twice in the whole data. Second,
we computed forward and backward maximum
likelihood (ML) translation models (target lemma
given source lemma and vice versa) and deleted
all triples whose probability according to one of
the two models was lower than the threshold 0.01.

Then the forward ML translation model was
reestimated using only the remaining data.

For a given pair of aligned nodes, the feature
vector was of course derived only from the source-
side node or from the tree which it belongs to. As
already mentioned in the introduction, the advan-
tage of the maximum entropy approach is that a
rich and diverse set of features can be used, with-
out limiting oneself to linearly local context. The
following features (or, better to say, feature tem-
plates, as each categorical feature is in fact con-
verted to a number of 0-1 features) were used:

• formeme and morphological categories of the
given node,

• lemma, formeme and morphological cate-
gories of the governing node,

• lemmas and formemes of all child nodes,

• lemmas and formemes of the nearest linearly
preceding and following nodes.

3.2 Baseline translation model
The baseline TM is basically the ML translation
model resulting from the previous section, lin-
early interpolated with several translation models
making use of regular word-formative derivations,
which can be helpful for translating some less fre-
quent (but regularly derived) lemmas. For exam-
ple, one of the derivation-based models estimates
the probability p(zajı́mavě|interestingly) (possibly
unseen pair of deadjectival adverbs) by the value
of p(zajı́mavý|interesting). More detailed descrip-
tion of these models goes beyond the scope of this
paper; their weights in the interpolation are very
small anyway.

3.3 MaxEnt translation model
The MaxEnt TM was created as follows:

1. training triples (source lemma, target lemma,
feature vector) were disregarded if the source
lemma was not seen at least 50 times (only
the baseline model will be used for such lem-
mas),

2. the remaining triples were grouped by the En-
glish lemma (over 16 000 groups),

3. due to computational issues, the maximum
number of triples in a group was reduced to
1000 by random selection,

4. a separate maximum entropy classifier
was trained for each group (i.e., one
classifier per source-side lemma) using
AI::MaxEntropy Perl module,6

5. due to the more aggressive pruning of the
training data, coverage of this model is
smaller than that of the baseline model; in or-
der not to loose the coverage, the two mod-
els were combined using linear interpolation
(1:1).

Selected properties of the maximum entropy
translation model (before the linear interpolation
with the baseline model) are shown in Figure 2.
We increased the size of the training data from
10 000 training triples up to 31 million and eval-
uated three relative quantities characterizing the
translation models:

• coverage - relative frequency of source lem-
mas for which the translation model offers at
least one translation,

• first - relative frequency of source lemmas for
which the target lemmas offered as the first
by the model (argmax) are the correct ones,

• oracle - relative frequency of source lemmas
for which the correct target lemma is among
the lemmas offered by the translation model.

As mentioned in Section 3.1, there are context
features making use both of local linear context
and local tree context. After training the MaxEnt
model, there are about 4.5 million features with
non-zero weight, out of which 1.1 million features

6http://search.cpan.org/perldoc?AI::
MaxEntropy
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Figure 2: Three measures characterizing the Max-
Ent translation model performance, depending on
the training data size. Evaluated on aligned node
pairs from the dtest portion of CzEng 0.9.

are derived from the linear context and 2.4 million
features are derived from the tree context. This
shows that the MaxEnt translation model employs
the dependency structure intensively.

A preliminary analysis of feature weights seems
to support our intuition that the linear context
is preferred especially in the case of more sta-
ble collocations. For example, the most impor-
tant features for translating the lemma bare are
based on the lemma of the following noun: tar-
get lemma bosý (barefooted) is preferred if the fol-
lowing noun on the source side is foot, while holý
(naked, unprotected) is preferred if hand follows.

The contribution of dependency-based features
can be illustrated on translating the word drop.
The greatest weight for choosing kapka (a droplet)
as the translation is assigned to the feature captur-
ing the presence of a node with formeme n:of+X
among the node’s children. The greatest weights
in favor of odhodit (throw aside) are assigned to
features capturing the presence of words such as
gun or weapon, while the greatest weights in favor
of klesnout (to come down) are assigned to fea-
tures saying that there is the lemma percent or the
percent sign among the children.

Of course, the lexical choice is influenced also
by the governing lemmas, as can be illustrated
with the word native. One can find a high-
value feature for rodilý (native-born) saying that
the source-side parent is speaker; similarly for
mateřský (mother) with governing tongue, and
rodný (home) with land.

Linear and tree features are occasionally used
simultaneously: there are high-valued positive

configuration BLEU NIST
baseline TM 10.44 4.795
MaxEnt TM 11.77 5.135
baseline TM + TreeLM 11.77 5.038
MaxEnt TM + TreeLM 12.58 5.250

Table 1: BLEU and NIST evaluation of four con-
figurations of our MT system; the WMT 2010 test
set was used.

weights for translating order as objednat (reserve,
give an order for st.) assigned both to tree-based
features saying that there are words such as pizza,
meal or goods and to linear features saying that the
very following word is some or two.

3.4 Target-language tree model

Although the MaxEnt TM captures some contex-
tual dependencies that are covered by language
models in the standard noisy-channel SMT, it may
still be beneficial to exploit target-language mod-
els, because these can be trained on huge mono-
lingual corpora. We use a target-language depen-
dency tree model differing from standard n-gram
model in two aspects:

• it uses tree context instead of linear context,

• it predicts tectogrammatical attributes (lem-
mas and formemes) instead of word forms.

In particular, our target-language tree model
(TreeLM) predicts the probability of node’s
lemma and formeme given its parent’s lemma and
formeme. The optimal (lemma and formeme) la-
beling is found by tree-modified Viterbi search;
for details see (Žabokrtský and Popel, 2009).

4 Experiments

When included into the above described transla-
tion scenario, the MaxEnt TM outperforms the
baseline TM, be it used together with or with-
out TreeLM. The results are summarized in Ta-
ble 1. The improvement is statistically signif-
icant according to paired bootstrap resampling
test (Koehn, 2004). In the configuration without
TreeLM the improvement is greater (1.33 BLEU)
than with TreeLM (0.81 BLEU), which confirms
our hypothesis that MaxEnt TM captures some of
the contextual dependencies resolved otherwise by
language models.
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5 Conclusions

We have introduced a maximum entropy transla-
tion model in dependency-based MT which en-
ables exploiting a large number of feature func-
tions in order to obtain more accurate translations.
The BLEU evaluation proved significant improve-
ment over the baseline solution based on the trans-
lation model with maximum likelihood estimates.
However, the performance of this system still be-
low the state of the art (which is around BLEU 16
for the English-to-Czech direction).
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Zdeněk Žabokrtský and Martin Popel. 2009. Hidden
markov tree model in dependency-based machine
translation. In Proceedings of the ACL-IJCNLP
2009 Conference Short Papers, pages 145–148, Sun-
tec, Singapore.

Zdeněk Žabokrtský, Jan Ptáček, and Petr Pajas. 2008.
TectoMT: Highly Modular MT System with Tec-
togrammatics Used as Transfer Layer. In Proceed-
ings of the 3rd Workshop on Statistical Machine
Translation, ACL, pages 167–170.

206



Proceedings of the Joint 5th Workshop on Statistical Machine Translation and MetricsMATR, pages 207–211,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

UCH-UPV English–Spanish system for WMT10

Francisco Zamora-Martı́nez
Dep. de Fı́sica, Matemáticas y Computación
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Abstract

This paper describes the system developed
in collabaration between UCH and UPV
for the 2010 WMT. For this year’s work-
shop, we present a system for English-
Spanish translation. Output N -best lists
were rescored via a target Neural Network
Language Model, yielding improvements
in the final translation quality as measured
by BLEU and TER.

1 Introduction

In Statistical Machine Translation (SMT), the goal
is to translate a sentence f from a given source lan-
guage into an equivalent sentence ê from a certain
target language. Such statement is typically for-
malised by means of the so-called log-linear mod-
els (Papineni et al., 1998; Och and Ney, 2002) as
follows:

ê = argmax
e

K∑
k=1

λkhk(f , e) (1)

where hk(f , e) is a score function representing
an important feature for the translation of f into
e, K is the number of models (or features) and
λk are the weights of the log-linear combination.
Typically, the weights λk are optimised during
the tuning stage with the use of a development
set. Such features typically include the target lan-
guage model p(e), which is one of the core com-
ponents of an SMT system. In fact, most of the
times it is assigned a relatively high weight in the
log-linear combination described above. Tradi-
tionally, language modelling techniques have been
classified into two main groups, the first one in-
cluding traditional grammars such as context-free
grammars, and the second one comprising more
statistical, corpus-based models, such as n-gram
models. In order to assign a probability to a given

word, such models rely on the assumption that
such probability depends on the previous history,
i.e. the n − 1 preceding words in the utterance.
Nowadays, n-gram models have become a “de
facto” standard for language modelling in state-of-
the-art SMT systems.

In the present work, we present a system which
follows a coherent and natural evolution of prob-
abilistic Language Models. Specifically, we pro-
pose the use of a continuous space language model
trained in the form of a Neural Network Language
Model (NN LM).

The use of continuous space representation of
language has been successfully applied in recent
NN approaches to language modelling (Bengio et
al., 2003; Schwenk and Gauvain, 2002; Castro-
Bleda and Prat, 2003; Schwenk et al., 2006).
However, the use of Neural Network Language
Models (NN LMs) (Bengio, 2008) in state-of-the-
art SMT systems is not so popular. The only com-
prehensive work refers to (Schwenk, 2010), where
the target LM is presented in the form of a fully-
connected Multilayer Perceptron.

The presented system combines a standard,
state-of-the-art SMT system with a NN LM via
log-linear combination and N -best output re-
scoring. We chose to participate in the English-
Spanish direction.

2 Neural Network Language Models

In SMT the most extended language models are
n-grams (Bahl et al., 1983; Jelinek, 1997; Bahl et
al., 1983). They compute the probability of each
word given the context of the n−1 previous words:

p(s1 . . . s|S|) ≈
|S|∏
i=1

p(si|si−n+1 . . . si−1) . (2)

where S is the sequence of words for which we
want compute the probability, and si ∈ S, from a
vocabulary Ω.
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A NN LM is a statistical LM which follows
equation (2) as n-grams do, but where the proba-
bilities that appear in that expression are estimated
with a NN (Bengio et al., 2003; Castro-Bleda and
Prat, 2003; Schwenk, 2007; Bengio, 2008). The
model naturally fits under the probabilistic inter-
pretation of the outputs of the NNs: if a NN, in this
case a MLP, is trained as a classifier, the outputs
associated to each class are estimations of the pos-
terior probabilities of the defined classes (Bishop,
1995).

The training set for a LM is a sequence
s1s2 . . . s|S| of words from a vocabulary Ω. In or-
der to train a NN to predict the next word given
a history of length n − 1, each input word must
be encoded. A natural representation is a local en-
coding following a “1-of-|Ω|” scheme. The prob-
lem of this encoding for tasks with large vocab-
ularies (as is typically the case) is the huge size
of the resulting NN. We have solved this prob-
lem following the ideas of (Bengio et al., 2003;
Schwenk, 2007), learning a distributed represen-
tation for each word. Figure 1 illustrates the archi-
tecture of the feed-forward NN used to estimate
the NN LM:

• The input is composed of words
si−n+1, . . . , si−1 of equation (2). Each
word is represented using a local encoding.

• P is the projection layer of the input words,
formed by Pi−n+1, . . . , Pi−1 subsets of pro-
jection units. The subset of projection units
Pj represents the distributed encoding of in-
put word sj . The weights of this projection
layer are linked, that is, the weights from
each local encoding of input word sj to the
corresponding subset of projection units Pj

are the same for all input words. After train-
ing, the codification layer is removed from
the network by pre-computing a table of size
|Ω| which serves as a distributed encoding.

• H denotes the hidden layer.

• The output layerO has |Ω| units, one for each
word of the vocabulary.

This n-gram NN LM predicts the posterior
probability of each word of the vocabulary given
the n − 1 previous words. A single forward pass
of the MLP gives p(ω|si−n+1 . . . si−1) for every
word ω ∈ Ω.

Figure 1: Architecture of the continuous space
NN LM during training. The input words are
si−n+1, . . . , si−1 (in this example, the input words
are si−3, si−2, and si−1 for a 4-gram). I , P , H ,
andO are the input, projection, hidden, and output
layer, respectively, of the MLP.

The major advantage of the connectionist ap-
proach is the automatic smoothing performed by
the neural network estimators. This smoothing is
done via a continuous space representation of the
input words. Learning the probability of n-grams,
together with their representation in a continous
space (Bengio et al., 2003), is an appropriate ap-
proximation for large vocabulary tasks. However,
one of the drawbacks of such approach is the high
computational cost entailed whenever the NN LM
is computed directly, with no simplification what-
soever. For this reason, in this paper we will be
restricting vocabulary size.

3 Experiments

3.1 Baseline system

For building the baseline SMT system, we used
the open-source SMT toolkit Moses (Koehn et
al., 2007), in its standard setup. The decoder in-
cludes a log-linear model comprising a phrase-
based translation model, a language model, a lex-
icalised distortion model and word and phrase
penalties. The weights of the log-linear interpo-
lation were optimised by means of MERT (Och,
2003).

For the baseline LM, we computed a regular
n-gram LM with Kneser-Ney smoothing (Kneser
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and Ney, 1995) and interpolation by means of the
SRILM (Stolcke, 2002) toolkit. Specifically, we
trained a 6-gram LM on the larger Spanish corpora
available (i.e. UN, News-Shuffled and Europarl),
and a 5-gram LM on the News-Commentary cor-
pus. Once these LMs had been built, they were
finally interpolated so as to maximise the perplex-
ity of the News-Commentary test set of the 2008
shared task. This was done so according to pre-
liminary investigation.

3.2 NN LM system architecture

The presented systems follow previous works
of (Schwenk et al., 2006; Khalilov et al., 2008;
Schwenk and Koehn, 2008; Schwenk, 2010)
where the use of a NN LM helps achieving better
performance in the final system.

The NN LM was incorporated to the baseline
system via log-linear combination, adding a new
feature to the output N -best list generated by the
baseline system (in this case N = 1 000). Specif-
ically, the NN LM was used to compute the log-
probability of each sentence within theN -best list.
Then, the scores of such list were extended with
our new, NN LM-based feature. This being done,
we optimised the coefficients of the log-linear in-
terpolation by means of MERT, taking into ac-
count the newly introduced feature. Finally the
list was re-scored and the best hypothesis was
extracted and returned as final output. Figure 2
shows a diagram of the system structure.

3.3 Experimental setup and results

NN LM was trained with the concatenation of the
News-shuffled and News-Commentary10 Span-
ish corpora. Other language resources were dis-
carded due to the large amount of computational
resources that would have been needed for train-
ing a NN LM with such material. Table 1 shows
some statistics of the corpora. In order to reduce
the complexity of the model, the vocabulary was
restricted to the 20K more frequent words in the
concatenation of news corpora. Using this re-
stricted vocabulary implies that 6.4% of the run-
ning words of the news-test2008 set, and 7.3% of
the running words within the official 2010 test set,
will be considered as unknown for our system. In
addition, the vocabulary includes a special token
for unknown words used for compute probabili-
ties when an unknown word appears, as described
in Equation 2.

Table 1: Spanish corpora statistics. NC stands for
News-Commentary and UN for United Nations,
while |Ω| stands for vocabulary size, and M/K for
millions/thousands of elements.

Set # Lines # Words |Ω|
NC 108K 2.96M 67K
News-Shuffled 3.86M 107M 512K
Europarl 1.82M 51M 172K
UN 6.22M 214M 411K
Total 3.96M 110M 521K

A 6-gram NN LM was trained for this task,
based in previous works (Khalilov et al., 2008).
The distributed encoding input layer consists of
640 units (128 for each word), the hidden layer
has 500 units, and the output layer has 20K units,
one for each word in the restricted vocabulary.
The total number of weights in the network was
10 342 003. The training procedure was conducted
by means of the stochastic back-propagation al-
gorithm with weight decay, with a replacement of
300K training samples and 200K validation sam-
ples in each training epoch. The training and vali-
dation sets were randomly extracted from the con-
catenation of news corpora. The training set con-
sisted of 102M words (3M sentences) and valida-
tion set 8M words (300K sentences). The network
needed 129 epochs for achieving convergence, re-
sulting in 38.7M and 25.8M training and valida-
tion samples respectively. For training the NN LM
we used the April toolkit (España-Boquera et al.,
2007; Zamora-Martı́nez et al., 2009), which im-
plements a pattern recognition and neural net-
works toolkit. The perplexity achieved by the 6-
gram NN LM in the Spanish news-test08 devel-
opment set was 116, versus 94 obtained with a
standard 6-gram language model with interpola-
tion and Kneser-Ney smoothing (Kneser and Ney,
1995).

The number of sentences in the N -best list was
set to 1 000 unique output sentences. Results can
be seen in Table 2. In order to assess the reliability
of such results, we computed pairwise improve-
ment intervals as described in (Koehn, 2004), by
means of bootstrapping with 1000 bootstrap itera-
tions and at a 95% confidence level. Such confi-
dence test reported the improvements to be statis-
tically significant.

Four more experiments have done in order to
study the influence of the N -best list size in the

209



Figure 2: Architecture of the system.

Table 2: English-Spanish translation quality for
development and official test set. Results are given
in BLEU/TER.

test08 (dev) test10 (test)
Baseline 24.8/60.0 26.7/55.1
NN LM 25.2/59.6 27.8/54.0

Table 3: Test set BLEU/TER performance for each
N -best list size.

N -best list size BLEU TER
200 27.5 54.2
400 27.6 54.2
600 27.7 54.1
800 27.6 54.2

1000 27.8 54.0

performance achieved by the NN LM rescoring.
For each N -best list size (200, 400, 600 and 800)
the weights of the log-linear interpolation were op-
timised by means of MERT over the test08 set. Ta-
ble 3 shows the test results for eachN -best list size
using the correspondent optimised weights. As it
can be seen, the size of the N -best list seems to
have an impact on the final translation quality pro-
duced. Although in this case the results are not
statistically significant for each size step, the final
difference (from 27.5 to 27.8) is already signifi-
cant.

4 Conclusions

In this paper, an improved SMT system by using a
NN LM was presented. Specifically, it has been
shown that the final translation quality, as mea-

sured by BLEU and TER, is improved over the
quality obtained with a state-of-the-art SMT sys-
tem. Such improvements, of 1.1 BLEU points,
were found to be statistically significant. The sys-
tem presented uses a neural network only for com-
puting the language model probabilities. As an
immediate future work, we intend to compute the
language model by means of a linear interpola-
tion of several neural networks. Another interest-
ing idea is to integrate the NN LM within the de-
coder itself, instead of performing a subsequent re-
scoring step. This can be done extending the ideas
presented in a previous work (Zamora-Martı́nez et
al., 2009), in which the evaluation of NN LM is
significantly sped-up.
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Abstract

We describe our experiments with hier-
archical phrase-based machine translation
for WMT 2010 Shared Task. We provide
a detailed description of our configuration
and data so the results are replicable. For
English-to-Czech translation, we experi-
ment with several datasets of various sizes
and with various preprocessing sequences.
For the other 7 translation directions, we
just present the baseline results.

1 Introduction

Czech is a language with rich morphology (both
inflectional and derivational) and relatively free
word order. In fact, the predicate-argument struc-
ture, often encoded by fixed word order in English,
is usually captured by inflection (especially the
system of 7 grammatical cases) in Czech. While
the free word order of Czech is a problem when
translating to English (the text should be parsed
first in order to determine the syntactic functions
and the English word order), generating correct in-
flectional affixes is indeed a challenge for English-
to-Czech systems. Furthermore, the multitude
of possible Czech word forms (at least order of
magnitude higher than in English) makes the data
sparseness problem really severe, hindering both
directions.
There are numerous ways how these issues

could be addressed. For instance, parsing and
syntax-aware reordering of the source-language
sentences can help with the word order differ-
ences (same goal could be achieved by a reorder-
ing model or a synchronous context-free grammar
in a hierarchical system). Factored translation, a
secondary language model of morphological tags
or even a morphological generator are some of the
possible solutions to the poor-to-rich translation is-
sues.

Our submission to the shared task should reveal
where a pure hierarchical system stands in this jun-
gle and what of the above mentioned ideas match
the phenomena the system suffers from. Although
our primary focus lies on English-to-Czech trans-
lation, we also report the accuracy of the same
system on moderately-sized corpora for the other
three languages and seven translation directions.

2 The Translation System

Our translation system belongs to the hierarchi-
cal phrase-based class (Chiang, 2007), i.e. phrase
pairs with nonterminals (rules of a synchronous
context-free grammar) are extracted from sym-
metrized word alignments and subsequently used
by the decoder. We use Joshua, a Java-based open-
source implementation of the hierarchical decoder
(Li et al., 2009), release 1.1.1

Word alignment was computed using the first
three steps of the train-factored-phrase-
model.perl script packed with Moses2 (Koehn et
al., 2007). This includes the usual combination of
word clustering using mkcls3 (Och, 1999), two-
way word alignment using GIZA++4 (Och and
Ney, 2003), and alignment symmetrization using
the grow-diag-final-and heuristic (Koehn et al.,
2003).
For language modeling we use the SRILM

toolkit5 (Stolcke, 2002) with modified Kneser-
Ney smoothing (Kneser and Ney, 1995; Chen and
Goodman, 1998).
We use the Z-MERT implementation of mini-

mum error rate training (Zaidan, 2009). The fol-
lowing settings have been used for Joshua and Z-
MERT:

1http://sourceforge.net/projects/joshua/
2http://www.statmt.org/moses/
3http://fjoch.com/mkcls.html
4http://fjoch.com/GIZA++.html
5http://www-speech.sri.com/projects/srilm/
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• Grammar extraction:
--maxPhraseLength=5

• Decoding: span_limit=10 fuzz1=0.1
fuzz2=0.1 max_n_items=30 rela-
tive_threshold=10.0 max_n_rules=50
rule_relative_threshold=10.0

• N-best decoding: use_unique_nbest=true
use_tree_nbest=false
add_combined_cost=true top_n=300

• Z-MERT: -m BLEU 4 closest -maxIt 5
-ipi 20

3 Data and Pre-processing Pipeline

3.1 Baseline Experiments
We applied our system to all eight language pairs.
However, for all but one we ran only a baseline ex-
periment. From the data point of view the baseline
experiments were even more constrained than the
organizers of the shared task suggested. We did not
use the Europarl corpus, we only used the News
Commentary corpus6 for training. The target side
of the News Commentary corpus was also the only
source to train the language model. Table 1 shows
the size of the corpus.

Corpus SentPairs Tokens xx Tokens en
cs-en 94,742 2,077,947 2,327,656
de-en 100,269 2,524,909 2,484,445
es-en 98,598 2,742,935 2,472,860
fr-en 84,624 2,595,165 2,137,407

Table 1: Number of sentence pairs and tokens for
every language pair in the News Commentary cor-
pus. Unlike the organizers of the shared task, we
stick with the standard ISO 639 language codes: cs
= Czech, de = German, en = English, es = Spanish,
fr = French.

Note that in some cases the grammar extraction
algorithm in Joshua fails if the training corpus con-
tains sentences that are too long. Removing sen-
tences of 100 or more tokens (per advice by Joshua
developers) effectively healed all failures. Unfor-
tunately, for the baseline corpora the loss of train-
ing material was still considerable and resulted in
drop of BLEU score, though usually insignificant.7

6Available for download at http://www.statmt.org/
wmt10/translation-task.html using the link “Parallel
corpus training data”.

7Table 1 and Table 2 present statistics before removing the
long sentences.

The News Test 2008 data set (2051 sentences
in each language) was used as development data
for MERT. BLEU scores reported in this paper
were computed on the News Test 2009 set (2525
sentences each language). The official scores on
News Test 2010 are given only in the main WMT
2010 paper.
Only lowercased data were used for the baseline

experiments.

3.2 English-to-Czech
A separate set of experiments has been conducted
for the English-to-Czech direction and larger data
were used. We used CzEng 0.9 (Bojar and
Žabokrtský, 2009)8 as our main parallel corpus.
Following CzEng authors’ request, we did not use
sections 8* and 9* reserved for evaluation pur-
poses.
As the baseline training dataset (“Small” in the

following) only the news section of CzEng was
used. For large-scale experiments (“Large” in the
following), we used all CzEng together with the
EMEA corpus9 (Tiedemann, 2009).10
As our monolingual data we use the mono-

lingual data provided by WMT10 organizers for
Czech. Table 2 shows the sizes of these corpora.

Corpus SentPairs Tokens cs Tokens en
Small 126,144 2,645,665 2,883,893
Large 7,543,152 79,057,403 89,018,033
Mono 13,042,040 210,507,305

Table 2: Number of sentences and tokens in the
Czech-English corpora.

Again, the official WMT 201011 development
set (News Test 2008, 2051 sentences each lan-
guage) and test set (News Test 2009, 2525 sen-
tences each language) are used forMERT and eval-
uation, respectively. The official scores on News
Test 2010 are given only in the main WMT 2010
paper.
We use a slightly modified tokenization rules

compared to CzEng export format. Most notably,
we normalize English abbreviated negation and
auxiliary verbs (“couldn’t” → “could not”) and

8http://ufal.mff.cuni.cz/czeng/
9http://urd.let.rug.nl/tiedeman/OPUS/EMEA.php
10Unfortunately, the EMEA corpus is badly tokenized on

the Czech side with fractional numbers split into several to-
kens (e.g. “3, 14”). We attempted to reconstruct the original
detokenized form using a small set of regular expressions.

11http://www.statmt.org/wmt10
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attempt at normalizing quotation marks to distin-
guish between opening and closing one following
proper typesetting rules.
The rest of our pre-processing pipeline matches

the processing employed in CzEng (Bojar and
Žabokrtský, 2009).12 We use “supervised truecas-
ing”, meaning that we cast the case of the lemma
to the form, relying on our morphological analyz-
ers and taggers to identify proper names, all other
words are lowercased.

4 Experiments

All BLEU scores were computed directly by
Joshua on the News Test 2009 set. Note that
they differ from what the official evaluation script
would report, due to different tokenization.

4.1 Baseline Experiments

The set of baseline experiments with all translation
directions involved running the system on lower-
cased News Commentary corpora. Word align-
ments were computed on 4-character stems (in-
cluding the en-cs and cs-en directions). A trigram
language model was trained on the target side of
the parallel corpus.

Direction BLEU
en-cs 0.0905
en-de 0.1114
cs-en 0.1471
de-en 0.1617
en-es 0.1966
en-fr 0.2001
fr-en 0.2020
es-en 0.2025

Table 3: Lowercased BLEU scores of the baseline
experiments on News Test 2009 data.

4.2 English-to-Czech

The extended (non-baseline) English-to-Czech ex-
periments were trained on larger parallel and
monolingual data, described in Section 3.2. Note
that the dataset denoted as “Small” still falls into
the constrained task because it only uses CzEng
0.9 and the WMT 2010 monolingual data.

12Due to the subsequent processing, incl. parsing, the tok-
enization of English follows PennTreebenk style. The rather
unfortunate convention of treating hyphenated words as sin-
gle tokens increases our out-of-vocabulary rate.

Word alignments were computed on lemmatized
version of the parallel corpus. Hexagram language
model was trained on the monolingual data. True-
cased data were used for training, as described
above; the BLEU scores of these experiments in
Table 4 are computed on truecased system output.

Setup BLEU
Baseline 0.0905
Small 0.1012
Large 0.1300

Table 4: BLEU scores (lowercased baseline, true-
cased rest) of the English-to-Czech experiments,
including the baseline experiment with News
Commentary, mentioned earlier.

As for the official evaluation on News Test
2010, we used the Small setup as our primary sub-
mission, and the Large setup as secondary despite
its better results. The reason was that it was not
clear whether the experiment would be finished in
time for the official evaluation.13

An interesting perspective on the three en-cs
models is provided by the feature weights opti-
mized duringMERT.We can see in Table 5 that the
small and relatively weak baseline LM is trusted
less than the most influential translation feature
while for large parallel data and even much larger
LM the weights are distributed more evenly.

Setup LM Pt0 Pt1 Pt2 WP

Baseline 1.0 1.55 0.51 0.63 −2.63
Small 1.0 1.03 0.72 −0.09 −0.34
Large 1.0 0.98 0.97 −0.02 −0.82

Table 5: Feature weights are relative to the weight
of LM , the score by the language model. Then
there are the three translation features: Pt0 =
P (e|f), Pt1 = Plex(f |e) and Pt2 = Plex(e|f).
WP is the word penalty.

4.3 Efficiency

The machines on which the experiments were con-
ducted are 64bit Intel Xeon dual core 2.8 GHz
CPUs with 32 GB RAM.
Word alignment of each baseline corpus took

about 1 hour, time needed for data preprocessing
13In fact, it was not finished in time. Due to a failure of

a MERT run, we used feature weights from the primary sub-
mission for the secondary one, too.
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and training of the language model was negligible.
Grammar extraction took about four hours but it
could be parallelized. For decoding the test data
were split into 20 chunks that were processed in
parallel. OneMERT iteration, including decoding,
took from 30 minutes to 1 hour.
Training the large en-cs models requires more

careful engineering. The grammar extraction eas-
ily consumes over 20 GB memory so it is impor-
tant to make sure Java really has access to it. We
parallelized the extraction in the same way as we
had done with the decoding; even so, about 5 hours
were needed to complete the extraction. The de-
coder now must use the SWIG-linked SRILM li-
brary because Java-based languagemodeling is too
slow and memory-consuming. Otherwise, the de-
coding times are comparable to the baseline exper-
iments.

5 Conclusion

We have described the hierarchical phrase-based
SMT system we used for the WMT 2010 shared
task. For English-to-Czech translation, we dis-
cussed experiments with large data from the point
of view of both the translation accuracy and effi-
ciency.
This has been our first attempt to switch to hier-

archical SMT and we have not gone too far beyond
just putting together the infrastructure and apply-
ing it to the available data. Nevertheless, our en-cs
experiments not only confirm that more data helps;
in the Small and Large setup, the data was not only
larger than in Baseline, it also underwent a more
refined preprocessing. In particular, we took ad-
vantage of the Czeng corpus being lemmatized to
produce better word alignment; also, the truecas-
ing technique helped to better target named enti-
ties.
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Abstract

In this paper we focus on the incremental
decoding for a statistical phrase-based ma-
chine translation system. In incremental
decoding, translations are generated incre-
mentally for every word typed by a user,
instead of waiting for the entire sentence
as input. We introduce a novel modifi-
cation to the beam-search decoding algo-
rithm for phrase-based MT to address this
issue, aimed at efficient computation of fu-
ture costs and avoiding search errors. Our
objective is to do a faster translation dur-
ing incremental decoding without signifi-
cant reduction in the translation quality.

1 Introduction

Statistical Machine Translation has matured sig-
nificantly in the past decade and half, resulting in
the proliferation of several web-based and com-
mercial translation services. Most of these ser-
vices work on sentence or document level, where
a user enters a sentence or chooses a document
for translation, which are then translated by the
servers. Translation in such typical scenarios is
still offline in the sense that the user input and
translation happen sequentially without any inter-
action between the two phases.

In this paper we study decoding for SMT with
the constraint that translations are to be gener-
ated incrementally for every word typed in by the
user. Such a translation service can be used for
language learning, where the user is fluent in the
target language and experiments with many differ-
ent source language sentences interactively, or in
real-time translation environments such as speech-
speech translation or translation during interactive
chats.

We use a phrase-based decoder similar to
Moses (Koehn et al., 2007) and propose novel
modifications in the decoding algorithm to tackle
incremental decoding. Our system maintains a

partial decoder state at every stage and uses it
while decoding for each newly added word. As
the decoder has access only to the partial sentence
at every stage, the future costs change with ev-
ery additional word and this has to be taken into
account while continuing from an existing partial
decoder state. Another major issue is that as incre-
mental decoding is provided new input one word
at at time, some of the entries that were pruned out
at an earlier decoder state might later turn out to
better candidates resulting in search errors com-
pared to decoding the entire sentence at once. It
is to be noted that, the search error problem is re-
lated to the inability to compute full future cost
in incremental decoding. Our proposed modifica-
tions address these twin challenges and allow for
efficient incremental decoding.

2 Incremental Decoding

2.1 Beam Search for Phrase-based SMT
In this section we review the usual beam search de-
coder for phrase-based MT because we present our
modifications for incremental decoding using the
same notation. Beam search decoding for phrase-
based SMT (Koehn, 2004) begins by collecting
the translation options from the phrase table for all
possible phrases of a given input sentence and pre-
computes the future cost for all possible contigu-
ous sequences in the sentence. The pseudo-code
for the usual beam-search decoding algorithm is
illustrated in Algorithm 1.

The decoder creates n bins for storing hypothe-
ses grouped by the number of source words cov-
ered. Starting from a null hypothesis in bin 0, the
decoder iterates through bins 1 though n filling
them with new hypotheses by extending the en-
tries in the earlier bins.

A hypothesis contains the target words gener-
ated (e), the source positions translated so far (f )
commonly known as coverage set and the score
of the current translation (p) computed by the
weighted log-linear combination of different fea-
ture functions. It also contains a back-pointer to
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Algorithm 1 Phrase-based Decoder pseudocode
(Koehn, 2004)

1: Given: sentence Sn: s1s2...sn of length n
2: Pre-compute future costs for all contiguous

sequences
3: Initialize bins bi where i = 1 . . . n
4: Create initial hypothesis: {e : (), f : (), p :

1.0}
5: for i = 1 to n do
6: for hyp ∈ bi do
7: for newHyp that extends hyp do
8: nf := num src words covered by

newHyp
9: Add newHyp to bin bnf

10: Prune bin bnf using future costs
11: Find best hypothesis in bn

12: Output best path that leads to best hypothesis

its parent hypothesis in the previous state and other
information used for pruning and computing cost
in later iterations.

As a new hypothesis is generated by extending
an existing hypothesis with a new phrase pair, de-
coder updates the associated information such as
coverage set, the target words generated, future
cost (for translating rest of the source words) and
its translation score. For example, consider Span-
ish to English translation: for the source sentence
Maria no daba una bofetada, the hypothesis {e :
(Mary), f : (1), p : 0.534} which is the hypoth-
esis that covers Maria can be extended to a new
hypothesis {e : (Mary, slap), f : (1, 3, 4, 5), p :
0.043} by choosing a new phrase pair (daba una
bofetada, slap) covering the source phrases Maria
and daba una bofetada. The probability score is
obtained by weighted log-linear sum of the fea-
tures of the phrases contained in the derivation so
far.

An important aspect of beam search decoding
is the pruning away of low-scoring hypotheses in
each bin to reduce the search space and thus mak-
ing the decoding faster. To do this effectively,
beam search decoding uses the future cost of a hy-
pothesis together with its current cost. The future
cost is an estimate of the translation cost of the
input words that are yet to be translated, and is
typically pre-computed for all possible contiguous
sequences in the input sentence before the decod-
ing step. The future cost prevents the any hypothe-
ses that are low-scoring, but potentially promising,
from being pruned.

2.2 Incremental Decoder - Challenges

Our goal for the incremental decoder (ID) is to
generate output translations incrementally for par-
tial phrases as the source sentence is being input
by the user. We assume white-space to be the word
delimiter and the partial sentence is decoded for
every encounter of the space character. We further
assume the return key to mark end-of-sentence
(EOS) and use it to compute language model score
for the entire sentence.

As we noted above, future costs cannot be pre-
computed as in regular decoding because the com-
plete input sentence is not known while decod-
ing incrementally. Thus the incremental decoder
can only use a partial future cost until the EOS
is reached. The partial future cost could result
in some of the potentially better candidates being
pruned away in earlier stages. This leads to search
errors and result in lower translation quality.

2.3 Approach

We use a modified beam search for incremental
decoding (ID) and the two key modifications are
aimed at addressing the issues of future cost and
search errors. Beam search for ID begins with
a single bin for the first word and more bins are
added as the sentence is completed by the user.
Our approach requires that the decoder states for
the partial source sentence can be stored in a way
that allows efficient retrieval. It also maintains a
current decoder state, which includes all the bins
and the hypotheses contained in them, all pertain-
ing to the present sentence.

At each step ID goes through a pre-process
phase, where it recomputes the partial future costs
for all the spans accounting for the new word and
updates the current decoder state with new partial
future costs. It then generates new hypotheses into
all the earlier bins and in the newly created us-
ing any new phrases (resulting from the new word
added by the user) not used earlier.

Algorithm 2 shows the pseudocode of our incre-
mental decoder. Given a partial sentence Si

1 ID
starts with the pre-process phase illustrated sepa-
rately in algorithm 3. We use Ptype(l) to denote
phrases of length l words and Htype to denote the
set of hypotheses; in both cases type correspond to
either old or new, indicating if it was not known in
the previous decoding state or not.

1we use Si and si to denote a i word partial sentence and
ith word in a (partial) sentence respectively
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Algorithm 2 Incremental Decoder pseudocode
1: Input: (partial) sentence Sp: s1s2...si−1si

with ls words where si is the new word
2: PreProcess(Sp) (Algorithm 3)
3: for every bin bj in (1 . . . i) do
4: Update future cost and cover set ∀ Hold

5: Add any new phrase of length bj (subject to
d)

6: for bin bk in (bj−MaxPhrLen . . . bj−1) do
7: Generate Hnew for bj by extending:
8: every Hold with every other Pnew(bj −

bk)
9: every Hnew with every other Pany(bj −

bk)
10: Prune bin bj

Algorithm 3 PreProcess subroutine
1: Input: partial sentence Sp of length ls
2: Retrieve partial decoder object for Sp−1

3: Identify possible Pnew (subject to Max-
PhrLen)

4: Recompute fc for all spans in 1...ls
5: for every Pnew in local phrase table do
6: Load translation options to table
7: for every Pold in local phrase table do
8: Update fc with the recomputed cost

Given Si, the pre-process phase extracts the new
set of phrases (Pnew) for the ith word and adds
them to the existing phrases (Pold). It then recom-
putes the future-cost (fc) for all the contiguous se-
quences in the partial input and updates existing
entries in the local copy of phrase table with new
fc.

In decoding phase, ID generates new hypothe-
ses in two ways: i) by extending the existing hy-
potheses Hold in the previous decoder state Si−1

with new phrases Pnew and ii) by generating new
hypotheses Hnew that are unknown in the previous
state.

The main difference between incremental de-
coding and regular beam-search decoding is inside
the two ’for’ loops corresponding to lines 3− 9 in
algorithm 2. In the outer loop each of the existing
hypotheses are updated to reflect the recomputed
fc and coverage set. Any new phrases belonging
to the current bin are also added to it2.

2Based on our implementation of lazier cube pruning they
are added to a priority queue, the contents of which are
flushed into the bin at the end of inner for-loop and before
the pruning step
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Figure 1: Illustration of Lazier Cube Pruning

The inner for-loop corresponds to the extension
of hypotheses sets (grouped by same coverage set)
to generate new hypotheses. Here a distinction is
made between hypotheses Hold corresponding to
previous decoder state Sp−1 and hypotheses Hnew

resulting from the addition of word si. Hold is ex-
tended only using the newly found phrases Pnew,
whereas the newer hypotheses are processed as in
regular beam-search.

2.4 Lazier Cube Pruning
We have adapted the pervasive lazy algorithm
(or ’lazier cube pruning’) proposed originally for
Hiero-style systems by (Pust and Knight, 2009)
for our phrase-based system. This step corre-
sponds to the lines 5−9 of algorithm 2 and allows
us to only generate as many hypotheses as speci-
fied by the configurable parameters, beam size and
beam threshold. Figure 1 illustrates the process of
lazier cube pruning for a single bin.

At the highest level it uses a priority queue,
which is populated by the different hyper-edges
or surfaces3, each corresponding to a pair of hy-
potheses that are being merged to create a new
hypothesis. New hypotheses are generated iter-
atively, such that the hypothesis with the highest
score is chosen in each iteration from among dif-
ferent hyper-edges bundles.

However, this will lead to search errors as have
been observed earlier. Any hyper-edge that has
been discarded due to poor score in an early stage
might later become a better candidate. The prob-
lem worsens further when using smaller beam
sizes (for interactive decoding in real-time set-
tings, we even consider a beam size of 3). In

3Unlike Hiero-style systems, only two hypotheses are
merged in a phrase-based system and hence the term surface
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the next section, we introduce the idea of delayed
pruning to reduce search errors.

3 Delayed Pruning

Delayed pruning (DP) in our decoder was inspired
by the well known fable about the race between
a tortoise and a hare. If the decoding is consid-
ered to be a race between competing candidate hy-
potheses with the winner being the best hypothe-
sis for Viterbi decoding or among the top-n candi-
dates for n-best decoding.4

In this analogy, a hypothesis having a poor
score, might just be a tortoise having a slow start
(due to a bad estimate of the true future cost for
what the user intends to type in the future) as op-
posed to a high scoring hare in the same state.
Pruning such hypotheses early on is not risk-free
and might result in search errors. We hypothe-
size that, given enough chance it might improve its
score and move ahead of a hare in terms of trans-
lation score.

We implement DP by relaxing the lazier cube
pruning step to generate a small, fixed number
of hypotheses for coverage sets that are not rep-
resented in the priority queue and place them in
the bin. These hypotheses are distinct from the
usual top-k derivations. Thus, the resulting bin
will have entries from all possible hyper-edge bun-
dles. Though this reduces the search error prob-
lem, it leads to increasing number of possibilities
to be explored at later stages with vast majority
of them being worse hypotheses that should be
pruned away.

We use a two level strategy of delay and then
prune, to avoid such exponentially increasing
search space and at the same time to reduce search
error. At the delay level, the idea is to delay the
pruning for few promising tortoises, instead of re-
taining a fixed number of hypotheses from all un-
represented hyper-edges. We use the normalized
language model scores of the top-hypotheses in
each hyper-edge that is not represented in cube
pruning and based on a threshold (which is ob-
tained using a development test set), we selec-
tively choose few hyper-edge bundles and gen-
erate a small number (typically 1-3) of hypothe-
ses from each of them and flag them as tortoises.

4The analogy is used to compare two or more hypotheses
in terms of their translation scores and not speed. Though our
objective is faster incremental decoding, we use the analogy
here to compare the scores.

These tortoises are extended minimally at each it-
eration subject to their normalized LM score.

While this significantly reduces the total num-
ber of hypotheses at initial bins, many of these
tortoises might not show improvement even after
several bins. Thus at the prune level, we prune out
tortoises that does not improve beyond a threshold
number of bins called race course limit. The race
course limit signifies the number of steps a tortoise
has in order to get into the decoder beam.

When a tortoise improves in score and breaks
into the beam during cube pruning, it is de-
flagged as a tortoise and enters the regular decod-
ing stream. We found DP to be effective in reduc-
ing the search error for incremental decoder in our
experiments.

4 Evaluation and Discussion

The evaluation was performed using our own im-
plementation of the beam-search decoding algo-
rithms. The architecture of our system is similar
to Moses, which we also use for training and for
minimum error rate training (MERT) of the log-
linear model for translation (Och, 2003; Koehn et
al., 2007). Our features include 7 standard phrase-
based features: 4 translation model features, i.e.
p(f |e), p(e|f), plex(f |e) and plex(e|f), where e
and f are target and source phrases respectively;
features for phrase penalty, word penalty and lan-
guage model, and we do not include the reorder-
ing feature. We used Giza++ and Moses respec-
tively for aligning the sentences and training the
system. The decoder was written in Java and in-
cludes cube pruning (Huang and Chiang, 2007)
and lazier cube pruning (Pust and Knight, 2009)
functionalities as part of the decoder. Our de-
coder supports both regular beam search (similar
to Moses) and incremental decoding.

In our experiments we experimented various ap-
proaches for storing partial decoder states includ-
ing memcache and transactional persistence using
JDBM but found that the serialization and deseri-
alization of decoder objects directly into and from
the memory to work better in terms of speed and
memory requirements. The partial object is re-
trieved and deserialized from the memory when
required by the incremental decoder.

We evaluated the incremental decoder for trans-
lations between French and English (in both direc-
tions). We used the Workshop on Machine Trans-
lation shared task (WMT07) dataset for training,
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optimizing and testing. The system was trained us-
ing Moses and the feature weights were optimized
using MERT. To benchmark our Java decoder, we
compare it with Moses by running it in regular
beam search mode. The Moses systems were also
optimized separately on the WMT07 devsets.

Apart from comparing our decoder with Moses
in regular beam search, we also compared the in-
cremental decoding with regular regular beam us-
ing our decoder. To make it comparable with
incremental decoding, we used the regular beam
search to re-decode the sentence fragments for ev-
ery additional word in the input sentence. We
measured the following parameters in our empir-
ical analysis: translation quality (as measured by
BLEU (Papineni et al., 2002) and TER (Snover et
al., 2006)), search errors and translation speed. Fi-
nally, we also measured the effect of different race
course limits on BLEU and decoding speed for in-
cremental decoding.

4.1 Benchmarking our decoder
In this section we compare our decoder with
Moses for regular beam search decoding. Table 1
gives the BLEU and TER for the two language
pairs. Our decoder implementation compares
favourably with Moses for Fr-En: the slightly bet-
ter BLEU and TER for our decoder in Fr-En is
possibly due to the minor differences in the con-
figuration settings. For En-Fr translation, Moses
performs better in both metrics. There are differ-
ences in the beam size between the two decoders,
in our system the beam size is set to 100 compared
to the default value of 1000 (the cube pruning pop
limit) in Moses; we are planning to explore this
and remove any other differences between them.
However based on our understanding of the Moses
implementation and our experiments, we believe
our decoder to be comparable in accuracy with the
Moses implementation. The numbers in the bold-
face are statistically significant at 95% confidence
interval.

4.2 Re-decoding v.s. Incremental decoding
We test our hypothesis that incremental decod-
ing can benefit by using partial decoder states for
decoding every additional word in the input sen-
tence. In order to do this, we run our incremen-
tal decoder in both regular beam search mode and
in incremental decoding mode. In regular beam
search mode, we forced the beam search decoder
to re-decode the sentence fragments for every ad-

ditional word and in incremental decoding mode,
we used the partial decoding states to incremen-
tally decode lastly added word. We then compare
the BLEU and TER scores between them to vali-
date our hypothesis.

We further test effectiveness of delayed prun-
ing (DP) in incremental decoding by comparing
it to the case where we turn off the DP. For in-
cremental decoding, we set the beam size and the
race course limit (for DP) to be 3. Additionally,
we used a threshold of−2.0 (in log-scale) for nor-
malized LM in the delay phase of DP, which was
obtained by testing on a separate development test
set.

We would like to highlight two observations
from the results in Table 2. First the regular beam
search indicate possible search errors due to the
small beam size (cube pruning pop limit) and the
BLEU scores has decreased by 0.56 for Fr-En
and by over 2.5 for En-Fr, than the scores cor-
responding to a beam size of 100 shown in Ta-
ble 1. Secondly, we find the incremental decoding
to perform better for the same beam size. How-
ever, incremental decoding without delay pruning
still seems to incur search errors when compared
with the regular decoding with a larger beam. De-
layed pruning alleviates this issue and improves
the BLEU and TER significantly. This we believe,
is mainly because the strategy to delay the pruning
retains the potentially better partial hypotheses for
every coverage set. It should be noted that results
in Table 2 pertain only to our decoder implemen-
tation and not with Moses.

We now give a comparative note between our
approach and the pruning strategy in regular beam
search. Delaying the hypothesis pruning is the im-
portant aspect in our approach to incremental de-
coding. In the case of regular beam search, the
hypotheses are pruned when they fall out of the
beam and the idea is to have a larger beam size
to avoid the early pruning of potentially good can-
didates. With the advent of cube pruning (Huang
and Chiang, 2007), the ’cube pruning pop limit’
(in Moses) determines the number of hypotheses
retained in each stack. In both the cases, it is pos-
sible that some of the coverage sets go unrepre-
sented in the stack due to poor candidate scores.
This is not desirable in the incremental decoding
setting as this might lead to search errors while
decoding a partial sentence.

Additionally, Moses offers an option (cube
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Decoder Fr-En En-Fr
BLEU TER BLEU TER

Moses 26.98 0.551 27.24 0.610
Our decoder 27.53 0.541 26.96 0.657

Table 1: Regular beam search: Moses v.s. Our decoder

Decoder Fr-En En-Fr
BLEU TER BLEU TER

Re-decode w/ beam search 26.96 0.548 24.33 0.635
ID w/o delay pruning 27.01 0.547 25.00 0.618
ID w/ delay pruning 27.62 0.545 25.45 0.616

Table 2: BLEU and TER: Re-decoding v.s. Incremental Decoding (ID)

pruning diversity) to control the number of hy-
potheses generated for each coverage set (though
set to ’0’ by default). It might be possible to use
this in conjunction with cube pruning pop limit as
an alternative to our delayed pruning in the incre-
mental decoding setting (with the risk of combina-
torial explosion in the search space).

In contrast, the delayed pruning not only avoids
search errors but also provides a dynamically man-
ageable search space (refer section 4.2.2) by re-
taining the best of the potential candidates. In a
practical scenario like real-time translation of in-
ternet chat, translation speed is an important con-
sideration. Furthermore, it is better to avoid large
number of candidates and generate only few best
ones, as only the top few translations will be used
by the system. Thus we believe our delayed prun-
ing approach to be a principled pruning strategy
that combines the different factors in an elegant
framework.

4.2.1 Search Errors

As BLEU only indirectly indicates the number
of search errors made by algorithm, we used a
more direct way of quantifying the search errors
incurred by the ID in comparison to regular beam
search. We define the search error to be the differ-
ence between the translation scores of the best hy-
potheses produced by the ID and the regular beam
search and then compute the mean squared error
(MSE) for the entire test set. We use this method
to compare ID in the two settings of delayed prun-
ing being turned off (using a smaller beam size
of 3 to simulate the requirements of near instanta-
neous translations in real-time environments) and
delayed pruning turned on. We compare the model

score in these cases with the model score for the
best result obtained from the regular beam search
decoder (using a larger beam of size 100).

Direction Beam search against
Incremental Decoding
w/o DP w/ DP

Fr-En 0.3823 0.3235
En-Fr 1.1559 0.6755

Table 3: Search Errors in Incremental Decoding

The results are shown in Table 3 and as can be
clearly seen, ID shows much lesser mean square
error with the DP turned on than when it is turned
off. Together the BLEU and TER numbers and
the mean square search error show that delayed
pruning is useful in the incremental decoding set-
ting. Comparing the En-Fr and Fr-En results show
that the two language pairs show slightly different
characteristics but the experiments in both direc-
tions support our overall conclusions.

4.2.2 Speed
In this experiment, we set out to evaluate the
ID against the regular beam-search in which sen-
tence fragments are incrementally decoded for ad-
ditional words. In order compare with the in-
cremental decoder, we modified the regular de-
coder to decode the partial phrases, so that it re-
decodes the partial phrase from the scratch instead
of reusing the earlier state.

We ran the timing experiments on a Dell ma-
chine with an Intel Core i7 processor and 12 GB
memory, clocking 2.67 GHz and running Linux
(CentOS 5.3). We measured the time taken for de-
coding the fragment with every word added and
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averaged it first over the sentence and then the en-
tire test set. The average time (in msecs) includes
the future cost computation for both. We also mea-
sured the average number of hypotheses for every
bin at the end of decoding a complete sentence,
which was also averaged over the test set.

The results in Table 4 show that the incremen-
tal decoder was significantly faster than the beam
search in re-decoding mode almost by a factor of
9 in the best case (for Fr-En). The speedup is pri-
marily due to two factors, i) computing the future
cost for the new phrases as opposed to computing
it for all the phrases and ii) using partial decoder
states without having to re-generate hypotheses
through the cube pruning step and the latencies
associated with computing LM scores for them.
The addition of delayed pruning slowed down the
speed at most by 7 msecs (for En-Fr). In addition,
delayed pruning can be seen generating far more
hypotheses than the other two cases. Clearly, this
is because of the delay in pruning the tortoises un-
til the race course limit. Even with such signifi-
cantly large number of hypotheses being retained
for every bin, DP results in improved speed (over
re-decoding from scratch) and better performance
by avoiding search errors (compared to the incre-
mental decoder that does not use DP).

4.3 Effect of Race course limit

Table 5 shows the effect of different race course
limits on translation quality measured using
BLEU. We generally expect the race course limit
to behave similar to the beam size as they both al-
low more hypotheses in the bin thereby reducing
search error although at the expense of increasing
decoding time.

However, in our experiments for Fr-En, we did
not find significant variations in BLEU for differ-
ent race course limits. This could be due to the
absence of long distance re-orderings between En-
glish and French and that the smallest race course
limit of 3 is sufficient for capturing all cases of lo-
cal re-ordering. As expected, we find the decoding
speed to slightly decrease and the average number
of hypotheses per bin to increase with the increas-
ing race course limit.

5 Related Work

Google5 does seem to perform incremental decod-
ing, but the underlying algorithms are not public

5translate.google.com

knowledge. They may be simply re-translating the
input each time using a fast decoder or re-using
prior decoder states as we do here.

Intereactive translation using text prediction
strategies have been studied well (Foster et al.,
1997; Foster et al., 2002; Och et al., 2003). They
all attempt to interactively help the human user in
the postediting process, by suggesting completion
of the word/phrase based on the user accepted pre-
fix and the source sentece. Incremental feedback
is part of Caitra (Koehn, 2009) an interactive tool
for human-aided MT and works on a similar set-
ting to interactive MT. In Caitra, the source text
is pre-translated first and during the interactions it
dynamically generates user suggestions.

Our incremental decoder work differs from
these text prediction based approaches, in the
sense that the input text is not available to the de-
coder beforehand and the decoding is being done
dynamically for every source word as opposed to
generating suggestions dynamically for complet-
ing target sentece.

6 Conclusion and Future Work

We presented a modified beam search algorithm
for an efficient incremental decoder (ID), which
will allow translations to be generated incremen-
tally for every word typed by a user, instead of
waiting for the entire sentence as input by reusing
the partial decoder state. Our proposed modifica-
tions help us to efficiently compute partial future
costs in the incremental setting. We introduced the
notion of delayed pruning (DP) to avoid search
errors in incremental decoding. We showed that
reusing the partial decoder states is faster than re-
decoding the input from the scratch every time a
new word is typed by the user. Our exhaustive ex-
periments further demonstrated DP to be highly
effective in avoiding search errors under the in-
cremental decoding setting. In our experiments in
this paper we used a very tight beam size; in fu-
ture work, we would like to explore the tradeoff
between speed, accuracy and the utility of delayed
pruning by varying the beam size in our experi-
ments.
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Abstract

Compound splitting is an important prob-
lem in many NLP applications which must
be solved in order to address issues of data
sparsity. Previous work has shown that lin-
guistic approaches for German compound
splitting produce a correct splitting more
often, but corpus-driven approaches work
best for phrase-based statistical machine
translation from German to English, a
worrisome contradiction. We address this
situation by combining linguistic analysis
with corpus-driven statistics and obtain-
ing better results in terms of both produc-
ing splittings according to a gold standard
and statistical machine translation perfor-
mance.

1 Introduction

Compounds are highly productive in German and
cause problems of data sparsity in data-driven sys-
tems. Compound splitting is an important com-
ponent of German to English statistical machine
translation systems. The central result of work by
(Koehn and Knight, 2003) is that corpus-driven
approaches to compound splitting perform better
than approaches based on linguistic analysis, and
this result has since been confirmed by other re-
searchers (Popović et al., 2006; Stymne, 2008).
This is despite the fact that linguistic analysis per-
forms better in terms of matching a gold standard
splitting. Our work shows that integrating these
two approaches, by employing high-recall lin-
guistic analysis disambiguated using corpus statis-
tics, effectively combines the benefits of both ap-
proaches. This is important due to the wide us-
age of the Koehn and Knight approach in statisti-
cal machine translation systems.

The splittings we produce are best in terms of
both end-to-end machine translation performance

(resulting in an improvement of 0.59 BLEU and
0.84 METEOR over the corpus-driven approach
of Koehn and Knight on the development test set
used for WMT 20091) and two gold standard eval-
uations (see section 4). We provide an exten-
sive analysis of the improvements of our approach
over the corpus-driven approach. The approach
we have developed may help show how to im-
prove previous approaches to handling compounds
in such applications as speech recognition (e.g.,
(Larson et al., 2000)) or information retrieval (e.g.,
(Braschler and Ripplinger, 2004)).

The organization of the paper is as follows. Sec-
tion 2 discusses previous work on compound split-
ting for statistical machine translation. Section 3
presents approaches for compound splitting and
also presents SMOR, the morphological analyzer
that is a key knowledge source for our approach.
Section 4 presents a comparison of compound
splitting techniques using two gold standard cor-
pora and an error analysis. Section 5 presents
phrase-based statistical machine translation (SMT)
results. Section 6 concludes.

2 Related Work on German Compound
Splitting

Rule-based compound splitting for SMT has been
addressed by Nießen and Ney (2000), where
GERTWOL was used for morphological analysis
and the GERCG parser for lexical analysis and dis-
ambiguation. Their results showed that morpho-
syntactic analysis could reduce the subjective sen-
tence error rate.

The empirical approach of Koehn and Knight
(2003) splits German compounds into words
found in a training corpus. A minimal amount
of linguistic knowledge is included in that the
filler letters “s” and “es” are allowed to be intro-
duced between any two words while “n” might be

1See Table 6 in section 5 for details.
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dropped. A scoring function based on the aver-
age log frequency of the resulting words is used
to find the best splitting option, see section 3.2 for
details. SMT experiments with additional knowl-
edge sources (parallel corpus, part-of-speech tag-
ger) for compound splitting performed worse than
using only the simple frequency metric. Stymne
(2008) varies the Koehn and Knight approach by
examining the effect of a number of parameters:
e.g. word length, scoring method, filler letters.

Popović et al. (2006), compared the approach
of Nießen and Ney (2000) with the corpus-driven
splitting of Koehn and Knight (2003) in terms of
performance on an SMT task. Both systems yield
similar results for a large training corpus, while
the linguistic-based approach is slightly superior
when the amount of training data is drastically re-
duced.

There has recently been a large amount of in-
terest in the use of input lattices in SMT. One use
of lattices is to defer disambiguation of word-level
phenomena such as inflection and compounds to
decoding. Dyer (2009) applied this to German us-
ing a lattice encoding different segmentations of
German words. The work is evaluated by using the
1-best output of a weak segmenter2 on the training
data and then using a lattice of the N-best output
of the same segmenter on the test set to decode,
which was 0.6 BLEU better than the unsegmented
baseline. It would be of interest to test whether de-
ferral of disambiguation to decoding still produces
an improvement when used in combination with a
high-performance segmenter such as the one we
present, an issue we leave for future work.

3 Compound Processing

Previous work has shown a positive impact of
compound splitting on translation quality of SMT

systems. The splitting reduces data sparsity and
enhances word alignment performance. An exam-
ple is given in Figure 1.

Previous approaches for compound splitting
can be characterized as following two basic ap-
proaches: the use of morphological analyzers to
find split points based on linguistic knowledge
and corpus-driven approaches combining large

2The use of the 1-best output of the segmenter for German
to English decoding results in a degradation of 0.3 BLEU,
showing that it is worse in performance than the corpus-
driven method of Koehn and Knight, which improves perfor-
mance (see the evaluation section). However, this segmenter
is interesting because it is language neutral.

Inflationsraten

English translation

unsplit compound

inflation rates

Inflation Ratensplit compound

1−to−n alignment

1−to−1 alignment

Figure 1: Compound splitting enhances the num-
ber of 1-to-1 word alignments.

amounts of data and scoring metrics.
We briefly introduce the computational mor-

phology SMOR (section 3.1) and the corpus-
driven approach of Koehn and Knight (2003) (sec-
tion 3.2), before we present our hybrid approach
that combines the benefits of both in section 3.3.

3.1 SMOR Morphological Analyzer

SMOR is a finite-state based morphological ana-
lyzer covering the productive word formation pro-
cesses of German, namely inflection, derivation
and compounding (Schmid et al., 2004). Word for-
mation is implemented as a concatenation of mor-
phemes filtered according to selectional restric-
tions. These restrictions are based on feature deco-
rations of stems and affixes encoded in the lexicon.
Inflection is realized using inflection classes.

An abbreviated3 SMOR analysis of the word
Durchschnittsauto (“standard car”)4 is given in
Figure 2 (a). The hierarchical structure of the word
formation process is given in Figure 2 (b). Imple-
mented with finite-state technology, SMOR is not
able to produce this hierarchy: in our example it
outputs two (correct) analyses of different depths
and does not perform disambiguation.

3.2 Corpus-Driven Approach

Koehn and Knight (2003) describe a method re-
quiring no linguistically motivated morphological
analysis to split compounds. Instead, a compound
is broken into parts (words) that are found in a
large German monolingual training corpus.

We re-implemented this approach with an ex-
tended list of filler letters that are allowed to oc-

3We show analyses for nominative, and analyses for the
other cases genitive, ,dative, accusative are left out as they
are identical.

4durch = “through”, schneiden = “to cut”, Schnitt = “(the)
cut”, Durchschnitt = “average”, Auto = “car”
part-of-speech: <NN>/<V> (noun/verb)
gender: <Neu> (neutrum)
case: <Nom> (nominative)
number: <Sg> (singular)
suffixation: <SUFF> (suffix)
prefixation: <VPART> (verb particle)
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analyze> Durchschnittsauto
Durchschnitt<NN>Auto<+NN><Neut><Nom><Sg>
durch<VPART>schneiden<V><NN><SUFF>Auto<+NN><Neut><Nom><Sg>

(a) SMOR output format

Durchschnittsauto

Durchschnitt

schneiden

Auto

durch

<NN>

<NN><NN>

durchschneiden
<V>

<V><VPART>

(b) Morphological analysis

Figure 2: Morphological analysis of Durchschnittsauto (“standard car”).

cur between any two parts (nen, ien, en, es, er, s,
n) such as s in Inflationsrate (cf. Figure 1) and
deletable letters (e, n), required for compounds
such as Kirchturm = Kirche+Turm (“steeple”,
“church+tower”). Filler letters are dropped only
in cases where the part is more frequent without
the letter than with it (an example is that the fre-
quency of the word Inflation is greater than the
frequency of the word Inflations); the same holds
for deletable letters and hyphens (“-”). The min-
imal part size was set to 3 characters. Word fre-
quencies are derived from the true-cased corpus
using case insensitive matching. In order to reduce
wrong splittings, infrequent words (frequency ≤
3) are removed from the training corpus and a stop
list was used5. These are similar choices to those
found to be best in work by Stymne (2008).

The splitting that maximizes the geometric
mean of part frequencies using the following for-
mula6 is chosen:

argmax S(
∏

pi∈S

count(pi))
1
n

Figure 3 contains all splitting options of
the corpus-driven approach for Ministerpräsident
(“prime minister”). As can be seen, the
desired splitting Minister|Präsident is among
the options, but in the end Min|ist|Präsident
(“Min|is|president”) is picked by the corpus-
driven approach because this splitting maximizes
the geometric mean score (mainly due to the
highly frequent verb ist “is”). This is linguisti-
cally implausible, and the system we introduce in
the next section splits this correctly.

Even though this corpus-driven approach tends
to oversplit it works well for phrase-based SMT

because adjacent words (or word parts) are likely

5The stop list contains the following units, which occur in
the corpus as separate words (e.g., as names, function words,
etc.), and frequently occur in incorrect splittings: adr, and,
bes, che, chen, den, der, des, eng, ein, fue, ige, igen, iger,
kund, sen, ses, tel, ten, trips, ung, ver.

6Taken from (Koehn and Knight, 2003):
S = split, pi = part, n = number of parts. The original word
is also considered, it has 1 part and a minimal count of 1.

Ministerprä

Ministerpräsid

Minister

Mini

Minis

Min
ister

ist

ter

Prä

Präsid

Präside

Präsident

ent

sid

sident

Figure 3: Corpus-driven splittings of Minis-
terpräsident (“prime minister”).

to be learned as phrases. We will refer to the
corpus-driven approach using the abbreviation cd.

3.3 Hybrid Approach

We present a novel approach to compound split-
ting: based on linguistically motivated split points
gained from SMOR, we search word frequencies
in a large training corpus (the same corpus as we
will use for the corpus-driven approach) in order
to determine the best splitting option for a word
(or to leave it unsplit). This approach needs no ex-
plicit definition of filler letters or deletable letters,
as this knowledge is encoded in SMOR.

In contrast to the corpus-driven approach de-
scribed in the previous section, the hybrid ap-
proach uses neither a minimal part size constraint,
nor a stop-list. Instead, we make use of the linguis-
tic knowledge encoded in SMOR, i.e. we allow the
hybrid approach to split only into parts that can
appear as free morphemes, such as stems and sep-
aratable particles. An example is auf|gibt (“to give
up”), where the particle auf may occur separated
from the verb, as in Er gibt nicht auf (“he gives
not up”). Bound morphemes, such as prefixes and
suffixes cannot be split from the stem, e.g. verhan-
delbar (“negotiable”) which consists of the prefix
ver-, the stem handeln and the suffix -bar, is left
unsplit by the hybrid approach.

For N-ary compounds (with N>2), we use not
only the split points proposed by SMOR, but we
also search the training corpus for recombinations
of the compound parts: e.g. SMOR provides the
parts A|B|C for the compound ABC, and we addi-
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(a) SMOR splitting options

Ministerpräsident

wählen Kampf

Wahlkampf

Wahl Kampf

Minister Präsident

(b) Part frequencies
word part frequency
Kampf 30,546
Minister 12,742
Ministerpräsident 22,244
Ministerpräsidentwahl 111
Ministerpräsidentwahlkampf 1
Präsident 125,747
Präsidentenwahl 2,482
Präsidentenwahlkampf 25
Wahl 29,255
Wahlkampf 23,335

(c) Log-based geometric mean scores
splitting option score
Ministerpräsidentenwahlkampf 0
Ministerpräsident|Wahlkampf 10.04
Ministerpräsident|Wahl|Kampf 10.21
Ministerpräsident|wählen|Kampf 9.85
Minister|Präsident|Wahlkampf 10.38
Minister|Präsident|Wahl|Kampf 10.42
Minister|Präsident|wählen|Kampf 10.15
Ministerpräsidentenwahl|Kampf 7.52
Minister|Präsidentenwahl|Kampf 9.19
Minister|Präsidentenwahlkampf 6.34

Table 1: Splitting options for Ministerpräsidentenwahlkampf (“election campaign of the prime minis-
ter”) (a) with part frequencies derived from the corpus (b) and log-based geometric mean scores (c).

tionally search for AB|C and A|BC.

Even though SMOR lemmatizes along with
compound splitting, only the information about
possible split points is used in our splitting ap-
proach. The compound Beitrittsländer (“ac-
cession countries”), for example, is reduced to
Beitritt|Land by SMOR, but is retransformed to
Beitritt|Länder in our approach. This holds also
for adjectives, e.g. firmeninterne “company-
internal” which is split to firma|interne (interne is
the female form of the adjective intern) and verbs,
such as the participle wasser|gebunden “water
bound”, where the lemma is Wasser|binden.

Hyphenated words can also be split with SMOR,
as long as the rightmost part of the word is in its
lexicon. However, the word parts which are to the
left of hyphen(s) are left unanalyzed. The SMOR

analyses for NATO-Berichts (“NATO report”) and
the nonsense XYZabc-Berichts (“XYZabc report”)
are given below:

analyze> NATO-Berichts

NATO-<TRUNC>Bericht<+NN><Masc><Gen><Sg>

analyze> XYZabc-Berichts

XYZabc-<TRUNC>Bericht<+NN><Masc><Gen><Sg>

Such Words where the rightmost part is unknown
to SMOR are left completely unanalyzed by
SMOR. Examples include NATO-Berxchts (which
is a typo of NATO-Berichts) or al-Qaeda (a proper

name). If such words occurred less than 5 times in
the training corpus, they were split at the hyphens.
This procedure splits NATO|Berxchts, while it
leaves al-Qaeda unsplit.

Table 1(a) shows the different splittings7 that
SMOR returns for the ambiguous ad-hoc com-
pound Ministerpräsidentenwahlkampf (“election
campaign of the prime minister”). All of them are
morphologically sound compounds of German.

The corpus frequencies of the parts provided by
SMOR (and their recombinations) are given in Ta-
ble 1 (b). The average natural log frequencies of
the SMOR splittings in Table 1 (c), with the recom-
binations of their parts in the last three rows. We
set the minimal frequency for each part to 1 (which
gives a log frequency of 0) even if it was not seen
in the training corpus.

Even though “prime” is not a literal transla-
tion of Präsident, the best splitting (out of the
given options) is Minister|Präsident|Wahl|Kampf
(“minister|president|election|campaign”). It is
scored highest and thus chosen by the hybrid ap-
proach.

For the purpose of SMT, we want to split com-
pounds into parts that have a translational cor-
respondent in the target language. To accom-
plish that, it is often sufficient to consider the
split at the highest linguistic analysis level. For

7Ministerpräsident = “prime minister”, Wahlkampf =
“election campaign”, Minister = “minister”, Präsident =
“president”, Wahl = “election”, wählen = “to elect”, Kampf
= “fight”
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the example Durchschnittsauto (“standard car”)
(cf. Figure 2 above), where the ideal split
is Durchschnitt|Auto (“average|car”). Here, the
deeper analysis of Durchschnitt as a nominalisa-
tion of the particle verb durch|schneiden (“to cut
through”) is not relevant. The same holds for Min-
isterpräsidentenwahlkampf of Table 1, where in
one of the splittings Wahl is further reduced to the
verb wählen.

In order to prevent such analyses from be-
ing picked, we investigate the use of restricting
SMOR’s splitting options to analyses having a min-
imal number of component parts. On the other
hand, there are many lexicalized compounds in
German, that, besides being analyzed as a com-
pound also appear as a free word stem in SMOR’s
lexicon (e.g. both Geländewagen “all-terrain vehi-
cle” and Gelände|wagen “terrain vehicle” are re-
turned by SMOR). Therefore, we keep both vari-
ants for our subsequent experiments: the con-
strained version that uses only analyses with a
minimal number of parts (and thus performs a
more conservative splitting) is referred to as smc,
while using all of SMOR’s analyses is named sm.
In addition to these, we use a constraint that splits
only nouns. To do so, the text to be split was POS-
tagged with TreeTagger (Schmid, 1994) to deter-
mine the nouns in the context of the whole sen-
tence. Splitting only nouns will be referred to as
@nn in the remainder of this paper.

Compared to the purely corpus-driven ap-
proach, hybrid compound splitting substantially
reduces the number of false splitting options, be-
cause only splittings that are linguistically moti-
vated are looked up in the training corpus. We
will show that this restriction of splitting options
enhances the number of correct splittings being
picked. The purely corpus-driven approach con-
siders the correct splitting in most cases, but often
does not choose it because there is another higher
scoring splitting option (cf. section 4.3).

The main shortcoming of the hybrid approach
is its dependence on SMOR’s lexical coverage.
SMOR incorporates numerous word formation
rules and thousands of word stems (e.g. over
16,000 noun base stems), but our approach will
leave all words unsplit that cannot be analyzed
with SMOR. However, we will show in both the
gold standard evaluations (section 4) and the SMT

evaluation (section 5) that the recall of SMOR is
sufficient to result in substantial gains over the

corpus-driven approach.

4 Gold Standard Evaluation

The accuracies of the compound splitting ap-
proaches are evaluated against two hand-crafted
gold standards: one that includes linguistically
motivated split points (section 4.1), and one indi-
cating compounds that were translated composi-
tionally by a human translator (section 4.2). We
found that the hybrid approach performs best for
both. In section 5, we will show the impact of the
different splitting approaches on translation per-
formance, with the result that the hybrid approach
outperforms the corpus-driven approach even for
translation quality (in contrast to previous work,
where the best system according to the gold stan-
dard was not the best system for translation qual-
ity). In order to better understand the divergent
results of the splitting approaches, we perform a
detailed error analysis in section 4.3.

The accuracy of compound splitting is mea-
sured using the same terminology and metrics as
described in (Koehn and Knight, 2003):

correct split: should be split and was split correctly
correct not: should not be split and was not
wrong split: should not be split but was split
wrong not: should be split but was not
wrong faulty (fty): should be split, but was split wrongly

precision: correctsplit
correctsplit+wrongfaulty+wrongsplit

recall: correctsplit
correctsplit+wrongfaulty+wrongnot

accuracy: correct
correct+wrong

The results of the following splitting approaches
were investigated:

raw = baseline without splitting
cd = corpus-driven splitting
sm = hybrid approach using all SMOR analyses
smc = hybrid approach using the SMOR analysis

with the minimal number of parts
@nn = split only nouns

The word frequencies required for all splitting ap-
proaches were derived from the German monolin-
gual language model training data (∼ 225 million
tokens) of the shared task of the 2009 ACL work-
shop on machine translation.

4.1 Linguistically Motivated Gold Standard

In the course of developing the hybrid approach,
we used a hand-crafted gold standard for testing,
which contains 6,187 distinct word types extracted
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Correct Wrong Metrics
split not split not fty prec. recall acc.

raw 0 5073 0 1114 0 - 0.00% 81.99%
cd 679 4192 883 120 313 36.21% 61.06% 78.73%
sm 912 4534 541 35 165 56.37% 82.01% 88.02%
sm@nn 628 4845 230 337 147 62.49% 56.73% 88.46%
smc 884 4826 249 135 93 72.10% 79.50% 92.29%
smc@nn 648 4981 94 380 84 78.45% 58.27% 90.98%

Table 2: Linguistically motivated gold standard:
6,187 distinct word types. Bold-face font indi-
cates the best result of each column.

from the development set of the 2009 shared MT
task. The most plausible split points were anno-
tated by a native speaker of German, allowing for
splits into word stems or particles, but not into
bound morphemes such as prefixes or suffixes.

Splits were annotated at the highest word
formation level only, see also Durchschnittsauto
in Figure 2 (section 3.1 above), where only the
split point Durchschnitt|Auto would be annotated
in the gold standard. Another example is the
complex derivative Untersuchungshäftling
(“person being imprisoned on remand”),
where the inherent word structure looks as
follows: [Untersuchung+Haft]+ling (“[investi-
gation+imprisonment]+being a person”). The
splitting into Untersuchung|Häftling is semanti-
cally not correct and the word is thus left unsplit
in the gold standard. Finally, particles are only
split if these can be used separately from the verb
in a grammatically sound sentence, as is the case
in the example mentioned in section 3.3, auf|gibt:
Er gibt nicht auf (“he gives not up”). In contrast,
the particle cannot be separated in a past participle
construction like aufgegeben: *Er gegeben nicht
auf (“he given not up”), because in this example,
-ge- is an infix introduced between the particle
and the verb in order to form the past participle
form. Constructions of this kind are thus left
unsplit in the gold standard.

We found that 1,114 of the 6,187 types we in-
vestigated were compounds, of which 837 were
nouns. The detailed results are given in Table 2.
Due to the fact that the majority of words should
not be split, the raw method reaches a considerable
accuracy of 81.99%.

As can be seen from Table 2, 679 of the 1,114
compounds are split correctly by the corpus-driven
approach (cd). However, the high number of
wrong splits (883), which is the main shortcoming
of the corpus-driven approach, leads to an accu-
racy below the raw system (78.73% vs. 81.99%).

Out of the variants of the hybrid approach,
the less constrained one, sm achieves the high-
est recall (82.01%), while the most constrained
one smc@nn has the highest precision (78.45%).
The smc variant yields the most accurate splitting
92.29%. The higher precision of the @nn-variants
comes from the fact that most of the compounds
are nouns (837 of 1,114) and that these approaches
(sm@nn, smc@nn) leave more words incorrectly
unsplit than oversplit.

Note that the gold standard we presented in this
section was measured on a few times during devel-
opment of the hybrid approach and there might be
some danger of overfitting. Therefore, we used an-
other gold standard based on human translations to
confirm the high accuracy of the hybrid approach.
We introduce it in the next section.

4.2 One-to-one Correspondence
Gold Standard

The one-to-one correspondence gold standard
(Koehn and Knight, 2003) indicates only com-
pounds that were translated compositionally by a
human translator. Such translations need not al-
ways be consistent: the human translator might
decide to translate a compound compositionally in
one sentence and using a different concept in an-
other sentence. As a consequence, a linguistically
correct split might or might not be considered cor-
rect, depending on how it was translated. This is
therefore a harsh metric.

We used data from the 2009 shared MT task8

for this evaluation. The first 5,000 words of the
test text (news-dev2009b) were annotated manu-
ally with respect to compounds that are translated
compositionally into more than one English word.
This is the same data set as used for the evalu-
ation of SMT performance in section 5, but the
compound annotation was done only after all SMT

experiments were completed, to ensure unbiased
translation results. The use of the same data set fa-
cilitates the comparison of the splitting approaches
in terms of the one-to-one gold standard vs. trans-
lation quality.

The results are given in Table 3. In this set, only
155 compounds with one-to-one correspondences
are found amongst the 5,000 word tokens, which
leads to a very high accuracy of 96.90% with no
splitting (raw).

8http://www.statmt.org/wmt09/
translation-task.html
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Correct Wrong Metrics
split not split not fty prec. recall acc.

raw 0 4,845 0 155 0 —— 0.00% 96.90%
cd 81 4,435 404 14 59 14,89% 52.60% 90.32%
sm 112 4,563 283 8 34 26.11% 72.73% 93.50%
sm@nn 107 4,677 169 15 32 34.74% 69.48% 95.68%
smc 128 4,666 180 12 14 39,75% 83,12% 95,88%
smc@nn 123 4,744 102 18 13 51.68% 79.87% 97.34%

Table 3: Evaluation of splitting approaches with
respect to one-to-one correspondences. Bold-face
font indicates the best result of each column.

The corpus-driven approach (cd) splits 81 of the
155 compounds correctly (52.60% recall), but also
splits 404 words that should have been left unsplit,
which leads to a low precision of only 14.89%.

As can be seen from Table 3, all variants of the
hybrid splitting approach, reach higher accuracies
than the corpus-driven approach, and again, the
most restrictive one (smc@nn) performs best: it is
the only one that achieves a slightly higher accu-
racy than raw (97.34% vs. 96.90%). Even though
the number of correct splits of smc@nn (123) is
lower than for e.g. smc (with 128, the highest re-
call 83.12%), the number of correct not splittings
is higher (4,744 vs. 4,666).

Generally speaking, the results of both gold
standards show that linguistic knowledge en-
hances the number of correct splits, while at the
same time it considerably reduces oversplitting,
which is the main shortcoming of the corpus-
driven approach. A detailed error analysis is pro-
vided in the following section 4.3.

4.3 Error Analysis

4.3.1 Errors of the Corpus-Driven Approach
In gold standard evaluation, the purely corpus-
driven approach exhibited a number of erroneous
splits. These splits are not linguistically motivated
and are thus filtered out a priori by the SMOR-
based systems. In the following, we give some
examples for wrong splits that are typical for the
corpus-driven approach.

In Table 4 we divide typical errors into two cat-
egories: frequency-based where wrong splitting is
solely due to higher frequencies of the parts from
the wrong splitting and insertions/deletions where
filler letters or deletions of letters lead to wrong
splittings of which the parts are again more fre-
quent than for the correct splitting.

The adjective lebenstreuen (“true-to-life”) is the
only true compound of Table 4. Its correct split
is Leben|treuen (“life|true”). All other words in

Table 4 should be left unsplit.

error type word splitting

frequency based

lebenstreuen Leben|streuen
true-to-life life|spread
traumatisch Trauma|Tisch
traumatic trauma|table
Themen the|men
themes the|men

insertions/deletions

entbrannte Ente|brannte
broke out duck|burned
Belangen Bela|Gen
aspect Bela|gene
Toynbeesche toy|been|sche
Toynbeean toy|been|*sche

Table 4: Typical errors of the corpus-driven ap-
proach. The only true compound in this table is
Leben|treuen (“life|true”).

The lookup of word frequencies is done case-
insensitively, i.e. the casing variant with the
highest frequency is chosen. This leads to
cases like traumatisch (“traumatic”), where adjec-
tives are split into nominal head words (namely
Trauma|Tisch = “trauma|table”), which is impos-
sible from a linguistic point of view. If, how-
ever, Traumatisch occurs uppercased and is thus
to be interpreted as a noun, the splitting into
Trauma|Tisch is correct.

The splitting accuracy of the corpus-driven
method is highly dependent on the quality of the
monolingual training corpus from which word
frequencies are derived. The examples Themen
(“themes”) and Toynbeesche (“Toynbeean”) in Ta-
ble 4 show how foreign language material from a
language like English in the training corpus can
lead to severe splitting errors.

In order to account for the lack of linguistic
knowledge, the corpus-driven approach has to al-
low for a high flexibility of filler letters, dele-
tion of letters and combinations of both. The ex-
amples in the lower part of Table 4 show that
this flexibility often leads to erroneous splits that
completely modify the semantic content of the
original word. For example, the verb partici-
ple form of “to break out”, entbrannte is split
into Ente|brannte (“duck|burned”), because the
corpus-driven approach allows to add an “e” at the
end of each but the rightmost part. This transfor-
mation is required to cover compounds like Kirch-
turm (“church tower” (or also “steeple”)) that are
composed of the words Kirche (“church”) and
Turm (“tower”).

Often, one high frequent part of the (possible)
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compound determines the split of a word, even
though the other part(s) are much less frequent.
This is the case for Belangen (442 occurrences),
where the high frequent Gen (“gene”, 1,397 oc-
currences) leads to a splitting of the word, even
though the proper name Bela is much less frequent
(165 occurrences).

The case of Toynbeesche (which is a proper
noun used as an adjective) shows that the corpus-
driven approach splits everything into parts, as
long as they are more frequent than the unsplit
word. In contrast, all words that are unknown to
SMOR are left unsplit by the hybrid approach.

Finally, the corpus-driven approach often iden-
tifies content-free syllables such as -sche (see last
row of Table 4) as compound parts. These sylla-
bles frequently occur in the training corpus due to
syllabification, making them a prevalent source for
corpus-driven splitting errors. Such wrong split-
tings could be blocked by extending the stopword
list of the corpus-driven approach. See footnote 5
in section 3.2, for the list of stopwords we used in
our implementation.

Previous approaches to corpus-driven com-
pound splitting used a part-of-speech (POS) tagger
to reduce the number of erroneous analyses (e.g.
(Koehn and Knight, 2003), (Stymne, 2008)): the
word class of the rightmost (possible) part of the
compound is restricted to match the word class of
the whole compound, which is coherent to Ger-
man compositional morphology. This constraint
lead to higher accuracies in gold standard evalu-
ations, but it did not improve translation quality
in the experiments of Koehn and Knight (2003)
and Stymne (2008), and therefore, we did not re-
implement the corpus-driven approach with this
POS-constraint. However, some of the errors pre-
sented in this section could have been prevented if
the POS-constraint was used: the erroneous splits
of lebenstreuen and traumatisch were avoided, but
for the splittings of Belangen and entbrannte, the
POS-constraint would not help. A more restrictive
POS-constraint proposed by Stymne (2008), al-
lows splitting only into parts belonging to content-
bearing word classes. This works for Belangen,
but not for entbrannte. In the case of Themen and
Toynbeesche, the output of a POS-tagger for the
last part are not trustworthy, as these are not cor-
rect German words: men belongs to foreign lan-
guage material or it is a content-free syllable, such
as sche.

4.3.2 Errors of the Hybrid Approach
During the development of the hybrid splitting
approach, we did an extensive gold standard eval-
uation along the way, as described in section 4.1
above. The performance of the hybrid approach
is limited by the performance of its constituents,
namely the coverage of SMOR and the quality
of the corpus from which part frequencies are
derived. In the gold standard evaluation, we
distinguished three error categories: wrong split
(should not be split but was), wrong not (should
be split but was not) and wrong faulty (should
be split, and was split, but wrongly). Table 2 (cf.
Section 4.1) contains the results of the gold stan-
dard we used as development set for our approach.
In Table 5, we give a detailed distribution of the
wrong splittings of the less constrained hybrid
approach sm, into the following categories:

frequency-based: SMOR found the correct split, but
a wrong split was scored higher

unknown to SMOR: lexeme or rule missing in SMOR
lexicalized in SMOR: lexeme exists in SMOR, but fully

lexicalized (no splitting possible)

It can be seen from Table 5 that most of the errors
are due to corpus frequencies of the component
parts. An example is Nachteil (“disadvantage”),
which is lexicalized in German, but can also be
correctly divided (even though it is semantically
less plausible) into nach|Teil (“after|part”), and as
both of these parts are high frequent, Nachteil is
split.

As the corpus-driven approach uses the same
disambiguation component, there must be an over-
lap of the frequency-based errors of the two ap-
proaches.

error type Wrong
split not faulty

frequency-based 538 26 155
unknown to SMOR 3 7 0
lexicalized in SMOR 0 2 10
total number of errors 541 35 165

Table 5: Error analysis of sm with respect to the
gold standard in Table 2 above.

The remaining two categories contain errors
that are attributed to wrong or missing analyses
in SMOR. Compared to the total number of er-
rors, there are very few such errors. Most of the
unknown words are proper names or compounds
with proper names, such as Petrischale (“petri
dish”). Here, the corpus-driven approach is able
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to correctly the compound into Petri|Schale.
There are a number of compounds in German

that originally consisted of two words, but are
now lexicalized. For some of them SMOR does
not provide any splitting option. An example is
Sackgasse (“dead end street”) which contains the
words Sack (“sack”) and Gasse (“narrow street”),
where SMOR leaves the word unsplit (but not un-
analyzed: it is encoded as one lexeme), while the
corpus-driven approach correctly splits it.

5 Translation Performance

5.1 System Description

The Moses toolkit (Koehn et al., 2007) was used
to construct a baseline PBSMT system (with de-
fault parameters), following the instructions of the
shared task9. The baseline system is Moses built
exactly as described for the shared task baseline.
Contrastive systems are also built identically, ex-
cept for the use of preprocessing on the German
training, tuning and testing data; this ensures that
all measured effects on translation quality are at-
tributable to the preprocessing. We used data from
the EACL 2009 workshop on statistical machine
translation10. The data include ∼1.2 million par-
allel sentences for training (EUROPARL and news),
1,025 sentences for tuning and 1,026 sentences
for testing. All data was lowercased and tok-
enized, using the shared task tokenizer. We used
the English side of the parallel data for the lan-
guage model. As specified in the instructions, sen-
tences longer than 40 words were removed from
the bilingual training corpus, but not from the lan-
guage model corpus. The monolingual language
model training data (containing roughly 227 mil-
lion words11) was used to derive corpus frequen-
cies for the splitting approaches.

For tuning of feature weights we ran Mini-
mum Error Rate Training (Och, 2003) until con-
vergence, individually for each system (optimiz-
ing BLEU). The experiments were evaluated using
BLEU (Papineni et al., 2002) and METEOR (Lavie
and Agarwal, 2007)12. Tuning scores are calcu-
lated on lowercased, tokenized text; all test scores
are case sensitive and performed on automatically

9
http://www.statmt.org/wmt09/baseline.html

10
http://www.statmt.org/wmt09/translation-task.

html
11
http://www.statmt.org/wmt09/

training-monolingual.tar
12The version of METEOR used is 0.7, we use “exact

porter-stem wn-synonmy”, weights are “0.8 0.83 0.28”.

system tuning test test
BLEU BLEU METEOR

raw 18.10 15.72 47.65
cd 18.52 16.17 49.29
sm 19.47 16.59 49.98
sm@nn 19.42 16.76 49.77
smc 19.53 16.63 50.13
smc@nn 19.61 16.40 49.64

Table 6: Effects of compound splitting:
raw = without preprocessing, cd = corpus-driven,
sm = hybrid approach using all SMOR analyses,
smc = hybrid approach with minimal SMOR splits
*@nn = split only nouns.
bold-face = significant wrt. raw
underlined = significant wrt. cd

recapitalized, detokenized text.

5.2 Translation Results

The BLEU and METEOR scores of our experi-
ments are summarized in Table 6. Results that
are significantly better than the baseline are bold-
faced13. Underlining indicates that a result is sig-
nificantly better than corpus-driven.

Compared to not-splitting (raw), the corpus-
driven approach (cd) gains 0.45 BLEU points and
+1.64 in METEOR for testing. All variants of the
hybrid approach (sm*) score higher than cd, reach-
ing up to +0.59 BLEU compared to cd and +1.04
BLEU compared to raw for sm@nn. In terms of
METEOR, gains of up to +0.84 compared to cd and
+2.48 compared to raw are observable for smc, all
of them being significant with respect to both, raw
and cd. The smc variant of the hybrid approach
yielded the highest METEOR score and it was also
found to be the most accurate one when evaluated
against the linguistic gold standard in section 4.1.

The restriction to split only nouns (@nn) leads
to a slightly improved performance of sm (+0.17)
BLEU, while METEOR is slightly worse when the
@nn constraint is used: -0.21. Despite the fact that
it had a high precision in the gold standard evalu-
ation of section 4.1 above, smc, when used with
the @nn constraint, decreases in performance ver-
sus smc without the constraint, because the @nn
variant leaves many compounds unsplit (cf. row
“Wrong not”, Table 2), Secion 4.1).

13We used pair-wise bootstrap resampling using sample
size 1,000 and p-value 0.05, code obtained from http:
//www.ark.cs.cmu.edu/MT

232



5.3 Vocabulary Reduction Through
Compound Splitting

One of the main issues in translating from a com-
pounding and/or highly inflected language into
a morphologically less complex language is data
sparsity: many source words occur very rarely,
which makes it difficult to learn the correct transla-
tions. Compound splitting aims at making the vo-
cabulary as small as possible but at the same time
keeping as much of the morphological information
as necessary to ensure translation quality. Table 7
shows the vocabulary sizes of our translation ex-
periments, where “types” and “singles” refer to
the training data and “unknown” refers to the test
set. It can be seen that the vocabulary is smallest
for the corpus-driven approach (cd). However, as
the translation experiments in the previous section
have shown, the cd approach was outperformed by
the hybrid approaches, despite their larger vocab-
ularies.

system types singles unknown
raw 267,392 135,328 1,032
cd 97,378 36,928 506
sm 100,836 37,433 593
sm@nn 130,574 51,799 644
smc 109,837 39,908 608
smc@nn 133,755 52,505 650

Table 7: Measuring Vocabulary Reduction for
Compound Splitting.

6 Conclusion

We combined linguistic analysis with corpus-
based statistics and obtained better results in terms
of both producing splittings and statistical ma-
chine translation performance. We provided an ex-
tensive analysis showing where our approach im-
proves on corpus-driven splitting.

We believe that our work helps to validate the
utility of SMOR. The unsupervised morphology
induction community has already begun to evalu-
ate using SMT (Viripioja et al., 2007). Developers
of high recall hand-crafted morphologies should
also consider statistical machine translation as a
useful extrinsic evaluation.
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Abstract

In Arabic-to-English phrase-based statis-
tical machine translation, a large number
of syntactic disfluencies are due to wrong
long-range reordering of the verb in VSO
sentences, where the verb is anticipated
with respect to the English word order.
In this paper, we propose a chunk-based
reordering technique to automatically de-
tect and displace clause-initial verbs in the
Arabic side of a word-aligned parallel cor-
pus. This method is applied to preprocess
the training data, and to collect statistics
about verb movements. From this anal-
ysis, specific verb reordering lattices are
then built on the test sentences before de-
coding them. The application of our re-
ordering methods on the training and test
sets results in consistent BLEU score im-
provements on the NIST-MT 2009 Arabic-
English benchmark.

1 Introduction

Shortcomings of phrase-based statistical machine
translation (PSMT) with respect to word reorder-
ing have been recently shown on the Arabic-
English pair by Birch et al. (2009). An empiri-
cal investigation of the output of a strong baseline
we developed with the Moses toolkit (Koehn et
al., 2007) for the NIST 2009 evaluation, revealed
that an evident cause of syntactic disfluency is the
anticipation of the verb in Arabic Verb-Subject-
Object (VSO) sentences – a class that is highly
represented in the news genre1.

Fig. 1 shows two examples where the Arabic
main verb phrase comes before the subject. In
such sentences, the subject can be followed by
adjectives, adverbs, coordinations, or appositions
that further increase the distance between the verb

1In fact, Arabic syntax admits both SVO and VSO orders.

and its object. When translating into English – a
primarily SVO language – the resulting long verb
reorderings are often missed by the PSMT decoder
either because of pure modeling errors or because
of search errors (Germann et al., 2001): i.e. their
span is longer than the maximum allowed distor-
tion distance, or the correct reordering hypothesis
does not emerge from the explored search space
because of a low score. In the two examples, the
missed verb reorderings result in different transla-
tion errors by the decoder, respectively, the intro-
duction of a subject pronoun before the verb and,
even worse, a verbless sentence.

In Arabic-English machine translation, other
kinds of reordering are of course very frequent: for
instance, adjectival modifiers following their noun
and head-initial genitive constructions (Idafa).
These, however, appear to be mostly local, there-
fore more likely to be modeled through phrase in-
ternal alignments, or to be captured by the reorder-
ing capabilities of the decoder. In general there is a
quite uneven distribution of word-reordering phe-
nomena in Arabic-English, and long-range move-
ments concentrate on few patterns.

Reordering in PSMT is typically performed
by (i) constraining the maximum allowed word
movement and exponentially penalizing long re-
orderings (distortion limit and penalty), and (ii)
through so-called lexicalized orientation models
(Och et al., 2004; Koehn et al., 2007; Galley
and Manning, 2008). While the former is mainly
aimed at reducing the computational complexity
of the decoding algorithm, the latter assigns at
each decoding step a score to the next source
phrase to cover, according to its orientation with
respect to the last translated phrase. In fact, neither
method discriminates among different reordering
distances for a specific word or syntactic class. To
our view, this could be a reason for their inade-
quacy to properly deal with the reordering pecu-
liarities of the Arabic-English language pair. In
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src: w AstdEt kl mn AlsEwdyp w lybyA w swryASubj sfrA’ hAObj fy AldnmArk .
ref: Each of Saudi Arabia , Libya and SyriaSubj recalled their ambassadorsObj from Denmark .

MT: He recalled all from Saudi Arabia , Libya and Syria ambassadors in Denmark .

src: jdd AlEAhl Almgrby Almlk mHmd AlsAdsSubj dEm hObj l m$rwE Alr}ys Alfrnsy
ref: The Moroccan monarch King Mohamed VISubj renewed his supportObj to the project of French President

MT: The Moroccan monarch King Mohamed VI his support to the French President

Figure 1: Examples of problematic SMT outputs due to verb anticipation in the Arabic source.

this work, we introduce a reordering technique
that addresses this limitation.

The remainder of the paper is organized as fol-
lows. In Sect. 2 we describe our verb reordering
technique and in Sect. 3 we present statistics about
verb movement collected through this technique.
We then discuss the results of preliminary MT ex-
periments involving verb reordering of the training
based on these findings (Sect. 4). Afterwards, we
explain our lattice approach to verb reordering in
the test and provide evaluation on a well-known
MT benchmark (Sect. 5). In the last two sections
we review some related work and draw the final
conclusions.

2 Chunk-based Verb Reordering

The goal of our work is to displace Arabic verbs
from their clause-initial position to a position that
minimizes the amount of word reordering needed
to produce a correct translation. In order to re-
strict the set of possible movements of a verb and
to abstract from the usual token-based movement
length measure, we decided to use shallow syn-
tax chunking of the source language. Full syntac-
tic parsing is another option which we have not
tried so far mainly because popular parsers that are
available for Arabic do not mark grammatical re-
lations such as the ones we are interested in.

We assume that Arabic verb reordering only
occurs between shallow syntax chunks, and not
within them. For this purpose we annotated our
Arabic data with the AMIRA chunker by Diab et
al. (2004)2. The resulting chunks are generally
short (1.6 words on average). We then consider
a specific type of reordering by defining a produc-
tion rule of the kind: “move a chunk of type T
along with its L left neighbours and R right neigh-
bours by a shift of S chunks”. A basic set of rules

2This tool implies morphological segmentation of the
Arabic text. All word statistics in this paper refer to AMIRA-
segmented text.

that displaces the verbal chunk to the right by at
most 10 positions corresponds to the setting:

T=’VP’, L=0, R=0, S=1..10
In order to address cases where the verb is moved
along with its adverbial, we also add a set of rules
that include a one-chunk right context in the move-
ment:

T=’VP’, L=0, R=1, S=1..10
To prevent verb reordering from overlapping

with the scope of the following clause, we always
limit the maximum movement to the position of
the next verb. Thus, for each verb occurrence, the
number of allowed movements for our setting is at
most 2× 10 = 20.

Assuming that a word-aligned translation of the
sentence is available, the best movement, if any,
will be the one that reduces the amount of distor-
tion in the alignment, that is: (i) it reduces the
number of swaps by 1 or more, and (ii) it mini-
mizes the sum of distances between source posi-
tions aligned to consecutive target positions, i.e.∑

i |ai − (ai−1 + 1)| where ai is the index of the
foreign word aligned to the ith English word. In
case several movements are optimal according to
these two criteria, e.g. because of missing word-
alignment links, only the shortest good movement
is retained.

The proposed reordering method has been ap-
plied to various parallel data sets in order to per-
form a quantitative analysis of verb anticipation,
and to train a PSMT system on more monotonic
alignments.

3 Analysis of Verb Reordering

We applied the above technique to two parallel
corpora3 provided by the organizers of the NIST-
MT09 Evaluation. The first corpus (Gale-NW)
contains human-made alignments. As these re-
fer to non-segmented text, they were adjusted to

3Newswire sections of LDC2006E93 and LDC2009E08,
respectively 4337 and 777 sentence pairs.
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Figure 2: Percentage of verb reorderings by maxi-
mum shift (0 stands for no movement).

agree with AMIRA-style segmentation. For the
second corpus (Eval08-NW), we filtered out sen-
tences longer than 80 tokens in order to make
word alignment feasible with GIZA++ (Och and
Ney, 2003). We then used the Intersection of
the direct and inverse alignments, as computed by
Moses. The choice of such a high-precision, low-
recall alignment set is supported by the findings of
Habash (2007) on syntactic rule extraction from
parallel corpora.

3.1 The Verb’s Dance

There are 1,955 verb phrases in Gale-NW and
11,833 in Eval08-NW. Respectively 86% and 84%
of these do not need to be moved according to the
alignments. The remaining 14% and 16% are dis-
tributed by movement length as shown in Fig. 2:
most verb reorderings consist in a 1-chunk long
jump to the right (8.3% in Gale-NW and 11.6% in
Eval08-NW). The rest of the distribution is simi-
lar in the two corpora, which indicates a good cor-
respondence between verb reordering observed in
automatic and manual alignments. By increasing
the maximum movement length from 1 to 2, we
can cover an additional 3% of verb reorderings,
and around 1% when passing from 2 to 3. We
recall that the length measured in chunks doesn’t
necessarily correspond to the number of jumped
tokens. These figures are useful to determine an
optimal set of reordering rules. From now on we
will focus on verb movements of at most 6 chunks,
as these account for about 99.5% of the verb oc-
currences.

Figure 3: Distortion reduction in the GALE-NW
corpus: jump occurrences grouped by length range
(in nb. of words).

3.2 Impact on Corpus Global Distortion

We tried to measure the impact of chunk-based
verb reordering on the total word distortion found
in parallel data. For the sake of reliability, this
investigation was carried out on the manually
aligned corpus (Gale-NW) only. Fig. 3 shows the
positive effect of verb reordering on the total dis-
tortion, which is measured as the number of words
that have to be jumped on the source side in or-
der to cover the sentence in the target order (that
is |ai − (ai−1 + 1)|). Jumps have been grouped
by length and the relative decrease of jumps per
length is shown on top of each double column.

These figures do not prove as we hoped that
verb reordering resolves most of the long range re-
orderings. Thus we manually inspected a sample
of verb-reordered sentences that still contain long
jumps, and found out that many of these were due
to what we could call “unnecessary” reordering. In
fact, human translations that are free to some ex-
tent, often display a global sentence restructuring
that makes distortion dramatically increase. We
believe this phenomenon introduces noise in our
analysis since these are not reorderings that an MT
system needs to capture to produce an accurate
and fluent translation.

Nevertheless, we can see from the relative de-
crease percentages shown in the plot, that although
short jumps are by far the most frequent, verb
reordering affects especially medium and long
range distortion. More precisely, our selective
reordering technique solves 21.8% of the 5-to-6-
words jumps, 25.9% of the 7-to-9-words jumps
and 24.2% of the 10-to-14-words jumps, against
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only 9.5% of the 2-words jumps, for example.
Since our primary goal is to improve the handling
of long reorderings, this makes us think that we
are advancing in a promising direction.

4 Preliminary Experiments

In this section we investigate how verb reordering
on the source language can affect translation qual-
ity. We apply verb reordering both on the training
and the test data. However, while the parallel cor-
pus used for training can be reordered by exploit-
ing word alignments, for the test corpus we need
a verb reordering ”prediction model”. For these
preliminary experiments, we assumed that optimal
verb-reordering of the test data is provided by an
oracle that has access to the word alignments with
the reference translations.

4.1 Setup

We trained a Moses-based system on a subset of
the NIST-MT09 Evaluation data4 for a total of
981K sentences, 30M words. We first aligned the
data with GIZA++ and use the resulting Intersec-
tion set to apply the technique explained in Sect. 2.
We then retrained the whole system – from word
alignment to phrase scoring – on the reordered
data and evaluated it on two different versions of
Eval08-NW: plain and oracle verb-reordered, ob-
tained by exploiting word alignments with the first
of the four available English references. The first
experiment is meant to measure the impact of the
verb reordering procedure on training only. The
latter will provide an estimate of the maximum im-
provement we can expect from the application to
the test of an optimal verb reordering prediction
technique. Given our experimental setting, one
could argue that our BLEU score is biased because
one of the references was also used to generate the
verb reordering. However, in a series of exper-
iments not reported here, we evaluated the same
systems using only the remaining three references
and observed similar trends as when all four refer-
ences are used.

Feature weights were optimized through MERT
(Och, 2003) on the newswire section of the NIST-
MT06 evaluation set (Dev06-NW), in the origi-
nal version for the baseline system, in the verb-
reordered version for the reordered system.

4LDC2007T08, 2003T07, 2004E72, 2004T17, 2004T18,
2005E46, 2006E25, 2006E44 and LDC2006E39 – the two
last with first reference only.

Figure 4: BLEU scores of baseline and reordered
system on plain and oracle reordered Eval08-NW.

Fig. 4 shows the results in terms of BLEU score
for (i) the baseline system, (ii) the reordered sys-
tem on a plain version of Eval08-NW and (iii) the
reordered system on the reordered test. The scores
are plotted against the distortion limit (DL) used
in decoding. Because high DL values (8-10) im-
ply a larger search space and because we want to
give Moses the best possible conditions to prop-
erly handle long reordering, we relaxed for these
conditions the default pruning parameter to the
point that led the highest BLEU score5.

4.2 Discussion

The first observation is that the reordered system
always performs better (0.5∼0.6 points) than the
baseline on the plain test, despite the mismatch
between training and test ordering. This may be
due to the fact that automatic word alignments
are more accurate when less reordering is present
in the data, although previous work (Lopez and
Resnik, 2006) showed that even large gains in
alignment accuracy seldom lead to better trans-
lation performances. Moreover phrase extraction
may benefit from a distortion reduction, since its
heuristics rely on word order in order to expand
the context of alignment links.

The results on the oracle reordered test are also
interesting: a gain of at least 1.2 point absolute
over the baseline is reported in all tested DL condi-
tions. These improvements are remarkable, keep-
ing in mind that only 31% of the train and 33% of
the test sentences get modified by verb reordering.

5That is, the histogram pruning maximum stack size was
set to 1000 instead of the default 200.
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Figure 5: Reordering lattices for Arabic VSO sentences: word-based and chunk-based.

Concerning distortion, although long verb
movements are often observed in parallel corpora,
relaxing the DL to high values does not bene-
fit the translation, even with our ‘generous’ set-
ting (wider beam search). This is probably due to
the fact that, with weakly constrained distortion,
the risk of search errors increases as the reorder-
ing model fails to properly rank an exponentially
growing set of permutations. Therefore many cor-
rect reordering hypotheses receive low scores and
get lost in pruning or recombination.

5 Verb Reordering Lattices

Having assessed the negative impact of VSO sen-
tences on Arabic-English translation performance,
we now propose a method to improve the handling
of this phenomenon at decoding time. As in real
working conditions word alignments of the input
text are not available, we explore a reordering lat-
tice approach.

5.1 Lattice Construction

Firstly conceived to optimally encode multiple
transcription hypothesis produced by a speech rec-
ognizer, word lattices have later been used to rep-
resent various forms of input ambiguity, mainly at
the level of token boundaries (e.g. word segmenta-
tion, morphological decomposition, word decom-
pounding (Dyer et al., 2008)).

A main problem when dealing with permuta-

tions is that the lattice size can grow very quickly
when medium to long reorderings are represented.
We are particularly concerned with this issue be-
cause our decoding will perform additional re-
ordering on the lattice input. Thanks to the re-
strictions we set on our verb movement reordering
rules described in Sect. 2 – i.e. only reordering be-
tween chunks and no overlap between consecutive
verb chunks movement – we are able to produce
quite compact word lattices.

Fig. 5 illustrates how a chunk-based reordering
lattice is generated. Suppose we want to translate
the Arabic sentence “w >kdt mSAdr rsmyp wjwd
rAbT byn AlAEtdA’At”, whose English meaning is
“Official sources confirmed that there was a link
between the attacks”. The Arabic main verb >kdt
(confirmed) is in pre-subject position. If we ap-
plied word-based rather than chunk-based rules to
move the verb to the right, we would produce the
first lattice of the figure, containing 7 paths (the
original plus 6 verb movements). With the chunk-
based rules, we treat instead chunks as units and
get the second lattice. Then, by expanding each
chunk, we obtain the final, less dense lattice, that
compared to the first does not contain 3 (unlikely)
reordering edges.

To be consistent with the reordering applied to
the training data, we use a set of rules that move
each verb phrase alone or with its following chunk
by 1 to 6 chunks to the right. With this settings,
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Figure 6: Structure of a chunk-based reordering lattice for verb reordering, before word expansion. Edges
in boldface represent the verbal chunk.

our lattice generation algorithm computes a com-
pact lattice (Fig. 6) that introduces at most 5×∆S
chunk edges for each verb chunk, where ∆S is the
permitted movement range (6 in this case).

Before translation, each edge has to be associ-
ated with a weight that the decoder will use as ad-
ditional feature. To differentiate between the orig-
inal word order and verb reordering we assign a
fixed weight of 1 to the edges of the plain path, and
0.25 to the other edges. As future work we will de-
vise more discriminative weighting schemes.

5.2 Evaluation
For the experiments, we relied on the existing
Moses-implementation of non-monotonic decod-
ing for word lattices (Dyer et al., 2008) with
some fixes concerning the computation of reorder-
ing distance. The translation system is the same
as the one presented in Sect. 4, to which we
added an additional feature function evaluating
the lattice weights (weight-i). Instead of rerun-
ning MERT, we directly estimated the additional
feature-function weight over a suitable interval
(0.002 to 0.5), by running the decoder several
times on the development set. The resulting op-
timal weight was 0.05.

Table 1 presents results on three test sets:
Eval08-NW which was used to calibrate the re-
ordering rules, Reo08-NW a specific test set con-
sisting of the 33% of Eval08-NW sentences that
actually require verb reordering, and Eval09-NW
a yet unseen dataset (newswire section of the
NIST-MT09 evaluation set, 586 sentences). Best
results with lattice decoding were obtained with a
distortion limit (DL) of 4, while best performance
of text decoding was obtained with a DL of 6.

As we hoped, translating a verb reordering lat-
tice yields an additional improvement to the re-
ordering of the training corpus: from 43.67%
to 44.04% on Eval08-NW and from 48.53% to

48.96% on Eval09-NW. The gap between the
baseline and the score obtainable by oracle verb
reordering, as estimated in the preliminary exper-
iments on Eval08-NW (44.36%), has been largely
filled.

On the specific test set – Reo08-NW – we ob-
serve a performance drop when reordered models
are applied to non-reordered (plain) input: from
46.90% to 46.64%. Hence it seems that the mis-
match between training and test data is signifi-
cantly impacting on the reordering capabilities of
the system with respect to verbs. We speculate
that such negative effect is diluted in the full test
set (Eval08-NW) and compensated by the positive
influence of verb reordering on phrase extraction.
Indeed, when the lattice technique is applied we
get an improvement of about 0.6 point over the
baseline, which is still a fair result, but not as good
as the one obtained on the general test sets.

Finally, our approach led to an overall gain of
0.8 point BLEU over the baseline, on Eval09-NW.
We believe this is a satisfactory result, given the
fairly good starting performance, and given that
the BLEU metric is known not to be very sensi-
tive to word order variations (Callison-Burch et
al., 2006). For the future, we plan to also use spe-
cific evaluation metrics that will allow us to isolate
the impact of our approach on reordering, like the
ones by Birch et al. (2010).

System DL eval08nw reo08nw eval09nw

baseline 6 43.10 46.90 48.13
reord. training +

plain input 6 43.67 46.64 48.53
lattice 4 44.04 47.51 48.96
oracle reord. 4 44.36 48.25 na

Table 1: BLEU scores of baseline and reordered
system on plain test and on reordering lattices.
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6 Related Work

Linguistically motivated word reordering for
Arabic-English has been proposed in several re-
cent works. Habash (2007) extracts syntactic re-
ordering rules from a word-aligned parallel cor-
pus whose Arabic side has been fully parsed. The
rules involve reordering of syntactic constituents
and are applied in a deterministic way (always
the most probable) as preprocessing of training
and test data. The technique achieves consistent
improvements only in very restrictive conditions:
maximum phrase size of 1 and monotonic decod-
ing, thus failing to enhance the existing reorder-
ing capabilities of PSMT. In (Crego and Habash,
2008; Elming and Habash, 2009) possible in-
put permutations are represented through a word
graph, which is then processed by a monotonic
phrase- or n-gram-based decoder. Thus, these ap-
proaches are conceived as alternatives, rather than
integrations, to PSMT reordering. On the contrary,
we focused on a single type of significant long re-
orderings, in order to integrate class-specific re-
ordering methods into a standard PSMT system.

To our knowledge, the work by Niehues and
Kolss (2009) on German-English is the only ex-
ample of a lattice-based reordering approach be-
ing coupled with reordering at decoding time. In
their paper, discontinuous non-deterministic POS-
based rules learned from a word-aligned corpus
are applied to German sentences in the form of
weighted edges in a word lattice. Their phrase-
based decoder admits local reordering within a
fixed window of 2 words, while, in our work, we
performed experiments up to a distortion limit of
10. Another major difference is that we used shal-
low syntax annotation to effectively reduce the
number of possible permutations. A first attempt
to adapt our technique to the German language is
described in Hardmeier et al. (2010).

Our work is also tightly related to the prob-
lem of noun-phrase subject detection, recently ad-
dressed by Green et al. (2009). In fact, detect-
ing the extension of the subject can be a suffi-
cient condition to guess the optimal reordering of
the verb. In their paper, a discriminative classi-
fier was trained on a rich variety of linguistic fea-
tures to detect the full scope of Arabic NP subjects
in verb-initial clauses. The authors reported an F-
score of 61.3%, showing that the problem is hard
to solve even when more linguistic information is
available. In order to integrate the output of the

classifier into a PSMT decoder, a specific trans-
lation feature was designed to reward hypotheses
in which the subject is translated as a contiguous
block. Unfortunately, no improvement in transla-
tion quality was obtained.

7 Conclusions

Word reordering remains one of the hardest prob-
lems in statistical machine translation. Based on
the intuition that few reordering patterns would
suffice to handle the most significant cases of long
reorderings in Arabic-English, we decided to fo-
cus on the problem of VSO sentences.

Thanks to simple linguistic assumptions on verb
movement, we developed an efficient, low-cost
technique to reorder the training data, on the one
hand, and to better handle verb reordering at de-
coding time, on the other. In particular, translation
is performed on a compact word lattice that repre-
sents likely verb movements. The resulting system
outperforms a strong baseline in terms of BLEU,
and produces globally more readable translations.
However, the problem is not totally solved because
many verb reorderings are still missed, despite
the suggestions provided by the lattice. Different
factors can explain these errors: poor interaction
between lattice and distortion/orientation models
used by the decoder; poor discriminative power of
the target language model with respect to different
reorderings of the source.

As a first step to improvement, we will devise
a discriminative weighting scheme based on the
length of the reorderings represented in the lat-
tice. For the longer term we are working towards
bringing linguistically informed reordering con-
straints inside decoding, as an alternative to the
lattice solution. In addition, we plan to couple
our reordering technique with more informative
language models, including for instance syntac-
tic analysis of the hypothesis under construction.
Finally we would like to compare the proposed
chunk-based technique with one that exploits full
syntactic parsing of the Arabic sentence to further
decrease the reordering possibilities of the verb.
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src: w A$Ar AlsnAtwr AlY dEm h m$rwEA ErD ElY mjls Al$ywx
ref: The Senator referred to his support for a project proposed to the Senate

base MT: The Senator to support projects presented to the Senate
new MT: Senator noted his support projects presented to the Senate

src: mn jAnb h hdd >bw mSEb EbdAlwdwd Amyr AlqAEdp b blAd Almgrb AlAslAmy fy nfs Al$ryT b AlqyAm
b slslp AEtdA’At w >EmAl <rhAbyp Dd AlmSAlH w Alm&ssAt AljzA}ryp fy AlEdyd mn AlmnATq
AljzA}ryp

ref: For his part , Abu Musab Abd al-Wadud , the commander of al-Qaeda in the Islamic Maghreb Countries ,
threatened in the same tape to carry out a series of attacks and terrorist actions against Algerian interests and
organizations in many parts of Algeria

base MT: For his part threatened Abu Musab EbdAlwdwd Amir al-Qaeda Islamic Morocco country in the same tape to
carry out a series of attacks and terrorist acts against the interests and the Algerian institutions in many areas of
Algiers

new MT: For his part , Abu Musab EbdAlwdwd Amir al Qaida threatened to Morocco Islamic country in the same tape
to carry out a series of attacks and terrorist acts against the interests of the Algerian and institutions in many
areas of Algiers

src: w ymtd Alm$rwE 500 km mtr w yrbT Almdyntyn Almqdstyn b mdynp jdp ElY sAHl AlbHr Al>Hmr .
ref: The project is 500 kilometers long and connects the two holy cities with the city of Jeddah on the Red Sea coast.

base MT: It extends the project 500 km and linking the two holy cities in the city of Jeddah on the Red Sea coast .
new MT: The project extends 500 km , linking the two holy cities in the city of Jeddah on the Red Sea coast .

Figure 7: Examples showing MT improvements coming from chunk-based verb-reordering.
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Abstract

English is a typical SVO (Subject-Verb-
Object) language, while Japanese is a typ-
ical SOV language. Conventional Statis-
tical Machine Translation (SMT) systems
work well within each of these language
families. However, SMT-based translation
from an SVO language to an SOV lan-
guage does not work well because their
word orders are completely different. Re-
cently, a few groups have proposed rule-
based preprocessing methods to mitigate
this problem (Xu et al., 2009; Hong et al.,
2009). These methods rewrite SVO sen-
tences to derive more SOV-like sentences
by using a set of handcrafted rules. In this
paper, we propose an alternative single re-
ordering rule: Head Finalization. This
is a syntax-based preprocessing approach
that offers the advantage of simplicity. We
do not have to be concerned about part-
of-speech tags or rule weights because the
powerful Enju parser allows us to imple-
ment the rule at a general level. Our ex-
periments show that its result,Head Final
English (HFE), follows almost the same
order as Japanese. We also show that this
rule improves automatic evaluation scores.

1 Introduction

Statistical Machine Translation (SMT) is useful
for building a machine translator between a pair of
languages that follow similar word orders. How-
ever, SMT does not work well for distant language
pairs such as English and Japanese, since English
is an SVO language and Japanese is an SOV lan-
guage.

Some existing methods try to solve this word-
order problem in language-independent ways.
They usually parse input sentences and learn a re-
ordering decision at each node of the parse trees.

For example, Yamada and Knight (2001), Quirk et
al. (2005), Xia and McCord (2004), and Li et al.
(2007) proposed such methods.

Other methods tackle this problem in language-
dependent ways (Katz-Brown and Collins, 2008;
Collins et al., 2005; Nguyen and Shimazu, 2006).
Recently, Xu et al. (2009) and Hong et al. (2009)
proposed rule-based preprocessing methods for
SOV languages. These methods parse input sen-
tences and reorder the words using a set of hand-
crafted rules to get SOV-like sentences.

If we could completely reorder the words in in-
put sentences by preprocessing to match the word
order of the target language, we would be able to
greatly reduce the computational cost of SMT sys-
tems.

In this paper, we introduce a single reordering
rule: Head Finalization. We simply move syntac-
tic heads to the end of the corresponding syntactic
constituents (e.g., phrases and clauses). We use
only this reordering rule, and we do not have to
consider part-of-speech tags or rule weights be-
cause the powerful Enju parser allows us to im-
plement the rule at a general level.

Why do we think this works? The reason is
simple: Japanese is a typicalhead-final language.
That is, a syntactic head word comes after non-
head (dependent) words. SOV is just one as-
pect of head-final languages. In order to imple-
ment this idea, we need a parser that outputssyn-
tactic heads. Enju is such a parser from the
University of Tokyo (http://www-tsujii.is.s.

u-tokyo.ac.jp/enju ). We discuss other parsers
in section 5.

There is another kind of head:semantic heads.
Hong et al. (2009) used Stanford parser (de Marn-
effe et al., 2006), which outputs semantic head-
based dependencies; Xu et al. (2009) also used the
same representation.

The use of syntactic heads and the number
of dependentsare essential for the simplicity of
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Head Finalization (See Discussion). Our method
simply checks whether a tree node is a syntactic
head. We do not have to consider what we are
moving and how to move it. On the other hand, Xu
et al. had to introduce dozens of weighted rules,
probably because they used the semantic head-
based dependency representation without restric-
tion on the number of dependents.

The major difference between our method and
the above conventional methods, other than its
simplicity, is that our method moves not only verbs
and adjectives but also functional words such as
prepositions.

2 Head Finalization

Figure 1 shows Enju’s XML output for the simple
sentence: “John hit a ball .” The tag <cons>

indicates a nonterminal node and<tok> indicates
a terminal node or a word (token). Each node has
a uniqueid . Head information is given by the
node’shead attribute. For instance, nodec0 ’s head
is nodec3 , andc3 is a VP, or verb phrase. Thus,
Enju treats not only words but also non-terminal
nodes as heads.

Enju outputs at most two child nodes for each
node. One child is a head and the other is a depen-
dent.c3 ’s head isc4 , which isVX, or a fragment of
a verb phrase.c4 ’s head ist1 or hit , which isVBD

or a past-tense verb. The upper picture of Figure 2
shows the parse tree graphically. Here,? indicates
an edge that is linked from a ‘head.’

Our Head Finalization rule simply swaps two
children when the head child appears before the
dependent child. In the upper picture of Fig. 2,c3

has two childrenc4 and c5 . Here,c3 ’s headc4

appears beforec5 , soc4 andc5 are swapped.
The lower picture shows the swapped result.

Then we getJohn a ball hit , which has the
same word order as its Japanese translationjon wa
bohru wo uttaexcept for the functional wordsa,
wa, andwo.

We have to add Japanese particleswa (topic
marker) orga (nominative case marker) forJohn

andwo (objective case marker) forball to get an
acceptable Japanese sentence.

It is well known that SMT is not good at gen-
erating appropriate particles from English, whitch
does not have particles. Particle generation was
tackled by a few research groups (Toutanova and
Suzuki, 2007; Hong et al., 2009).

Here, we use Enju’s output to generate seeds

〈sentence id=”s0” parse status=”success”〉
〈cons id=”c0” cat=”S” xcat=”” head=”c3”〉
〈cons id=”c1” cat=”NP” xcat=”” head=”c2”〉
〈cons id=”c2” cat=”NX” xcat=”” head=”t0”〉
〈tok id=”t0” cat=”N” pos=”NNP”

base=”john”〉John〈/tok〉
〈/cons〉

〈/cons〉
〈cons id=”c3” cat=”VP” xcat=”” head=”c4”〉
〈cons id=”c4” cat=”VX” xcat=”” head=”t1”〉
〈tok id=”t1” cat=”V” pos=”VBD” base=”hit”

arg1=”c1” arg2=”c5” 〉hit〈/tok〉
〈/cons〉
〈cons id=”c5” cat=”NP” xcat=”” head=”c7”〉
〈cons id=”c6” cat=”DP” xcat=”” head=”t2〉
〈tok id=”t2” cat=”D” pos=”DT” base=”a”

arg1=”c7”〉a〈/tok〉
〈/cons〉
〈cons id=”c7” cat=”NX” xcat=”” head=”t3”〉
〈tok id=”t3” cat=”N” pos=”NN”

base=”ball”〉ball〈/tok〉
〈/cons〉

〈/cons〉
〈/cons〉
〈/cons〉

.〈/sentence〉

Figure 1: Enju’s XML output (some attributes are
removed for readability).

t0
John

t1
hit

t2
a

t3
ball

c7
?

c6
?

c5
?

c4
?

c3
?

c2
?

c1
?

c0 Original English
?

t0
John

jon (wa)

t1
hit
utta

t2
a
–

t3
ball

bohru (wo)

c7
?

c6
?

c5
?

c4
?

c3
?

c2
?

c1
?

c0 Head Final English
?

Figure 2: Head Finalization of a simple sentence
(? indicates a head).

245



2
John

5
went

7
to

9
the

10
police

12
because

15
Mary

17
lost

19
his

20
wallet

1? 14?8
?

18
?

6
?

4
?

16
?
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?
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?

3
?

0 Original English
?
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jon (wa)

5
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meari (ga)

19
his

kare no

20
wallet

saifu (wo)

17
lost

nakushita

12
because

node

9
the
–

10
police

keisatsu

7
to
ni

5
went
itta

1? 14? 8
?

18
?

6
?

4
?

16
?

13
?

11
?

3
?

0 Head Final English
?

Figure 3: Head-Finalizing a complex sentence.

for particles. As Fig. 1 shows, the verbhit has
arg1="c1" andarg2="c5" . This indicates thatc1

(John) is the subject ofhit andc5 (a ball) is
the object ofhit . We add seed wordsva1 after
arg1 and va2 after arg2 . Then, we obtainJohn

va1 a ball va2 hit . We do not have to add
arg2 for be becausebe ’s arg2 is not an object but
a complement. We introduced the idea of particle
seed words independently but found that it is very
similar to Hong et al. (2009)’s method for Korean.

Figure 3 shows Enju’s parse tree for a
more complicated sentence “John went to the

police because Mary lost his wallet. ” For
brevity, we hide the terminal nodes, and we re-
moved the nonterminal nodes’ prefixc .

Conventional Rule-Based Machine Translation
(RBMT) systems swap X and Y of “X because Y”
and move verbs to the end of each clause. Then we
get “Mary his wallet lost because John the police
to went.” Its word-to-word translation is a fluent
Japanese sentence:meari (ga) kare no saifu (wo)
nakushita node jon (wa) keisatsu ni itta.

On the other hand, our Head Finalization with
particle seed words yields a slightly different word
order “John va1 Mary va1 his wallet va2 lost
because the police to went.” Its word-to-word
translation isjon wa meari ga kare no saifu wo
nakushita node keisatsu ni itta. This is also an ac-

ceptable Japanese sentence.

This difference comes from the syntactic role
of ‘because .’ In our method, Enju states that
because is a dependent ofwent , whereas RBMT
systems treatbecause as a clause conjunction.

When we use Xu et al.’s preprocessing method,
‘because ’ moves to the beginning of the sentence.
We do not know a good monotonic translation of
the result.

Preliminary experiments show that HFE looks
good as a first approximiation of Japanese word
order. However, we can make it better by intro-
ducing some heuristic rules. (We did not see the
test set to develop these heuristic rules.)

From a preliminary experiment, we found that
coordination expressions such asA and B andA

or B are reordered asB and A and B or A . Al-
thoughA andB have syntactically equal positions,
the order of these elements sometimes matters.
Therefore, we decided to stop swapping them at
coordination nodes, which are indicatedcat and
xcat attributes of the Enju output. We call this
the coordination exception rule. In addition,
we avoid Enju’s splitting of numerical expressions
such as “12,345 ” and “(1) ” because this splitting
leads to inappropriate word orders.
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3 Experiments

In order to show how closely our Head Finaliza-
tion makes English follow Japanese word order,
we measured Kendall’sτ , a rank correlation co-
efficient. We also measured BLEU (Papineni et
al., 2002) and other automatic evaluation scores to
show that Head Finalization can actually improve
the translation quality.

We used NTCIR7 PAT-MT’s Patent corpus (Fu-
jii et al., 2008). Its training corpus has 1.8 mil-
lion sentence pairs. We used MeCab (http://

mecab.sourceforge.net/ ) to segment Japanese
sentences.

3.1 Rough evaluation of reordering

First, we examined rank correlation between Head
Final English sentences produced by the Head Fi-
nalization rule and Japanese reference sentences.
Since we do not have handcrafted word alignment
data for an English-to-Japanese bilingual corpus,
we used GIZA++ (Och and Ney, 2003) to get au-
tomatic word alignment.

Based on this automatic word alignment, we
measured Kendall’sτ for the word order between
HFE sentences and Japanese sentences. Kendall’s
τ is a kind of rank correlation measure defined as
follows. Suppose a list of integers such as L = [2,
1, 3, 4]. The number of all integer pairs in this list
is 4C2 = 4 × 3/(2 × 1) = 6. The number of in-
creasing pairs is five:(2, 3), (2, 4), (1, 3), (1, 4),
and(3, 4). Kendall’sτ is defined by

τ =
#increasing pairs

#all pairs
× 2− 1.

In this case, we getτ = 5/6× 2− 1 = 0.667.
For each sentence in the training data,

we calculate τ based on a GIZA++ align-
ment file, en-ja.A3.final . (We also tried
ja-en.A3.final , but we got similar results.) It
looks something like this:

John hit a ball .
NULL ({3}) jon ({1}) wa ({}) bohru ({4})

wo ({}) utta ({2}) . ({5})
Numbers in( { }) indicate corresponding En-

glish words. The article ‘a’ has no correspond-
ing word in Japanese, and such words are listed
in NULL ({ }) . From this alignment information,
we get an integer list [1, 4, 2, 5]. Then, we get
τ = 5/4C2 × 2− 1 = 0.667.

For HFE in Figure 2, we will get the following
alignment.

John va1 a ball va2 hit .
NULL ({3}) jon ({1}) wa ({2}) bohru({4})
wo ({5}) utta ({6}) . ({7})
Then, we get [1, 2, 4, 5, 6, 7] andτ = 1.0. We

useτ or the average ofτ over all training sentences
to observe the tendency.

Sometimes, one Japanese word corresponds to
an English phrase:

John went to Costa Rica .
NULL ({}) jon ({1}) wa ({}) kosutarika({4 5})
ni ({3}) itta ({2}) . ({6})

We get [1, 4, 5, 3, 2, 6] from this alignment.
When the same word (or derivative words) ap-

pears twice or more in a single English sentence,
two or more non-consecutive words in the English
sentence are aligned to a single Japanese word:

rate of change of speed
NULL ({}) sokudo({5}) henka({3})
no ({2 4}) wariai ({1})
We excluded the ambiguously aligned words(2

4) from the calculation ofτ . We use only [5, 3,
1] and getτ = −1.0. The exclusion of these
words will be criticized by statisticians, but even
this rough calculation ofτ sheds light on the weak
points of Head Finalization.

Because of this exclusion, the best valueτ =
1.0 does not mean that we obtained the perfect
word ordering, but lowτ values imply failures. In
section 4, we useτ to analyze failures.

By examining lowτ sentences, we found that
patent documents have a lot of expressions such
as “motor 2 .” These are reordered (2 motor ) and
slightly degradeτ . We did not notice this problem
until we handled the patent corpus because these
expressions are rare in other documents such as
news articles. Here, we added a rule to keep these
expressions.

We did not use any dictionary in our experi-
ment, but if we add dictionary entries to the train-
ing data, it raisesτ because most entries are short.
One-word entries do not affectτ because we can-
not calculateτ . Most multi-word entries are short
noun phrases that are not reordered (τ = 1.0).
Therefore, we should exclude dictionary entries
from the calculation ofτ .

3.2 Quality of translation

It must be noted that the rank correlation does not
directly measure the quality of translation. There-
fore, we also measured BLEU and other automatic
evaluation scores of the translated sentences. We
used Moses (Koehn, 2010) for Minimum Error
Rate Training and decoding.
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Figure 4: Distribution ofτ

We used the development set (915 sentences) in
the NTCIR7 PAT-MT PSD data as well as the for-
mal run test set (1,381 sentences).

In the NTCIR7 PAT-MT workshop held in 2008,
its participants used different methods such as hi-
erarchical phrase-based SMT, RBMT, and EBMT
(Example-Based Machine Translation). However,
the organizers’ Moses-based baseline system ob-
tained the best BLEU score.

4 Results

First, we showτ values to evaluate word order,
and then we show BLEU and other automatic eval-
uation scores.

4.1 Rank correlation

The original English sentences haveτ = 0.451.
Head Finalization improved it to 0.722. Figure
4 shows the distribution ofτ for all training sen-
tences. HFE reduces the percentage of lowτ sen-
tences:49.6% of the 1.8 million HFE sentences
haveτ ≥ 0.8 and 15.1% haveτ = 1.0.

We also implemented Xu et al.’s method with
the Stanford parser 1.6.2. Itsτ was 0.624. The
rate of the sentences withτ ≥ 0.8 was 30.6% and
the rate ofτ = 1.0 was 4.3%.

We examined lowτ sentences of our method
and found the following reasons for lowτ values.

• The sentence pair is not an exact one-to-one
translation. A Japanese reference sentence
for “ I bought the cake. ” can be some-
thing like “The cake I bought. ” or “ The

person who bought the cake is me. ”

• Mistakes in Enju’s tagging or parsing. We
encountered certain POS tag mistakes:

– VBZ/NNS mistake: ‘advances ’ of “ . . .

device advances along . . .” is VBZ,

main cause count
tagging/parsing mistakes 12

VBN/VBD mistake (4)
VBZ/NNS mistake (2)
comma orand (2)

inexact translation 7
wrong alignment 1

Table 1: Main causes of 20 worst sentences

but NNS is assigned.

– VBN/VBD mistake: ‘encoded ’ of
“ . . . the error correction encoded

data is supplied . . .” is VBN, but
VBD is assigned.

These tagging mistakes lead to global parsing
mistakes. In addition, just like other parsers,
Enju tends to make mistakes when a sentence
has a comma or ‘and .’

• Mistakes/Ambiguity of GIZA++ automatic
word alignment. Ambiguity happens when
a single sentence has two or more occur-
rences of a word or derivatives of a word
(e.g., difference/different/differential). As we
described above, ambiguously aligned words
are removed from calculation ofτ , and small
reordering mistakes in other words are em-
phasized.

We analyzed the 20 worst sentences withτ <
−0.5 when we used only 400,000 sentences for
GIZA++. Their causes are summarized in Table
1. In general, lowτ sentences have two or more
causes, but here we show only the most influen-
tial cause for each sentence. This table shows that
mistakes in tagging and parsing are major causes
of low τ values. When we used all of 1.8 million
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Method BLEU WER TER

proposed (0) 30.79 0.663 0.554
proposed (3) 30.97 0.665 0.554
proposed (6) 31.21 0.660 0.549
proposed (9) 31.11 0.661 0.549
proposed (12) 30.98 0.662 0.551
proposed (15) 31.00 0.662 0.552
no va (6) 30.99 0.669 0.559

Organizer 30.58 0.755 0.592

Table 2: Automatic Evaluation of Translation
Quality (Numbers in parentheses indicate distor-
tion limits).

sentence pairs, only 11 sentences hadτ < −0.5
among the 1.8 million sentences.

4.2 Automatic Evaluation of Translation
Quality

In general, it is believed that translation between
English and Japanese requires a largedistortion
limit (dl), which restricts how far a phrase can
move. SMT reasearchers working on E-J or J-
E translation often usedl=−1 (unlimited) as a
default value, and this takes a long translation
time.

For PATMT J-E translation, Katz-Brown and
Collins (2008) showed that dl=unlimited is the
best and it requires a very long translation time.
For PATMT E-J translation, Kumai et al. (2008)
claimed that they achieved the best result “when
the distortion limit was 20 instead of−1.”

Table 2 compares the single-reference BLEU
score of the proposed method and that of the
Moses-based system by the NTCIR-7 PATMT
organizers. This organizers’ system was better
than all participants (Fujii et al., 2008) in terms
of BLEU. Here, we used Bleu Kit (http://

www.mibel.cs.tsukuba.ac.jp/norimatsu/

bleu kit/ ) following the PATMT’s overview
paper (Fujii et al., 2008). The table shows that
dl=6 gives the best result, and even dl=0 (no
reordering in Moses) gives better scores than the
organizers’ Moses.

Table 2 also shows Word Error Rates (WER)
and Translation Error Rates (TER) (Snover et al.,
2006). Since they are error rates, smaller is better.
Although the improvement of BLEU is not very
impressive, the score of WER is greatly reduced.
This difference comes from the fact that BLEU
measures only local word order, while WER mea-

Method ROUGE-L IMPACT PER

proposed (6) 0.480 0.369 0.390
no va (6) 0.475 0.368 0.398

Organizer 0.403 0.339 0.384

Table 3: Improvement in word order

sures global word order. Another line ‘no va’
stands for our method withoutvas or particle
seeds. Without particle seeds, all scores slightly
drop.

Echizen-ya et al. (2009) showed that IMPACT
and ROUGE-L are highly correlated to human
evaluation in evaluating J-E patent translation.
Therefore, we also used these evaluation methods
here for E-J translation. Table 3 shows that the
proposed method is also much better than the or-
ganizers’ Moses in terms of these measures. With-
out particle seeds, these scores also drop slightly.

On the other hand, Position-independent Word
Error Rate (PER), which completely disregards
word order, does not change very much. These
facts indicate that our method improves word or-
der, which is the most important problem in E-J
translation.

The organizers’ Moses uses dl=unlimited, and
it has been reported that its MERT training took
two weeks. On the other hand, our MERT training
with dl=6 took only eight hours on a PC: Xeon
X5570 2.93 GHz. Our method takes extra time to
parse sentences by Enju, but it is easy to run the
parser in parallel.

5 Discussion

Our method used an HPSG parser, which gives
rich information, but it is not easy to build such a
parser. It is much easier to build word dependency
parsers and Penn Treebank-style parsers. In order
use these parsers, we have to add some heuristic
rules.

5.1 Word Dependency Parsers

At first, we thought that we could substitute a word
dependency parser for Enju by simply rephrasing
a head with a modified word. Xu et al. (2009)
used a semantic head-based dependency parser for
a similar purpose. Even when we use a syntac-
tic head-based dependency parser instead, we en-
countered their ‘excessive movement’ problem.

A straightforward application of their rules
changes
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Figure 5: Head Finilization does not mix up
clauses

(0) John hit the ball but Sam threw the ball.

to
(1) John the ball but Sam the ball threw hit.

Here, the two clauses are mixed up. To prevent
this, they disallow any movement across punctua-
tion and conjunctions. Then they get a better re-
sult:
(2) John the ball hit but Sam the ball threw.

When we used Enju, these clauses were not
mixed up. Enju-based Head Finalization gave the
same word order as (2):
(3) John va1 ball va2 hit but Sam va1 ball va2
throw.

Figure 5 shows Enju’s parse tree. When Head Fi-
nalization swaps the children of a mother node,
the children do not move beyond the range of
the mother node. Therefore, Head Finalization
based on Enju does not mix up the first clause
John hit the ball covered by Node 1 with the
second clauseSam threw the ball covered by
Node 11. Moreover, our coordination exception
rule keeps the order of these clauses. Thus, non-
terminal nodes in Enju’s output are useful to pro-
tect clauses.

When we use a word-dependency parser, we as-
sume that the modified words are heads. Further-
more, the Head Finalization rule is rephrased as
“move modified words after modifiers.” There-
fore, hit is moved afterthrew just like (2), and
the two clauses become mixed up. Consequently,
we need a heuristic rule like Xu’s.

5.2 Penn Treebank-style parsers

We also tried Charniak-Johnson’s parser (Char-
niak and Johnson, 2005). PyInputTree
(http://www.cs.brown.edu/˜dmcc/software/

PyInputTree/ ) gives heads. Enju outputs at
most two children for a mother node, but Penn

Treebank-style parsers do not have such a limita-
tion on the number of children. This fact causes a
problem.

When we use Enju, ‘This toy is popular in

Japan ’ is reordered as ‘This toy va1 Japan in

popular is .’ Its monotonic translation is fluent:
kono omocha wa nihon de ninki ga aru.

On the other hand, Charniak-Johnson’s parser
outputs the following S-expression for this sen-
tence (we added asterisks (* ) to indicate heads).
(S (NP (DT This) (NN * toy))

(VP* (AUX* is)
(ADJP (JJ * popular))
(PP (IN * in) (NP (NNP * Japan)))))

Simply moving heads to the end introduces
‘Japan in ’ between ‘is ’ and ‘popular ’: this toy
va1 popular Japan in is. It is difficult to translate
this monotonically because of this interruption.

Reversing the children order (Xu et al., 2009)
reconnectsis and popular . We get ‘This toy

(va1) Japan in popular is ’ from the follow-
ing reversed S-expression.
(S (NP (DT This) (NN * toy))

(VP* (PP (IN * in) (NP (NNP * Japan)))
(ADJP (JJ * popular))
(AUX* is)))

5.3 Limitation of Head Finalization

Head Finalization gives a good first approximation
of Japanese word order in spite of its simplicity.
However, it is not perfect. In fact, a small distor-
tion limit improved the performance.

Sometimes, the Japanese language does not
have an appropriate word for monotonic transla-
tion. For instance, ‘I have no time ’ becomes
‘ I va1 no time va2 have .’ Its monotonic trans-
lation is ‘watashi wa nai jikan wo motteiru ,’
but this sentence is not acceptable. An acceptable
literal translation is ‘watashi wa jikan ga nai .’
Here, ‘no ’ corresponds to ‘nai ’ at the end of the
sentence.

6 Conclusion

To solve the word-order problem between SVO
languages and SOV langugages, we introduced
a new reordering rule calledHead Finalization.
This rule is simple, and we do not have to consider
POS tags or rule weights. We also showed that this
reordering improved automatic evaluation scores
of English-to-Japanese translation. Improvement
of the BLEU score is not very impressive, but
other evaluation scores (WER, TER, LOUGE-L,
and IMPACT) are greatly improved.
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However, Head Finalization requires a sophis-
ticated HPSG tagger such as Enju. We showed
that severe failures are caused by Enju’s POS tag-
ging mistakes. We discussed the problems of other
parsers and how to solve them.

Our future work is to build our own parser that
makes fewer errors and to apply Head Finalization
to other SOV languages such as Korean.
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Abstract

We propose a method to improve the trans-
lation of pronouns by resolving their co-
reference to prior mentions. We report re-
sults using two different co-reference res-
olution methods and point to remaining
challenges.

1 Introduction

While machine translation research has made
great progress over the last years, including the in-
creasing exploitation of linguistic annotation, the
problems are mainly framed as the translation of
isolated sentences. This restriction of the task ig-
nores several discourse-level problems, such as the
translation of pronouns.

Pronouns typically refer to earlier mention of
entities, and the nature of these entities may matter
for translation. A glaring case is the translation of
the English it and they into languages with gram-
matical gender (as for instance, most European
languages). If it refers to an object that has a male
grammatical gender in the target language, then its
translation is a male pronoun (e.g., il in French),
while referring to a female object requires a fe-
male pronoun (e.g., elle in French).

Figure 1 illustrates the problem. Given a pair of
sentence such as

The window is open. It is blue.

the translation of it cannot be determined given
only the sentence it occurs in. It is essential that
we connect it to the entity the window in the pre-
vious sentence.

Making such a connection between references
to the same entity is called co-reference resolu-
tion, or anaphora resolution.1 While this problem

1In the context of pronouns, anaphora resolution and co-
reference resolution are identical, but they differ in other con-
texts.

has motivated significant research in the field of
natural language processing, the integration of co-
reference resolution methods into machine transla-
tion has been lacking. The recent wave of work on
statistical machine translation has essentially not
moved beyond sentence-level and has not touched
co-reference resolution.

Our approach to aiding pronoun translation with
co-reference resolution can be outlined as follows.
On both training and test data, we identify the
anaphoric noun of each occurrence of it and they
on the source side (English). We then identify
the noun’s translation into the target language (in
our experiments, French), and identify the target
noun’s grammatical gender. Based on that gender,
we replace it with it-masculine, it-feminine or it-
neutral (ditto for they). We train a statistical ma-
chine translation system with a thusly annotated
corpus and apply it to the annotated test sentences.

Our experiments show some degree of suc-
cess of the method, but also highlight that current
co-reference resolution methods (we implemented
Hobbs and Lappin/Laess) have not yet achieved
sufficient performance to significantly reduce the
number of errors in pronoun translation.

2 Related Work

2.1 Co-Reference and Machine Translation

The problem of anaphora resolution applied to ma-
chine translation has not been treated much in the
literature. Although some papers refer to the prob-
lem, their content is mostly concerned with the
problem of anaphora resolution and speak very lit-
tle about the integration of such an algorithm in the
bigger theme of machine translation.

Mitkov et al. [1995] deplore the lack of study
of the question and try to address it with the im-
plementation of an anaphora resolution model and
its integration into the CAT2 translation system
[Sharp, 1988], a transfer system that uses an ab-
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The window is open. It is blue. La fenêtre est ouverte. Elle est bleue. CORRECT

The window is open. It is black. La fenêtre est ouverte. Il est noir. WRONG

The oven is open. It is new. Le four est ouverte. Elle est neuve. WRONG

The door is open. It is new. La porte est ouverte. Elle est neuve. CORRECT

Figure 1: Translation errors due to lack of co-reference resolution (created with Google Translate).

stract intermediate representation. The anaphora
resolution step adds additional features to the in-
termediate representation.

Leass and Schwall [1991] present a list of rules
to be implemented directly into the machine trans-
lation system. These rules seem to work mostly
like a dictionary and are checked in a priority or-
der. They state what should be the translation of
a pronoun in each special case. Being specific to
the problem of translating anaphors into Korean,
these are of little interest to our current work.

2.2 Co-Reference : Syntactic Method

The first work on the resolution of pronouns was
done in the 1970s, largely based on a syntactic ap-
proach. This work was based on empirical data
and observations about natural languages. For ex-
ample, Winograd [1972] uses the notion of co-
reference chains when stating that if a single pro-
noun is used several times in a sentence or a group
of adjunct sentences, all instances of this pronoun
should refer to the same entity.

Others have also stated that antecedents of a
pronoun should be found in one of the n sen-
tences preceding the pronouns, where n should
be small [Klapholz and Lockman, 1975]. Hobbs
[1978] showed that this number was close to one,
although no actual limit could be really imposed.

In work by both Hobbs [1978] and Winograd
[1972], the resolution of pronouns also involves a
syntactic study of the parse tree of sentences. The
order with which candidate antecedents are prior-
itized is similar in both studies. They first look for
the antecedent to be a subject, then the direct ob-
ject of a noun and finally an indirect object. Only
thereafter previous sentences are checked for an
antecedent, in no particular order, although the left
to right order seems to be preferred in the literature
as it implicitly preserves the order just mentioned.
Winograd uses focus values of noun phrases in
sentences to choose the appropriate antecedent.

Hobbs also refers to the work by Charniak
[1972] and Wilks [1975] for the problem of
anaphora resolution. However, they do not offer a

complete solution to the problem. For this reason
Hobbs [1978] is often considered to be the most
comprehensive early syntactic study of the prob-
lem, and as such, often used as a baseline to evalu-
ate anaphora resolution methods. We use his work
and comment on it in a later section.

Another approach to anaphora resolution is
based on the centering theory first proposed by
Grosz et al. [1995]. Brennan et al. [1987] propose
an algorithm for pronoun resolution based on cen-
tering theory. Once again, the entities are ranked
according to their grammatical role, where subject
is more salient than existential constructs, which
are more salient than direct and indirect objects.
Walker [1998] further improves the theory of cen-
tering theory for anaphora resolution, proposing
the idea of cache model to replace the stack model
described originally.

Another syntactic approach to the problem of
co-reference resolution is the use of weighted
features by Lappin and Leass [1994] which we
present in more details in a further section. This al-
gorithm is based on two modules, a syntactic filter
followed by a system of salience weighting. The
algorithm gathers all potential noun phrase an-
tecedents of a pronoun from the current and close
previous sentences. The syntactic filter then filters
out the ones that are unlikely to be antecedents, ac-
cording to different rules, including general agree-
ment rules. The remaining candidate noun phrases
are weighted according to salience factors. The
authors demonstrate a higher success rate with
their algorithm (86%) than with their implemen-
tation of the Hobbs algorithm (82%).

2.3 Co-Reference : Statistical Approach

Machine Learning has also been applied to the
problem of anaphora resolution. Ng [2005] gives
a survey of the research carried out in this area.

The work by Aone and Bennett [1995] is among
the first in this field. It applies machine learning to
anaphora resolution on Japanese text. The authors
use a set of 66 features, related to both the referent
itself and to the relation between the referent and
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its antecedent. They include ”lexical (e.g. cate-
gory), syntactic (e.g. grammatical role), semantic
(e.g. semantic class), and positional (e.g. distance
between anaphor and antecedent)” information.

Ge et al. [1998] also present a statistical algo-
rithm based on the study of statistical data in a
large corpus and the application of a naive Bayes
model. The authors report an accuracy rate of
82.9%, or 84.2% with the addition of statistical
data on gender categorization of words.

In more recent work, Kehler et al. [2004] show
a move towards the use of common-sense knowl-
edge to help the resolution of anaphors. They use
referring probabilities taken from a large anno-
tated corpus as a knowledge base.

2.4 Shared Tasks and Evaluation

Although a fairly large amount of research has
been done in the field, it is often reported [Mitkov
et al., 1995] that there does not yet exist a method
to resolve pronouns which is entirely satisfactory
and effective. Different kinds of texts (novel,
newspaper,...) pose problems [Hobbs, 1978] and
the field is also victim of lack of standardization.

Algorithms are evaluated on different texts and
large annotated corpora with co-reference infor-
mation is lacking to check results. A response to
these problems came with the creation of shared
tasks, such as the MUC [Grishman and Sund-
heim, 1996] which included a co-reference sub-
task [Chinchor and Hirschmann, 1997] and led to
the creation of the MUC-6 and MUC-7 corpora.

There are other annotation efforts worth men-
tioning, such as the ARRAU corpus [Poesio and
Artstein, 2008] which include texts from various
sources and deals with previous problems in an-
notation such as anaphora ambiguity and anno-
tation of information on agreement, grammatical
function and reference. The Anaphoric Bank and
the Phrase Detectives are both part of the Anawiki
project [Poesio et al., 2008] and also promise the
creation of a standardized corpus. The first one al-
lows for the sharing of annotated corpora. The sec-
ond is a collaborative effort to annotate large cor-
pora through the Web. In its first year of use, the
system saw the resolution of 700,000 pronouns.

3 Method

The method has two main aspects: the application
of co-reference to annotate pronouns and the sub-
sequent integration into statistical machine trans-

lation. We begin our description with the latter
aspect.

3.1 Integration into Machine Translation

English pronouns such as it (and they) do not
have a unique French translation, but rather sev-
eral words are potential translations. Note that for
simplicity we comment here on the pronoun it, but
the same conclusions can be drawn from the study
of the plural pronoun they.

In most cases, the translation ambiguity can-
not be resolved in the context of a single sentence
because the pronoun refers to an antecedent in a
previous sentence. Statistical machine translation
focuses on single sentences and therefore cannot
deal with antecedents in previous sentences. Our
approach does not fundamentally change the sta-
tistical machine translation approach, but treats the
necessary pronoun classification as a external task.

Hence, the pronoun it is annotated, resulting
in the three different surface forms presented to
the translation system: it-neutral, it-feminine, it-
masculine. These therefore encode the gender in-
formation of the pronoun and each of them will
be match to its corresponding French translation
in the translation table.

An interesting point to note is the fact that these
pronouns only encode gender information about
the pronouns and omit number and person infor-
mation. This has two reasons.

Firstly, study of the lexical translation table for
the baseline system shows that the probability of
having the singular pronoun it translated into the
plural pronouns ils and elles is 10 times smaller
than the one for the singular/singular translation
pair. This means that the number of times a sin-
gular pronoun in English translates into a plural
pronoun in French is negligible.

The other reason to omit the cases when a sin-
gular pronoun is translated into a plural pronoun is
due to the performance of our algorithm. Indeed,
the detection of number information in the algo-
rithm is not good enough and returns many false
results which would reduce the performance of the
final system. Also, adding the number agreement
to the pronoun would mean a high segmentation
between all the different possibilities, which we
assumed would result in worse performance of the
translation system.

Once we have created a way to tag the pronouns
with gender information, the system needs to learn
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The  window  is open.

It  is blue.

La fenêtre est ouverte.

It-feminine  is blue.

 

FEMININE

③ lexical resources

④ annotation

② training: word alignment, test: translation mapping

① co-reference resolution

Figure 2: Overview of the process to annotate pronouns: The word it is connected to the antecedent
window which was translated as fenêtre, a feminine noun. Thus, the pronoun is annotated as it-feminine.

the new probabilities that link the source language
pronoun to the target language pronouns. That is
all instances of it in the training data, which can
be found at any position in the corpus sentences,
should be replaced by one of its three declension.
However, it is important to stress that the gender
information that should be encoded in the English
corpus is the one which corresponds to the gender
of the French translation of the antecedent.

In order to find the correct gender information
for the pronoun, we execute the co-reference reso-
lution algorithm on the English text which returns
the antecedent of the pronoun (more on this in the
next section). Note that we are not interested in the
English gender of the antecedent, but in gender of
its translation.

Thus, we need to detect the French translation
of the English antecedent. For the training data,
we rely on the word alignment that is produced as
a by-product of the training of a statistical machine
translation system. For the test data, we rely on
the implicit word mapping performed during the
translation process.

Note that this requires in practice the translation
of all preceding sentences before we can annotate
the current sentence. To avoid this practical bur-
den in our experiments, we simply use the map-
ping in the baseline translation. The performance
of the sentence alignment (88

Once the French word is obtained, it is used as
the input of a module which returns the gender of
the entity in French. This is then used to replace
the original pronoun with the new gendered pro-
noun.

The entire process is illustrated in Figure 2.

3.2 The Hobbs Algorithm

The Hobbs algorithm is considered to be the base-
line algorithm for co-reference resolution. The al-
gorithm uses the syntactic parse tree of the sen-
tences as input.

The algorithm traverses the parse tree and se-
lects appropriate candidate referents to the pro-
noun. It goes up sentence nodes and checks all
NP nodes encountered for agreement with the pro-
noun. The order in which the algorithm traverses
the tree ensures that some priorities are respected,
to make sure the most probable antecedent is re-
turned first. By doing this, the algorithm tends
to enforces some of the constraints that apply to
co-reference [Jurafsky et al., 2000]. The recency
constraint is enforced thanks to the order in which
the algorithm traverses the sentences and both the
binding and grammatical role constraints are en-
forced by the use of the syntactic tree and Part-Of-
Speech tags on the words.

Because the algorithm only uses the parse tree
of the sentences, the semantic meaning of words
is completely omitted in the process of select-
ing candidate antecedents and no knowledge is
required except for the implicit knowledge con-
tained within agreement features.

As mentioned earlier, the Hobbs algorithm goes
up the tree from the given pronoun to the top of the
tree and stops at each sentence or noun node on its
way. In each of these nodes, it performs breadth
first search of the sub tree and returns any noun
phrase node encountered as a potential antecedent.
If the antecedent is genuine (according to gender,
number, and person agreement), it is returned.
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In case no antecedent was found in the current
sentence, the algorithm goes back up in the text,
looking at each sentence separately, in a left-to-
right breadth first fashion. This ensures that the
subject/object/indirect object priorities and hierar-
chy are respected. Again, if a candidate NP has
matching agreement features, it is returned as the
antecedent of the pronoun. Otherwise the algo-
rithm goes one sentence higher.

The original algorithm uses limited knowledge
because it assumes that:

• Dates do not move.
• Places do not move.
• Large fixed objects don’t move.

This add limited semantic restrictions for the an-
tecedent chosen. Indeed, if the pronoun is fol-
lowed by a motion verb, the antecedent could not
be a date, a place or a large fixed object. However,
as Hobbs states himself, those constraints help lit-
tle since they do not apply in most cases.

3.3 The Lappin and Leass Algorithm
Lappin and Leass [1994] proposed an anaphora
resolution algorithm for third person pronouns and
lexical anaphors. It is based on slot grammar and
uses syntax combined with a system of weights
to select the appropriate antecedent of a pronoun.
The implementation of the algorithm we deal with
here is fairly different from the one presented in
the original paper, and is largely inspired from the
JavaRAP implementation [Qiu et al., 2004].

The first important variation was mentioned ear-
lier and concerns the application of co-reference
resolution to machine translation. We concen-
trate in this work on the resolution of third per-
son pronouns, and we omit reflexive pronouns (it-
self, themselves) (referred to as lexical anaphora in
some works).

Another variation comes from the use of the
Collins parser [Collins, 2003]. Although work on
the original algorithm uses McCord’s Slot Gram-
mar parser [McCord, 1990], work on JavaRAP
shows that rules can be created to simulate the cat-
egories and predicates used in slot grammar. Also,
Preiss [2002] evaluates the use of different parsers
for the Lappin and Leass algorithm, showing that
performance of the algorithm is not related to the
performance of the parser itself. The JavaRAP im-
plementation uses a Charniak parser, which per-
forms worse than the Collins parser in Preiss’ re-
search.

For these reasons and in order to allow for reuse
of the code used previously in the implementation
of the Hobbs algorithm, the input to the Lappin
and Leass algorithm is text parsed with the Collins
parser.

It should be noted that the Lappin and Le-
ass algorithm (also called RAP for Resolution of
Anaphora Procedure) has been used in the original
research for the application of machine translation.

The algorithm processes sentence by sentence,
keeping in memory the information regarding the
last four sentences. In the first step of the algo-
rithm, all noun phrases (NPs) are extracted and
classified. Definite and indefinite NPs are sep-
arated, and pleonastic pronouns are segregated
from other pronouns.

The notion of salience is very important in
RAP, as it allows the algorithm to choose between
competing NPs. All candidate NPs are given a
”salience weighting”, which represents the impor-
tance and visibility of the phrase in the sentence,
and in relation to the pronoun that is being re-
solved.

Salience weighting is based on the syntactic
form of the sentence and the value for an NP is
calculated through the contribution, or not, of dif-
ferent salience factors, to which weights are asso-
ciated. This calculation ensures that different im-
portance will be given to a subject noun phrase in
a sentence, and a noun phrase that is embedded in
another or that represents the indirect object of a
verb.

There are a number of salience factors such
as sentence recency, subject emphasis, existential
emphasis, accusative emphasis, etc. Each factor is
associated with a predefined weight.

Once the weight of each candidate has been cal-
culated, the algorithm uses syntactic information
to filter out the noun phrases that the pronoun is
unlikely to refer to. This includes agreement and
other checks.

The list of candidate NPs obtained after this
processing is then cleared of all NPs that fall un-
der a given threshold. The original algorithm then
deals with singular and plural pronouns in differ-
ent ways. The JavaRAP implementation however
does not use these differences and we refer the
reader to Lappin and Leass’ paper for further in-
formation.

Finally, the candidate NPs mentioned in the pre-
vious list are ranked according to their salience
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weights and the highest scoring one is returned as
the antecedent of the pronoun. In case several NPs
have the same salience weight, the one closest to
the pronoun is returned.

3.4 Pleonastic It

English makes an extensive use of the pronoun it
in a pleonastic fashion. That is, many times, it is
considered to be structural and does not refer to
any entity previously mentioned. The following
are examples of pleonastic uses of it:

• It is raining.
• It seems important that I see him.
• The session is opened, it was announced.

Being able to discriminate the use of a struc-
tural it from the use of a referential use of it is
very important for the success of the co-reference
algorithm. Indeed, resolving a pleonastic it will
be a waste of time for the algorithm, and more im-
portantly, it will increase the chance of errors and
will result in poorer performances. Moreover, the
pleonastic it is most times translated masculine in
French, meaning any other resolution by the algo-
rithm will yield errors.

In the past, the importance given to the detec-
tion of the pleonastic use of it has varied from au-
thor to author. As an example, Rush et al. [1971],
in their work on automatic summarization, only
mentioned the problem. Others formed a set of
rules to detect them, such as Liddy et al. [1987]
with 142 rules, or Lappin and Leass [1994] who
propose a very restricted set of rules for the detec-
tion of the structural it.

Paice and Husk [1987] carried out extensive re-
search on the topic and their paper defines various
categories for the pronoun it as well as proposing
a set of rules that allow to differentiate when the
pronoun it is used as a relational pronoun or as a
pleonastic pronoun.

Their method categorise words according to the
presence of given words around the pronoun it.
They distinguish constructs such as it VERB STA-
TUS to TASK ; construct expressing doubt contain-
ing words such as whether, if, how ; parenthetical
it such as it seems, it was said. The original arti-
cle identifies seven categories for pleonastic pro-
nouns.

Since their own results showed a success rate
of 92.2% on a test section of the LOBC corpus
and the implementation of their technique yields

results similar to the implementation of a machine
learning technique, this method seemed appropri-
ate for our purpose.

4 Experiments

In this section, we comment on the tools used for
the implementation of the algorithms, as well as
support tools and corpora.

The implementation of both of the algorithms
was done using the Python programming lan-
guage, which was chosen for its simplicity in pro-
cessing text files and because it is the language in
which the Natural Language Toolkit is developed.

The Natural Language Toolkit (NLTK) is a suite
of Python modules used for research into natural
language processing. We mostly used its Tree and
ParentedTree modules which enable the represen-
tation of parse trees into tree structures. NLTK
also includes a naive Bayes classifier, which we
used in association with the names corpus in order
to classify proper names into gender categories ac-
cording to a set of features. We also use NLTK for
its named entity capacities, in order to find ani-
macity information of entities.

English sentences were annotated with the MX-
POST Part of Speech tagger and the Collins syn-
tactic parser.

The Lefff lexicon, introduced by Sagot et al.
[2006] was used to get agreement features of
French words. It contains over 80,000 French
words,2 along with gender and number informa-
tion.

We used the open source Moses toolkit [Koehn
et al., 2007] and trained standard phrase-based
translation models.

As training data, we used the Europarl corpus
[Koehn, 2005], a commonly used parallel corpus
in statistical machine translation research. While
there are also commonly used Europarl test sets,
these do not contain sentences in sequence for
complete documents. Instead, we used as test set
the proceedings from October 5, 2000 - a set of
1742 sentences from the held-out portion of the
corpus. We translated the test set both with a base-
line system and a system trained on the annotated
training data and tested on an annotated test set.

2The original version version of the lexicon is available
from http://www.labri.fr/perso/clement/lefff/.
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Word Count
English singular he 17,181

she 4,575
it 214,047

French singular il 187,921
elle 45,682

English plural they 54,776
French plural ils 32,350

elles 16,238

Table 1: Number of sentences in the training cor-
pus containing third person personal pronouns.

Truth Method
Pleonastic Referential

Pleonastic 42 20
Referential 19 98

Table 2: Detection of pleonastic pronouns

5 Results

5.1 Corpus Statistics for Pronouns
Personal pronouns are among the most frequent
words in text. In the training corpus of 1,393,452
sentences, about a 6th contain third person per-
sonal pronouns. See Table 1 for detailed statistics.

The English pronoun it is much more frequent
than he or she. For both languages, the masculine
forms are more frequent than the feminine forms.

There are then a total of 233,603 sentences con-
taining a third person pronoun in French, and
235,803 sentences containing a third person pro-
noun in English. This means that over 2,000
of those pronouns in English do not have equiv-
alent in French. Similarly for plural: A total
of 48,588 sentences contain a plural pronoun in
French, against 54,776 in English. That shows that
over 6,000 of the English ones are not translated
into French.

5.2 Detection of the Pleonastic it
We checked, how well our method for pleonas-
tic it detection works on a section of the test set.
We achieved both recall and precision of 83% for
the categorization of the referential it. For details,
please see Table 2.

5.3 Translation Probabilities
Let us now examine the translation probabilities
for the annotated and un-annotated pronouns. De-
tails are given in Table 3.

correct annotation 33/59 56%
correct translation:

annotated 40/59 68%
correctly annotated 27/33 82%

baseline 41/59 69%

Table 4: Translation Results: On a manually ex-
amined portion of the test set, only 33 of 59 pro-
nouns are labeled correctly. The translation results
of our method does not differ significantly from
the baseline. Most of the correctly annotated pro-
nouns are translated correctly.

In the baseline system, both it and they have
a strong translation preference for the masculine
over the feminine form of the French pronoun.
It translates with probability 0.307 to il and with
probability 0.090 to elle. The rest of the probabil-
ity mass is taken up by the NULL token, punctua-
tion, and a long tail of unlikely choices.

For both the Hobbs and the Lappin/Laess algo-
rithm, the probability distribution is shifted to the
desired French pronoun. The shift is strongest for
the masculine marked they, which prefers the mas-
culine ils with 0.431 over the feminine elles with
0.053 (numbers for Hobbs, Lappin/Laess numbers
are 0.435 and 0.054, respectively).

Feminine marked pronouns now slightly prefer
feminine French forms, overcoming the original
bias. The neutrally marked pronouns shift slightly
in favor of masculine translations.

The pronoun they-neutral appears in 12,424
sentences in the corpus, which all represent failed
resolution of the co-reference. Indeed, French
does not have neutral gender and the plural third
person pronoun is never pleonastic. These results
therefore show that a lot of noise is added to the
system.

5.4 Translation Results

The BLEU scores for our method is almost iden-
tical to the baseline performance. This is not sur-
prising, since we only expect to change the transla-
tion of a small number of words (however, impor-
tant words for understanding the meaning of the
text).

A better evaluation metric is the number of cor-
rectly translated pronouns. This requires manual
inspection of the translation results. Results are
given in Table 4.

While the shift of the translation probabilities
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Unannotated Hobbs Lappin and Laess

English French p English French p English French p
it il 0.307 it-neutral il 0.369 it-neutral il 0.372
it elle 0.090 it-neutral elle 0.065 it-neutral elle 0.064

it-masculine il 0.230 it-masculine il 0.211
it-masculine elle 0.060 it-masculine elle 0.051
it-feminine il 0.144 it-feminine il 0.142
it-feminine elle 0.168 it-feminine elle 0.156

they ils 0.341 they-neutral ils 0.344 they-neutral ils 0.354
they elles 0.130 they-neutral elles 0.102 they-neutral elles 0.090

they-masc. ils 0.435 they-masc. ils 0.431
they-masc. elles 0.053 they-masc. elles 0.054
they-feminine ils 0.208 they-feminine ils 0.207
they-feminine elles 0.259 they-feminine elles 0.255

Table 3: Translation probabilities. The probabilities of gender-marked pronouns are shifted to the
corresponding gender in the two cases the text was annotated with the co-reference resolution methods
mentionned earlier.

suggests that we are moving the translation of pro-
nouns in the right direction, this is not reflected by
the sample of pronoun translations we inspected.
In fact, the performance for our method is almost
identical to the baseline (68% and 69%, respec-
tively).

One cause for this is the poor performance
of the co-reference resolution method, which la-
bels only 56% of pronouns correctly. On this
sub-sample of correctly annotated pronouns, we
achieve 82% correct translations. However, the
baseline method also performs well on this subset.

6 Conclusion

We presented a method to aid pronoun transla-
tion for statistical machine translation by using co-
reference resolution. This is to our knowledge the
first such work.

While our method works in principle, the re-
sults are not yet convincing. The main problem
is the low performance of the co-reference resolu-
tion algorithm we used. The method works well
when the co-reference resolution algorithm pro-
vides correct results.

Future work should concentrate on better co-
reference algorithms. The context of machine
translation also provides an interesting testbed for
such algorithms, since it offers standard test sets
for many language pairs.

7 Acknowledgements

This work was supported by the EuroMatrixPlus
project funded by the European Commission (7th
Framework Programme).

References

C. Aone and S.W. Bennett. Evaluating automated
and manual acquisition of anaphora resolution
strategies. In Proceedings of the 33rd annual
meeting on Association for Computational Lin-
guistics, pages 122–129. Association for Com-
putational Linguistics Morristown, NJ, USA,
1995.

S. E. Brennan, M. W. Friedman, and C. J. Pollard.
A centering approach to pronouns. In Proceed-
ings of the 25th annual meeting on Association
for Computational Linguistics, pages 155–162,
1987.

E. Charniak. Toward a model of children’s story
comprehension. MIT, 1972.

N. Chinchor and L. Hirschmann. MUC-7 corefer-
ence task definition, version 3.0. In Proceedings
of MUC, volume 7, 1997.

M. Collins. Head-driven statistical models for nat-
ural language parsing. Computational Linguis-
tics, 29(4):589–637, 2003.

N. Ge, J. Hale, and E. Charniak. A statistical ap-
proach to anaphora resolution. In Proceedings
of the Sixth Workshop on Very Large Corpora,
pages 161–170, 1998.

259



R. Grishman and B. Sundheim. Message un-
derstanding conference-6: A brief history. In
Proceedings of the 16th conference on Com-
putational Linguistics-Volume 1, pages 466–
471. Association for Computational Linguistics
Morristown, NJ, USA, 1996.

B. J. Grosz, S. Weinstein, and A. K. Joshi. Center-
ing: A framework for modeling the local coher-
ence of discourse. Computational Linguistics,
21(2):203–225, 1995.

J. R. Hobbs. Resolving Pronoun References. Lin-
gua, 44:339–352, 1978.

D. Jurafsky, J. H. Martin, A. Kehler, K. Van-
der Linden, and N. Ward. Speech and language
processing. Prentice Hall New York, 2000.

A. Kehler, D. Appelt, L. Taylor, and A. Simma.
The (non) utility of predicate-argument fre-
quencies for pronoun interpretation. In Proc. of
HLT-NAACL, volume 4, pages 289–296, 2004.

D. Klapholz and A. Lockman. Contextual refer-
ence resolution. American Journal of Compu-
tational Linguistics, microfiche 36, 1975.

Philipp Koehn. Europarl: A parallel corpus for
statistical machine translation. In Proceedings
of the Tenth Machine Translation Summit (MT
Summit X), Phuket, Thailand, September 2005.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen,
Christine Moran, Richard Zens, Christopher J.
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Abstract

We present Jane, RWTH’s hierarchical
phrase-based translation system, which
has been open sourced for the scientific
community. This system has been in de-
velopment at RWTH for the last two years
and has been successfully applied in dif-
ferent machine translation evaluations. It
includes extensions to the hierarchical ap-
proach developed by RWTH as well as
other research institutions. In this paper
we give an overview of its main features.

We also introduce a novel reordering
model for the hierarchical phrase-based
approach which further enhances transla-
tion performance, and analyze the effect
some recent extended lexicon models have
on the performance of the system.

1 Introduction

We present a new open source toolkit for hi-
erarchical phrase-based translation, as described
in (Chiang, 2007). The hierarchical phrase model
is an extension of the standard phrase model,
where the phrases are allowed to have “gaps”. In
this way, long-distance dependencies and reorder-
ings can be modelled in a consistent way. As in
nearly all current statistical approaches to machine
translation, this model is embedded in a log-linear
model combination.

RWTH has been developing this tool during
the last two years and it was used success-
fully in numerous machine translation evalua-
tions. It is developed in C++ with special at-
tention to clean code, extensibility and efficiency.
The toolkit is available under an open source
non-commercial license and downloadable from
http://www.hltpr.rwth-aachen.de/jane.

In this paper we give an overview of the main
features of the toolkit and introduce two new ex-

tensions to the hierarchical model. The first one
is an additional reordering model inspired by the
reordering widely used in phrase-based transla-
tion systems and the second one comprises two
extended lexicon models which further improve
translation performance.

2 Related Work

Jane implements many features presented in pre-
vious work developed both at RWTH and other
groups. As we go over the features of the system
we will provide the corresponding references.

Jane is not the first system of its kind, al-
though it provides some unique features. There
are other open source hierarchical decoders avail-
able. These include

• SAMT (Zollmann and Venugopal, 2006):
The original version is not maintained any
more and we had problems working on big
corpora. A new version which requires
Hadoop has just been released, however the
documentation is still missing.

• Joshua (Li et al., 2009): A decoder written
in Java by the John Hopkins University. This
project is the most similar to our own, how-
ever both were developed independently and
each one has some unique features. A brief
comparison between these two systems is in-
cluded in Section 5.1.

• Moses (Koehn et al., 2007): The de-facto
standard phrase-based translation decoder
has now been extended to support hierarchi-
cal translation. This is still in an experimental
branch, however.

3 Features

In this section we will only give a brief overview
of the features implemented in Jane. For de-
tailed explanation of previously published algo-
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rithms and methods, we refer to the given litera-
ture.

3.1 Search Algorithms

The search for the best translation proceeds in two
steps. First, a monolingual parsing of the input
sentence is carried out using the CYK+ algorithm
(Chappelier and Rajman, 1998), a generalization
of the CYK algorithm which relaxes the require-
ment for the grammar to be in Chomsky normal
form. From the CYK+ chart we extract a hyper-
graph representing the parsing space.

In a second step the translations are generated,
computing the language model scores in an inte-
grated fashion. Both the cube pruning and cube
growing algorithms (Huang and Chiang, 2007) are
implemented. For the latter case, the extensions
concerning the language model heuristics similar
to (Vilar and Ney, 2009) have also been included.

3.2 Language Models

Jane supports four formats for n-gram language
models:

• The ARPA format for language models. We
use the SRI toolkit (Stolcke, 2002) to support
this format.

• The binary language model format supported
by the SRI toolkit. This format allows for a
more efficient language model storage, which
reduces loading times. In order to reduce
memory consumption, the language model
can be reloaded for every sentence, filtering
the n-grams that will be needed for scoring
the possible translations. This format is spe-
cially useful for this case.

• Randomized LMs as described in (Talbot and
Osborne, 2007), using the open source im-
plementation made available by the authors
of the paper. This approach uses a space ef-
ficient but approximate representation of the
set of n-grams in the language model. In
particular the probability for unseen n-grams
may be overestimated.

• An in-house, exact representation format
with on-demand loading of n-grams, using
the internal prefix-tree implementation which
is also used for phrase storage (see also Sec-
tion 3.9).

Several language models (also of mixed formats)
can be used during search. Their scores are com-
bined in the log-linear framework.

3.3 Syntactic Features
Soft syntactic features comparable to (Vilar et al.,
2008) are implemented in the extraction step of
the toolkit. In search, they are considered as ad-
ditional feature functions of the translation rules.

The decoder is able to handle an arbitrary num-
ber of non-terminal symbols. The extraction has
been extended so that the extraction of SAMT-
rules is included (Zollmann and Venugopal, 2006)
but this approach is not fully supported (there
may be empty parses due to the extended num-
ber of non-terminals). We instead opted to sup-
port the generalization presented in (Venugopal et
al., 2009), where the information about the new
non-terminals is included as an additional feature
in the log-linear model.

In addition, dependency information in the
spirit of (Shen et al., 2008) is included. Jane fea-
tures models for string-to-dependency language
models and computes various scores based on the
well-formedness of the resulting dependency tree.

Jane supports the Stanford parsing format,1 but
can be easily extended to other parsers.

3.4 Additional Reordering Models
In the standard formulation of the hierarchical
phrase-based translation model two additional
rules are added:

S → 〈S∼0X∼1, S∼0X∼1〉
S → 〈X∼0, X∼0〉

(1)

This allows for a monotonic concatenation of
phrases, very much in the way monotonic phrase-
based translation is carried out.

It is a well-known fact that for phrase-based
translation, the use of additional reordering mod-
els is a key component, essential for achieving
good translation quality. In the hierarchical model,
the reordering is already integrated in the transla-
tion formalism, but there are still cases where the
required reorderings are not captured by the hier-
archical phrases alone.

The flexibility of the grammar formalism allows
us to add additional reordering models without the
need to explicitely modify the code for supporting
them. The most straightforward example would

1http://nlp.stanford.edu/software/lex-parser.shtml
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be to include the ITG-Reorderings (Wu, 1997), by
adding following rule

S → 〈S∼0S∼1, S∼1S∼0〉 (2)

We can also model other reordering constraints.
As an example, phrase-level IBM reordering con-
straints with a window length of 1 can be included
substituting the rules in Equation (1) with follow-
ing rules

S → 〈M∼0,M∼0〉
S → 〈M∼0S∼1,M∼0S∼1〉
S → 〈B∼0M∼1,M∼1B∼0〉
M → 〈X∼0, X∼0〉
M → 〈M∼0X∼1,M∼0X∼1〉
B → 〈X∼0, X∼0〉
B → 〈B∼0X∼1, X∼1B∼0〉

(3)

In these rules we have added two additional non-
terminals. The M non-terminal denotes a mono-
tonic block and the B non-terminal a back jump.
Actually both of them represent monotonic trans-
lations and the grammar could be simplified by
using only one of them. Separating them allows
for more flexibility, e.g. when restricting the jump
width, where we only have to restrict the maxi-
mum span width of the non-terminal B. These
rules can be generalized for other reordering con-
straints or window lengths.

Additionally distance-based costs can be com-
puted for these reorderings. To the best of our
knowledge, this is the first time such additional
reorderings have been applied to the hierarchical
phrase-based approach.

3.5 Extended Lexicon Models
We enriched Jane with the ability to score hy-
potheses with discriminative and trigger-based
lexicon models that use global source sentence
context and are capable of predicting context-
specific target words. This approach has recently
been shown to improve the translation results of
conventional phrase-based systems. In this sec-
tion, we briefly review the basic aspects of these
extended lexicon models. They are similar to
(Mauser et al., 2009), and we refer there for a more
detailed exposition on the training procedures and
results in conventional phrase-based decoding.

Note that the training for these models is not
distributed together with Jane.

3.5.1 Discriminative Word Lexicon
The first of the two lexicon models is denoted as
discriminative word lexicon (DWL) and acts as a
statistical classifier that decides whether a word
from the target vocabulary should be included in
a translation hypothesis. For that purpose, it con-
siders all the words from the source sentence, but
does not take any position information into ac-
count, i.e. it operates on sets, not on sequences or
even trees. The probability of a word being part
of the target sentence, given a set of source words,
are decomposed into binary features, one for each
source vocabulary entry. These binary features are
combined in a log-linear fashion with correspond-
ing feature weights. The discriminative word lex-
icon is trained independently for each target word
using the L-BFGS (Byrd et al., 1995) algorithm.
For regularization, Gaussian priors are utilized.

DWL model probabilities are computed as

p(e|f) =
∏

e∈VE

p(e−|f) ·
∏
e∈e

p(e+|f)
p(e−|f)

(4)

with VE being the target vocabulary, e the set of
target words in a sentence, and f the set of source
words, respectively. Here, the event e+ is used
when the target word e is included in the target
sentence and e− if not. As the left part of the prod-
uct in Equation (4) is constant given a source sen-
tence, it can be dropped, which enables us to score
partial hypotheses during search.

3.5.2 Triplet Lexicon
The second lexicon model we employ in Jane,
the triplet lexicon model, is in many aspects re-
lated to IBM model 1 (Brown et al., 1993), but
extends it with an additional word in the con-
ditioning part of the lexical probabilities. This
introduces a means for an improved representa-
tion of long-range dependencies in the data. Like
IBM model 1, the triplets are trained iteratively
with the Expectation-Maximization (EM) algo-
rithm (Dempster et al., 1977). Jane implements
the so-called inverse triplet model p(e|f, f ′).

The triplet lexicon model score t(·) of the ap-
plication of a rule X → 〈α, β〉 where (α, β) is
a bilingual phrase pair that may contain symbols
from the non-terminal set is computed as

t(α, β, fJ
0 ) = (5)

−
∑

e

log

 2
J · (J + 1)

∑
j

∑
j′>j

p(e|fj , fj′)
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with e ranging over all terminal symbols in the tar-
get part β of the rule. The second sum selects all
words from the source sentence fJ

0 (including the
empty word that is denoted as f0 here). The third
sum incorporates the rest of the source sentence
right of the first triggering word. The order of
the triggers is not relevant because per definition
p(e|f, f ′) = p(e|f ′, f), i.e. the model is symmet-
ric. Non-terminals in β have to be skipped when
the rule is scored.

In Jane, we also implemented scoring for a vari-
ant of the triplet lexicon model called the path-
constrained (or path-aligned) triplet model. The
characteristic of path-constrained triplets is that
the first trigger f is restricted to the aligned target
word e. The second trigger f ′ is allowed to move
along the whole remaining source sentence. For
the training of the model, we use word alignment
information obtained by GIZA++ (Och and Ney,
2003). To be able to apply the model in search,
Jane has to be run with a phrase table that con-
tains word alignment for each phrase, too, with the
exception of phrases which are composed purely
of non-terminals. Jane’s phrase extraction can op-
tionally supply this information from the training
data.

(Hasan et al., 2008) and (Hasan and Ney, 2009)
employ similar techniques and provide some more
discussion on the path-aligned variant of the
model and other possible restrictions.

3.6 Forced Alignments

Jane has also preliminary support for forced align-
ments between a given source and target sentence.
Given a sentence in the source language and its
translation in the target language, we find the best
way the source sentence can be translated into
the given target sentence, using the available in-
ventory of phrases. This is needed for more ad-
vanced training approaches like the ones presented
in (Blunsom et al., 2008) or (Cmejrek et al., 2009).
As reported in these papers, due to the restrictions
in the phrase extraction process, not all sentences
in the training corpus can be aligned in this way.

3.7 Optimization Methods

Two method based on n-best for minimum error
rate training (MERT) of the parameters of the log-
linear model are included in Jane. The first one
is the procedure described in (Och, 2003), which
has become a standard in the machine translation

community. We use an in-house implementation
of the method.

The second one is the MIRA algorithm, first
applied for machine translation in (Chiang et al.,
2009). This algorithm is more adequate when the
number of parameters to optimize is large.

If the Numerical Recipes library (Press et al.,
2002) is available, an additional general purpose
optimization tool is also compiled. Using this
tool a single-best optimization procedure based on
the downhill simplex method (Nelder and Mead,
1965) is included. This method, however, can be
considered deprecated in favour of the above men-
tioned methods.

3.8 Parallelized operation

If the Sun Grid Engine2 is available, all operations
of Jane can be parallelized. For the extraction pro-
cess, the corpus is split into chunks (the granular-
ity being user-controlled) which are distributed in
the computer cluster. Count collection, marginal
computation and count normalization all happens
in an automatic and parallel manner.

For the translation process a batch job is started
on a number of computers. A server distributes the
sentences to translate to the computers that have
been made available to the translation job.

The optimization process also benefits from
the parallelized optimization. Additionally, for
the minimum error rate training methods, random
restarts may be performed on different computers
in a parallel fashion.

The same client-server infrastructure used for
parallel translation may also be reused for inter-
active systems. Although no code in this direction
is provided, one would only need to implement a
corresponding frontend which communicates with
the translation server (which may be located on an-
other machine).

3.9 Extensibility

One of the goals when implementing the toolkit
was to make it easy to extend it with new features.
For this, an abstract class was created which we
called secondary model. New models need only to
derive from this class and implement the abstract
methods for data reading and costs computation.
This allows for an encapsulation of the computa-
tions, which can be activated and deactivated on
demand. The models described in Sections 3.3

2http://www.sun.com/software/sge/
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through 3.5 are implemented in this way. We thus
try to achieve loose coupling in the implementa-
tion.

In addition a flexible prefix tree implementation
with on-demand loading capabilities is included as
part of the code. This class has been used for im-
plementing on-demand loading of phrases in the
spirit of (Zens and Ney, 2007) and the on-demand
n-gram format described in Section 3.2, in addi-
tion to some intermediate steps in the phrase ex-
traction process. The code may also be reused in
other, independent projects.

3.10 Code

The main core of Jane has been implemented in
C++. Our guideline was to write code that was
correct, maintainable and efficient. We tried to
achieve correctness by means of unit tests inte-
grated in the source as well as regression tests. We
also defined a set of coding guidelines, which we
try to enforce in order to have readable and main-
tainable code. Examples include using descriptive
variable names, appending an underscore to pri-
vate members of classes or having each class name
start with an uppercase letter while variable names
start with lowercase letters.

The code is documented at great length using
the doxygen system,3 and the filling up of the
missing parts is an ongoing effort. Every tool
comes with an extensive help functionality, and
the main tools also have their own man pages.

As for efficiency we always try to speed up the
code and reduce memory consumption by imple-
menting better algorithms. We try to avoid “dark
magic programming methods” and hard to follow
optimizations are only applied in critical parts of
the code. We try to document every such occur-
rence.

4 Experimental Results

In this section we will present some experimental
results obtained using Jane. We will pay special
attention to the performance of the new reordering
and lexicon models presented in this paper. We
will present results on three different large-scale
tasks and language pairs.

Additionally RWTH participated in this year’s
WMT evaluation, where Jane was one of the sub-
mitted systems. We refer to the system description
for supplementary experimental results.

3http://www.doxygen.org

dev test
System BLEU TER BLEU TER

Jane baseline 24.2 59.5 25.4 57.4
+ reordering 25.2 58.2 26.5 56.1

Table 1: Results for Europarl German-English
data. BLEU and TER results are in percentage.

4.1 Europarl Data

The first task is the Europarl as defined in the
Quaero project. The main part of the corpus in
this task consists of the Europarl corpus as used in
the WMT evaluation (Callison-Burch et al., 2009),
with some additional data collected in the scope of
the project.

We tried the reordering approach presented in
Section 3.4 on the German-English language pair.
The results are shown in Table 1. As can be seen
from these results, the additional reorderings ob-
tain nearly 1% improvement both in BLEU and
TER scores. Regrettably for this corpus the ex-
tended lexicon models did not bring any improve-
ments.

Table 2 shows the results for the French-English
language pair of the Europarl task. On this task
the extended lexicon models yield an improve-
ment over the baseline system of 0.9% in BLEU
and 0.9% in TER on the test set.

4.2 NIST Arabic-English

We also show results on the Arabic-English
NIST’08 task, using the NIST’06 set as develop-
ment set. It has been reported in other work that
the hierarchical system is not competitive with a
phrase-based system for this language pair (Birch
et al., 2009). We report the figures of our state-
of-the-art phrase-based system as comparison (de-
noted as PBT).

As can be seen from Table 3, the baseline
Jane system is in fact 0.6% worse in BLEU and
1.0% worse in TER than the baseline PBT sys-
tem. When we include the extended lexicon mod-
els we see that the difference in performance is re-
duced. For Jane the extended lexicon models give
an improvement of up to 1.9% in BLEU and 1.7%
in TER, respectively, bringing the system on par
with the PBT system extended with the same lex-
icon models, and obtaining an even slightly better
BLEU score.
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dev test

BLEU TER BLEU TER

Baseline 30.0 52.6 31.1 50.0

DWL 30.4 52.2 31.4 49.6

Triplets 30.4 52.0 31.7 49.4

path-constrained Triplets 30.3 52.1 31.6 49.3

DWL + Triplets 30.7 52.0 32.0 49.1

DWL + path-constrained Triplets 30.8 51.7 31.6 49.3

Table 2: Results for the French-English task. BLEU and TER results are in percentage.

dev (MT’06) test (MT’08)

Jane PBT Jane PBT

BLEU TER BLEU TER BLEU TER BLEU TER

Baseline 43.2 50.8 44.1 49.4 44.1 50.1 44.7 49.1

DWL 45.3 48.7 45.1 48.4 45.6 48.4 45.6 48.4

Triplets 44.4 49.1 44.6 49.2 45.3 48.8 44.9 49.0

path-constrained Triplets 44.3 49.4 44.7 49.1 44.9 49.3 45.3 48.7

DWL + Triplets 45.0 48.9 45.1 48.5 45.3 48.6 45.5 48.5

DWL + path-constrained Triplets 45.2 48.8 45.1 48.6 46.0 48.5 45.8 48.3

Table 3: Results for the Arabic-English task. BLEU and TER results are in percentage.

5 Discussion

We feel that the hierarchical phrase-based transla-
tion approach still shares some shortcomings con-
cerning lexical selection with conventional phrase-
based translation. Bilingual lexical context be-
yond the phrase boundaries is barely taken into
account by the base model. In particular, if only
one generic non-terminal is used, the selection of
a sub-phrase that fills the gap of a hierarchical
phrase is not affected by the words composing the
phrase it is embedded in – except for the language
model score. This shortcoming is one of the issues
syntactically motivated models try to address.

The extended lexicon models analyzed in this
work also try to address this issue. One can con-
sider that they complement the efforts that are be-
ing made on a deep structural level within the hi-
erarchical approach. Though they are trained on
surface forms only, without any syntactic informa-

tion, they still operate at a scope that exceeds the
capability of common feature sets of standard hi-
erarchical phrase-based SMT systems.

As the experiments in Section 4 show, the ef-
fect of these extended lexicon models is more im-
portant for the hierarchical phrase-based approach
than for the phrase-based approach. In our opinion
this is probably mainly due to the higher flexibil-
ity of the hierarchical system, both because of its
intrinsic nature and because of the higher number
of phrases extracted by the system. The scoring
of the phrases is still carried out by simple relative
frequencies, which seem to be insufficient. The
additional lexicon models seem to help in this re-
spect.

5.1 Short Comparison with Joshua
As mentioned in Section 2, Joshua is the most
similar decoder to our own. It was developed in
parallel at the Johns Hopkins University and it is
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System words/sec

Joshua 11.6
Jane cube prune 15.9
Jane cube grow 60.3

Table 4: Speed comparison Jane vs. Joshua. We
measure the translated words per second.

currently used by a number of groups around the
world.

Jane was started separately and independently.
In their basic working mode, both systems imple-
ment parsing using a synchronous grammar and
include language model information. Each of the
projects then progressed independently, most of
the features described in Section 3 being only
available in Jane.

Efficiency is one of the points where we think
Jane outperforms Joshua. One of the reasons can
well be the fact that it is written in C++ while
Joshua is written in Java. In order to compare run-
ning times we converted a grammar extracted by
Jane to Joshua’s format and adapted the parame-
ters accordingly. To the best of our knowledge we
configured both decoders to perform the same task
(cube pruning, 300-best generation, same pruning
parameters). Except for some minor differences4

the results were equal.
We tried this setup on the IWSLT’08 Arabic to

English translation task. The speed results (mea-
sured in translated words per second) can be seen
in Table 4. Jane operating with cube prune is
nearly 50% faster than Joshua, at the same level
of translation performance. If we switch to cube
grow, the speed difference is even bigger, with
a speedup of nearly 4 times. However this usu-
ally comes with a penalty in BLEU score (nor-
mally under 0.5% BLEU in our experience). This
increased speed can be specially interesting for
applications like interactive machine translation
or online translation services, where the response
time is critical and sometimes even more impor-
tant than a small (and often hardly noticeable) loss
in translation quality.

Another important point concerning efficiency
is the startup time. Thanks to the binary format
described in Section 3.9, there is virtually no delay

4E.g. the OOVs seem to be handled in a slightly different
way, as the placement was sometimes different.

in the loading of the phrase table in Jane.5 In fact
Joshua’s long phrase table loading times were the
main reason the performance measures were done
on a small corpus like IWSLT instead of one of the
large tasks described in Section 4.

We want to make clear that we did not go into
great depth in the workings of Joshua, just stayed
at the basic level described in the manual. This
tool is used also for large-scale evaluations and
hence there certainly are settings for dealing with
these big tasks. Therefore this comparison has to
be taken with a grain of salt.

We also want to stress that we explicitly chose
to leave translation results out of this comparison.
Several different components have great impact
on translation quality, including phrase extraction,
minimum error training and additional parameter
settings of the decoder. As we pointed out we
do not have the expertise in Joshua to perform all
these tasks in an optimal way, and for that reason
we did not include such a comparison. However,
both JHU and RWTH participated in this year’s
WMT evaluation, where the systems, applied by
their respective authors, can be directly compared.

And in no way do we see Joshua and Jane as
“competing” systems. Having different systems
is always enriching, and particularly as system
combination shows great improvements in trans-
lation quality, having several alternative systems
can only be considered a positive situation.

6 Licensing

Jane is distributed under a custom open source
license. This includes free usage for non-
commercial purposes as long as any changes made
to the original software are published under the
terms of the same license. The exact formulation
is available at the download page for Jane.

7 Conclusion

With Jane, we release a state-of-the-art hi-
erarchical toolkit to the scientific community
and hope to provide a good starting point for
fellow researchers, allowing them to have a
solid system even if the research field is new
to them. It is available for download from
http://www.hltpr.rwth-aachen.de/jane. The
system in its current state is stable and efficient
enough to handle even large-scale tasks such as

5There is, however, still some delay when loading the lan-
guage model for some of the supported formats.
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the WMT and NIST evaluations, while producing
highly competitive results.

Moreover, we presented additional reordering
and lexicon models that further enhance the per-
formance of the system.

And in case you are wondering, Jane is Just an
Acronym, Nothing Else. The name comes from
the character in the Ender’s Game series (Card,
1986).
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Abstract

LIUM participated in the System Combi-
nation task of the Fifth Workshop on Sta-
tistical Machine Translation (WMT 2010).
Hypotheses from 5 French/English MT
systems were combined with MANY, an
open source system combination software
based on confusion networks currently de-
veloped at LIUM.

The system combination yielded signifi-
cant improvements in BLEU score when
applied on WMT’09 data. The same be-
havior has been observed when tuning is
performed on development data of this
year evaluation.

1 Introduction

This year, the LIUM computer science labora-
tory has participated in the French-English sys-
tem combination task at WMT’10 evaluation cam-
paign. The system used for this task is MANY1

(Barrault, 2010), an open source system combina-
tion software based on Confusion Networks (CN).
Several improvements have been made in order to
being able to combine many systems outputs in a
decent time.

The focus has been put on the tuning step, and
more precisely how to perform system parameter
tuning. Two methods have been experimented cor-
responding to two different representations of sys-
tem combination. In the first one, system combi-
nation is considered as a whole : fed by system
hypotheses as input and generating a new hypoth-
esis as output. The second method considers that
the alignment module is independent from the de-
coder, so that the parameters from each module
can be tuned separately.

1MANY is available at the following address http://
www-lium.univ-lemans.fr/˜barrault/MANY

Those tuning approaches are described in sec-
tion 3. Before that, a quick description of MANY,
including recent developments, can be found in
section 2. Results on WMT’09 data are pre-
sented in section 4 along results of tuning on
newssyscombtune2010.

2 System description

MANY is a system combination software (Bar-
rault, 2010) based on the decoding of a lattice
made of several Confusion Networks (CN). This is
a widespread approach in MT system combination
(Rosti et al., 2007); (Shen et al., 2008); (Karakos
et al., 2008). MANY can be decomposed in two
main modules. The first one is the alignment mod-
ule which actually is a modified version of TERp
(Snover et al., 2009). Its role is to incrementally
align the hypotheses against a backbone in order to
create a confusion network. Those confusion net-
works are then connected together to create a lat-
tice. This module uses different costs (which cor-
responds to a match, an insertion, a deletion, a sub-
stitution, a shift, a synonym and a stem) to com-
pute the best alignment and incrementally build
a confusion network. In the case of confusion
network, the match (substitution, synonyms, and
stems) costs are considered when the word in the
hypothesis matches (is a substitution, a synonyms
or a stems of) at least one word of the considered
confusion sets in the CN, as shown in Figure 1.

The second module is the decoder. This decoder
is based on the token pass algorithm and it accepts
as input the lattice previously created. The proba-
bilities computed in the decoder can be expressed
as follow :

log(PW ) =
Len(W )∑

n=0

{
α1logPws(n) + α2logPlm(n)

+α3Lpen(n) + α4Npen(n)
}

(1)

where Len(W ) is the length of the hypothesis,
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Figure 1: Incremental alignment with TERp re-
sulting in a confusion network.

Pws(n) is the score of the nth word in the lattice,
Plm(n) is its LM probability, Lpen(n) is the length
penalty (which apply when Wn is not a null-arc),
Npen(n) is the penalty applied when crossing a
null-arc, and the αi are the features weights.

Multithreading

One major issue with system combination con-
cerns scaling. Indeed, in order to not lose infor-
mation about word order, all system hypotheses
are considered as backbone and all other hypothe-
ses are aligned to it to create a CN. Consequently,
if we consider N system outputs, then to build N
confusion networks, N ∗ (N − 1) alignments with
modified TERp have to be performed. Moreover,
in order to get better results, the TERp costs have
to be optimized, which requires a lot of iterations,
all of which calculate N ∗ (N − 1) alignments.
However, the building of a CN with system i as
backbone does not depend on the building of CN
with other system as backbone. Therefore multi-
threading has been integrated into MANY so that
multiple CNs can be created in parallel. From now
on, the number of thread can be specified in the
configuration file.

3 Tuning

As mentioned before, MANY is made of two main
modules : the alignment module based on a modi-
fied version of TERp and the decoder. Considering
10 systems, 19 parameters in total have to be op-
timized in order to get better results. By default,
TERp costs are set to 0.0 for match and 1.0 for
everything else. These costs are not correct, since
a shift in that case will hardly be possible. TERp

costs, system priors, fudge factor, null-arc penalty,
length penalty are tuned with Condor (a global op-
timizer based on the Powell’s algorithm, (Berghen
and Bersini, 2005)).

Two ways of tuning have been experimented.
The first one consists in optimizing the whole set
of parameters together (see section 3.1). The sec-
ond one rely on the (maybe likely) independence
of the TERp parameters towards those of the de-
coder and consists in tuning TERp parameters in
a first step and then using the optimized TERp
costs when tuning the decoder parameters (see
section 3.2).

3.1 Tuning all parameters together
Condor is an optimizer which aims at minimizing
a certain objective function. In our case, the ob-
jective function is the whole system combination.
As input, it takes the whole set of parameters (i.e.
TERp costs except match costs (which is always
set to 0), system priors, the fudge factor, and null-
arc and length penalty) and outputs -BLEU score.
The BLEU score is one of the most robust met-
rics as presented in (Leusch et al., 2009), which is
consequently an obvious target for optimization.

Such a tuning protocol has the disadvantage
to be slower as all the confusion networks have
to be regenerated at each step because the TERp
costs provided by the optimizer will hardly be the
same for two iterations (thus, confusion networks
computed during previous iterations can hardly be
reused). Another issue with this approach is that it
is hard to converge when the parameter set is that
large. This is mainly due to the fact that we can-
not guarantee the convexity of the problem. How-
ever, one advantage is that the possible correlation
between all parameters are taken into account dur-
ing the optimization process, which is not the case
when optimizing in several steps.

3.2 Two-step tuning
Tuning TERp parameters : In order to opti-
mize TERp parameters (i.e. del, ins, sub, shift,
stem and syn costs), we have to determine which
measure to use to evaluate a certain configuration.
We naturally considered the minimization of the
TERp score. To do so, the confusion networks are
built using the set of parameters given by the op-
timizer. TERp scores are then calculated between
the reference and each CN, and summed up.

The goal of this step is to guide the confusion
networks generation process to produce sentences
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similar to the reference. Consequently, if the con-
fusion networks generated at this step have a lower
TERp score, then this means that the decoder is
more likely to find a better hypothesis inside.

Tuning decoder parameters : Based on the
TERp configuration determined at the previous
step, this step aims at finding good parameter val-
ues. Those parameters control the final hypothe-
sis size and the importance given to the language
model probabilities compared to the translation
scores (occurring on words). The metric which is
minimized is -BLEU for the same reasons men-
tioned in section 3.1.

4 Experiments and Results

During experiments, data from last year evaluation
campaign are used for testing the tuning approach.
news-dev2009a is used as development set, and
news-dev2009b as internal test, these corpora are
described in Table 1.

NAME #sent. #words #tok
news-dev2009a 1025 21583 24595
news-dev2009b 1026 21837 24940

Table 1: WMT’09 corpora : number of sentences,
words and tokens calculated on the reference.

For the sake of speed and simplicity, the five
best systems (ranking given by score on dev) are
considered only. Baseline systems performances
on dev and test are presented in Table 2.

Corpus Sys0 Sys1 Sys2 Sys3 Sys4
Dev 18.20 17.83 20.14 21.06 17.72
Test 18.53 18.33 20.43 21.35 18.15

Table 2: Baseline systems performance on
WMT’09 data (%BLEU).

When tuning all parameters together, the set ob-
tained is presented in Table 3. The 2-step tuning

Costs : Del Stem Syn Ins Sub Shift
0.89 0.94 1.04 0.98 0.94 0.94

Dec. : Fudge Nullpen Lenpen
0.01 0.25 1.46

Weights : Sys0 Sys1 Sys2 Sys3 Sys4
0.04 0.04 0.16 0.26 0.04

Table 3: Parameters obtained with 1-step tuning.

protocol applied on news-dev2009a provides the
set of parameters presented in Table 4.

Costs : Del Stem Syn Ins Sub Shift
9e-6 0.89 1.22 0.26 0.44 1.76

Dec. : Fudge Nullpen Lenpen
0.1 0.27 2.1

Weights : Sys0 Sys1 Sys2 Sys3 Sys4
0.07 0.09 0.09 0.09 0.11

Table 4: Parameters obtained with 2-step tuning.

Results on development corpus of WMT’09
(used as test set) are presented in Table 5. We

System Dev Test
Best single 21.06 21.35
MANY 22.08 22.28
MANY-2steps 21.94 22.09

Table 5: System Combination results on WMT’09
data.

can observe that 2-step tuning provides almost 0.9
BLEU point improvement on development corpus
which is well reflected on test set with a gain of
more than 0.7 BLEU. The best results are obtain
when tuning all parameters together, which give
more than 1 BLEU point improvement on dev and
more than 0.9 on test.

4.1 Discussion

Choosing a measure to optimize the TERp costs is
not something easy. One important remark is that
default (equal) costs are not suitable to get good
confusion networks. The goal of the confusion
networks is to make possible the generation of a
new hypothesis which can be different from those
provided by each individual system.

In these experiments, TERp calculated between
the CNs and the reference is used as the distance
to be minimized by the optimizer. We can no-
tice that for the 2-step optimization, the deletion
cost is very small. This is probably not a value
which is expected, because in this case, this means
that deletions can occur in an hypothesis without
penalizing it a lot. However, this parameter set
has a beneficial impact on the system combination
performance. Another comment is that the sys-
tem weights are not directly proportional to the re-
sults. This suggests that some phrases proposed
by weaker systems can have a higher importance
for system combination.

By contrast, optimizing parameters all together
provides more fair weights, according to the re-
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sults of the single systems.

4.2 2010 evaluation campaign

For this year system combination tasks, a de-
velopment corpus (syscombtune) and the test
(syscombtest), described in Table 6, were pro-
vided to participants.

NAME #sentences #words #words tok
syscombtune 455 9348 10755
syscombtest 2034 - -

Table 6: Description of WMT’10 corpora.

Language model : The English target language
models has been trained on all monolingual data
provided for the translation tasks. In addition,
LDC’s Gigaword collection was used for both lan-
guages. Data corresponding to the development
and test periods were removed from the Gigaword
collections.

Tuning on syscombdev2010 corpus produced
the parameter set presented in Table 7

Costs : Del Stem Syn Ins Sub Shift

Dec. : Fudge Nullpen Lenpen
0.01 0.33 1.6

Weights : Sys0 Sys1 Sys2 Sys3 Sys4
0.11 0.21 0.04 0.15 0.15

Table 7: Parameters obtained with tuning.

The result provided by the system with this con-
figuration can be compared to the single systems
in Table 8.

System newssyscombtune2010
Sys0 27.74
Sys1 27.26
Sys2 27.15
Sys3 27.06
Sys4 27.04

MANY 28.63

Table 8: Baseline systems performance on
WMT’10 development data (%BLEU).

A behavior comparable to WMT’09 evaluation
campaign is observed, which suggests that the ap-
proach is correct.

5 Conclusion and future work

We have shown that tuning all parameters together
is better than 2-step tuning. However, the second
method has not been fully explored. Tuning TERp
parameters targeting minimum TERp score is not
satisfying. Therefore, an alternative measure, like
ngram agreement which would be more related to
BLEU, can be considered in order to obtain better
parameters.

Further improvement for MANY will be con-
sidered like case insensitive combination then re-
casing the output using majority vote on the con-
fusion networks. This is currently a work in
progress.
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Koç University

34450 Sariyer, Istanbul, Turkey
ebicici@ku.edu.tr

S. Serdar Kozat
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Abstract

We analyze adaptive model weight-
ing techniques for reranking using in-
stance scores obtained by L1 regular-
ized transductive regression. Compet-
itive statistical machine translation is
an on-line learning technique for se-
quential translation tasks where we
try to select the best among com-
peting statistical machine translators.
The competitive predictor assigns a
probability per model weighted by
the sequential performance. We de-
fine additive, multiplicative, and loss-
based weight updates with exponential
loss functions for competitive statisti-
cal machine translation. Without any
pre-knowledge of the performance of
the translation models, we succeed in
achieving the performance of the best
model in all systems and surpass their
performance in most of the language
pairs we considered.

1 Introduction

When seen as independent instances, system
combination task can be solved with a sequen-
tial learning algorithm. Online learning algo-
rithms enable us to benefit from previous good
model choices to estimate the next best model.
We use transductive regression based machine
translation model to estimate the scores for
each sentence.

We analyze adaptive model weighting tech-
niques for system combination when the com-
peting translators are SMT models. We use
separate model weights weighted by the se-
quential performance. We use additive, mul-
tiplicative, or loss based weight updates to
update model weights. Without any pre-

knowledge of the performance of the transla-
tion models, we are able to achieve the per-
formance of the best model in all systems and
we can surpass its performance as well as the
regression based machine translation’s perfor-
mance.

The next section reviews the transductive
regression approach for machine translation,
which we use to obtain instance scores. In sec-
tion 3 we present competitive statistical ma-
chine translation model for solving sequential
translation tasks with competing translation
models. Section 4 presents our results and ex-
periments and the last section gives a sum-
mary of our contributions.

2 Transductive Regression Based
Machine Translation

Transduction uses test instances, which can
sometimes be accessible at training time, to
learn specific models tailored towards the test
set. Transduction has computational advan-
tages since we are not using the full train-
ing set and a smaller set of constraints exist
to satisfy. Transductive regression based ma-
chine translation (TRegMT) aims to reduce
the computational burden of the regression ap-
proach by reducing the dimensionality of the
training set and the feature set and also im-
prove the translation quality by using trans-
duction.

Regression Based Machine Translation:
Let n training instances be represented as
(x1,y1), . . . , (xn,yn) ∈ X∗×Y ∗, where (xi,yi)
corresponds to a pair of source and target lan-
guage token sequences. Our goal is to find
a mapping f : X∗ → Y ∗ that can convert a
given set of source tokens to a set of target to-
kens that share the same meaning in the target
language.

276



We use feature mappers ΦX : X∗ →
FX = RNX and ΦY : Y ∗ → FY =
RNY to represent the training set. Then,
MX ∈ RNX×n and MY ∈ RNY ×n such that
MX = [ΦX(x1), . . . ,ΦX(xn)] and MY =
[ΦY (y1), . . . ,ΦY (yn)]. The ridge regression
solution using L2 regularization is found as:

HL2 = arg min
H∈RNY ×NX

‖MY −HMX ‖2F +λ‖H‖2F . (1)

Two main challenges of the regression based
machine translation (RegMT) approach are
learning the regression function, g : X∗ →
FY , and solving the pre-image problem, which,
given the features of the estimated target
string sequence, g(x) = ΦY (ŷ), attempts to
find y ∈ Y ∗: f(x) = arg miny∈Y ∗ ||g(x) −
ΦY (y)||2. Pre-image calculation involves a
search over possible translations minimizing
the cost function:

f(x) = arg min
y∈Y ∗

‖ΦY (y)−HΦX(x)‖2 . (2)

We use n-spectrum weighted word feature
mappers (Taylor and Cristianini, 2004) which
consider all word sequences up to order n.

L1 Regularized Regression for Learning:
HL2 is not a sparse solution as most of the co-
efficients remain non-zero. L1 norm behaves
both as a feature selection technique and a
method for reducing coefficient values.

HL1 = arg min
H∈RNY ×NX

‖MY −HMX ‖2F +λ‖H‖1 .(3)

Equation 3 presents the lasso (least absolute
shrinkage and selection operator) (Tibshirani,
1996) solution where the regularization term
is defined as ‖H‖1=

∑
i,j |Hi,j |. We use for-

ward stagewise regression (FSR) (Hastie et
al., 2006) and quadratic programming (QP) to
find HL1 . The details of the TRegMT model
can be read in a separate submission to the
translation task (Bicici and Yuret, 2010).

3 Competitive Statistical Machine
Translation

We develop the Competitive Statistical Ma-
chine Translation (CSMT) framework for se-
quential translation tasks when the compet-
ing models are statistical machine translators.

CSMT uses the output of different translation
models to achieve a translation performance
that surpasses the translation performance of
all of the component models or achieves the
performance of the best.

CSMT uses online learning to update the
weights used for estimating the best perform-
ing translation model. Competitive predictor
assigns a weight per model estimated by their
sequential performance. At each step, m com-
ponent translation models are executed in par-
allel over the input source sentence sequence
and the loss lp[n] of model p at observation
n is calculated by comparing the desired data
y[n] with the output of model p, ŷp[n]. CSMT
model selects a model based on the weights
and the performance of the selected model as
well as the remaining models to adaptively up-
date the weights given for each model. This
corresponds to learning in full information set-
ting where we have access to the loss for each
action (Blum and Mansour, 2007). CSMT
learning involves two main steps: estimation
and weight update:

ŷc[n] = E(w[n],x[n]), (estimation)
lp[n] = y[n]− ŷp[n], (instance loss)
Lp[n] =

∑n
i=1 lp[i]

2, (cumulative loss)
w[n+ 1] = U(w[n], ŷc[n],LLL[n]), (update)

(4)
where w[n] = (w1[n], . . . , wm[n]) for m mod-
els, Lp is the cumulative squared loss of model
p, LLL[n] stores cumulative and instance losses,
and ŷc[n] is the competitive model estimated
for instance n. The learning problem is finding
an adaptive w that minimizes the cumulative
squared error with appropriate estimation and
update methods.

Related Work: Multistage adaptive filter-
ing (Kozat and Singer, 2002) combines the
output of multiple adaptive filters to outper-
form the best among them where the first
stage executes models in parallel and the sec-
ond stage updates parameters using the per-
formance of the combined prediction, ŷc[n].
Macherey and Och (2007) investigate different
approaches for system combination including
candidate selection that maximize a weighted
combination of BLEU scores among different
system outputs. Their system uses a fixed
weight vector trained on the development set
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to be multiplied with instance BLEU scores.

3.1 Estimating the Best Performing
Translation Model

We use additive, multiplicative, or loss based
updates to estimate model weights. We
measure instance loss with trLoss(y[i], ŷp[i]),
which is a function that returns the transla-
tion performance of the output translation of
model p with respect to the reference transla-
tion at instance i. 1-BLEU (Papineni et al.,
2001) is one such function with outputs in the
range [0, 1]. Cumulative squared loss of the
p-th translation model is defined as:

Lp[n] =
n∑
i=1

trLoss(y[i], ŷp[i])2. (5)

We use exponentially re-weighted prediction to
estimate model performances, which uses ex-
ponentially re-weighted losses based on the
outputs of the m different translation models.

We define the additive exponential weight
update as follows:

wp[n+ 1] =
wp[n] + e−η lp[n]

m∑
k=1

(
wk[n] + e−η lk[n]

) , (6)

where η > 0 is the learning rate and the de-
nominator is used for normalization. The up-
date amount, e−η lp[n] is 1 when lp[n] = 0 and it
approaches zero with increasing instance loss.
Perceptrons, gradient descent, and Widrow-
Huff learning have additive weight updates.

We define the multiplicative exponential
weight update as follows:

wp[n+ 1] = wp[n]× e−η lp[n]2

m∑
k=1

wk[n] e−η lk[n]2
, (7)

where we use the squared instance loss. Equa-
tion 7 is similar to the update of Weighted Ma-
jority Algorithm (Littlestone and Warmuth,
1992) where the weights of the models that
make a mistake are multiplied by a fixed β
such that 0 ≤ β < 1.

We use Bayesian Information Criterion
(BIC) as a loss based re-weighting technique.
Assuming that instance losses are normally

distributed with variance σ2, BIC score is ob-
tained as (Hastie et al., 2009):

BICp[n] =
Lp[n]
σ2

+ dp log(n), (8)

where σ2 is estimated by the average of model
sample variances of squared instance loss and
dp is the number of parameters used in model p
which we assume to be the same for all models;
therefore we can discard the second term. The
model with the minimum BIC value becomes
the one with the highest posterior probability
where the posterior probability of model p can
be estimated as (Hastie et al., 2009):

wp[n+ 1] =
e−

1
2
BICp[n]

m∑
k=1

e−
1
2
BICk[n]

. (9)

The posterior probabilities become model
weights and we basically forget about the pre-
vious weights, whose information is presum-
ably contained in the cumulative loss, Lp. We
define multiplicative re-weighting with BIC
scores as follows:

wp[n+ 1] = wp[n]× e−
1
2
BICp

m∑
k=1

wk[n] e−
1
2
BICk

. (10)

Model selection: We use stochastic or de-
terministic selection to choose the competitive
model for each instance. Deterministic choice
randomly selects among the maximum scor-
ing models with minimum translation length
whereas stochastic choice draws model p with
probability proportional to wp[n]. Random-
ization with the stochastic model selection
decreases expected mistake bounds in the
weighted majority algorithm (Littlestone and
Warmuth, 1992; Blum, 1996).

Auer et al. (2002) show that optimal fixed
learning rate for the weighted majority algo-
rithm is found as η[n] =

√
m/L∗[n] where

L∗[n] = min1≤i≤m Li[n], which requires prior
knowledge of the cumulative losses. We use
η =

√
m/(0.05n) for constant η.

4 Experiments and Discussion

We perform experiments on the system com-
bination task for the English-German (en-
de), German-English (de-en), English-French
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(en-fr), English-Spanish (en-es), and English-
Czech (en-cz ) language pairs using the trans-
lation outputs for all the competing systems
provided in WMT10. We experiment in a sim-
ulated online learning setting where only the
scores obtained from the TRegMT system are
used during both tuning and testing. We do
not use reference translations in measuring in-
stance performance in this simulated setting
for the results we obtain be in line with sys-
tem combination challenge’s goals.

4.1 Datasets

We use the training set provided in WMT10 to
index and select transductive instances from.
The challenge split the test set for the transla-
tion task of 2489 sentences into a tuning set of
455 sentences and a test set with the remain-
ing 2034 sentences. Translation outputs for
each system is given in a separate file and the
number of system outputs per translation pair
varies. We have tokenized and lowercased each
of the system outputs and combined these in
a single N -best file per language pair. We use
BLEU (Papineni et al., 2001) and NIST (Dod-
dington, 2002) evaluation metrics for measur-
ing the performance of translations automati-
cally.

4.2 Reranking Scores

The problem we are solving is online learn-
ing with prior information, which comes from
the comparative BLEU scores, LM scores, and
TRegMT scores at each step n. The scoring
functions are explained below:

1. TRegMT: Transductive regression based
machine translation scores as found by
Equation 2. We use the TRegMT scores
obtained by the FSR model.

2. CBLEU: Comparative BLEU scores we
obtain by measuring the average BLEU
performance of each translation relative
to the other systems’ translations in the
N -best list.

3. LM: We calculate 5-gram language model
scores for each translation using the lan-
guage model trained over the target cor-
pus provided in the translation task.

To make things simpler, we use a single prior
TRegMT system score linearly combining the

three scores mentioned with weights learned
on the tuning set. The overall TRegMT sys-
tem score for instance n, model i is referred as
TRegScorei[n].

Since we do not have access to the refer-
ence translations nor to the translation model
scores each system obtained for each sentence,
we estimate translation model performance by
measuring the average BLEU performance of
each translation relative to other translations
in the N -best list. Thus, each possible transla-
tion in the N -best list is BLEU scored against
other translations and the average of these
scores is selected as the CBLEU score for the
sentence. Sentence level BLEU score calcula-
tion avoids singularities in n-gram precisions
by taking the maximum of the match count
and 1

2|si| for |si| denoting the length of the
source sentence si as used in (Macherey and
Och, 2007).

4.3 Adaptive Model Weighting

We initialize model weights to 1/m for all
models, which are updated after each instance
according to the losses based on the TRegMT
model. Table 1 presents the performance
of the algorithms on the en-de development
set. We have measured their performances
with stochastic (stoc.) or deterministic (det.)
model selection when using only the weights or
mixture weights obtained when instance scores
are also considered. Mixture weights are ob-
tained as: wi[n] = wi[n] TRegScorei[n], for
instance n, model i.

Baseline performance obtained with random
selection has .1407 BLEU and 4.9832 NIST
scores. TRegMT model obtains a performance
of .1661 BLEU and 5.3283 NIST with rerank-
ing. The best model performance among the
12 en-de translation models has .1644 BLEU
and 5.2647 NIST scores. Therefore, by using
TRegMT score, we are able to achieve better
scores.

Not all of the settings are meaningful. For
instance, stochastic model selection is used for
algorithms having multiplicative weight up-
dates. This is reflected in the Table 1 by low
performance on the additive and BIC models.
Similarly, using mixture weights may not re-
sult in better scores for algorithms with multi-
plicative updates, which resulted in decreased
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Additive Multiplicative BIC BIC Weighting
Setting BLEU NIST BLEU NIST BLEU NIST BLEU NIST
Stoc., W .1419 5.0016 ±.003 .1528 5.1710 ±.001 .1442 5.0468 .1568 ±.001 5.2052 ±.005
Stoc., M .1415 5.0001 .1525 5.1601 ±.001 .1459 5.0619 ±.004 .1566 ±.001 5.2030 ±.006
Det., W .1644 5.3208 .1638 5.2571 .1638 5.2542 .1646 5.2535
Det., M .1643 5.3173 .1536 5.1756 .1530 5.1871 .1507 5.1973

Table 1: Performances of the algorithms on the development set over 100 repetitions. W:
Weights, M: Mixture.

performance in Table 1. Decreased perfor-
mance with BIC hints that we may use other
techniques for mixture weights.

Table 2 presents reranking results on all of
the language pairs we considered with the ran-
dom, TRegMT, and CSMT models. Random
model score lists the random model perfor-
mance selected among the competing trans-
lations randomly and it can be used as a
baseline. Best model score lists the perfor-
mance of the best model performance. CSMT
models are named with the weighting model
used (Add for additive, Mul for multiplicative,
BICW for BIC weighting), model selection
technique (S for stochastic, D for determinis-
tic), and mixtures model (W for using only
weights, M for using mixture weights) with
hyphens in between. Our challenge submis-
sion is given in the last row of Table 2 where
we used multiplicative exponential weight up-
dates, deterministic model selection, and only
the weights during model selection. For the
challenge results, we initialized the weights to
the weights obtained in the development set.

We have presented scores that are better
than or close to the best model in bold. We
observe that the additive model performs the
best by achieving the performance of the best
competing translation model and performing
better than the best in most of the language
pairs. For the en-de language pair, addi-
tive model score achieves even better than the
TRegMT model, which is used for evaluating
instance scores.

5 Contributions

We have analyzed adaptive model weighting
techniques for system combination when the
competing translators are statistical machine
translation models. We defined additive, mul-
tiplicative, and loss-based weight updates with
exponential loss functions for the competitive

statistical machine translation framework.
Competitive SMT via adaptive weighting of

various translators is shown to be a powerful
technique for sequential translation tasks. We
have demonstrated its use in the system com-
bination task by using the instance scores ob-
tained by the TRegMT model. Without any
pre-knowledge of the performance of the trans-
lation models, we have been able to achieve the
performance of the best model in all systems
and we are able to surpass its performance as
well as TRegMT’s performance with the addi-
tive model.
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Abstract

We use L1 regularized transductive regres-
sion to learn mappings between source
and target features of the training sets
derived for each test sentence and use
these mappings to rerank translation out-
puts. We compare the effectiveness of L1

regularization techniques for regression to
learn mappings between features given in
a sparse feature matrix. The results show
the effectiveness of using L1 regulariza-
tion versus L2 used in ridge regression.
We show that regression mapping is ef-
fective in reranking translation outputs and
in selecting the best system combinations
with encouraging results on different lan-
guage pairs.

1 Introduction

Regression can be used to find mappings be-
tween the source and target feature sets derived
from given parallel corpora. Transduction learn-
ing uses a subset of the training examples that
are closely related to the test set without using
the model induced by the full training set. In
the context of SMT, we select a few training in-
stances for each test instance to guide the transla-
tion process. This also gives us a computational
advantage when considering the high dimension-
ality of the problem. The goal in transductive
regression based machine translation (TRegMT)
is both reducing the computational burden of the
regression approach by reducing the dimension-
ality of the training set and the feature set and
also improving the translation quality by using
transduction. Transductive regression is shown to
achieve higher accuracy than L2 regularized ridge
regression on some machine learning benchmark
datasets (Chapelle et al., 1999).

In an idealized feature mapping matrix where

features are word sequences, we would like to ob-
serve few target features for each source feature
derived from a source sentence. In this setting, we
can think of feature mappings being close to per-
mutation matrices with one nonzero item for each
column. L1 regularization helps us achieve solu-
tions close to the permutation matrices by increas-
ing sparsity.

We show that L1 regularized regression map-
ping is effective in reranking translation outputs
and present encouraging results on different lan-
guage pairs in the translation task of WMT10. In
the system combination task, different translation
outputs of different translation systems are com-
bined to find a better translation. We model system
combination task as a reranking problem among
the competing translation models and present en-
couraging results with the TRegMT system.

Related Work: Regression techniques can
be used to model the relationship between
strings (Cortes et al., 2007). Wang et al. (2007)
applies a string-to-string mapping approach
to machine translation by using ordinary least
squares regression and n-gram string kernels to
a small dataset. Later they use L2 regularized
least squares regression (Wang and Shawe-Taylor,
2008). Although the translation quality they
achieve is not better than Moses (Koehn et al.,
2007), which is accepted to be the state-of-the-art,
they show the feasibility of the approach. Ser-
rano et al. (2009) use kernel regression to find
translation mappings from source to target feature
vectors and experiment with translating hotel
front desk requests. Ueffing (2007) approaches
the transductive learning problem for SMT by
bootstrapping the training using the translations
produced by the SMT system that have a scoring
performance above some threshold as estimated
by the SMT system itself.
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Outline: Section 2 gives an overview of regres-
sion based machine translation, which is used to
find the mappings between the source and target
features of the training set. In section 3 we present
L1 regularized transductive regression for align-
ment learning. Section 4 presents our experiments,
instance selection techniques, and results on the
translation task for WMT10. In section 5, we
present the results on the system combination task
using reranking. The last section concludes.

2 An Overview of Regression Based
Machine Translation

Let X and Y correspond to the token sets used to
represent source and target strings, then a train-
ing sample of m inputs can be represented as
(x1, y1), . . . , (xm, ym) ∈ X∗ × Y ∗, where (xi, yi)
corresponds to a pair of source and target language
token sequences. Our goal is to find a mapping
f : X∗ → Y ∗ that can convert a given set of
source tokens to a set of target tokens that share
the same meaning in the target language.

X∗ Y ∗-

? R ?
-FX FY

g
ΦX ΦY

6
Φ−1

Y

f

h

Figure 1: String-to-string mapping.

Figure 1 depicts the mappings between different
representations. ΦX : X∗ → FX = RNX and
ΦY : Y ∗ → FY = RNY map each string sequence
to a point in high dimensional real number space
where dim(FX) = NX and dim(FY ) = NY .

Let MX ∈ RNX×m and MY ∈ RNY ×m such
that MX = [ΦX(x1), . . . ,ΦX(xm)] and MY =
[ΦY (y1), . . . ,ΦY (ym)]. The ridge regression so-
lution using L2 regularization is found as:

HL2 = arg min
H∈RNY ×NX

‖MY −HMX ‖2F +λ‖H‖2F .(1)

Proposition 1 Solution to the cost function given
in Equation 1 is found by the following identities:

H = MY MT
X(MXMT

X + λINX
)−1 (primal)

H = MY (KX + λIm)−1MT
X (dual)

(2)
where KX = MT

XMX is the Gram matrix with
KX(i, j) = kX(xi, xj) and kX(xi, xj) is the ker-
nel function defined as kX(xi, xj) = φ(xi)Tφ(xj).

The primal solution involves the inversion of the
covariance matrix in the feature space (O(N3

X))
and the dual solution involves the inversion of the
kernel matrix in the instance space (O(m3)) and
L2 regularization term prevents the normal equa-
tions to be singular. We use the dual solution when
computing HL2 .

Two main challenges of the RegMT approach
are learning the regression function, g : X∗ →
FY , and solving the pre-image problem, which,
given the features of the estimated target string se-
quence, g(x) = ΦY (ŷ), attempts to find y ∈ Y ∗:
f(x) = arg miny∈Y ∗ ||g(x)−ΦY (y)||2. Pre-image
calculation involves a search over possible transla-
tions minimizing the cost function:

f(x) = arg min
y∈Y ∗

‖ΦY (y)−HΦX(x)‖2

= arg min
y∈Y ∗

kY (y, y)− 2(Ky
Y )T (KX + λIm)−1Kx

X ,(3)

where Ky
Y =[kY (y, y1), . . . , kY (y, ym)]T ∈ Rm×1

and Kx
X ∈ Rm×1 is defined similarly.

We use n-spectrum weighted word ker-
nel (Shawe-Taylor and Cristianini, 2004) as fea-
ture mappers which consider all word sequences
up to order n:

k(x, x′)=

nX
p=1

|x|−p+1X
i=1

|x′|−p+1X
j=1

p I(x[i : i+p−1]=x′[j :j+p−1])

(4)

where x[i : j] denotes a substring of x with the
words in the range [i, j], I(.) is the indicator func-
tion, and p is the number of words in the feature.

3 L1 Regularized Regression

In statistical machine translation, parallel cor-
pora, which contain translations of the same doc-
uments in source and target languages, are used
to estimate a likely target translation for a given
source sentence based on the observed transla-
tions. String kernels lead to very sparse represen-
tations of the feature space and we examine the ef-
fectiveness of L1 regularized regression to find the
mappings between sparsely observed feature sets.

3.1 Sparsity in Translation Mappings

We would like to observe only a few nonzero tar-
get feature coefficients corresponding to a source
feature in the coefficient matrix. An example solu-
tion matrix representing a possible alignment be-
tween unigram source and target features could be
the following:
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H e1 e2 e3
f1 1 1
f2 1
f3 1

Here ei represents unigram source features and fi

represent unigram target features. e1 and e3 have
unambiguous translations whereas e2 is ambigu-
ous. Even if unigram features lead to ambiguity,
we expect higher order features like bigrams and
trigrams to help us resolve the ambiguity. Typical
H matrices have thousands of features. L1 regu-
larization helps us achieve solutions close to per-
mutation matrices by increasing sparsity (Bishop,
2006). In contrast, L2 solutions give us dense ma-
trices.

3.2 L1 Regularized Regression for Learning

HL2 does not give us a sparse solution and most
of the coefficients remain non-zero. L1 norm be-
haves both as a feature selection technique and a
method for reducing coefficient values.

HL1 = arg min
H∈RNY ×NX

‖MY −HMX ‖2F +λ‖H‖1 .(5)

Equation 5 presents the lasso (least absolute
shrinkage and selection operator) (Tibshirani,
1996) solution where the regularization term is
now the L1 matrix norm defined as ‖ H ‖1=∑

i,j |Hi,j |. Since L1 regularization cost is not
differentiable, HL1 is found by optimization or ap-
proximation techniques. We briefly describe three
techniques to obtain L1 regularized regression co-
efficients.

Forward Stagewise Regression (FSR): We
experiment with forward stagewise regression
(FSR) (Hastie et al., 2006), which approximates
the lasso. The incremental forward stagewise re-
gression algorithm increases the weight of the pre-
dictor variable that is most correlated with the
residual by a small amount, ε, multiplied with
the sign of the correlation at each step. As
ε → 0, the profile of the coefficients resemble the
lasso (Hastie et al., 2009).

Quadratic Programming (QP): We also use
quadratic programming (QP) to find HL1 . We can
pose lasso as a QP problem as follows (Mørup
and Clemmensen, 2007). We assume that the
rows of MY are independent and solve for each
row i, Myi ∈ R1×m, using non-negative variables

h+
i ,h

−
i ∈ RNX×1 such that hi = h+

i − h−i :

hi = arg min
h

‖Myi − hMX‖2F +λ

NXX
k=1

|hk|, (6)

hi = arg min
h̃i

1

2
h̃i
gMX

gMX
T

h̃i
T − h̃i(gMXMT

yi − λ111), (7)

s.t. h̃i > 0, gMX =

»
MX

−MX

–
, h̃i =

ˆ
h+

i h−i
˜
.

Linear Programming (LP): L1 minimization
can also be posed as a linear programming (LP)
problem by interpreting the error term as the con-
straint (Chen et al., 1998) and solving for each row
i:

hi = arg min
h

‖h‖1 subject to Myi = hMX , (8)

which can again be solved using non-negative
variables. This is a slightly different optimization
and the results can be different but linear program-
ming solvers offer computational advantages.

3.3 Transductive Regression
Transduction uses test instances, which can some-
times be accessible at training time, to learn spe-
cific models tailored towards the test set. Trans-
duction has computational advantages by not us-
ing the full training set and by having to satisfy a
smaller set of constraints. For each test sentence,
we pick a limited number of training instances de-
signed to improve the coverage of correct features
to build a regression model. Section 4.2 details our
instance selection methods.

4 Translation Experiments

We perform experiments on the translation task
of the English-German, German-English, English-
French, English-Spanish, and English-Czech lan-
guage pairs using the training corpus provided in
WMT10.

4.1 Datasets and Baseline
We developed separate SMT models using
Moses (Koehn et al., 2007) with default settings
with maximum sentence length set to 80 using 5-
gram language model and obtained distinct 100-
best lists for the test sets. All systems were tuned
with 2051 sentences and tested with 2525 sen-
tences. We have randomly picked 100 instances
from the development set to be used in tuning the
regression experiments (dev.100). The translation
challenge test set contains 2489 sentences. Num-
ber of sentences in the training set of each system
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and baseline performances for uncased output (test
set BLEU, challenge test set BLEU) are given in
Table 1.

Corpus # sent BLEU BLEU Challenge
en-de 1609988 .1471 .1309
de-en 1609988 .1943 .1556
en-fr 1728965 .2281 .2049
en-es 1715158 .2237 .2106
en-cz 7320238 .1452 .1145

Table 1: Initial uncased performances of the trans-
lation systems.

Feature mappers used are 3-spectrum counting
word kernels, which consider all N -grams up to
order 3 weighted by the number of tokens in the
feature. We segment sentences using some of the
punctuation for managing the feature set better and
do not consider N -grams that cross segments.

We use BLEU (Papineni et al., 2001) and
NIST (Doddington, 2002) evaluation metrics for
measuring the performance of translations auto-
matically.

4.2 Instance Selection

Proper selection of training instances plays an im-
portant role to learn feature mappings with limited
computational resources accurately. In previous
work (Wang and Shawe-Taylor, 2008), sentence
based training instances were selected using tf-idf
retrieval. We transform test sentences to feature
sets obtained by the kernel mapping before mea-
suring their similarities and index the sentences
based on the features. Given a source sentence
of length 20, its feature representation would have
a total of 57 uni/bi/tri-gram features. If we select
closest sentences from the training set, we may not
have translations for all the features in this repre-
sentation. But if we search for translations of each
feature, then we have a higher chance of covering
all the features found in the sentence we are try-
ing to translate. The index acts as a dictionary of
source phrases storing training set entries whose
source sentence match the given source phrase.

The number of instances per feature is chosen
inversely proportional to the frequency of the fea-
ture determined by the following formula:

#instance(f) = n/ ln(1 + idfScore(f)/9.0), (9)

where idfScore(f) sums the idf (inverse document
frequency) of the tokens in feature f and n is a
small number.

4.3 Addition of Brevity Penalty
Detailed analysis of the results shows TRegMT
score achieves better N -gram match percentages
than Moses translation but suffers from the brevity
penalty due to selecting shorter translations. Due
to using a cost function that minimizes the squared
loss, TRegMT score tends to select shorter trans-
lations when the coverage is low. We also observe
that we are able to achieve higher scores for NIST,
which suggests the addition of a brevity penalty to
the score.

Precision based BLEU scoring divides N -gram
match counts toN -gram counts found in the trans-
lation and this gives an advantage to shorter trans-
lations. Therefore, a brevity penalty (BP) is added
to penalize short translations:

BP = min(1− ref-length
trans-length

, 0) (10)

BLEU = e(log(ngramprec)+BP) (11)

where ngramprec represent the sum of n-gram
precisions. Moses rarely incurs BP as it has a word
penalty parameter optimized against BLEU which
penalizes translations that are too long or too short.
For instance, Moses 1-best translation for en-de
system achieves .1309 BLEU versus .1320 BLEU
without BP.

We handle short translations in two ways. We
optimize the λ parameter of QP, which manages
the sparsity of the solution (larger λ values cor-
respond to sparser solutions) against BLEU score
rather than the squared loss. Optimization yields
λ = 20.744. We alternatively add a BP cost to the
squared loss:

BP = e

“
min(1− |ΦY (y)|

|pHΦX (x)+αBP q| ,0)
”

(12)
f(x) = arg min

y∈Y ∗
‖ΦY (y)−HΦX(x)‖2 +λBPBP (13)

where |.| denotes the length of the feature vector,
p.q rounds feature weights to integers, αBP is a
constant weight added to the estimation, and λBP

is the weight given for the BP cost. |pHΦX(x) +
αBP q| represents an estimate of the length of the
reference as found by the TRegMT system. This
BP cost estimate is similar to the cost used in (Ser-
rano et al., 2009) normalized by the length of the
reference. We found αBP = 0.1316 and λBP =
−13.68 when optimized on the en-de system. We
add a BP penalty to all of the reranking results
given in the next section and QP results also use
optimized λ.
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en-de de-en en-fr en-es en-cz
Score BLEU NIST BLEU NIST BLEU NIST BLEU NIST BLEU NIST

Baseline .1309 5.1417 .1556 5.4164 .2049 6.3194 .2106 6.3611 .1145 4.5008
Oracle .1811 6.0252 .2101 6.2103 .2683 7.2409 .2770 7.3190 .1628 5.4501

L2 .1319 5.1680 .1555 5.4344 .2044 6.3370 .2132 6.4093 .1148 4.5187
FSR .1317* 5.1639 .1559 5.4383 .2053 6.3458 .2144 6.4168 .1150 4.5172
LP .1317 5.1695 .1561 5.4304 .2048 6.3245 .2109 6.4176 .1124 4.5143
QP .1309 5.1664 .1550 5.4553 .2033 6.3354* .2121 6.4271 .1150 4.5264

Table 2: Reranking results using TRegMT, TM, and LM scores. We use approximate randomization
test (Riezler and Maxwell, 2005) with 1000 repetitions to determine score difference significance: results
in bold are significant with p ≤ 0.01 and italic results with (*) are significant with p ≤ .05. The
difference of the remaining from the baseline are not statistically significant.

4.4 Reranking Experiments
We rerank N -best lists by using linear combina-
tions of the following scoring functions:

1. TRegMT: Transductive regression based ma-
chine translation scores as found by Equa-
tion 3.

2. TM: Translation model scores we obtain
from the baseline SMT system that is used
to generate the N -best lists.

3. LM: 5-gram language model scores that the
baseline SMT system uses when calculating
the translation model scores.

The training set we obtain may not contain all
of the features of the reference target due to low
coverage. Therefore, when performing reranking,
we also add the cost coming from the features of
ΦY (y) that are not represented in the training set
to the squared loss as in:

‖ΦY (y) \ FY ‖2 + ‖ΦY (y)−HΦX(x)‖2, (14)

where ΦY (y) \ FY represent the features of y not
represented in the training set.

We note that TRegMT score only contains or-
dering information as present in the bi/tri-gram
features in the training set. Therefore, the ad-
dition of a 5-gram LM score as well as the TM
score, which also incorporates the LM score in
itself, improves the performance. We are not
able to improve the BLEU score when we use
TRegMT score by itself however we are able to
achieve improvements in the NIST and 1-WER
scores. The performance increase is important for
two reasons. First of all, we are able to improve
the performance using blended spectrum 3-gram
features against translations obtained with 5-gram
language model and higher order features. Out-
performing higher order n-gram models is known

to be a difficult task (Galley and Manning, 2009).
Secondly, increasing the performance with rerank-
ing itself is a hard task since possible translations
are already constrained by the ones observed inN -
best lists. Therefore, an increase in the N -best list
size may increase the score gaps.

Table 2 presents reranking results on all of the
language pairs we considered, using TRegMT,
TM, and LM scores with the combination weights
learned in the development set. We are able to
achieve better BLEU and NIST scores on all of the
listed systems. We are able to see up to .38 BLEU
points increase for the en-es pair. Oracle reranking
performances are obtained by using BLEU scoring
metric.

If we used only the TM and LM scores when
reranking with the en-de system, then we would
obtain .1309 BLEU and 5.1472 NIST scores. We
only see a minor increase in the NIST score and no
change in the BLEU score with this setting when
compared with the baseline given in Table 2.

Due to computational reasons, we do not use
the same number of instances to train different
models. In our experiments, we used n = 3 for
L2, n = 1.5 for FSR, and n = 1.2 for QP and
LP solutions to select the number of instances in
Equation 9. The average number of instances used
per sentence in training corresponding to these
choices are approximately 140, 74, and 61. Even
with these decreased number of training instances,
L1 regularized regression techniques are able to
achieve comparable scores to L2 regularized re-
gression model in Table 2.

5 System Combination Experiments

We perform experiments on the system com-
bination task for the English-German, German-
English, English-French, English-Spanish, and
English-Czech language pairs using the training
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en-de de-en en-fr en-es en-cz
Score BLEU NIST BLEU NIST BLEU NIST BLEU NIST BLEU NIST

Random .1490 5.6555 .2088 6.4886 .2415 6.8948 .2648 7.2563 .1283 4.9238
Best model .1658 5.9610 .2408 6.9861 .2864 7.5272 .3047 7.7559 .1576 5.4480

L2 .1694 5.9974 .2336 6.9398 .2948 7.7037 .3036 7.8120 .1657 5.5654
FSR .1689 5.9638 .2357 6.9254 .2947 7.7107 .3049 7.8156 .1657 5.5632
LP .1694 5.9954 .2368 6.8850 .2928 7.7157 .3027 7.7838 .1659 5.5680
QP .1692 5.9983 .2368 6.9172 .2913 7.6949 .3040 7.8086 .1662 5.5785

Table 3: Reranking results using TRegMT, TM, and LM scores. bold correspond to the best score in
each rectangle of scores.

corpus provided in WMT10.

5.1 Datasets

We use the training set provided in WMT10 to in-
dex and select transductive instances from. The
challenge split the test set for the translation task
of 2489 sentences into a tuning set of 455 sen-
tences and a test set with the remaining 2034 sen-
tences. Translation outputs for each system is
given in a separate file and the number of sys-
tem outputs per translation pair varies. We have
tokenized and lowercased each of the system out-
puts and combined these in a singleN -best file per
language pair. We also segment sentences using
some of the punctuation for managing the feature
set better. We use these N -best lists for TRegMT
reranking to select the best translation model. Fea-
ture mappers used are 3-spectrum counting word
kernels, which consider all n-grams up to order 3
weighted by the number of tokens in the feature.

5.2 Experiments

We rerank N -best lists by using combinations of
the following scoring functions:

1. TRegMT: Transductive regression based ma-
chine translation scores as found by Equa-
tion 3.

2. TM’: Translation model scores are obtained
by measuring the average BLEU perfor-
mance of each translation relative to the other
translations in the N -best list.

3. LM: We calculate 5-gram language model
scores for each translation using the language
model trained over the target corpus provided
in the translation task.

Since we do not have access to the reference
translations nor to the translation model scores
each system obtained for each sentence, we es-
timate translation model performance (TM’) by

measuring the average BLEU performance of each
translation relative to the other translations in the
N -best list. Thus, each possible translation in the
N -best list is BLEU scored against other transla-
tions and the average of these scores is selected
as the TM score for the sentence. Sentence level
BLEU score calculation avoids singularities in n-
gram precisions by taking the maximum of the
match count and 1

2|si| for |si| denoting the length
of the source sentence si as used in (Macherey and
Och, 2007).

Table 3 presents reranking results on all of the
language pairs we considered, using TRegMT,
TM, and LM scores with the same combination
weights as above. Random model score lists the
random model performance selected among the
competing translations randomly and it is used as
a baseline. Best model score lists the performance
of the best model performance. We are able to
achieve better BLEU and NIST scores in all of the
listed systems except for the de-en language pair
when compared with the performance of the best
competing translation system. The lower perfor-
mance in the de-en language pair may be due to
having a single best translation system that outper-
forms others significantly. The difference between
the best model performance and the mean as well
as the variance of the scores in the de-en language
pair is about twice their counterparts in en-de lan-
guage pair.

Due to computational reasons, we do not use
the same number of instances to train different
models. In our experiments, we used n = 4 for
L2, n = 1.5 for FSR, and n = 1.2 for QP and
LP solutions to select the number of instances in
Equation 9. The average number of instances used
per sentence in training corresponding to these
choices are approximately 189, 78, and 64.
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6 Contributions

We use transductive regression to learn mappings
between source and target features of given paral-
lel corpora and use these mappings to rerank trans-
lation outputs. We compare the effectiveness ofL1

regularization techniques for regression. TRegMT
score has a tendency to select shorter transla-
tions when the coverage is low. We incorporate a
brevity penalty to the squared loss and optimize λ
parameter of QP to tackle this problem and further
improve the performance of the system.

The results show the effectiveness of using L1

regularization versus L2 used in ridge regression.
Proper selection of training instances plays an im-
portant role to learn correct feature mappings with
limited computational resources accurately. We
plan to investigate better instance selection meth-
ods for improving the translation performance.
TRegMT score has a tendency to select shorter
translations when the coverage is low. We incor-
porate a brevity penalty to the score and optimize
the λ parameter of QP to tackle this problem.
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Abstract

This paper describes the augmented three-
pass system combination framework of
the Dublin City University (DCU) MT
group for the WMT 2010 system combi-
nation task. The basic three-pass frame-
work includes building individual confu-
sion networks (CNs), a super network, and
a modified Minimum Bayes-risk (mCon-
MBR) decoder. The augmented parts for
WMT2010 tasks include 1) a rescoring
component which is used to re-rank the
N -best lists generated from the individual
CNs and the super network, 2) a new hy-
pothesis alignment metric – TERp – that
is used to carry out English-targeted hy-
pothesis alignment, and 3) more differ-
ent backbone-based CNs which are em-
ployed to increase the diversity of the
mConMBR decoding phase. We took
part in the combination tasks of English-
to-Czech and French-to-English. Exper-
imental results show that our proposed
combination framework achieved 2.17 ab-
solute points (13.36 relative points) and
1.52 absolute points (5.37 relative points)
in terms of BLEU score on English-to-
Czech and French-to-English tasks re-
spectively than the best single system. We
also achieved better performance on hu-
man evaluation.

1 Introduction

In several recent years, system combination has
become not only a research focus, but also a pop-
ular evaluation task due to its help in improving
machine translation quality. Generally, most com-
bination approaches are based on a confusion net-
work (CN) which can effectively re-shuffle the

translation hypotheses and generate a new target
sentence. A CN is essentially a directed acyclic
graph built from a set of translation hypotheses
against a reference or “backbone”. Each arc be-
tween two nodes in the CN denotes a word or to-
ken, possibly a null item, with an associated pos-
terior probability.

Typically, the dominant CN is constructed at the
word level by a state-of-the-art framework: firstly,
a minimum Bayes-risk (MBR) decoder (Kumar
and Byrne, 2004) is utilised to choose the back-
bone from a merged set of hypotheses, and then
the remaining hypotheses are aligned against the
backbone by a specific alignment approach. Cur-
rently, most research in system combination has
focused on hypothesis alignment due to its signif-
icant influence on combination quality.

A multiple CN or “super-network” framework
was firstly proposed in Rosti et al. (2007) who
used each of all individual system results as the
backbone to build CNs based on the same align-
ment metric, TER (Snover et al., 2006). A consen-
sus network MBR (ConMBR) approach was pre-
sented in (Sim et al., 2007), where MBR decod-
ing is employed to select the best hypothesis with
the minimum cost from the original single system
outputs compared to the consensus output.

Du and Way (2009) proposed a combination
strategy that employs MBR, super network, and
a modified ConMBR (mConMBR) approach to
construct a three-pass system combination frame-
work which can effectively combine different hy-
pothesis alignment results and easily be extended
to more alignment metrics. Firstly, a number of
individual CNs are built based on different back-
bones and different kinds of alignment metrics.
Each network generates a 1-best output. Secondly,
a super network is constructed combining all the
individual networks, and a consensus is generated
based on a weighted search model. In the third290



pass, all the 1-best hypotheses coming from sin-
gle MT systems, individual networks, and the su-
per network are combined to select the final result
using the mConMBR decoder.

In the system combination task of WMT 2010,
we adopted an augmented framework by extend-
ing the strategy in (Du and Way, 2009). In addi-
tion to the basic three-pass architecture, we aug-
ment our combination system as follows:

• We add a rescoring component in Pass 1 and
Pass 2.

• We introduce the TERp (Snover et al., 2009)
alignment metric for the English-targeted
combination.

• We employ different backbones and hypothe-
sis alignment metrics to increase the diversity
of candidates for our mConMBR decoding.

The remainder of this paper is organised as fol-
lows. In Section 2, we introduce the three hy-
pothesis alignment methods used in our frame-
work. Section 3 details the steps for building our
augmented three-pass combination framework. In
Section 4, a rescoring model with rich features
is described. Then, Sections 5 and 6 respec-
tively report the experimental settings and exper-
imental results on English-to-Czech and French-
to-English combination tasks. Section 7 gives our
conclusions.

2 Hypothesis Alignment Methods

Hypothesis alignment plays a vital role in the CN,
as the backbone sentence determines the skeleton
and the word order of the consensus output.

In the combination evaluation task, we inte-
grated TER (Snover et al., 2006), HMM (Ma-
tusov et al., 2006) and TERp (Snover et al.,
2009) into our augmented three-pass combination
framework. In this section, we briefly describe
these three methods.

2.1 TER
The TER (Translation Edit Rate) metric measures
the ratio of the number of edit operations between
the hypothesis E′ and the reference Eb to the total
number of words in Eb. Here the backbone Eb is
assumed to be the reference. The allowable edits
include insertions (Ins), deletions (Del), substitu-
tions (Sub), and phrase shifts (Shft). The TER of
E′ compared to Eb is computed as in (1):

TER(E′, Eb) =
Ins + Del + Sub + Shft

Nb
× 100% (1)

where Nb is the total number of words in Eb. The
difference between TER and Levenshtein edit dis-
tance (or WER) is the sequence shift operation al-
lowing phrasal shifts in the output to be captured.

The phrase shift edit is carried out by a greedy
algorithm and restricted by three constraints: 1)
The shifted words must exactly match the refer-
ence words in the destination position. 2) The
word sequence of the hypothesis in the original
position and the corresponding reference words
must not exactly match. 3) The word sequence
of the reference that corresponds to the desti-
nation position must be misaligned before the
shift (Snover et al., 2006).

2.2 HMM
The hypothesis alignment model based on HMM
(Hidden Markov Model) considers the align-
ment between the backbone and the hypoth-
esis as a hidden variable in the conditional
probability Pr(E′|Eb). Given the backbone
Eb = {e1, . . . , eI} and the hypothesis E′ =
{e′1, . . . , e′J}, which are both in the same lan-
guage, the probability Pr(E′|Eb) is defined as in
(2):

Pr(E′|Eb) =
∑

A

Pr(E′, A|Eb) (2)

where the alignemnt A ⊆ {(j, i) : 1 ≤ j ≤
J ; 1 ≤ i ≤ I}, i and j represent the word po-
sition in Eb and E′ respectively. Hence, the align-
ment issue is to seek the optimum alignment Â
such that:

Â = arg max
A

P (A|eI
1, e

′J
1 ) (3)

For the HMM-based model, equation (2) can be
represented as in (4):

Pr(E′|Eb) =
∑

aJ
j

J∏

j=1

[p(aj |aj−1, I) · p(e′j |eaj )] (4)

where p(aj |aj−1, I) is the alignment probability
and p(e′j |ei) is the translation probability.

2.3 TER-Plus
TER-Plus (TERp) is an extension of TER that
aligns words in the hypothesis and reference not
only when they are exact matches but also when
the words share a stem or are synonyms (Snover
et al., 2009). In addition, it uses probabilistic
phrasal substitutions to align phrases in the hy-
pothesis and reference. In contrast to the use of291



the constant edit cost for all operations such as
shifts, insertion, deleting or substituting in TER,
all edit costs in TERp are optimized to maximize
correlation with human judgments.

TERp uses all the edit operations of TER –
matches, insertions, deletions, substitutions, and
shifts – as well as three new edit operations:
stem matches, synonym matches, and phrase sub-
stitutions (Snover et al., 2009). TERp employs
the Porter stemming algorithm (Porter, 1980) and
WordNet (Fellbaum, 1998) to perform the “stem
match” and “synonym match” respectively. Se-
quences of words in the reference are considered
to be paraphrases of a sequence of words in the
hypothesis if that phrase pair occurs in the TERp
phrase table (Snover et al., 2009).

In our experiments, TERp was used for the
French-English system combination task, and we
used the default configuration of optimised edit
costs.

3 Augmented Three-Pass Combination
Framework

The construction of the augmented three-pass
combination framework is shown in Figure 1.

Hypotheses Set

BLEU TER TERp

MBR

BLEU TER TERp

Top M Single

HMM TER TERp

Alignment

Individual CNs

Nbest 

Re-ranking
Super CN Networks

mConMBR

Pass 1

Pass 2

Pass 3

N Single MT 

Systems

Figure 1: Three-Pass Combination Framework

In Figure 1, the dashed boxes labeled “TERp”
indicate that the TERp alignment is only appli-
cable for English-targeted hypothesis alignment.
The lines with arrows pointing to “mConMBR”
represent adding outputs into the mConMBR de-
coding component. “Top M Single” indicates that
the 1-best results from the best M individual MT

systems are also used as backbones to build in-
dividual CNs under different alignment metrics.
The three dashed boxes represent Pass 1, Pass 2
and Pass 3 respectively. The steps can be sum-
marised as follows:

Pass 1: Specific Metric-based Single Networks
1. Merge all the 1-best hypotheses from single

MT systems into a new N -best set Ns.

2. Utilise the standard MBR decoder to se-
lect one from the Ns as the backbone given
some specific loss function such as TER,
BLEU (Papineni et al., 2002) and TERp; Ad-
ditionally, in order to increase the diversity
of candidates used for Pass 2 and Pass 3, we
also use the 1-best hypotheses from the top
M single MT systems as the backbone. Add
the backbones generated by MBR into Ns.

3. Perform the word alignment between the dif-
ferent backbones and the other hypotheses
via the TER, HMM, TERp (only for English)
metrics.

4. Carry out word reordering based on word
alignment (TER and TERp have completed
the reordering in the process of scoring) and
build individual CNs (Rosti et al., 2007);

5. Decode the single networks and export the 1-
best outputs and the N -best lists separately.
Add these 1-best outputs into Ns.

Pass 2: Super-Network
1. Connect the single networks using a start

node and an end node to form a super-
network based on multiple hypothesis align-
ment and different backbones. In this evalu-
ation, we set uniform weights for these dif-
ferent individual networks when building the
super network(Du and Way, 2009).

2. Decode the super network and generate a
consensus output as well as the N -best list.
Add the 1-best result into Ns.

3. Rescore the N -best lists from all individual
networks and super network and add the new
1-best results into Ns.

Pass 3: mConMBR
1. Rename the set Ns as a new set Ncon;

2. Use mConMBR decoding to search for the
best final result from Ncon. In this step, we
set a uniform distribution between the candi-
dates in Ncon.
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4 Rescoring Model

We adapted our previous rescoring model (Du
et al., 2009) to larger-scale data. The features we
used are as follows:

• Direct and inverse IBM model;

• 4-gram and 5-gram target language model;

• 3, 4, and 5-gram Part-of-Speech (POS) lan-
guage model (Schmid, 1994; Ratnaparkhi,
1996);

• Sentence-length posterior probability (Zens
and Ney, 2006);

• N -gram posterior probabilities within the N -
best list (Zens and Ney, 2006);

• Minimum Bayes Risk cost. This process is
similar to the calculation of the MBR decod-
ing in which we take the current hypothesis
in the N -best list as the “backbone”, and then
calculate and sum up all the Bayes risk cost
between the backbone and each of the rest of
the N -best list using BLEU metric as the loss
function;

• Length ratio between source and target sen-
tence.

The weights are optimized via the MERT algo-
rithm (Och, 2003).

5 Experimental Settings

We participated in the English–Czech and
French–English system combination tasks.

In our system combination framework, we use
a large-scale monolingual data to train language
models and carry out POS-tagging.

5.1 English-Czech
Training Data
The statistics of the data used for language models
training are shown in Table 1.

Monolingual Number of
Corpus tokens (Cz) sentences
News-Comm 2,214,757 84,706
CzEng 81,161,278 8,027,391
News 205,600,053 13,042,040
Total 288,976,088 21,154,137

Table 1: Statistics of data in the En–Cz task

All the data are provided by the workshop
organisers. 1 In Table 1, “News-Comm” indi-
cates the data set of News-Commentary v1.0 and

1http://www.statmt.org/wmt10/translation-task.html

“CzEng” is the Czech–English corpus v0.9 (Bo-
jar and Žabokrtský, 2009). “News” is the Czech
monolingual News corpus.

As to our CN and rescoring components,
we use “News-Comm+CzEng” to train a
4-gram language model and use “News-
Comm+CzEng+News” to train a 5-gram
language model. Additionally, we per-
form POS tagging (Hajič, 2004) for ‘News-
Comm+CzEng+News” data, and train 3-gram,
4-gram, and 5-gram POS-tag language models.

Devset and Testset
The devset includes 455 sentences and the testset
contains 2,034 sentences. Both data sets are pro-
vided by the workshop organizers. Each source
sentence has only one reference. There are 11 MT
systems in the En-Cz track and we use all of them
in our combination experiments.

5.2 French-English

Training Data
The statistics of the data used for language models
training and POS tagging are shown in Table 2.

Monolingual Number of
Corpus tokens (En) sentences
News-Comm 2,973,711 125,879
Europarl 50,738,215 1,843,035
News 1,131,527,255 48,648,160
Total 1,184,234,384 50,617,074

Table 2: Statistics of data in the Fr–En task

“News” is the English monolingual News
corpus. We use “News-Comm+Europarl” to
train a 4-gram language model and use “News-
Comm+Europarl+News” to train a 5-gram lan-
guage model. We also perform POS tagging (Rat-
naparkhi, 1996) for all available data, and train
3-gram, 4-gram and, 5-gram POS-tag language
models.

Devset and Testset
We also use all the 1-best results to carry out sys-
tem combination. There are 14 MT systems in the
Fr-En track and we use all of them in our combi-
nation experiments.

6 Experimental Results

In this section, all the results are reported on de-
vsets in terms of BLEU and NIST scores.

6.1 English–Czech

In this task, we only used one hypothesis align-
ment method – TER – to carry out hypothesis293



alignment. However, in order to increase diversity
for our 3-pass framework, in addition to using the
output from MBR decoding as the backbone, we
also separately selected the top 4 individual sys-
tems (SYS1, SYS4, SYS6, and SYS11 in our sys-
tem set) in terms of BLEU scores on the devset as
the backbones so that we can build multiple indi-
vidual CNs for the super network. All the results
are shown in Table 3.

SYS BLEU4 NIST
Worst 9.09 3.83
Best 17.28 4.99

SYS1 15.11 4.76
SYS4 12.67 4.40
SYS6 17.28 4.99
SYS11 15.75 4.81

CN-SYS1 17.36 5.12
CN-SYS4 16.94 5.10
CN-SYS6 17.91 5.13

CN-SYS11 17.45 5.09
CN-MBR 18.29 5.15
SuperCN 18.44 5.17

mConMBR-BAS 18.60 5.18
mConMBR-New 18.84 5.11

Table 3: Automatic evaluation of the combination
results on the En-Cz devset.

“Worst” indicates the 1-best hypothesis from
the worst single system, the “Best” is the 1-best
hypothesis from the best single system (SYS11)).
“CN-SYSX” denotes that we use SYSX (X =
1, 4, 6, 11 and MBR) as the backbone to build an
individual CN. “mConMBR-BAS” stands for the
original three-pass combination framework with-
out rescoring component, while “mConMBR-
New” indicates the proposed augmented combina-
tion framework. It can be seen from Table 3 that 1)
in all individual CNs, the CN-MBR achieved the
best performance; 2) SuperCN and mConMBR-
New improved by 1.16 (6.71% relative) and 1.56
(9.03% relative) absolute BLEU points compared
to the best single MT system. 3) our new
three-pass combination framework achieved the
improvement of 0.24 absolute (1.29% relative)
BLEU points than the original framework.

The final results on the test set are shown in Ta-
ble 4.

SYS BLEU4 human eval.(%win)
Best 16.24 70.38

mConMBR-BAS 17.91 -
mConMBR-New 18.41 2 75.17

Table 4: Evaluation of the combination results on
the En-Cz testset.

It can be seen that our “mConMBR-New”
framework performs better than the best single
system and our original framework “mConMBR-
BAS” in terms of automatic BLEU scores and hu-
man evaluation for the English-to-Czech task. In
this task campaign, we achieved top 1 in terms of
the human evaluation.

6.2 French–English

We used three hypothesis alignment methods –
TER, TERp and HMM – to carry out word align-
ment between the backbone and the rest of the
hypotheses. Apart from the backbone generated
from MBR, we separately select the top 5 individ-
ual systems (SYS1, SYS10, SYS11, SYS12, and
SYS13 in our system set) respectively as the back-
bones using HMM, TER and TERp to carry out
hypothesis alignment so that we can build more
individual CNs for the super network to increase
the diversity of candidates for mConMBR. The re-
sults are shown in Table 5.3

SYS BLEU4(%) NIST
Worst 15.04 4.97
Best 28.88 6.71

CN-SYS1-TER 29.56 6.78
CN-SYS1-HMM 29.60 6.84
CN-SYS1-TERp 29.77 6.83
CN-MBR-TER 30.16 6.91

CN-MBR-HMM 30.19 6.92
CN-MBR-TERp 30.27 6.92

SuperCN 30.58 6.90
mConMBR-BAS 30.74 7.01
mConMBR-New 31.02 6.96

Table 5: Automatic evaluation of the combination
results on the Fr-En devset.

“CN-MBR-X” represents the different possi-
ble hypothesis alignment methods (X = {TER,
HMM, TERp}) which are used to build indi-
vidual CNs using the output from MBR de-
coding as the backbone. We can see that the
SuperCN and mConMBR-New respectively im-
proved by 1.7 absolute (5.89% relative) and 2.88
absolute (9.97% relative) BLEU points compared
to the best single system. Furthermore, our aug-
mented framework “mConMBR-New” achieved
the improvement of 0.28 absolute (0.91% relative)
BLEU points than the original three-pass frame-
work as well.

2This score was measured in-house on the refer-
ence provided by the organizer using metric mteval-v13
(ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13.pl).

3In this Table, we take SYS1 as an example to show the
results using a single MT system as the backbone under the
three alignment metrics.294



The final results on the test set are shown in Ta-
ble 6.

SYS BLEU4 human eval.(%win)
Best 28.30 66.84

mConMBR-BAS 29.21 -
mConMBR-New 29.82 2 72.15

Table 6: Evaluation of the combination results on
Fr-En test set.

It can be seen that our “mConMBR-New”
framework performs the best than the best single
system and our original framework “mConMBR-
BAS” in terms of automatic BLEU scores and hu-
man evaluation for the French–English task.

7 Conclusions and Future Work

We proposed an augmented three-pass mul-
tiple system combination framework for the
WMT2010 system combination shared task. The
augmented parts include 1) a rescoring model to
select the potential 1-best result from the indi-
vidual CNs and super network to increase the di-
versity for “mConMBR” decoding; 2) a new hy-
pothesis alignment metric “TERp” for English-
targeted alignment; 3) 1-best results from the top
M individual systems employed to build CNs
to augment the “mConMBR” decoding. We
took part in the English-to-Czech and French-to-
English tasks. Experimental results reported on
test set of these two tasks showed that our aug-
mented framework performed better than the best
single system in terms of BLEU scores and hu-
man evaluation. Furthermore, the proposed aug-
mented framework achieved better results than our
basic three-pass combination framework (Du and
Way, 2009) as well in terms of automatic evalua-
tion scores. In the released preliminary results, we
achieved top 1 and top 3 for the English-to-Czech
and French-to-English tasks respectively in terms
of human evaluation.

As for future work, firstly we plan to do further
experiments using automatic weight-tuning algo-
rithm to tune our framework. Secondly, we plan
to examine how the differences between the hy-
pothesis alignment metrics impact on the accuracy
of the super network. We also intend to integrate
more alignment metrics to the networks and verify
on the other language pairs.

Acknowledgments
This research is supported by the Science Foundation Ireland
(Grant 07/CE/I1142) as part of the Centre for Next Gener-
ation Localisation (www.cngl.ie) at Dublin City University

and has been partially funded by PANACEA, a 7th Frame-
work Research Programme of the European Union (contract
number: 7FP-ITC-248064) as well as partially supported by
the project GA405/09/0278 of the Grant Agency of the Czech
Republic. Thanks also to the reviewers for their insightful
comments.

References
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Abstract

UPV-PRHLT participated in the System
Combination task of the Fifth Workshop
on Statistical Machine Translation (WMT
2010). On each translation direction, all
the submitted systems were combined into
a consensus translation. These consen-
sus translations always improve transla-
tion quality of the best individual system.

1 Introduction

The UPV-PRHLT approach to MT system combi-
nation is based on a refined version of the algo-
rithm described in (Gonźalez-Rubio and Casacu-
berta, 2010), with additional information to cope
with hypotheses of different quality.

In contrast to most of the previous approaches
to combine the outputs of multiple MT sys-
tems (Bangalore et al., 2001; Jayaraman and
Lavie, 2005; Matusov et al., 2006; Schroeder et
al., 2009), which are variations over the ROVER
voting scheme (Fiscus, 1997), we consider the
problem of computing a consensus translation as
the problem of modelling a set of string patterns
with an adequate prototype. Under this frame-
work, the translation hypotheses of each of the
MT systems are considered as individual patterns
in a set of string patterns. The(generalised) me-
dian string, which is the optimal prototype of a set
of strings (Fu, 1982), is the chosen prototype to
model the set of strings.

2 System Combination Algorithm

The median string of a set is defined as the string
that minimises the sum of distances to the strings
in the set. Therefore, defining a distance between
strings is the primary problem to deal with.

The most common definition of distance be-
tween two strings is the Levenshtein distance,
also known as edit distance (ED). This metric

computes the optimal sequence of edit operations
(insertions, deletions and substitutions of words)
needed to transform one string into the other. The
main problem with the ED is its dependence on the
length of the compared strings. This fact led to the
definition of a new distance whose value is inde-
pendent from the length of the strings compared.
This normalised edit distance (NED) (Vidal et al.,
1995) is computed by averaging the number of edit
operations by the length of the edit path. The ex-
perimentation in this work was carried out using
the NED.

2.1 Median String

Given a setE = e1, . . . , en, . . . , eN of translation
hypotheses fromN MT systems, letΣ be the vo-
cabulary in the target language andΣ∗ be the free
monoid over that vocabulary (E ⊆ Σ∗). The me-
dian string of the setE (noted asM(E)) can be
formally defined as:

M(E) = argmin
e
′∈Σ∗

N
∑

n=1

[

wn · D(e′, en)
]

, (1)

whereD is the distance used to compare two
strings and the valuewn, 1 ≤ n ≤ N weights
the contribution of the hypothesisn to the sum of
distances, and therefore, it denotes the significance
of hypothesisn in the computation of the median
string. The valuewn can be seen as a measure of
the “quality” of hypothesisn.

Computing the median string is a NP-Hard
problem (de la Higuera and Casacuberta, 2000),
therefore we can only build approximations to the
median string by using several heuristics. In this
work, we follow two different approximations: the
set median string (Fu, 1982) and theapproximate
median string (Mart́ınez et al., 2000).
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2.2 Set Median String

The most straightforward approximation to the
median string corresponds to the search of aset
median string. Under this approximation, the
search is constrained to the strings in the given in-
put set. The set median string can be informally
defined as the most “centred” string in the set. The
set median string of the setE (noted asMs(E))
is given by:

Ms(E) = argmin
e
′∈E

N
∑

n=1

[

wn · D(e′, en)
]

. (2)

The set median string can be computed in poly-
nomial time (Fu, 1982; Juan and Vidal, 1998).
Unfortunately, in some cases, the set median may
not be a good approximation to the median string.
For example, in the extreme case of a set of two
strings, either achieves the minimum accumulated
distance to the set. However, the set median string
is a useful initialisation in the computation of the
approximate median string.

2.3 Approximate Median String

A good approximation to efficiently compute the
median string is proposed in (Martı́nez et al.,
2000). To compute the approximate median string
of the setE, the algorithm starts with an initial
string e which is improved by successive refine-
ments in an iterative process. This iterative pro-
cess is based on the application of different edit
operations over each position of the stringe look-
ing for a reduction of the accumulated distance to
the strings in the set. Algorithm 1 describes this
iterative process.

The initial string can be a random string or
a string computed from the setE. Martinez et
al. (2000) proposed two kinds of initial strings: the
set median string ofE and a string computed by a
greedy algorithm, both of them obtained similar
results. In this work, we start with the set median
string in the initialisation of the computation of the
approximate median string of the setE. Over this
initial string we apply the iterative procedure de-
scribed in Algorithm 1 until there is no improve-
ment. The final median string may be different
from the original hypotheses.

The computational time cost of Algorithm 1 is
linear with the number of hypotheses in the com-
bination, and usually only a moderate number of
iterations is needed to converge.

For each positioni in the stringe:

1. Build alternatives:

Substitution: Makex = e. For each worda ∈ Σ:

• Makex
′ the result string of substituting theith

word ofx by a.
• If the accumulated distance ofx′ to E is lower

than the accumulated distance fromx to E, then
makex = x

′.

Deletion: Makey the result string of deleting theith

word ofe.

Insertion: Makez = e. For each worda ∈ Σ:

• Makez
′ the result of insertinga at positioni of

e.
• If the accumulated distance fromz′ to E is lower

than the accumulated distance fromz to E, then
makez = z

′.

2. Choose an alternative:

• From the set{e,x,y, z} take the stringe′ with
less accumulated distance toE. Makee = e

′.

Algorithm 1: Iterative process to refine a string
e in order to reduce its accumulated distance to a
given setE.

3 Experiments

Experiments were conducted on all the8 transla-
tion directions cz→en, en→cz, de→en, en→de,
es→en, en→es, fr→en and en→fr. Some of the
entrants to the shared translation task submit lists
of n-best translations, but, in our experience, if a
large number of systems is available, using n-best
translations does not allow to obtain better consen-
sus translations than using single best translations,
but raises computation time significantly. Conse-
quently, we compute consensus translations only
using the single best translation of each individ-
ual MT system. Table 1 shows the number of sys-
tems submitted and gives an overview of the test
corpus on each translation direction. The number
of running words is the average number of run-
ning words in the test corpora, from where the
consensus translations were computed; the vocab-
ulary is the merged vocabulary of these test cor-
pora. All the experiments were carried out with
the true-cased, detokenised version of the tuning
and test corpora, following the WMT 2010 sub-
mission guidelines.

3.1 Evaluation Criteria

We will present translation quality results in terms
of translation edit rate (TER) (Snover et al., 2006)
andbilingual evaluation understudy (BLEU) (Pa-
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cz→en en→cz de→en en→de es→en en→es fr→en en→fr

Submitted systems 6 11 16 12 8 10 14 13
Avg. Running words 45K 37K 47K 41K 47K 47K 47K 49K

Distinct words 24K 51K 38K 40K 23K 30K 27K 37K

Table 1: Number of systems submitted and main figures of test corpora on each translation direction. K
stands for thousands of elements.

pineni et al., 2002). TER is computed as the num-
ber of edit operations (insertions, deletions and
substitutions of single words and shifts of word se-
quences) to convert the system hypothesis into the
reference translation. BLEU computes a geomet-
ric mean of the precision ofn-grams multiplied by
a factor to penalise short sentences.

3.2 Weighted Sum of Distances

In section 2, we define the median string of a set
as the string which minimises a weighted sum of
distances to the strings in the set (Eq. (1)). The
weightswn in the sum can be tuned. We compute
a weight value for each MT system as a whole, i.e.
all the hypotheses of a given MT system share the
same weight value. We study the performance of
different sets of weight looking for improvements
in the quality of the consensus translations. These
weight values are derived from different automatic
MT evaluation measures:

• BLEU score of each system.

• 1.0 minus TER score of each system.

• Number of times the hypothesis of each sys-
tem is the best TER-scoring translation.

We estimate these scores on the tuning corpora.
A normalisation is performed to transform these
scores into the range[0.0, 1.0]. After the normal-
isation, a weight value of0.0 is assigned to the
lowest-scoring hypothesis, i.e. the lowest-scoring
hypothesis is not taking into account in the com-
putation of the median string.

3.3 System Combination Results

Our framework to compute consensus translations
allows multiple combinations varying the median
string algorithm or the set of weight values used
in the weighted sum of distances. To assure the
soundness of our submission to the WMT 2010
system combination task, the experiments on the
tuning corpora were carried out in a leaving-one-
out fashion dividing the tuning data into5 parts

and averaging translation results over these5 par-
titions. On each of the experiments,4 of the par-
titions are devoted to obtain the weight values for
the weighted sum of distances while BLEU and
TER scores are calculated on the consensus trans-
lations of the remaining partition.

Table 2 shows, on each translation direction,
the performance of the consensus translations on
the tuning corpora. The consensus translations
were computed with the set median string and the
approximated median string using different sets
of weight values: Uniform, all weights are set
to 1.0, BLEU-based weights, TER-based weights
and oracle-based weights. In addition, we display
the performance of the best of the individual MT
systems for comparison purposes. The number of
MT systems combined for each translation direc-
tion is displayed between parentheses.

On all the translation directions under study, the
consensus translations improved the results of the
best individual systems. E.g. TER improved from
66.0 to 63.3 when translating from German into
English. On average, the set median strings per-
formed better than the best individual system, but
its results were always below the performance of
the approximate median string. The use of weight
values computed from MT quality measures al-
lows to improve the quality of the consensus trans-
lation computed. Specially, oracle-based weight
values that, except for the cz→en task, always per-
form equal or better than the other sets of weight
values. We have observed that no improvements
can be achieved with uniform weight values; it is
necessary to penalise low quality hypotheses.

To compute our primary submission to the
WMT 2010 system combination task we choose
the configurations that obtain consensus transla-
tions with highest BLEU score on the tuning cor-
pora. The approximate median string using oracle-
based scores is the chosen configuration for all
translation directions, except on the cz→en trans-
lation direction for which TER-based weights per-
formed better. As our secondary submission we
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Single Set median Approximated median
best Uniform Bleu Ter Oracle Uniform Bleu Ter Oracle

cz→en (6)
BLEU 17.6 16.5 17.8 18.2 17.6 17.1 18.5 18.5 18.0
TER 64.5 68.7 67.6 65.2 64.5 67.0 65.9 65.4 64.4

en→cz (11)
BLEU 11.4 10.1 10.9 10.7 11.0 10.1 10.7 10.7 11.0
TER 75.3 75.1 74.3 74.2 74.2 73.9 73.4 73.3 73.0

de→en (16)
BLEU 19.0 19.0 19.1 19.3 19.7 19.3 19.8 19.9 20.1
TER 66.0 65.4 65.2 65.0 64.6 64.4 63.4 63.4 63.3

en→de (12)
BLEU 11.9 11.6 11.7 11.7 12.0 11.6 11.8 11.8 12.0
TER 74.3 74.1 74.1 74.0 73.7 72.7 72.9 72.7 72.6

es→en (8)
BLEU 23.2 23.0 23.3 23.2 23.6 23.1 23.9 23.8 24.2
TER 60.2 60.6 59.8 59.8 59.5 60.0 59.2 59.4 59.1

en→es (10)
BLEU 23.3 23.0 23.3 23.4 24.0 23.6 23.8 23.8 24.2
TER 60.1 60.1 59.9 59.7 59.5 59.0 59.1 58.9 58.6

fr→en (14)
BLEU 23.3 22.9 23.2 23.2 23.4 23.4 23.8 23.8 23.9
TER 61.1 61.2 60.9 60.9 60.7 60.6 60.0 60.1 59.9

en→fr (13)
BLEU 22.7 23.4 23.5 23.6 23.8 23.3 23.6 23.7 23.8
TER 62.3 61.0 61.0 60.9 60.6 60.2 60.1 60.0 60.0

Table 2: Consensus translation results (case-sensitive) on the tuning corpora with the set median string
and the approximate median string using different sets of weights: Uniform, BLEU-based, TER-based
and oracle-based. The number of systems being combined for each translation direction is in parentheses.
Best consensus translation scores are in bold.

Best Secondary Primary
BLEU TER BLEU TER BLEU TER

cz→en 18.2 63.9 18.3 66.7 19.0 65.1
en→cz 10.8 75.2 11.3 73.6 11.6 71.9
de→en 18.3 66.6 19.1 65.4 19.6 63.9
en→de 11.6 73.4 11.7 72.9 11.9 71.7
es→en 24.7 59.0 24.9 58.9 25.0 58.2
en→es 24.3 58.4 24.9 57.3 25.3 56.3
fr→en 23.7 59.7 23.6 59.8 23.9 59.4
en→fr 23.3 61.3 23.6 59.9 24.1 58.9

Table 3: Translation scores (case-sensitive) on the
test corpora of our primary and secondary submis-
sions to the WMT 2010 system combination task.

chose the set median string using the same set of
weight values chosen for the primary submission.

We compute MT quality scores on the WMT
2010 test corpora to verify the results on the tuning
data. Table 3 displays, on each translation direc-
tion, the results on the test corpora of our primary
and secondary submissions and of the best indi-
vidual system. These results confirm the results
on the tuning data. On all translation directions,
our submissions perform better than the best indi-
vidual systems as measured by BLEU and TER.

4 Summary

We have studied the performance of two consen-
sus translation algorithms that based in the compu-
tation of two different approximations to the me-
dian string. Our algorithms use a weighted sum of
distances whose weight values can be tuned. We
show that using weight values derived from auto-
matic MT quality measures computed on the tun-
ing corpora allow to improve the performance of
the best individual system on all the translation di-
rections under study.
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Abstract
This paper describes our submission,
cmu-heafield-combo, to the WMT
2010 machine translation system combi-
nation task. Using constrained resources,
we participated in all nine language pairs,
namely translating English to and from
Czech, French, German, and Spanish as
well as combining English translations
from multiple languages. Combination
proceeds by aligning all pairs of system
outputs then navigating the aligned out-
puts from left to right where each path is
a candidate combination. Candidate com-
binations are scored by their length, agree-
ment with the underlying systems, and a
language model. On tuning data, improve-
ment in BLEU over the best system de-
pends on the language pair and ranges
from 0.89% to 5.57% with mean 2.37%.

1 Introduction

System combination merges the output of sev-
eral machine translation systems into a sin-
gle improved output. Our system combina-
tion scheme, submitted to the Workshop on Sta-
tistical Machine Translation (WMT) 2010 as
cmu-heafield-combo, is an improvement
over our previous system (Heafield et al., 2009),
called cmu-combo in WMT 2009. The scheme
consists of aligning 1-best outputs from each sys-
tem using the METEOR (Denkowski and Lavie,
2010) aligner, identifying candidate combinations
by forming left-to-right paths through the aligned
system outputs, and scoring these candidates us-
ing a battery of features. Improvements this year
include unigram paraphrase alignment, support for
all target languages, new features, language mod-
eling without pruning, and more parameter opti-
mization. This paper describes our scheme with
emphasis on improved areas.

2 Related Work

Confusion networks (Rosti et al., 2008) are the
most popular form of system combination. In this
approach, a single system output acts as a back-
bone to which the other outputs are aligned. This
backbone determines word order while other out-
puts vote for substitution, deletion, and insertion
operations. Essentially, the backbone is edited
to produce a combined output which largely pre-
serves word order. Our approach differs in that
we allow paths to switch between sentences, effec-
tively permitting the backbone to switch at every
word.

Other system combination techniques typically
use TER (Snover et al., 2006) or ITGs (Karakos
et al., 2008) to align system outputs, meaning
they depend solely on positional information to
find approximate matches; we explicitly use stem,
synonym, and paraphrase data to find alignments.
Our use of paraphrases is similar to Leusch et al.
(2009), though they learn a monolingual phrase
table while we apply cross-lingual pivoting (Ban-
nard and Callison-Burch, 2005).

3 Alignment

System outputs are aligned at the token level using
a variant of the METEOR (Denkowski and Lavie,
2010) aligner. This identifies, in decreasing order
of priority: exact, stem, synonym, and unigram
paraphrase matches. Stems (Porter, 2001) are
available for all languages except Czech, though
this is planned for future work and expected
to produce significant improvement. Synonyms
come from WordNet (Fellbaum, 1998) and are
only available in English. Unigram paraphrases
are automatically generated using phrase table piv-
oting (Bannard and Callison-Burch, 2005). The
phrase tables are trained using parallel data from
Europarl (fr-en, es-en, and de-en), news commen-
tary (fr-en, es-en, de-en, and cz-en), United Na-
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tions (fr-en and es-en), and CzEng (cz-en) (Bojar
and Žabokrtský, 2009) sections 0–8. The German
and Spanish tables also use the German-Spanish
Europarl corpus released for WMT08 (Callison-
Burch et al., 2008). Currently, the generated para-
phrases are filtered to solely unigram matches;
full use of this table is planned for future work.
When alignment is ambiguous (i.e. “that” appears
twice in a system output), an alignment is chosen
to minimize crossing with other alignments. Fig-
ure 1 shows an example alignment. Compared to
our previous system, this replaces heuristic “arti-
ficial” alignments with automatically learned uni-
gram paraphrases.

Twice that produced by nuclear plants

Double that that produce nuclear power stations

Figure 1: Alignment generated by METEOR
showing exact (that–that and nuclear–nuclear),
stem (produced–produce), synonym (twice–
double), and unigram paraphrase (plants–stations)
alignments.

4 Search Space

A candidate combination consists of a string of to-
kens (words and punctuation) output by the under-
lying systems. Unconstrained, the string could re-
peat tokens and assemble them in any order. We
therefore have several constraints:

Sentence The string starts with the beginning of
sentence token and finishes with the end of
sentence token. These tokens implicitly ap-
pear in each system’s output.

Repetition A token may be used at most once.
Tokens that METEOR aligned are alterna-
tives and cannot both be used.

Weak Monotonicity This prevents the scheme
from reordering too much. Specifically, the
path cannot jump backwards more than r to-
kens, where positions are measured relative
to the beginning of sentence. It cannot make
a series of smaller jumps that add up to more
than r either. Equivalently, once a token
in the ith position of some system output is
used, all tokens before the i− rth position in
their respective system outputs become un-

usable. The value of r is a hyperparameter
considered in Section 6.

Completeness Tokens may not be skipped unless
the sentence ends or another constraint would
be violated. Specifically, when a token from
some system is used, it must be the first (left-
most in the system output) available token
from that system. For example, the first de-
coded token must be the first token output by
some system.

Together, these define the search space. The candi-
date starts at the beginning of sentence by choos-
ing the first token from any system. Then it can
either continue with the next token from the same
system or switch to another one. When it switches
to another system, it does so to the first available
token from the new system. The repetition con-
straint requires that the token does not repeat con-
tent. The weak monotonicity constraint ensures
that the jump to the new system goes at most r
words back. The process repeats until the end of
sentence token is encountered.

The previous version (Heafield et al., 2009) also
had a hard phrase constraint and heuristics to de-
fine a phrase; this has been replaced with new
match features.

Search is performed using beam search where
the beam contains partial candidates of the same
length, each of which starts with the beginning of
sentence token. In our experiments, the beam size
is 500. When two partial candidates will extend
in the same way (namely, the set of available to-
kens is the same) and have the same feature state
(i.e. language model history), they are recom-
bined. The recombined partial candidate subse-
quently acts like its highest scoring element, until
k-best list extraction when it is lazily unpacked.

5 Scoring Features

Candidates are scored using three feature classes:

Length Number of tokens in the candidate. This
compensates, to first order, for the impact of
length on other features.

Match For each system s and small n, feature
ms,n is the number of n-grams in the candi-
date matching the sentence output by system
s. This is detailed in Section 5.1.
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Language Model Log probability from a n-gram
language model and backoff statistics. Sec-
tion 5.2 details our training data and backoff
features.

Features are combined into a score using a linear
model. Equivalently, the score is the dot product
of a weight vector with the vector of our feature
values. The weight vector is a parameter opti-
mized in Section 6.

5.1 Match Features

The n-gram match features reward agreement be-
tween the candidate combination and underlying
system outputs. For example, feature m1,1 counts
tokens in the candidate that also appear in sys-
tem 1’s output for the sentence being combined.
Featurem1,2 counts bigrams appearing in both the
candidate and the translation suggested by system
1. Figure 2 shows example feature values.

System 1: Supported Proposal of France

System 2: Support for the Proposal of France

Candidate: Support for Proposal of France

Unigram Bigram Trigram
System 1 4 2 1
System 2 5 3 1

Figure 2: Example match feature values with two
systems and matches up to length three. Here,
“Supported” counts because it aligns with “Sup-
port”.

The match features count n-gram matches be-
tween the candidate and each system. These
matches are defined in terms of alignments. A to-
ken matches the system that supplied it as well as
the systems to which it aligns. This can be seen in
Figure 2 where System 1’s unigram match count
includes “Supported” even though the candidate
chose “Support”. Longer matches are defined sim-
ilarly: a bigram match consists of two consecutive
alignments without reordering. Since METEOR
generates several types of alignments as shown in
Figure 1, we wonder whether all alignment types
should count as matches. If we count all types
of alignment, then the match features are blind to
lexical choice, leaving only the language model to
discriminate. If only exact alignments count, then

less systems are able to vote on a word order deci-
sion mediated by the bigram and trigram features.
We find that both versions have their advantages,
and therefore include two sets of match features:
one that counts only exact alignments and another
that counts all alignments. We also tried copies of
the match features at the stem and synonym level
but found these impose additional tuning cost with
no measurable improvement in quality.

Since systems have different strengths and
weaknesses, we avoid assigning a single system
confidence (Rosti et al., 2008) or counting n-gram
matches with uniform system confidence (Hilde-
brand and Vogel, 2009). The weight on match
feature ms,n corresponds to our confidence in n-
grams from system s. These weights are fully tun-
able. However, there is another hyperparameter:
the maximum length of n-gram considered; we
typically use 2 or 3 with little gain seen above this.

5.2 Language Model
We built language models for each of the five tar-
get languages with the aim of using all constrained
data. For each language, we used the provided
Europarl (Koehn, 2005) except for Czech, News
Commentary, and News monolingual corpora. In
addition, we used:

Czech CzEng (Bojar and Žabokrtský, 2009) sec-
tions 0–7

English Gigaword Fourth Edition (Parker et al.,
2009), Giga-FrEn, and CzEng (Bojar and
Žabokrtský, 2009) sections 0–7

French Gigaword Second Edition (Mendonca et
al., 2009a), Giga-FrEn

Spanish Gigaword Second Edition (Mendonca et
al., 2009b)

Paragraphs in the Gigaword corpora were split
into sentences using the script provided with
Europarl (Koehn, 2005); parenthesized format-
ting notes were removed from the NYT portion.
We discarded Giga-FrEn lines containing invalid
UTF8, control characters, or less than 90% Latin
characters or punctuation. Czech training data
and system outputs were preprocessed using Tec-
toMT (Žabokrtský and Bojar, 2008) following the
CzEng 0.9 pipeline (Bojar and Žabokrtský, 2009).
English training data and system outputs were to-
kenized with the IBM tokenizer. French, Ger-
man, and Spanish used the provided tokenizer.
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Czech words were truecased based on automati-
cally identified lemmas marking names; for other
languages, training data was lowercased and sys-
tems voted, with uniform weight, on capitalization
of each character in the final output.

With the exception of Czech (for which we used
an existing model), all models were built with no
lossy pruning whatsoever, including our English
model with 5.8 billion tokens (i.e. after IBM to-
kenization). Using the stock SRILM (Stolcke,
2002) toolkit with modified Kneser-Ney smooth-
ing, the only step that takes unbounded memory is
final model estimation from n-gram counts. Since
key parameters have already been estimated at this
stage, this final step requires only counts for the
desired n-grams and all of their single token ex-
tensions. We can therefore filter the n-grams on
all but the last token. Our scheme will only query
an n-gram if all of the tokens appear in the union
of system outputs for some sentence; this strict fil-
tering criterion is further described and released
as open source in Heafield and Lavie (2010). The
same technique applies to machine translation sys-
tems, with phrase table expansion taking the place
of system outputs.

For each language, we built one model by ap-
pending all data. Another model interpolates
smaller models built on the individual sources
where each Gigaword provider counts as a distinct
source. Interpolation weights were learned on the
WMT 2009 references. For English, we also tried
an existing model built solely on Gigaword using
interpolation. The choice of model is a hyperpa-
rameter we consider in Section 6.

In the combination scheme, we use the log lan-
guage model probability as a feature. Another
feature reports the length of the n-gram matched
by the model; this exposes limited tunable con-
trol over backoff behavior. For Czech, the model
was built with a closed vocabulary; when an out-
of-vocabulary (OOV) word is encountered, it is
skipped for purposes of log probability and a
third feature counts how often this happens. This
amounts to making the OOV probability a tunable
parameter.

6 Parameter Optimization

6.1 Feature Weights

Feature weights are tuned using Minimum Error
Rate Training (MERT) (Och, 2003) on the 455
provided references. Our largest submission, xx-

en primary, combines 17 systems with five match
features each plus three other features for a total of
88 features. This immediately raises two concerns.
First, there is overfitting and we expect to see a
loss in the test results, although our experience in
the NIST Open MT evaluation is that the amount
of overfitting does not significantly increase at this
number of parameters. Second, MERT is poor at
fitting this many feature weights. We present one
modification to MERT that addresses part of this
problem, leaving other tuning methods as future
work.

MERT is prone to local maxima, so we apply
a simple form of simulated annealing. As usual,
the zeroth iteration decodes with some initial fea-
ture weights. Afterward, the weights {λf} learned
from iteration 0 ≤ j < 10 are perturbed to pro-
duce new feature weights

µf ∼ U
[
j

10
λf ,

(
2− j

10

)
λf

]
where U is the uniform distribution. This sam-
pling is done on a per-sentence basis, so the first
sentence is decoded with different weights than
the second sentence. The amount of random per-
turbation decreases linearly each iteration until
the 10th and subsequent iterations whose learned
weights are not perturbed. We emphasize that
the point is to introduce randomness in sentences
decoded during MERT, and therefore considered
during parameter tuning, and not on the spe-
cific formula presented in this system description.
In practice, this technique increases the number
of iterations and decreases the difference in tun-
ing scores following MERT. In our experiments,
weights are tuned towards uncased BLEU (Pap-
ineni et al., 2002) or the combined metric TER-
BLEU (Snover et al., 2006).

6.2 Hyperparameters
In total, we tried 1167 hyperparameter configura-
tions, limited by CPU time during the evaluation
period. For each of these configurations, the fea-
ture weights were fully trained with MERT and
scored on the same tuning set, which we used to
select the submitted combinations. Because these
configurations represent a small fraction of the
hyperparameter space, we focused on values that
work well based on prior experience and tuning
scores as they became available:

Set of systems Top systems by BLEU. The num-
ber of top systems included ranged from 3 to
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Pair Entry #Sys r Match LM Objective ∆BLEU ∆TER ∆METE
cz-en main 5 4 2 Append BLEU 2.38 0.99 1.50

de-en main 6 4 2 Append TER-BLEU 2.63 -2.38 1.36
contrast 7 3 2 Append BLEU 2.60 -2.62 1.09

es-en main 7 5 3 Append BLEU 1.22 -0.74 0.70
contrast 5 6 2 Gigaword BLEU 1.08 -0.80 0.97

fr-en main 9 5 3 Append BLEU 2.28 -2.26 0.78
contrast 8 5 3 Append BLEU 2.19 -1.81 0.63

xx-en main 17 5 3 Append BLEU 5.57 -5.60 4.33
contrast 16 5 3 Append BLEU 5.45 -5.38 4.22

en-cz main 7 5 3 Append TER-BLEU 0.74 -0.26 0.68

en-de main 6 6 2 Interpolate BLEU 1.26 0.16 1.14
contrast 5 4 2 Interpolate BLEU 1.26 0.30 1.00

en-es main 8 5 3 Interpolate BLEU 2.38 -2.20 0.96
contrast 6 7 2 Append BLEU 2.40 -1.85 1.02

en-fr main 6 7 2 Append BLEU 2.64 -0.50 1.55

Table 1: Submitted combinations chosen from among 1167 hyperparameter settings by tuning data
scores. Uncased BLEU, uncased TER, and METEOR 1.0 with adequacy-fluency parameters are shown
relative to top system by BLEU. Improvement is seen in all pairs on all metrics except for TER on cz-en
and en-de where the top systems are 5% and 2% shorter than the references, respectively. TER has a well
known preference for shorter hypotheses. The #Sys column indicates the number of systems combined,
using the top scoring systems by BLEU. The Match column indicates the maximum n-gram length con-
sidered for matching on all alignments; we separately counted unigram and bigram exact matches. In
some cases, we made a contrastive submission where metrics disagreed or length behavior differed near
the top; contrastive submissions are not our 2009 scheme.

all of them, except on xx-en where we com-
bined up to 17.

Jump limit Mostly r = 5, with some experi-
ments ranging from 3 to 7.

Match features Usually unigram and bigram fea-
tures, sometimes trigrams as well.

Language model Balanced between the ap-
pended and interpolated models, with the
occasional baseline Gigaword model for
English.

Tuning objective Usually BLEU for speed rea-
sons; occasional TER-BLEU with typical
values for other hyperparameters.

7 Conclusion

Table 1 shows the submitted combinations and
their performance. Our submissions this year im-
prove over last year (Heafield et al., 2009) in
overall performance and support for multiple lan-
guages. The improvement in performance we pri-
marily attribute to the new match features, which

account for most of the gain and allowed us to in-
clude lower quality systems. We also trained lan-
guage models without pruning, replaced heuristic
alignments with unigram paraphrases, tweaked the
other features, and improved the parameter opti-
mization process. We hope that the improvements
seen on tuning scores generalize to significantly
improved test scores, especially human evaluation.

Acknowledgments
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305



0.9, building a large Czech-English automatic paral-
lel treebank. The Prague Bulletin of Mathematical
Linguistics, (92):63–83.

Chris Callison-Burch, Cameron Fordyce, Philipp
Koehn, Christof Monz, and Josh Schroeder. 2008.
Further meta-evaluation of machine translation. In
Proceedings of the Third Workshop on Statisti-
cal Machine Translation, pages 70–106, Columbus,
Ohio, June. Association for Computational Linguis-
tics.

Michael Denkowski and Alon Lavie. 2010. Extend-
ing the METEOR machine translation metric to the
phrase level. In Proceedings NAACL 2010, Los An-
geles, CA, June.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. MIT Press.

Kenneth Heafield and Alon Lavie. 2010. Combining
machine translation output with open source: The
Carnegie Mellon multi-engine machine translation
scheme. In The Prague Bulletin of Mathematical
Linguistics, number 93, pages 27–36, Dublin.

Kenneth Heafield, Greg Hanneman, and Alon Lavie.
2009. Machine translation system combination
with flexible word ordering. In Proceedings of the
Fourth Workshop on Statistical Machine Transla-
tion, pages 56–60, Athens, Greece, March. Associa-
tion for Computational Linguistics.

Almut Silja Hildebrand and Stephan Vogel. 2009.
CMU system combination for WMT’09. In Pro-
ceedings of the Fourth Workshop on Statistical Ma-
chine Translation, pages 47–50, Athens, Greece,
March. Association for Computational Linguistics.

Damianos Karakos, Jason Eisner, Sanjeev Khudanpur,
and Markus Dreyer. 2008. Machine translation sys-
tem combination using ITG-based alignments. In
Proceedings ACL-08: HLT, Short Papers (Compan-
ion Volume), pages 81–84.

Philipp Koehn. 2005. Europarl: A parallel corpus
for statistical machine translation. In Proceedings
of MT Summit.

Gregor Leusch, Evgeny Matusov, and Hermann Ney.
2009. The RWTH system combination system for
WMT 2009. In Proceedings of the Fourth Work-
shop on Statistical Machine Translation, pages 51–
55, Athens, Greece, March. Association for Compu-
tational Linguistics.

Angelo Mendonca, David Graff, and Denise DiPer-
sio. 2009a. French gigaword second edition.
LDC2009T28.

Angelo Mendonca, David Graff, and Denise DiPer-
sio. 2009b. Spanish gigaword second edition.
LDC2009T21.

Franz Josef Och. 2003. Minimum error rate train-
ing in statistical machine translation. In ACL ’03:
Proceedings of the 41st Annual Meeting on Asso-
ciation for Computational Linguistics, pages 160–
167, Morristown, NJ, USA. Association for Compu-
tational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. BLEU: a method for auto-
matic evaluation of machine translation. In Proceed-
ings of 40th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 311–318,
Philadelphia, PA, July.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2009. English gigaword fourth
edition. LDC2009T13.

Martin Porter. 2001. Snowball: A language for stem-
ming algorithms. http://snowball.tartarus.org/.

Antti-Veikko I. Rosti, Bing Zhang, Spyros Matsoukas,
and Richard Schwartz. 2008. Incremental hypothe-
sis alignment for building confusion networks with
application to machine translation system combina-
tion. In Proceedings Third Workshop on Statistical
Machine Translation, pages 183–186.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings Seventh Conference of the Associa-
tion for Machine Translation in the Americas, pages
223–231, Cambridge, MA, August.

Andreas Stolcke. 2002. SRILM - an extensible lan-
guage modeling toolkit. In Proceedings of the Sev-
enth International Conference on Spoken Language
Processing, pages 901–904.
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Abstract

This paper describes the CMU entry for
the system combination shared task at
WMT’10. Our combination method is hy-
pothesis selection, which uses information
from n-best lists from the input MT sys-
tems, where available. The sentence level
features used are independent from the
MT systems involved. Compared to the
baseline we added source-to-target word
alignment based features and trained sys-
tem weights to our feature set. We com-
bined MT systems for French - English
and German - English using provided data
only.

1 Introduction

For the combination of machine translation sys-
tems there have been several approaches described
in recent publications. One uses confusion net-
works formed along a skeleton sentence to com-
bine translation systems as described in (Rosti et
al., 2008) and (Karakos et al., 2008). A different
approach described in (Heafield et al., 2009) is not
keeping the skeleton fixed when aligning the sys-
tems. Another approach selects whole hypotheses
from a combined n-best list (Hildebrand and Vo-
gel, 2008).

Our setup follows the latter approach. We com-
bine the output from the submitted translation sys-
tems, including n-best lists where available, into
one joint n-best list, then calculate a set of fea-
tures consistently for all hypotheses. We use MER
training on the provided development data to de-
termine feature weights and re-rank the joint n-
best list. We train to maximize BLEU.

2 Features

For our entries to the WMT’09 we used the follow-
ing feature groups (in parenthesis are the number

of separate feature values per group):

• Language model scores (3)

• Word lexicon scores (6)

• Sentence length features (3)

• Rank feature (1)

• Normalized n-gram agreement (6)

• Source-target word alignment features (6)

• Trained system weights (no. of systems)

The details on language model and word lexi-
con scores can be found in (Hildebrand and Vogel,
2008) and details on the rank feature and the nor-
malized n-gram agreement can be found in (Hilde-
brand and Vogel, 2009). We use three sentence
length features, which are the ratio of the hypoth-
esis length to the length of the source sentence,
the diversion of this ratio from the overall length
ratio of the bilingual training data and the differ-
ence between the hypothesis length and the av-
erage length of the hypotheses in the n-best list
for the respective source sentence. The system
weights are trained together with the other feature
weights during MERT using a binary feature per
system. To the feature vector for each hypothe-
sis one feature per input system is added; for each
hypothesis one of the features is one, indicating
which system it came from, all others are zero.

2.1 Source-Target Word Alignment Features
We trained the IBM word alignment models up
to model 4 using the GIZA++ toolkit (Och and
Ney, 2003) on the bilingual training corpus. Then
a forced alignment algorithm utilizes the trained
models to align each source sentence to each trans-
lation hypothesis in its respective n-best list.

We use the alignment score given by the word
alignment models, the number of unaligned words
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and the number of NULL aligned words, all nor-
malized by the sentence length, as three separate
features. We calculate these alignability features
for both language directions.

3 Experiments

In the WMT shared translation task only a very
small number of participants submitted n-best
lists, e.g. in the German-English track there were
only four n-best lists among the 16 submissions.
Our combination method is proven to work signif-
icantly better when n-best lists are available.

For all our experiments on the data from
WMT’09, which was available for system combi-
nation development as well as the WMT’10 shared
task data we used the same setup and the same sta-
tistical models.

To train our language models and word lexica
we only used provided data. We trained the sta-
tistical word lexica on the parallel data provided
for each language pair1. For each combination we
used three language models: a 4-gram language
model trained on the English part of the parallel
training data, a 1.2 giga-word 3-gram language
model trained on the provided monolingual En-
glish data, and an interpolated 5-gram language
model trained on the English GigaWord corpus.
We used the SRILM toolkit (Stolcke, 2002) for
training. We chose to train three separate LMs
for the three corpora, so the feature weight train-
ing can automatically determine the importance of
each corpus for this task. The reason for training
only a 3-gram LM from the wmt10 monolingual
data was simply that there were not sufficient time
and resources available to train a bigger model.

For each of the two language pairs we compared
a combination that used the word alignment fea-
tures, or trained system weights or both of these
feature groups in addition to the features described
in (Hildebrand and Vogel, 2009) which serves a
baseline for this set of experiments.

For combination we tokenized and lowercased
all data, because the n-best lists were submitted
in various formats. Therefore we report the case
insensitive scores here. The combination was op-
timized toward the BLEU metric, therefore TER
results might not be very meaningful here and are
only reported for completeness.

1http://www.statmt.org/wmt10/translation-
task.html#training

3.1 French-English data from WMT’09

We used 14 systems from the restricted data track
of the WMT’09 including five n-best lists. The
scores of the individual systems for the combina-
tion tuning set range from BLEU 27.93 for the best
to 15.09 for the lowest ranked individual system
(case insensitive evaluation).

system tune test
best single 27.93 / 56.53 27.21 / 56.99
baseline 30.17 / 54.76 28.89 / 55.74
+ wrd al 30.67 / 54.34 28.69 / 55.67
+ sys weights 29.71 / 55.45 28.07 / 56.18
all features 30.30 / 54.53 28.37 / 55.77

Table 1: French-English Results: BLEU / TER

The combination outperforms the best single
system by 1.7 BLEU points. Here adding the 14
binary features for training system weights with
MERT hurts the combinations performance on the
unseen data. The reason for this might be the
rather small tuning set of 502 sentences with one
reference. Adding the word alignment features
does not improve the result either, the difference
to the baseline is at the noise level.

3.2 German-English data from WMT’09

For our experiments on the development data for
German-English we used the top 12 systems, scor-
ing between BLEU 23.01 and BLEU 16.06, ex-
cluding systems known to use data beyond the pro-
vided data. Within those 12 system outputs were
four n-best lists, three of which were 100-best and
one was 10-best.

system tune test
best single 23.01 / 60.52 21.44 / 62.33
baseline 26.28 / 58.69 23.62 / 60.49
+ wrd al 26.25 / 59.13 23.42 / 61.11
+ sys weights 26.78 / 58.48 23.28 / 60.80
all features 26.81 / 58.12 23.51 / 60.25

Table 2: German-English Results: BLEU / TER

Our system combination via hypothesis selec-
tion could improve translation quality by +2.2
BLEU over the best single system on the unseen
test set. Again, the differences between the four
different feature sets are not significant on the un-
seen test set.
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3.3 French-English WMT’10 system
combination shared task

Out of 14 systems submitted to the French-English
translation task, we combined the top 11 systems,
the best of which scored 28.58 BLEU and the last
24.16 BLEU on the tuning set. There were only
three n-best lists among the submissions. We in-
cluded up to 100 hypotheses per system in our
joint n-best list.

system tune test
best sys. 28.58 / 54.17 29.98 / 52.62 / 53.88
baseline 30.67 / 52.62 29.94 / 52.53 / -
+ w. al 30.69 / 52.76 29.97 / 52.76 / 53.76
+ sys w. 30.90 / 52.44 29.79 / 52.84 / 54.05
all feat. 31.10 / 52.06 29.80 / 52.86 / 53.67

Table 3: French-English Results: BLEU / TER /
MaxSim

Our system combination via hypothesis selec-
tion could not improve the translation quality com-
pared to the best single system on the unseen data.
Adding any of the new feature groups to the base-
line does not change the result of the combination
significantly. This result could be explained by the
fact, that due to computational problems and time
constraints we were not able to train our models on
the whole provided French-English training data.
This should only affect the lexicon and word align-
ment feature groups though.

3.4 German-English WMT’10 system
combination shared task

For the German-English combination we used 13
out of the 16 submitted systems, which scored be-
tween BLEU 25.01 to BLEU 19.76 on the tuning
set. Our combination could improve translation
quality by +1.64 BLEU compared to the best sys-
tem.

system tune test
best sys. 25.01 / 58.34 23.89 / 59.14 / 51.10
baseline 26.47 / 56.89 25.44 / 57.96 / -
+ w. al 26.37 / 57.02 25.25 / 58.34 / 50.72
+ sys w. 27.67 / 56.05 25.53 / 57.70 / 51.06
all feat. 27.66 / 56.35 25.25 / 57.86 / 50.83

Table 4: German-English Results: BLEU / TER /
MaxSim

The word alignment features seem to hurt per-
formance slightly, which might be due to the more
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Figure 1: German-English ’10: Contributions of
the individual systems to the final translation, per-
centages and absolute number of hyps chosen.

difficult word alignment between German and En-
glish compared to other language pairs. But this
is not really a strong conclusion, because all dif-
ferences of the results on the unseen data are not
significant.

Figure 1 shows, how many hypotheses were
contributed by the individual systems to the final
translation (unseen data) in the baseline combina-
tion compared with the one with trained system
weights. The systems A to M are ordered by their
BLEU score on the development set. The bars
show percentages of the test set, the numbers listed
next to the systems A to M give the absolute num-
ber of hypotheses chosen from the system for the
two depicted combinations. The systems which
provided n-best lists, marked with a star in the di-
agram, clearly dominate the selection in the base-
line, but this effect is gone when system weights
are used. The dominance of system A in the lat-
ter is to be expected, because it is a whole BLEU
point ahead of the next ranking system on the sys-
tem combination tuning set. In the baseline com-
bination identical hypotheses contributed by dif-
ferent systems have an identical total score. In
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that case the hypothesis is attributed to all systems
which contributed it. This accounts for the higher
total number of hypotheses shown in the graphic
for the baseline as well as for part of the contri-
butions of the low ranking systems. For example
35 hypotheses were provided identically from two
systems and still four hypotheses were produced
by all 13 systems, for example the sentence: ”aber
es geht auch um wirtschaftliche beziehungen .” -
”but it is also about economic relations .”.

4 Conclusions

In this paper we explored new features in our sys-
tem combination system, which performs hypoth-
esis selection. We used hypothesis to source sen-
tence alignment scores as well system weight fea-
tures.

Most systems available for combination did not
submit n-best lists, which decreases the effective-
ness of our combination method significantly.

The reason for not getting an improvement from
word alignment features might be that the top sys-
tems might be using more clever word alignment
strategies than running the GIZA++ toolkit out of
the box. Therefore the alignability according to
these weaker models does not give useful ranking
information for rescoring.

Experiments on different language pairs and
data sets have shown improvements for training
system weights in the past for certain setups.
Combining up to 14 individual translation sys-
tems adds that many features to the feature set for
which weights have to optimized via MERT. The
provided tuning set of 455 sentences with only
one reference is extremely small. It is possible,
that MERT could not reliably determine feature
weights here. In the setup where this feature set
was used successfully, a tuning set of close to 2000
lines with four references was available. It is not
possible to improve the tuning data situation by us-
ing the provided data from last years workshop as
additional tuning data, because the set of systems
submitted is not the same and even the systems
submitted by the same sites might have changed
significantly.

Interesting to note is that looking at the num-
bers, the German-English combination with an
improvement of +1.64 BLEU over the best sin-
gle system seems to have worked much better than
the French-English one with no improvement. But
looking at the preliminary human evaluation result

the picture is opposite: For German-English our
combination is ranked below several of the single
systems and most of the combinations, while for
French-English it tops the list of all systems and
combinations in the workshop.
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Abstract

This paper describes the JHU system
combination scheme that was used in
the WMT 2010 submission. The in-
cremental alignment scheme of (Karakos
et.al, 2008) was used for confusion net-
work generation. The system order
in the alignment of each sentence was
learned using SVMs, following the work
of (Karakos et.al, 2010). Additionally,
web-scale n-grams from the Google cor-
pus were used to build language models
that improved the quality of the combi-
nation output. Experiments in Spanish-
English, French-English, German-English
and Czech-English language pairs were
conducted, and the results show approxi-
mately 1 BLEU point and 2 TER points
improvement over the best individual sys-
tem.

1 Introduction

System Combination refers to the method of com-
bining output of multiple MT systems, to pro-
duce a output better than each individual system.
Currently, there are several approaches to ma-
chine translation which can be classified as phrase-
based, hierarchical, syntax-based (Hildebrand and
Vogel, 2008) which are equally good in their trans-
lation quality even though the underlying frame-
works are completely different. The motivation
behind System Combination arises from this di-
versity in the state-of-art MT systems, which sug-
gests that systems with different paradigms make
different errors, and can be made better by com-
bining their strengths.

One approach of combining translations is
based on representing translations by confusion
network and then aligning these confusion net-
works using string alignment algorithms (Rosti

et.al, 2009), (Karakos and Khudanpur, 2008).
Another approach generates features for every
translation to train algorithms for ranking systems
based on their quality and the top ranking output
is considered to be a candidate translation, (Hilde-
brand and Vogel, 2008) is an example of ranking
based combination. We use ideas from ranking
based approaches to learn order in which systems
should be aligned in a confusion network based
approach.

Our approach is based on incremental align-
ment of confusion networks (Karakos et.al, 2008),
wherein each system output is represented by a
confusion network. The confusion networks are
then aligned in a pre-defined order to generate a
combination output. This paper contributes two
enhancements to (Karakos et.al, 2008). First,
use of Support Vector Machines to learn order in
which the system outputs should be aligned. Sec-
ond, we explore use of Google n-grams for build-
ing dynamic language model and interpolate the
resulting language model with a large static lan-
guage model for rescoring of system combination
outputs.

The rest of the paper is organized as follows:
Section 2 illustrates the idea and pipeline of the
baseline combination system; Section 3 gives de-
tails of SVM ranking for learning system order
for combination; Section 4 explains use of Google
n-gram based language models; Results are dis-
cussed in Section 5; Concluding remarks are given
in Section 6;

2 Baseline System Combination

This section summarizes the algorithm for base-
line combination. The baseline combination
pipeline includes three stages:

1. Representing translations by confusion net-
works.
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2. Generating between system confusion net-
works.

3. Rescoring the final confusion network.

Confusion networks are compressed form of
lattices with a constraint that all paths should pass
through all nodes. Each system output is repre-
sented by an equivalent confusion network. The
per-system confusion networks are aligned one at
a time. The order in which systems are aligned
is usually decided by evaluation of system’s per-
formance. Two alternatives for deciding the sys-
tem order are discussed in Section 3. Inversion-
Transduction Grammar (Wu, 1997) is used for
alignments and the cost function for aligning two
confusion networks is

cost(b1, b2) =
1

|b1||b2|
∑

w∈b1

∑
v∈b2

c(v)c(w)1(w 6= v)

where b1 and b2 are two different bins, |b1| and |b2|
is the number of tokens in b1 and b2 respectively,
c(v) and c(w) are the number of words of token
v and token w. which are in b1 and b2 separately.
The idea of this cost is to compute the probability
that a word from bin b1 is not equal to a word from
bin b2.

cost(b1, b2) = Prob(v 6= w, v ∈ b1, w ∈ b2)

The final confusion network is rescored with a
5-gram language model with Kneser-Ney smooth-
ing. To generate the final output, we need to find
the best (minimum-cost) path through the rescored
confusion network. In the best path every bin in
the network contributes only one word to the out-
put.

Ordering the systems for incremental combina-
tion and use of different language models were the
two components of the pipeline that were experi-
mented with for WMT’2010 shared task. The fol-
lowing sections describe these variations in detail.

3 Learning to Order Systems for
Combination

Determining the order in which systems are
aligned is critical step in our system combination
process. The first few aligned translations/systems
determine the word ordering in the final output and
have a significant influence on the final transla-
tion quality. For the baseline combination the sys-
tems are aligned in the increasing order of (TER-
BLEU) scores. TER and BLEU (Papineni et.al,

2002) scores are calculated over all the sentences
in the training set. This approach to ordering of
systems is static and results in a global order for
all the source segments. An alternative approach
is to learn local order of systems for every source
sentence using a SVM ranker.

3.1 SVM Rank Method
This section describes an approach to order sys-
tems for alignment using SVMs (Karakos et.al,
2010). For each system output a number of fea-
tures are generated, the features fall broadly under
the following three categories:

N-gram Agreements
These features capture the percentage of hypoth-
esis for a source sentence that contain same n-
grams as the candidate translation under consid-
eration. The n-gram matching is position indepen-
dent because phrases often appear in different or-
ders in sentences with same meaning and correct
grammar. The scores for each n-gram are summed
and normalized by sentence length. N-grams of
length 1 · · · 5 are used as five features.

Length Feature
The ratio of length of the translation to the source
sentence is a good indication of quality of the
translation, for a lengthy source sentence a short
translation is most likely to be bad. Here, the ra-
tio of source sentence length to length of the target
sentence is calculated.

Language Model Features
Language models for target language are used to
calculate perplexity of a given translation. The
lower the perplexity the better is the translation
quality. We use two different language models:
(i) a large static 5-gram language model and (ii)a
dynamic language model generated from all the
translations of the same source segment. The
perplexity values are normalized by sentence
length.

Translations in training set are ranked based
on (TER-BLEU) scores. An SVM ranker is then
trained on this set. The SVM ranker (Joachims,
2002) returns a score for each translation, based
on its signed distance from the separating hyper-
plane. This value is used in the combination pro-
cess to weight the contribution of systems to the
final confusion network scores.
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Table 1: Results for all Language pairs on development set
es-en fr-en cz-en de-en

Combination BLEU TER BLEU TER BLEU TER BLEU TER
BEST SYSTEM 29.27 52.38 26.74 56.88 21.56 58.24 26.53 56.87
BASELINE 28.57 51.61 27.65 55.20 21.01 58.79 26.80 54.54
SVM 28.68 51.99 27.53 55.35 21.56 58.24 26.85 54.9
SVM+NGRAM 29.92 50.92 27.86 55.06 21.80 57.78 27.24 54.86

4 Language Models

In the system combination process, the final con-
fusion networks are rescored with language mod-
els. Language models are widely used to en-
sure a fluent output translation. I explored use of
two language models. The first language model
was trained on the English side of French-English
corpus, UN corpus and English Gigaword cor-
pus made available by WMT. The second lan-
guage model used counts generated from Google
n-grams. It was trained by generating all 1-gram
to 5-grams in the system outputs for a source
segment and then using the N-gram search en-
gine (Lin et.al, 2010) built over Google n-grams
to get the corresponding n-gram counts. The n-
gram counts were used to train a 5-gram language
model with Kneser-Ney smoothing. SRILM
toolkit (Stockle, 2002) was used for training the
language models.

The baseline combinations were rescored only
with the static language model. I always did a
weighted interpolation of the two language mod-
els when using n-gram based language model.

5 Results

Results for four language pairs: Spanish-English,
French-English, Czech-English and German-
English are presented. The training data for
WMT’10 was divided into development and test
set, consisting of 208 and 247 segments respec-
tively. Table 1 shows TER and BLEU scores
on the TEST set for all the four language pairs
in the following settings: (i) Baseline corre-
sponds to procedure described in section 2, (ii)
SVM corresponds to using SVM ranker for learn-
ing order of systems as described in section 3.1
(iii)SVM+N-Grams corresponds to the use of a
SVM ranker along with weighted interpolation of
n-gram language model and the large static lan-
guage model. The ranking SVM was trained us-
ing SVM-light (Joachims, 2002) with a RBF ker-

nel. Two-fold cross-validation was done to pre-
vent over-fitting on development data. All the
scores are with lower-cased outputs, a tri-gram
language model was used to true-case the output
before the final submission. 1-best output from
only the primary systems were used for combina-
tion. The number of systems used for combination
in each language pair are: 6 for Czech-English,
8 in Spanish-English, 14 in French-English and
16 in German-English. The best results for base-
line combination were obtained with 3 systems
for Czech-English, 6 systems for German-English,
3 systems for Spanish-English and 9 systems for
French-English.

From the results, we conclude that for all lan-
guage pairs the combinations with SVM and n-
gram language models show gain over all the other
settings in both TER and BLEU evaluations. How-
ever, use of SVM with only one large language
model shows performance degradation on three
out of four language pairs. Size of training data
(208 segments) could be one reason for the degra-
dation and this issue needs further investigation.
For the final submission, the settings that per-
formed the best on (TER−BLEU)

2 scale were cho-
sen.

6 Conclusion

The system combination task gave us an opportu-
nity to evaluate enhancements added to the JHU
system combination pipeline. Experimental re-
sults show that web-scale language models can be
used to improve translation quality, this further un-
derlines the usefulness of web-scale resources like
Google n-grams. Further investigation is needed
to completely understand the reasons for incon-
sistency in the magnitude of gain across different
language pairs. Specifically the impact of training
data on SVMs for ranking in system combination
scenario needs to be analysed.
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Abstract

RWTH participated in the System Combi-
nation task of the Fifth Workshop on Sta-
tistical Machine Translation (WMT 2010).
For 7 of the 8 language pairs, we com-
bine 5 to 13 systems into a single con-
sensus translation, using additional n-best
reranking techniques in two of these lan-
guage pairs. Depending on the language
pair, improvements versus the best sin-
gle system are in the range of +0.5 and
+1.7 on BLEU, and between −0.4 and
−2.3 on TER. Novel techniques compared
with RWTH’s submission to WMT 2009
include the utilization of n-best reranking
techniques, a consensus true casing ap-
proach, a different tuning algorithm, and
the separate selection of input systems
for CN construction, primary/skeleton hy-
potheses, HypLM, and true casing.

1 Introduction

The RWTH approach to MT system combination
is a refined version of the ROVER approach in
ASR (Fiscus, 1997), with additional steps to cope
with reordering between different hypotheses, and
to use true casing information from the input hy-
potheses. The basic concept of the approach has
been described by Matusov et al. (2006). Several
improvements have been added later (Matusov et
al., 2008). This approach includes an enhanced
alignment and reordering framework. In con-
trast to existing approaches (Jayaraman and Lavie,
2005; Rosti et al., 2007), the context of the whole
corpus rather than a single sentence is considered
in this iterative, unsupervised procedure, yielding
a more reliable alignment. Majority voting on the
generated lattice is performed using prior weights
for each system as well as other statistical mod-
els such as a special n-gram language model. In
addition to lattice rescoring, n-best list reranking
techniques can be applied to n best paths of this
lattice. True casing is considered a separate step
in RWTH’s approach, which also takes the input
hypotheses into account.

The pipeline, and consequently the description
of the pipeline given in this paper, is based on our
pipeline for WMT 2009 (Leusch et al., 2009), with
several extensions as described.

2 System Combination Algorithm

In this section we present the details of our system
combination method. Figure 1 gives an overview
of the system combination architecture described
in this section. After preprocessing the MT hy-
potheses, pairwise alignments between the hy-
potheses are calculated. The hypotheses are then
reordered to match the word order of a selected
primary or skeleton hypothesis. From this, we
create a lattice which we then rescore using sys-
tem prior weights and a language model (LM).
The single best path in this CN then constitutes
the consensus translation; alternatively the n best
paths are generated and reranked using additional
statistical models. The consensus translation is
then true cased and postprocessed.

2.1 Word Alignment
The proposed alignment approach is a statistical
one. It takes advantage of multiple translations for
a whole corpus to compute a consensus translation
for each sentence in this corpus. It also takes ad-
vantage of the fact that the sentences to be aligned
are in the same language.

For each of the K source sentences in the
test corpus, we select one of its translations
En, n = 1, . . . ,M, as the primary hypothesis.
Then we align the secondary hypotheses Em(m=
1, . . . ,M ; n 6= m) with En to match the word or-
der in En. Since it is not clear which hypothesis
should be primary, i. e. has the “best” word order,
we let several or all hypothesis play the role of the
primary translation, and align all pairs of hypothe-
ses (En, Em); n 6= m. In this paper, we denote
the number of possible primary hypotheses by N .

The word alignment is trained in analogy to
the alignment training procedure in statistical MT.
The difference is that the two sentences that have
to be aligned are in the same language. We use the
IBM Model 1 (Brown et al., 1993) and the Hid-
den Markov Model (HMM, (Vogel et al., 1996))
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Figure 1: The system combination architecture.

to estimate the alignment model.
The alignment training corpus is created from a

test corpus of effectively N ·(M−1)·K sentences
translated by the involved MT engines. Model pa-
rameters are trained iteratively using the GIZA++

toolkit (Och and Ney, 2003). The training is per-
formed in the directions Em → En and En →
Em. The final alignments are determined using
a cost matrix C for each sentence pair (Em, En).
Elements of this matrix are the local costs C(j, i)
of aligning a word em,j from Em to a word en,i

from En. Following Matusov et al. (2004), we
compute these local costs by interpolating the
negated logarithms of the state occupation proba-
bilities from the “source-to-target” and “target-to-
source” training of the HMM model.

2.2 Word Reordering and Confusion
Network Generation

After reordering each secondary hypothesis Em

and the rows of the corresponding alignment cost
matrix, we determine M−1 monotone one-to-one
alignments between En as the primary translation
and Em, m = 1, . . . ,M ; m 6= n. We then con-
struct the confusion network.

We consider words without a correspondence to
the primary translation (and vice versa) to have a
null alignment with the empty word ε, which will
be transformed to an ε-arc in the corresponding
confusion network.

The M−1 monotone one-to-one alignments can
then be transformed into a confusion network, as
described by Matusov et al. (2008).

2.3 Voting in the Confusion Network

Instead of choosing a fixed sentence to define the
word order for the consensus translation, we gen-
erate confusion networks for N possible hypothe-
ses as primary, and unite them into a single lattice.
In our experience, this approach is advantageous
in terms of translation quality compared to a min-
imum Bayes risk primary (Rosti et al., 2007).

Weighted majority voting on a single confu-
sion network is straightforward and analogous to
ROVER (Fiscus, 1997). We sum up the probabil-
ities of the arcs which are labeled with the same
word and have the same start state and the same
end state. This can also be regarded as having a
binary system feature in a log-linear model.

2.4 Language Models
The lattice representing a union of several confu-
sion networks can then be directly rescored with
an n-gram language model (LM). A transforma-
tion of the lattice is required, since LM history has
to be memorized.

We train a trigram LM on the outputs of the sys-
tems involved in system combination. For LM
training, we take the system hypotheses for the
same test corpus for which the consensus transla-
tions are to be produced. Using this “adapted” LM
for lattice rescoring thus gives bonus to n-grams
from the original system hypotheses, in most cases
from the original phrases. Presumably, many of
these phrases have a correct word order. Previous
experimental results show that using this LM in
rescoring together with a word penalty notably im-
proves translation quality. This even results in bet-
ter translations than using a “classical” LM trained
on a monolingual training corpus. We attribute
this to the fact that most of the systems we com-
bine already include such general LMs.

2.5 Extracting Consensus Translations
To generate our consensus translation, we extract
the single-best path from the rescored lattice, us-
ing “classical” decoding as in MT. Alternatively,
we can extract the n best paths for n-best list
rescoring.

2.6 n-best-List Reranking
If n-best lists were generated in the previous steps,
additional sentence-based features can be calcu-
lated on these sentences, and combined in a log-
linear way. These scores can then be used to re-
rank the sentences.

For the WMT 2010 FR–EN and the DE–EN
task, we generated 200-best lists, and calculated
the following features:

1. Total score from the lattice rescoring
2. NGram posterior weights on those (Zens and

Ney, 2006)
3. Word Penalty
4. HypLM trained on a different set of hypothe-

ses (FR–EN only)
5. Large fourgram model trained on Gigaword

(DE–EN) or Europarl (FR–EN)
6. IBM1 scores and deletion counts based on a

word lexicon trained on WMT training data
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7. Discriminative word lexicon score (Mauser et
al., 2009)

8. Triplet lexicon score (Hasan et al., 2008)

Other features were also calculated, but did not
seem to give an improvement on the DEV set.

2.7 Consensus True Casing
Previous approaches to achieve true cased output
in system combination operated on true-cased lat-
tices, used a separate input-independent true caser,
or used a general true-cased LM to differenti-
ate between alternative arcs in the lattice, as in
(Leusch et al., 2009). For WMT 2010, we use
per-sentence information from the input systems
to determine the consensus case of each output
word. Lattice generation, rescoring, and rerank-
ing are performed on lower-cased input, with a
lower-cased consensus hypothesis as their result.
For each word in this hypothesis, we count how
often each casing variant occurs in the input hy-
potheses for this sentence. We then use the vari-
ant with the highest support for the final consen-
sus output. One advantage is that the set of sys-
tems used to determine the consensus case does
not have to be identical to those used for building
the lattice: Assuming that each word from the con-
sensus hypothesis also occurs in one or several of
the true casing input hypotheses, we can focus on
systems that show a good true casing performance.

3 Tuning

3.1 Tuning Weights for Lattice and n-best
Rescoring

For lattice rescoring, we need to tune system
weights, LM factor, and word penalty to produce
good consensus translations. The same holds for
the log-linear weights in n-best reranking.

For the WMT 2010 Workshop, we selected
a linear combination of BLEU (Papineni et al.,
2002) and TER (Snover et al., 2006) as optimiza-
tion criterion, Θ̂ := argmaxΘ {BLEU − TER},
based on previous experience (Mauser et al.,
2008). For more stable results, we use the case-
insensitive variants for both measures, despite the
explicit use of case information in the pipeline.

System weights were tuned to this criterion us-
ing the Downhill Simplex method. Because we
considered the number of segments in the tuning
set to be too small to allow for a further split into
an actual tuning and a control (dev) part, we went
for a method closely related to 5-fold cross valida-
tion: We randomly split the tuning set into 5 equal-
sized parts, and tune parameters on four fifth of
the set, measuring progress on the remaining fifth.
This was repeated for the other four choices for the
“dev” part. Only settings which reliably showed
progress on these five different versions were used

later on the test set. For the actual weights and
numerical parameters to be used on the test set,
we calculate the median of the five variants, which
lowered the risk of outliers and overfitting.

3.2 System Selection
With the large numbers of input systems – e.g., 17
for DE–EN – and their large spread in translation
quality – e.g. 10% abs. in BLEU – not all sys-
tems should participate in the system combination
process. For the generation of lattices, we con-
sidered several variants of systems, often starting
from the top, and either replacing some of the sys-
tems very similar to others with systems further
down the list, or not considering those as primary,
adding further systems as additional secondaries.

For true casing, and the additional HypLM for
FR–EN, we selected a set of 8 to 12 promising
systems, and ran an exhaustive search on all com-
binations of those to optimize the LM perplexity
on the dev set (LM) or the true case BLEU/TER
score on a consensus translation (TC). Further re-
search may include a weighted combination here,
followed by an optimization of the weights as de-
scribed in the previous paragraph.

4 Experimental Results
Each language pair and each direction in
WMT 2010 had its own set of systems, so we se-
lected and tuned for each direction separately. Af-
ter submission of our system combination output
to WMT 2010, we also calculated scores on the
test set (TEST), to validate our results, and as a
preparation for this report. Note that the scores re-
ported for DEV are calculated on the full DEV set,
but not on any combination of the one-fifth “cross
validation” subcorpora.

4.1 FR–EN and EN–FR
For French–English, we selected a set of eight
systems for the primary submission, and eleven
systems for the contrastive system, of which six
served as skeleton. Six different systems were
used for an additional HypLM, five for consen-
sus true casing. Table 1 shows the distribution of
these systems. We see the results of system com-
bination on DEV and TEST (the latter calculated
after submission) in Table 2. System combination
itself turns out to have the largest improvement,
+0.5 in BLEU and -0.7 in TER on TEST over the
best single system. n-best reranking improves this
result even more, by +0.3/-0.3. The influence of
tuning and of TC selection is measurable on DEV,
but rather small on TEST.

For English–French, 13 systems were used to
construct the lattice, 5 serving as skeleton. Five
different systems were used for true casing. No
n-best list reranking was performed here, as pre-
liminary experiments did not show any significant
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Table 1: Overview of systems used for FR/EN.

System FR–EN EN–FR
A B A B

cambridge P L C p P p
cu-zeman S
cmu-statxfer L s
dfki S
eu S
geneva S
huicong s
jhu P L p S p
koc S
lig s
limsi P C p S C p
lium P L C s P C p
nrc P C s S p
rali P L p P C p
rwth P p P C p
uedin P L C p P C p

“A” is the primary, “B” the contrastive submission.
“P” denotes a system that served as skeleton.
“S” a system that was only aligned to others.
“L” denotes a system used for a larger HypLM-n-best-
rescoring.
”C” is a system used for consensus true casing.

Table 2: Results for FR–EN.

TUNE TEST
BLEU TER BLEU TER

Best single 27.9 55.4 28.5 54.0
Lattice SC 28.4 55.0 29.0 53.3
+ tuning 28.8 54.5 29.1 53.3
+ CV tuning 28.6 54.7 29.1 53.3
+ nbest rerank. 29.0 54.4 29.4 53.0
+ sel. for TC 29.1 54.3 29.3 53.0
Contrast. SC 28.9 54.3 28.8 53.4

“SC” stands for System Combination output.
“CV” denotes the split into five different tuning and valida-
tion parts.
“sel. TC” is the separate selection for consensus true casing.
Systems in bold were submitted for WMT 2010.

Table 3: Results for EN–FR.

TUNE TEST
BLEU TER BLEU TER

Best single 27.1 55.7 26.5 56.1
Primary SC 28.3 55.2 28.2 54.7
Contrast. SC 28.5 54.7 28.1 54.6

Table 4: Overview of systems used for DE/EN.

System DE–EN EN–DE
A B A B

cu-zeman S
cmu C P
dfki S p
fbk P C p P
jhu p
kit P C p P C p
koc S C p
limsi P p P C p
liu C S C p
rwth P p P C p
sfu S
uedin P C p P C p
umd P p
uppsala p S

For abbreviations see Table 1.

Table 5: Results for DE–EN.

TUNE TEST
BLEU TER BLEU TER

Best single 23.8 59.7 23.5 59.7
Lattice SC 24.7 58.5 25.0 57.9
+ tuning 25.1 57.6 25.0 57.6
+ CV tuning 24.8 58.0 24.9 57.8
+ nbest rerank. 25.3 57.6 24.9 57.6
+ sel. for TC 25.5 57.5 24.9 57.6
Contrast. SC 25.2 57.7 24.8 57.7

For abbreviations see Table 2.

gain in this direction. As a contrastive submission,
we submitted the consensus of 8 systems. These
are also listed in Table 1. The results can be found
in Table 3. Note that the contrastive system was
not tuned using the “cross validation” approach;
as a result, we expected it to be sensitive to over-
fitting. We see improvements around +1.7/-1.4 on
TEST.

4.2 DE–EN and EN–DE
In the German–English language pair, 17 systems
were available, but incorporating only six of them
turned out to deliver optimal results on DEV. As
shown in Table 4, we used a combination of seven
systems in the contrastive submission. While a

Table 6: Results for EN–DE.

TUNE TEST
BLEU TER BLEU TER

Best single 16.1 66.3 16.4 65.7
Primary SC 16.4 64.9 17.0 63.7
Contrast. SC 16.4 64.9 17.3 63.4
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Table 7: Overview of systems used for CZ/EN.

System CZ–EN EN–CZ
aalto P
cmu P C
cu-bojar P P
cu-tecto S
cu-zeman P S C
dcu P
eurotrans S
google P C P C
koc P C
pc-trans S
potsdam P C
sfu S
uedin P C P C

For abbreviations see Table 1.
No contrastive systems were built for this language pair.

Table 8: Results for CZ–EN and EN–CZ.
TUNE TEST

BLEU TER BLEU TER
CZ–EN

Best single 21.8 58.4 22.9 57.5
Primary SC 22.4 59.1 23.4 57.9

EN–CZ
Best single 17.0 67.1 16.6 66.4
Primary SC 16.7 65.4 17.4 63.6

different set of five systems was used for consen-
sus true casing, it turned out that using the same
six systems for the “additional” HypLM as for
the lattice seemed to be optimal in our approach.
Table 5 shows the outcome of our experiments:
Again, we see that the largest effect on TEST re-
sults from system combination as such (+1.5/-1.8).
The other steps, in particular tuning and selection
for TC, seem to help on DEV, but make hardly
a difference on TEST. n-best reranking brings an
improvement of -0.2 in TER, but at a minor dete-
rioration (-0.1) in BLEU.

In the opposite direction, English–German, we
combined all twelve systems, five of them serv-
ing as skeleton. The contrastive submission con-
sists of a combination of eight systems. Six sys-
tems were used for true casing. Again, n-best
list rescoring did not result in any improvement
in preliminary experiments, and was skipped. Re-
sults are shown in Table 6: We see that even
though both versions perform equally well on
DEV (+0.4/-1.4), the contrastive system performs
better by +0.3/-0.3 on TEST (+0.9/-2.3).

4.3 CZ–EN and EN–CZ
In both directions involving Czech, the number of
systems was rather limited, so no additional se-

Table 9: Overview of systems used for ES/EN.

System EN–ES
A B

cambridge P C p
dcu P p
dfki P C p
jhu P C p
sfu P C p
uedin P C p
upv p
upv-nnlm P p

Table 10: Results for EN–ES.

TUNE TEST
BLEU TER BLEU TER

ES–EN
Best single 28.7 53.6 – –
SC 29.0 53.3 – –

EN–ES
Best single 27.8 55.2 28.7 54.0
Primary SC 29.5 52.9 30.0 51.4
Contrast. SC 29.6 52.8 30.1 51.7

lection turned out to be necessary, and we did not
build a contrastive system. For Czech–English, all
six systems were used; three of them for true cas-
ing. For English–Czech, all eleven systems were
used in building the lattice, six of them also as
skeleton. Five systems were used in the true cas-
ing step. Table 7 lists these systems. From the
results in Table 8, we see that for CZ–EN, system
combination gains around +0.5 in BLEU, but at
costs of +0.4 to +0.7 in TER. For EN–CZ, the re-
sults look more positive: While we see only -0.3/-
1.7 on DEV, there is a significant improvement of
+1.2/-2.8 on TEST.

4.4 ES–EN and EN–ES
In the Spanish–English language pair, we did not
see any improvement at all on the direction with
English as target in preliminary experiments. Con-
sequently, and given the time constraints, we did
not further investigate on this language pair. Post-
eval experiments revealed that improvements of
+0.3/-0.3 are possible, with far off-center weights
favoring the top three systems.

On English–Spanish, where these preliminary
experiments showed a gain, we used seven out of
the available ten systems in building the lattice
for the primary system, eight for the contrastive.
Five of those were uses for consensus true cas-
ing. Table 9 lists these systems. Table 10 shows
the results on this language pair: For both the pri-
mary and the contrastive systems we see improve-
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ments of around +1.7/-2.3 on DEV, and +1.3/-2.6
on TEST. Except for the TER on TEST, these two
submissions differ only by ±0.1 from each other.

5 Conclusions
We have shown that our system combination sys-
tem can lead to significant improvements over sin-
gle best MT output where a significant number of
comparably good translations is available on a sin-
gle language pair. n-best reranking can further
improve the quality of the consensus translation;
results vary though. While consensus true casing
turned out to be very useful despite of its simplic-
ity, we were unable to find significant improve-
ments on TEST from the selection of a separate
set of true casing input systems.
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Abstract

BBN submitted system combination out-
puts for Czech-English, German-English,
Spanish-English, French-English, and All-
English language pairs. All combinations
were based on confusion network decod-
ing. An incremental hypothesis alignment
algorithm with flexible matching was used
to build the networks. The bi-gram de-
coding weights for the single source lan-
guage translations were tuned directly to
maximize the BLEU score of the decod-
ing output. Approximate expected BLEU
was used as the objective function in gra-
dient based optimization of the combina-
tion weights for a 44 system multi-source
language combination (All-English). The
system combination gained around 0.4-
2.0 BLEU points over the best individual
systems on the single source conditions.
On the multi-source condition, the system
combination gained 6.6 BLEU points.

1 Introduction

The BBN submissions to the WMT10 system
combination task were based on confusion net-
work decoding. The confusion networks were
built using the incremental hypothesis alignment
algorithm with flexible matching introduced in the
BBN submission for the WMT09 system combi-
nation task (Rosti et al., 2009). This year, the
system combination weights were tuned to max-
imize the BLEU score (Papineni et al., 2002) of
the 1-best decoding output (lattice based BLEU
tuning) using downhill simplex method (Press et
al., 2007). A 44 system multi-source combina-
tion was also submitted. Since the gradient-free
optimization algorithms do not seem to be able to
handle more than 20-30 weights, a gradient ascent
to maximize an approximate expected BLEU ob-

jective was used to optimize the larger number of
weights.

The lattice based BLEU tuning may be imple-
mented using any optimization algorithm that does
not require the gradient of the objective function.
Due to the size of the lattices, the objective func-
tion evaluation may have to be distributed to mul-
tiple servers. The optimizer client accumulates the
BLEU statistics of the 1-best hypotheses from the
servers for given search weights, computes the fi-
nal BLEU score, and passes it to the optimiza-
tion algorithm which returns a new set of search
weights. The lattice based tuning explores the en-
tire search space and does not require multiple de-
coding iterations withN -best list merging to ap-
proximate the search space as in the standard min-
imum error rate training (Och, 2003). This allows
much faster turnaround in weight tuning.

Differentiable approximations of BLEU have
been proposed for consensus decoding. Tromble
et al. (2008) used a linear approximation and Pauls
et al. (2009) used a closer approximation called
CoBLEU. CoBLEU is based on the BLEU for-
mula but then-gram counts are replaced by ex-
pected counts over a translation forest. Due to the
min-functions required in converting then-gram
counts to matches and a non-differentiable brevity
penalty, a sub-gradient ascent must be used. In
this work, an approximate expected BLEU (Exp-
BLEU) defined overN -best lists was used as a
differentiable objective function. ExpBLEU uses
expected BLEU statistics where the min-function
is not needed as the statistics are computed off-
line and the brevity penalty is replaced by a dif-
ferentiable approximation. The ExpBLEU tun-
ing yields comparable results to direct BLEU tun-
ing using gradient-free algorithms on combina-
tions of small number of systems (fewer than 20-
30 weights). Results on a 44 system combination
show that the gradient based optimization is more
robust with larger number of weights.
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This paper is organized as follows. Section
2 reviews the incremental hypothesis alignment
algorithm used to built the confusion networks.
Decoding weight optimization using direct lattice
1-best BLEU tuning andN -best list based Exp-
BLEU tuning are presented in Section 3. Exper-
imental results on combining single source lan-
guage to English outputs and all 44 English out-
puts are detailed in Section 4. Finally, Section 5
concludes this paper with some ideas for future
work.

2 Hypothesis Alignment

The confusion networks were built by using the
incremental hypothesis alignment algorithm with
flexible matching introduced in Rosti et al. (2009).
The algorithm is reviewed in more detail here. It
is loosely related to the alignment performed in
the calculation of the translation edit rate (TER)
(Snover et al., 2006) which estimates the edit
distance between two strings allowing shifts of
blocks of words in addition to insertions, dele-
tions, and substitutions. Calculating an exact TER
for strings longer than a few tokens1 is not compu-
tationally feasible, so thetercom 2 software uses
heuristic shift constraints and pruning to find an
upper bound of TER. In this work, the hypothe-
ses were aligned incrementally with the confusion
network, thus using tokens from all previously
aligned hypotheses in computing the edit distance.
Lower substitution costs were assigned to tokens
considered equivalent and the heuristic shift con-
straints oftercom were relaxed3.

First, tokens from all hypotheses are put into
equivalence classes if they belong to the same
WordNet (Fellbaum, 1998) synonym set or have
the same stem. The 1-best hypothesis from each
system is used as the confusion network skeleton
which defines the final word order of the decod-
ing output. Second, a trivial confusion network
is generated from the skeleton hypothesis by gen-
erating a single arc for each token. The align-
ment algorithm explores shifts of blocks of words
that minimize the edit distance between the cur-
rent confusion network and an unaligned hypothe-

1Hypotheses are tokenized and lower-cased prior to align-
ment. Tokens generally refer to words and punctuation.

2http://www.cs.umd.edu/˜snover/tercom/
current version 0.7.25.

3This algorithm is not equivalent to an incremental TER-
Plus (Snover et al., 2009) due to different shift constraints and
the lack of paraphrase matching

30 1cat(1) 2sat(1) mat(1)

(a) Skeleton hypothesis.

40 1cat(1,1) 2sat(1,1) 3on(0,1)
NULL(1,0)

mat(1,1)

(b) Two hypotheses (insertion).

40 1cat(1,1,0)
NULL(0,0,1)

2sat(1,1,1) 3on(0,1,0)
NULL(1,0,1)

mat(1,1,1)

(c) Three hypotheses (deletion).

40 1cat(1,1,0,1)
NULL(0,0,1,0)

2sat(1,1,1,1) 3on(0,1,0,0)
NULL(1,0,1,1)

mat(1,1,1,0)
hat(0,0,0,1)

(d) Four hypotheses (substitution).

Figure 1: Example of incrementally aligning “cat
sat mat”, “cat sat on mat”, “sat mat”, and “cat sat
hat”.

sis. Third, the hypothesis with the lowest edit dis-
tance to the current confusion network is aligned
into the network. The heuristically selected edit
costs used in the WMT10 system were 1.0 for
insertions, deletions, and shifts, 0.2 for substitu-
tions of tokens in the same equivalence class, and
1.0001 for substitutions of non-equivalent tokens.
An insertion with respect to the network always
results in a new node and two new arcs. The first
arc contains the inserted token and the second arc
contains a NULL token representing the missing
token from all previously aligned hypotheses. A
substitution/deletion results in a new token/NULL
arc or increase in the confidence of an existing to-
ken/NULL arc. The process is repeated until all
hypotheses are aligned into the network.

For example, given the following hypotheses
from four systems: “cat sat mat”, “cat sat on mat”,
“sat mat”, and “cat sat hat”, an initial network in
Figure 1(a) is generated. The following two hy-
potheses have a distance of one edit from the initial
network, so the second can be aligned next. Figure
1(b) shows the additional node created and the two
new arcs for ‘on’ and ‘NULL’ tokens. The third
hypothesis has deleted token ‘cat’ and matches the
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‘NULL’ token between nodes 2 and 3 as seen in
Figure 1(c). The fourth hypothesis matches all but
the final token ‘hat’ which becomes a substitution
for ‘mat’ in Figure 1(d). The binary vectors in
the parentheses following each token show which
system generated the token aligned to that arc. If
the systems generatedN -best hypotheses, a frac-
tional increment could be added to these vectors
as in (Rosti et al., 2007). Given these system spe-
cific scores are normalized to sum to one over all
arcs connecting two consecutive nodes, they may
be viewed as system specific word arc posterior
estimates. Note, for 1-best hypotheses the scores
sum to one without normalization.

Given system outputsE = {E1, . . . , ENs},
an algorithm to build a set ofNs confusion
networksC = {C1, . . . , CNs} may be written
as:

for n = 1 to Ns do
Cn ⇐ Init(En) {initialize confusion net-
work from the skeleton}
E ′ ⇐ E − En {set of unaligned hypotheses}
while E ′ 6= ∅ do

Em ⇐ arg minE∈E ′ Dist(E,Cn)
{compute edit distances}
Cn ⇐ Align(Em, Cn) {align closest hy-
pothesis}
E ′ ⇐ E ′ − Em {update set of unaligned
hypotheses}

end while
end for

The set ofNs confusion networks are expanded to
separate paths with distinct bi-gram contexts and
connected in parallel into a big lattice with com-
mon start and end nodes with NULL token arcs.
A prior probability estimate is assigned to the sys-
tem specific word arc confidences connecting the
common start node and the first node in each sub-
network. A heuristic prior is estimated as:

pn =
1
Z

exp(−100
en

Nn
) (1)

whereen is the total cost of aligning all hypothe-
ses when using systemn as the skeleton,Nn is
the number of nodes in the confusion network be-
fore bi-gram expansion, andZ is a scaling factor
to guaranteepn sum to one. This gives a higher
prior for a network with fewer alignment errors
and longer expected decoding output.

3 Weight Optimization

Standard search algorithms may be used to findN -
best hypotheses from the final lattice. The score
for arcl is computed as:

sl = log
( Ns∑

n=1

σnsnl

)
+ λL(wl|wP (l)) + ωS(wl)

(2)
whereσn are the system weights constrained to
sum to one,snl are the system specific arc pos-
teriors,λ is a language model (LM) scaling fac-
tor, L(wl|wP (l)) is the bi-gram log-probability for
the tokenwl on the arcl given the tokenwP (l)

on the arcP (l) preceding the arcl, ω is the word
insertion scaling factor, andS(wl) is zero if wl

is a NULL token and one otherwise. The path
with the highest total score under summation is
the 1-best decoding output. The decoding weights
θ = {σ1, . . . , σNs , λ, ω} are tuned to optimize two
objective functions described next.

3.1 Lattice Based BLEU Optimization

Powell’s method (Press et al., 2007) onN -best
lists was used in system combination weight tun-
ing in Rosti et al. (2007). This requires multiple
decoding iterations and merging theN -best lists
between tuning runs to approximate the full search
space as in Och (2003). To speed up the tuning
process, a distributed optimization method can be
used. The lattices are divided into multiple chunks
each of which are loaded into memory by a server.
A client runs the optimization algorithm relying
on the servers for parallelized objective function
evaluation. The client sends a new set of search
weights to the servers which decode the chunks
of lattices and return the 1-best hypothesis BLEU
statistics back to the client. The client accumulates
the BLEU statistics from all servers and computes
the final BLEU score used as the objective func-
tion by the optimization algorithm. Results similar
to Powell’s method can be obtained with fewer it-
erations by using the downhill simplex method in
multi-dimensions (Amoeba) (Press et al., 2007).
To enforce the sum to one constraint of the sys-
tem weightsσn, the search weights are restricted
to [0, 1] by assigning a large penalty if any cor-
responding search weight breaches the limits and
these restricted search weights are scaled to sum
to one before the objective function evaluation.

After optimizing the bi-gram decoding weights
directly on the lattices, a300-best list are gener-
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ated. The300-best hypotheses are re-scored using
a 5-gram LM and another set of re-scoring weights
are tuned on the development set using the stan-
dardN -best list based method. Multiple random
restarts may be used in both lattice and N-best list
based optimization to decrease chances of finding
a local minimum. Twenty sets of initial weights
(the weights from the previous tuning and 19 ran-
domly perturbed weights) were used in all experi-
ments.

3.2 Approximate Expected BLEU
Optimization

The gradient-free optimization algorithms like
Powell’s method and downhill simplex work well
for up to around 20-30 weights. When the number
of weights is larger, the algorithms often get stuck
in local optima even if multiple random restarts
are used. The BLEU score for a 1-best output is
defined as follows:

BLEU =
4∏

n=1

(∑
i m

n
i∑

i h
n
i

) 1
4

φ

(
1−

∑
i ri∑
i h

1
i

)
(3)

wheremn
i is the number ofn-gram matches be-

tween the hypothesis and reference for segment
i, hn

i is the number ofn-grams in the hypothesis,
ri is the reference length (or the reference length
closest to the hypothesis if multiple references are
available), andφ(x) = min(1.0, ex) is the brevity
penalty. The first term in Equation 3 is a harmonic
mean of then-gram precisions up ton = 4. The
selection of 1-best hypotheses is discrete and the
brevity penalty is not continuous, so the BLEU
score is not differentiable and gradient based op-
timization cannot be used. Given a posterior dis-
tribution over all possible decoding outputs could
be defined, an expected BLEU could be optimized
using gradient ascent. However, this posterior dis-
tribution can only be approximated by expensive
sampling methods.

A differentiable objective function overN -best
lists to approximate the BLEU score can be de-
fined using expected BLEU statistics and a con-
tinuous approximation of the brevity penalty. The
posterior probability for hypothesisj of segmenti
is simply the normalized decoder score:

pij =
eγSij∑
k eγSik

(4)

whereγ is a posterior scaling factor andSij is the
total score of hypothesisj of segmenti. The pos-

terior scaling factor controls the shape of the pos-
terior distribution:γ > 1.0 moves the probability
mass toward the 1-best hypothesis andγ < 1.0
flattens the distribution. The BLEU statistics in
Equation 3 are replaced by the expected statistics;
for example,m̂n

i =
∑

j pijmij , and the brevity
penaltyφ(x) is approximated by:

ϕ(x) =
ex − 1

e1000x + 1
+ 1 (5)

ExpBLEU has a closed form solution for the gra-
dient, provided the total decoder score is differen-
tiable.

The penalty used to restrict the search weights
corresponding to the system weightsσn in
gradient-free BLEU tuning is not differentiable.
For expected BLEU tuning, the search weightsςn
are unrestricted but the system weights are ob-
tained by a sigmoid transform and normalized to
sum to one:

σn =
δ(ςn)∑
m δ(ςm)

(6)

whereδ(ςn) = 1/(1 + e−ςn).
The expected BLEU tuning is performed onN -

best lists in similar fashion to direct BLEU tuning.
Tuned weights from one decoding iteration are
used to generate a newN -best list, the newN -best
list is merged with theN -best list from the previ-
ous tuning run, and a new set of weights are op-
timized using limited memory Broyden-Fletcher-
Goldfarb-Shanno method (lBFGS) (Liu and No-
cedal, 1989). Since the posterior distribution is
affected by the size of theN -best list and differ-
ent decoding weights, the posterior scaling factor
can be set for each tuning run so that the perplex-
ity of the posterior distribution given the merged
N -best list is constant. A target perplexity of 5.0
was used in the experiments. Four iterations of
bi-gram decoding weight tuning were performed
using300-best lists. The final300-best list was re-
scored with a 5-gram and another set of re-scoring
weights was tuned on the development set.

4 Experimental Evaluation

System outputs for all language pairs with En-
glish as the target were combined. Unpruned En-
glish bi-gram and 5-gram language model com-
ponents were trained using the WMT10 corpora:
EuroParl , GigaFrEn , NewsCommentary ,
and News. Additional six Gigaword v4 com-
ponents were trained:AFP, APW, XIN+CNA,
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tune cz-en de-en es-en fr-en
System TER BLEU TER BLEU TER BLEU TER BLEU

worst 68.99 13.85 68.45 15.07 60.86 21.02 71.17 15.00
best 56.77 22.84 57.76 25.05 51.81 30.10 53.66 28.64
syscomb 57.31 25.11 54.97 27.75 50.46 31.54 51.35 31.16

test cz-en de-en es-en fr-en
System TER BLEU TER BLEU TER BLEU TER BLEU

worst 68.65 14.29 67.50 15.66 60.52 21.86 68.36 16.82
best 56.13 23.56 58.12 24.34 51.45 30.56 52.16 29.79
syscomb 56.89 25.12 55.60 26.38 50.33 31.59 51.36 30.16

Table 1: Case insensitive TER and BLEU scores onsyscombtune (tune) andsyscombtest (test)
for combinations of outputs from four source languages.

LTW, NYT, andHeadlines+Datelines . In-
terpolation weights for the ten components
were tuned so as to minimize perplexity on
thenewstest2009-ref.en development set.
The LMs used modified Kneser-Ney smoothing.
On the multi-source condition (xx-en ) another
LM was trained from the system outputs and in-
terpolated with the general LM using an interpola-
tion weight 0.3 for the LM trained on the system
outputs. This LM is referred to as biasLM later.
A tri-gram true casing model was trained using all
available English data. This model was used to
restore the case of the lower-case system combi-
nation output.

All six 1-best system outputs oncz-en , 16
outputs onde-en , 8 outputs ones-en , and
14 outputs onfr-en were combined. The lat-
tice based BLEU tuning was used to optimize the
bi-gram decoding weights and N-best list based
BLEU tuning was used to optimize the 5-gram re-
scoring weights. Results for these single source
language experiments are shown in Table 1. The
gains onsyscombtune were similar to those on
syscombtest for all but French-English. The
tuning set contained only 455 segments but ap-
peared to be well matched with the larger (2034
segments) test set. The characteristics of the indi-
vidual system outputs were probably different for
the tuning and test sets on French-English transla-
tion. In our experience, optimizing system com-
bination weights using the ExpBLEU tuning for
a small number of systems yields similar results
to lattice based BLEU tuning. The lattice based
BLEU tuning is faster as there is no need for mul-
tiple decoding and tuning iterations. Using the bi-
asLM on the single source combinations did not

xx-en tune test
System TER BLEU TER BLEU

worst 71.17 13.85 68.65 14.29
best 51.81 30.10 51.45 30.56
lattice 43.15 35.72 43.79 35.29
expBLEU 44.07 36.91 44.35 36.62
+biasLM 43.63 37.61 44.50 37.12

Table 2: Case insensitive TER and BLEU scores
on syscombtune (tune) andsyscombtest
(test) forxx-en combination. Combinations us-
ing lattice BLEU tuning, expected BLEU tuning,
and after adding the system output biased LM are
shown.

yield any gains. The output for these conditions
probably did not contain enough data for biasLM
training given the small tuning set and small num-
ber of systems.

Finally, experiments combining all 44 1-best
system outputs were performed to produce a
multi-source combination output. The first experi-
ment used the lattice based BLEU tuning and gave
a 5.6 BLEU point gain on the tuning set as seen in
Table 2. The ExpBLEU tuning gave an additional
1.2 point gain which suggests that the direct lattice
based BLEU tuning got stuck in a local optimum.
Using the system output biased LM gave an addi-
tional 0.7 point gain. The gains on the test set were
similar and the best combination gave a 6.6 point
gain over the best individual system.

5 Conclusions

The BBN submissions for WMT10 system com-
bination task were described in this paper. The
combination was based on confusion network de-
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coding. The confusion networks were built us-
ing an incremental hypothesis alignment algo-
rithm with flexible matching. The bi-gram de-
coding weights for the single source conditions
were optimized directly to maximize the BLEU
scores of the 1-best decoding outputs and the 5-
gram re-scoring weights were tuned on300-best
lists. The BLEU gains over the best individual
system outputs were around 1.5 points oncz-en ,
2.0 points onde-en , 1.0 points ones-en , and
0.4 points onfr-en . The system combination
weights onxx-en were tuned to maximize Exp-
BLEU, and a system output biased LM was used.
The BLEU gain over the best individual system
was 6.6 points. Future work will investigate tuning
of the edit costs used in the alignment. A lattice
based ExpBLEU tuning will be investigated. Also,
weights for more complicated functions with addi-
tional features may be tuned using ExpBLEU.
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Abstract
The ability to measure the quality of word
order in translations is an important goal
for research in machine translation. Cur-
rent machine translation metrics do not
adequately measure the reordering perfor-
mance of translation systems. We present
a novel metric, the LRscore, which di-
rectly measures reordering success. The
reordering component is balanced by a
lexical metric. Capturing the two most im-
portant elements of translation success in
a simple combined metric with only one
parameter results in an intuitive, shallow,
language independent metric.

1 Introduction

The main purpose of MT evaluation is to de-
termine “to what extent the makers of a system
have succeeded in mimicking the human transla-
tor” (Krauwer, 1993). But machine translation
has no “ground truth” as there are many possi-
ble correct translations. It is impossible to judge
whether a translation is incorrect or simply un-
known and it is even harder to judge the the degree
to which it is incorrect. Even so, automatic met-
rics are necessary. It is nearly impossible to collect
enough human judgments for evaluating incre-
mental improvements in research systems, or for
tuning statistical machine translation system pa-
rameters. Automatic metrics are also much faster
and cheaper than human evaluation and they pro-
duce reproducible results.

Machine translation research relies heavily
upon automatic metrics to evaluate the perfor-
mance of models. However, current metrics rely
upon indirect methods for measuring the quality
of the word order, and their ability to capture re-
ordering performance has been demonstrated to be
poor (Birch et al., 2010). There are two main ap-
proaches to capturing reordering. The first way

to measure the quality of word order is to count
the number of matching n-grams between the ref-
erence and the hypothesis. This is the approach
taken by the BLEU score (Papineni et al., 2002).
This method discounts any n-gram which is not
identical to a reference n-gram, and also does not
consider the relative position of the strings. They
can be anywhere in the sentence. Another com-
mon approach is typified by METEOR (Banerjee
and Lavie, 2005) and TER (Snover et al., 2006).
They calculate an ordering penalty for a hypoth-
esis based on the minimum number of chunks the
translation needs to be broken into in order to align
it to the reference. The disadvantage of the second
approach is that aligning sentences with very dif-
ferent words can be inaccurate. Also there is no
notion of how far these blocks are out of order.
More sophisticated metrics, such as the RTE met-
ric (Padó et al., 2009), use higher level syntactic or
even semantic analysis to determine the quality of
the translation. These approaches are useful, but
can be very slow, require annotation, they are lan-
guage dependent and their parameters are hard to
train. For most research work shallow metrics are
more appropriate.

Apart from failing to capture reordering perfor-
mance, another common criticism of most cur-
rent automatic MT metrics is that a particular
score value reported does not give insights into
quality (Przybocki et al., 2009). This is because
there is no intrinsic significance of a difference
in scores. Ideally, the scores that the metrics re-
port would be meaningful and stand on their own.
However, the most one can say is that higher is
better for accuracy metrics and lower is better for
error metrics.

We present a novel metric, the LRscore, which
explicitly measures the quality of word order in
machine translations. It then combines the re-
ordering metric with a metric measuring lexical
success. This results in a comprehensive met-
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ric which measures the two most fundamental as-
pects of translation. We argue that the LRscore
is intuitive and meaningful because it is a simple,
decomposable metric with only one parameter to
train.

The LRscore has many of the properties that are
deemed to be desirable in a recent metric eval-
uation campaign (Przybocki et al., 2009). The
LRscore is language independent. The reorder-
ing component relies on abstract alignments and
word positions and not on words at all. The lex-
ical component of the system can be any mean-
ingful metric for a particular target language. In
our experiments we use 1-gram BLEU and 4-gram
BLEU, however, if a researcher was interested in
morphologically rich languages, a different met-
ric which scores partially correct words might be
more appropriate. The LRscore is a shallow met-
ric, which means that it is reasonably fast to run.
This is important in order to be useful for train-
ing of the translation model parameters. A final
advantage is that the LRscore is a sentence level
metric. This means that human judgments can be
directly compared to system scores and helps re-
searchers to understand what changes they are see-
ing between systems.

In this paper we start by describing the reorder-
ing metrics and then we present the LRscore. Fi-
nally we discuss related work and conclude.

2 Reordering Metrics

The relative ordering of words in the source and
target sentences is encoded in alignments. We
can interpret alignments as permutations. This
allows us to apply research into metrics for or-
dered encodings to our primary tasks of measur-
ing and evaluating reorderings. A word alignment
over a sentence pair allows us to transcribe the
source word positions in the order of the aligned
target words. Permutations have already been
used to describe reorderings (Eisner and Tromble,
2006), primarily to develop a reordering model
which uses ordering costs to score possible per-
mutations. Here we use permutations to evaluate
reordering performance based on the methods pre-
sented in (Birch et al., 2010).

The ordering of the words in the target sentence
can be seen as a permutation of the words in the
source sentence. The source sentence s of length
N consists of the word positions s0 · · · si · · · sN .
Using an alignment function where a source word

at position i is mapped to a target word at position
j with the function a : i → j, we can reorder the
source word positions to reflect the order of the
words in the target. This gives us a permutation.

A permutation is a bijective function from a set
of natural numbers 1, 2, · · · , N to itself. We will
name our permutations π and σ. The ith symbol
of a permutation π will be denoted as π(i), and
the inverse of the permutation π−1 is defined so
that if π(i) = j then π−1(j) = i. The identity, or
monotone, permutation id is the permutation for
which id(i) = i for all i. Table 1 shows the per-
mutations associated with the example alignments
in Figure 1. The permutations are calculated by
iterating over the source words, and recording the
ordering of the aligned target words.

Permutations encode one-one relations,
whereas alignments contain null alignments and
one-many, many-one and many-many relations.
For now, we make some simplifying assumptions
to allow us to work with permutations. Source
words aligned to null (a(i) → null) are assigned
the target word position immediately after the
target word position of the previous source word
(π(i) = π(i − 1) + 1). Where multiple source
words are aligned to the same target word or
phrase, a many-to-one relation, the target ordering
is assumed to be monotone. When one source
word is aligned to multiple target words, a one-to-
many relation, the source word is assumed to be
aligned to the first target word.

A translation can potentially have many valid
word orderings. However, we can be reason-
ably certain that the ordering of reference sentence
must be acceptable. We therefore compare the or-
dering of a translation with that of the reference
sentence. The underlying assumption is that most
reasonable word orderings should be fairly similar
to the reference. The assumption that the reference
is somehow similar to the translation is necessary
for all automatic machine translation metrics. We
propose using permutation distance metrics to per-
form the comparison.

There are many different ways of measuring
distance between two permutations, with different
solutions originating in different domains (statis-
tics, computer science, molecular biology, . . . ).
Real numbered data leads to measures such as Eu-
clidean distance, binary data to measures such as
Hamming distance. But for ordered sets, there
are many different options, and the best one de-
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Figure 1: Synthetic examples: a translation and three reference scenarios. (a) is a monotone translation,
(b) is a reference with one short distance word order difference, (c) is a reference where the order of the
two halves has been swapped, and (d) is a reference with a long distance reordering of the first target
word.

pends on the task at hand. We choose a few
metrics which are widely used, efficient to calcu-
late and capture certain properties of the reorder-
ing. In particular, they are sensitive to the num-
ber of words that are out of order. Three of the
metrics, Kendall’s tau, Spearman’s rho and Spear-
man’s footrule distances also take into account the
distance between positions in the reference and
translation sentences, or the size of the reordering.

An obvious disadvantage of this approach is the
fact that we need alignments, either between the
source and the reference, and the source and the
translation, or directly between the reference and
the translation. If accuracy is paramount, the test
set could include manual alignments and the sys-
tems could directly output the source-translation
alignments. Outputting the alignment informa-
tion should require a trivial change to the decoder.
Alignments can also be automatically generated
using the alignment model that aligns the training
data.

Distance metrics increase as the quality of trans-
lation decreases. We invert the scale of the dis-

(a) (1 2 3 4 5 6 7 8 9 10)
(b) (1 2 3 4 •6 •5 •7 8 9 10)
(c) (6 7 8 9 10 •1 2 3 4 5)
(d) (2 3 4 5 6 7 8 9 10 •1)

Table 1: Permutations extracted from the sentence
pairs shown in Figure 1: (a) is a monotone permu-
tation and (b), (c) and (d) are permutations with
different amounts of disorder, where bullet points
highlight non-sequential neighbors.

tance metrics in order to easily compare them with
other metrics where increases in the metrics mean
increases in translation quality. All permutation
distance metrics are thus subtracted from 1. Note
that the two permutations we refer to π and σ are
relative to the source sentence, and not to the ref-
erence: the source-reference permutation is com-
pared to the source-translation permutation.

2.1 Hamming Distance

The Hamming distance (Hamming, 1950) mea-
sures the number of disagreements between two
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permutations. The Hamming distance for permu-
tations was proposed by (Ronald, 1998) and is also
known as the exact match distance. It is defined
as follows:

dH(π, σ) = 1−
∑n

i=1 xi
n

where xi =
{

0 if π(i) = σ(i)
1 otherwise

Where π, σ are the two permutations and the
normalization constant Z is n, the length of the
permutation. We are interested in the Hamming
distance for its ability to capture the amount of ab-
solute disorder that exists between two permuta-
tions. The Hamming distance is widely utilized in
coding theory to measure the discrepancy between
two binary sequences.

2.2 Kendall’s Tau Distance
Kendall’s tau distance is the minimum number
of transpositions of two adjacent symbols nec-
essary to transform one permutation into an-
other (Kendall, 1938; Kendall and Gibbons,
1990). This is sometimes known as the swap dis-
tance or the inversion distance and can be inter-
preted as a function of the probability of observing
concordant and discordant pairs (Kerridge, 1975).
It is defined as follows:

dτ (π, σ) = 1−
∑n

i=1

∑n
j=1 zij

Z

where zij =
{

1 if π(i) < π(j) and σ(i) > σ(j)
0 otherwise

Z =
(n2 − n)

2

The Kendall’s tau metric is possibly the most in-
teresting for measuring reordering as it is sensitive
to all relative orderings. It consequently measures
not only how many reordering there are but also
the distance that words are reordered.

In statistics, Spearman’s rho and Kendall’s tau
are widely used non-parametric measures of as-
sociation for two rankings. In natural language
processing research, Kendall’s tau has been used
as a means of estimating the distance between
a system-generated and a human-generated gold-
standard order for the sentence ordering task (La-
pata, 2003). Kendall’s tau has also been used
in machine translation as a cost function in a re-
ordering model (Eisner and Tromble, 2006) and
an MT metric called ROUGE-S (Lin and Och,

2004) is similar to a Kendall’s tau metric on lexical
items. ROUGE-S is an F-measure of ordered pairs
of words in the translation. As far as we know,
Kendall’s tau has not been used as a reordering
metric before.

3 LRscore

The goal of much machine translation research is
either to improve the quality of the words used in
the output, or their ordering. We use the reordering
metrics and combine them with a measurement of
lexical performance to produce a comprehensive
metric, the LRscore. The LRscore is a linear in-
terpolation of a reordering metric with the BLEU
score. If we use the 1-gram BLEU score, BLEU1,
then the LRscore relies purely upon the reorder-
ing metric for all word ordering evaluation. We
also use the 4-gram BLEU score, BLEU4, as it is
an important baseline and the values it reports are
very familiar to machine translation researchers.
BLEU4 also contains a notion of word ordering
based on longer matching n-grams. However, it
is aware only of very local orderings. It does not
measure the magnitude of the orderings like the
reordering metrics do, and it is dependent on ex-
act lexical overlap which does not affect the re-
ordering metric. The two components are there-
fore largely orthogonal and there is a benefit in
combining them. Both the BLEU score and the
reordering distance metric apply a brevity penalty
to account for translations of different lengths.

The formula for calculating the LRscore is as
follows:

LRscore = α ∗R+ (1− α)BLEU

Where the reordering metricR is calculated as fol-
lows:

R = d ∗BP

Where we either take the Hamming distance dH
or the Kendall’s tau distance dτ as the reordering
distance d and then we apply the brevity penalty
BP . The brevity penalty is calculated as:

BP =
{

1 if t > r

e1−r/t if t ≤ r

where t is the length of the translation, and r is
the closest reference length. R is calculated at the
sentence level, and the scores are averaged over a
test set. This average is then combined with the
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system level lexical score. The Lexical metric is
the BLEU score which sums the log precision of
n-grams. In our paper we set the n-gram length to
either be one or four.

The only parameter in the metric α balances the
contribution of reordering and the lexical compo-
nents. There is no analytic solution for optimizing
this parameter, and we use greedy hillclimbing in
order to find the optimal setting. We optimize the
sentence level correlation of the metric to human
judgments of accuracy as provided by the WMT
2010 shared task. As hillclimbing can end up in a
local minima, we perform 20 random restarts, and
retaining only the parameter value with the best
consistency result. Random-restart hill climbing is
a surprisingly effective algorithm in many cases. It
turns out that it is often better to spend CPU time
exploring the space, rather than carefully optimiz-
ing from an initial condition.

The brevity penalty applies to both the reorder-
ing metric and the BLEU score. We do not set
a parameter to regulate the impact of the brevity
penalty, as we want to retain BLEU scores that are
comparable with BLEU scores computed in pub-
lished research. And as we do not regulate the
brevity penalty in the BLEU score, we do not wish
to do so for the reordering metric either. It there-
fore impacts on both the reordering and the lexical
components equally.

4 Correlation with Human Judgments

It has been common to use seven-point fluency
and adequacy scores as the main human evalua-
tion task. These scores are intended to be absolute
scores and comparable across sentences. Seven-
point fluency and adequacy judgements are quite
unreliable at a sentence level and so it seems du-
bious that they would be reliable across sentences.
However, having absolute scores does have the ad-
vantage of making it easy to calculate the correla-
tion coefficients of the metric with human judge-
ments. Using rank judgements, we do not have
absolute scores and thus we cannot compare trans-
lations across different sentences.

We therefore take the method adopted in the
2009 workshop on machine translation (Callison-
Burch et al., 2009). We ascertained how consis-
tent the automatic metrics were with the human
judgements by calculating consistency in the fol-
lowing manner. We take each pairwise compari-
son of translation output for single sentences by a

Metric de-en es-en fr-en cz-en
BLEU4 58.72 55.48 57.71 57.24
LR-HB1 60.37 60.55 58.59 53.70
LR-HB4 60.49 58.88 58.80 57.74
LR-KB1 60.67 58.54 58.46 54.20
LR-KB4 61.07 59.86 58.59 58.92

Table 2: The percentage consistency between hu-
man judgements of rank and metrics. The LRscore
variations (LR-*) are optimised for consistency for
each language pair.

particular judge, and we recorded whether or not
the metrics were consistent with the human rank.
Ie. we counted cases where both the metric and the
human judged agree that one system is better than
another. We divided this by the total umber of pair-
wise comparisons to get a percentage. There were
many ties in the human data, but metrics rarely
give the same score to two different translations.
We therefore excluded pairs that the human anno-
tators ranked as ties. The human ranking data and
the system outputs from the 2009 Workshop on
Machine Translation (Callison-Burch et al., 2009)
have been used to evaluate the LRscore.

We optimise the sentence level consistency of
the metric. As hillclimbing can end up in a local
minima, we perform 20 random restarts, and re-
taining only the parameter value with the best con-
sistency result. Random-restart hill climbing is a
surprisingly effective algorithm in many cases. It
turns out that it is often better to spend CPU time
exploring the space, rather than carefully optimis-
ing from an initial condition.

Table 2 reports the optimal consistency of the
LRscore and baseline metrics with human judge-
ments for each language pair. The table also
reports the individual component results. The
LRscore variations are named as follows: LR
refers to the LRscore, “H” refers to the Hamming
distance and “K” to Kendall’s tau distance. “B1”
and “B4” refer to the smoothed BLEU score with
the 1-gram and 4-gram scores. The LRscore is the
metric which is most consistent with human judge-
ment. This is an important result which shows
that combining lexical and reordering information
makes for a stronger metric.

5 Related Work

(Wong and Kit, 2009) also suggest a metric which
combines a word choice and a word order com-
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ponent. They propose a type of F-measure which
uses a matching function M to calculate precision
and recall. M combines the number of matched
words, weighted by their tfidf importance, with
their position difference score, and finally sub-
tracting a score for unmatched words. Includ-
ing unmatched words in the in M function un-
dermines the interpretation of the supposed F-
measure. The reordering component is the average
difference of absolute and relative word positions
which has no clear meaning. This score is not intu-
itive or easily decomposable and it is more similar
to METEOR, with synonym and stem functional-
ity mixed with a reordering penalty, than to our
metric.

6 Conclusion

We propose the LRscore which combines a lexi-
cal and a reordering metric. This results in a met-
ric which is both meaningful and accurately mea-
sures the word order performance of the transla-
tion model.

References
Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An

automatic metric for MT evaluation with improved
correlation with human judgments. In Workshop on
Intrinsic and Extrinsic Evaluation Measures for MT
and/or Summarization.

Alexandra Birch, Phil Blunsom, and Miles Osborne.
2010. Metrics for MT Evaluation: Evaluating Re-
ordering. Machine Translation (to appear).

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. 2009. Findings of the 2009
Workshop on Statistical Machine Translation. In
Proceedings of the Fourth Workshop on Statistical
Machine Translation, pages 1–28, Athens, Greece,
March. Association for Computational Linguistics.

Jason Eisner and Roy W. Tromble. 2006. Local search
with very large-scale neighborhoods for optimal
permutations in machine translation. In Proceed-
ings of the HLT-NAACL Workshop on Computation-
ally Hard Problems and Joint Inference in Speech
and Language Processing, pages 57–75, New York,
June.

Richard Hamming. 1950. Error detecting and error
correcting codes. Bell System Technical Journal,
26(2):147–160.

M. Kendall and J. Dickinson Gibbons. 1990. Rank
Correlation Methods. Oxford University Press,
New York.

Maurice Kendall. 1938. A new measure of rank corre-
lation. Biometrika, 30:81–89.

D Kerridge. 1975. The interpretation of rank correla-
tions. Applied Statistics, 2:257–258.

S. Krauwer. 1993. Evaluation of MT systems: a pro-
grammatic view. Machine Translation, 8(1):59–66.

Mirella Lapata. 2003. Probabilistic text structur-
ing: Experiments with sentence ordering. Compu-
tational Linguistics, 29(2):263–317.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality us-
ing longest common subsequence and skip-bigram
statistics. In Proceedings of the 42nd Meeting
of the Association for Computational Linguistics
(ACL’04), Main Volume, pages 605–612, Barcelona,
Spain, July.
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Abstract

This paper describes the joint submission of
Universitat Politècnica de Catalunya and Uni-
versitat de Barcelona to the Metrics MaTr
2010 evaluation challenge, in collaboration with
ELDA/ELRA. Our work is aimed at widening the
scope of current automatic evaluation measures
from sentence to document level. Preliminary ex-
periments, based on an extension of the metrics by
Giménez and Màrquez (2009) operating over dis-
course representations, are presented.

1 Introduction

Current automatic similarity measures for Ma-
chine Translation (MT) evaluation operate all,
without exception, at the segment level. Trans-
lations are analyzed on a segment-by-segment1

fashion, ignoring the text structure. Document
and system scores are obtained using aggregate
statistics over individual segments. This strategy
presents the main disadvantage of ignoring cross-
sentential/discursive phenomena.

In this work we suggest widening the scope
of evaluation methods. We have defined genuine
document-level measures which are able to ex-
ploit the structure of text to provide more informed
evaluation scores. For that purpose we take advan-
tage of two coincidental facts. First, test beds em-
ployed in recent MT evaluation campaigns include
a document structure grouping sentences related
to the same event, story or topic (Przybocki et al.,
2008; Przybocki et al., 2009; Callison-Burch et al.,
2009). Second, we count on automatic linguistic
processors which provide very detailed discourse-
level representations of text (Curran et al., 2007).

Discourse representations allow us to focus on
relevant pieces of information, such as the agent

1A segment typically consists of one or two sentences.

(who), location (where), time (when), and theme
(what), which may be spread all over the text.
Counting on a means of discerning the events, the
individuals taking part in each of them, and their
role, is crucial to determine the semantic equiva-
lence between a reference document and a candi-
date translation.

Moreover, the discourse analysis of a document
is not a mere concatenation of the analyses of its
individual sentences. There are some phenom-
ena which may go beyond the scope of a sen-
tence and can only be explained within the con-
text of the whole document. For instance, in a
newspaper article, facts and entities are progres-
sively added to the discourse and then referred
to anaphorically later on. The following extract
from the development set illustrates the impor-
tance of such a phenomenon in the discourse anal-
ysis: ‘Among the current or underlying crises in
the Middle East, Rod Larsen mentioned the Arab-
Israeli conflict and the Iranian nuclear portfolio,
as well as the crisis between Lebanon and Syria.
He stated: “All this leads us back to crucial val-
ues and opinions, which render the situation prone
at any moment to getting out of control, more so
than it was in past days.”’. The subject pronoun
“he” works as an anaphoric pronoun whose an-
tecedent is the proper noun“Rod Larson”. The
anaphoric relation established between these two
elements can only be identified by analyzing the
text as a whole, thus considering the gender agree-
ment between the third person singular masculine
subject pronoun“he” and the masculine proper
noun “Rod Larson”. However, if the two sen-
tences were analyzed separately, the identification
of this anaphoric relation would not be feasible
due to the lack of connection between the two ele-
ments. Discourse representations allow us to trace
links across sentences between the different facts
and entities appearing in them. Therefore, provid-
ing an approach to the text more similar to that of
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a human, which implies taking into account the
whole text structure instead of considering each
sentence separately.

The rest of the paper is organized as follows.
Section 2 describes our evaluation methods and
the linguistic theory upon which they are based.
Experimental results are reported and discussed in
Section 3. Section 4 presents the metric submitted
to the evaluation challenge. Future work is out-
lined in Section 5.

As an additional result, document-level metrics
generated in this study have been incorporated to
the IQMT package for automatic MT evaluation2.

2 Metric Description

This section provides a brief description of our ap-
proach. First, in Section 2.1, we describe the un-
derlying theory and give examples on its capabili-
ties. Then, in Section 2.2, we describe the associ-
ated similarity measures.

2.1 Discourse Representations

As previously mentioned in Section 1, a document
has some features which need to be analyzed con-
sidering it as a whole instead of dividing it up
into sentences. The anaphoric relation between
a subject pronoun and a proper noun has already
been exemplified. However, this is not the only
anaphoric relation which can be found inside a
text, there are some others which are worth men-
tioning:

• the connection between a possessive adjec-
tive and a proper noun or a subject pro-
noun, as exemplified in the sentences“Maria
bought a new sweater. Her new sweater is
blue.”, where the possessive feminine adjec-
tive “her” refers to the proper noun“Maria” .

• the link between a demonstrative pronoun
and its referent, which is exemplified in the
sentences“He developed a new theory on
grammar. However, this is not the only the-
ory he developed”. In the second sentence,
the demonstrative pronoun”this” refers back
to the noun phrase“new theory on grammar”
which occurs in the previous sentence.

• the relation between a main verb and an aux-
iliary verb in certain contexts, as illustrated in
the following pair of sentences“Would you

2http://www.lsi.upc.edu/ ˜ nlp/IQMT

like more sugar? Yes, I would”. In this ex-
ample, the auxiliary verb“would” used in
the short answer substitutes the verb phrase
“would like” .

In addition to anaphoric relations, other features
need to be highlighted, such as the use of discourse
markers which help to give cohesion to the text,
link parts of a discourse and show the relations es-
tablished between them. Below, some examples
are given:

• “Moreover”, “Furthermore”, “In addition”
indicate that the upcoming sentence adds
more information.

• “However”, “Nonetheless”, “Nevertheless”
show contrast with previous ideas.

• “Therefore”, “As a result”, “Consequently”
show a cause and effect relation.

• “For instance”, “For example” clarify or il-
lustrate the previous idea.

It is worth noticing that anaphora, as well as dis-
course markers, are key features in the interface
between syntax, semantics and pragmatics. Thus,
when dealing with these phenomena at a text level
we are not just looking separately at the different
language levels, but we are trying to give a com-
plete representation of both the surface and the
deep structures of a text.

2.2 Definition of Similarity Measures

In this work, as a first proposal, instead of elabo-
rating on novel similarity measures, we have bor-
rowed and extended the Discourse Representation
(DR) metrics defined by Giménez and Màrquez
(2009). These metrics analyze similarities be-
tween automatic and reference translations by
comparing their respective discourse representa-
tions over individual sentences.

For the discursive analysis of texts, DR met-
rics rely on the C&C Tools (Curran et al., 2007),
specifically on the Boxer component (Bos, 2008).
This software is based on the Discourse Represen-
tation Theory (DRT) by Kamp and Reyle (1993).
DRT is a theoretical framework offering a rep-
resentation language for the examination of con-
textually dependent meaning in discourse. A dis-
course is represented in a discourse representation
structure (DRS), which is essentially a variation of
first-order predicate calculus —its forms are pairs

334



of first-order formulae and the free variables that
occur in them.

DRSs are viewed as semantic trees, built
through the application of two types of DRS con-
ditions:

basic conditions: one-place properties (pred-
icates), two-place properties (relations),
named entities, time-expressions, cardinal
expressions and equalities.

complex conditions: disjunction, implication,
negation, question, and propositional attitude
operations.

For instance, the DRS representation for the
sentence“Every man loves Mary.” is as follows:
∃y named(y,mary, per) ∧ (∀x man(x) →
∃z love(z) ∧ event(z) ∧ agent(z, x) ∧
patient(z, y)). DR integrates three different
kinds of metrics:

DR-STM These metrics are similar to theSyntac-
tic Tree Matchingmetric defined by Liu and
Gildea (2005), in this case applied to DRSs
instead of constituent trees. All semantic sub-
paths in the candidate and reference trees are
retrieved. The fraction of matching subpaths
of a given length (l=4 in our experiments) is
computed.

DR-Or(⋆) Average lexical overlap between dis-
course representation structures of the same
type. Overlap is measured according to the
formulae and definitions by Giménez and
Màrquez (2007).

DR-Orp(⋆) Average morphosyntactic overlap,
i.e., between grammatical categories –parts-
of-speech– associated to lexical items, be-
tween discourse representation structures of
the same type.

We have extended these metrics to operate at
document level. For that purpose, instead of run-
ning the C&C Tools in a sentence-by-sentence
fashion, we run them document by document.
This is as simple as introducing a “<META>” tag
at the beginning of each document to denote doc-
ument boundaries3.

3Details on the advanced use of Boxer are avail-
able at http://svn.ask.it.usyd.edu.au/trac/
candc/wiki/BoxerComplex .

3 Experimental Work

In this section, we analyze the behavior of the new
DR metrics operating at document level with re-
spect to their sentence-level counterparts.

3.1 Settings

We have used the ‘mt06’ part of the development
set provided by the Metrics MaTr 2010 organiza-
tion, which corresponds to a subset of 25 docu-
ments from the NIST 2006 Open MT Evaluation
Campaign Arabic-to-English translation. The to-
tal number of segments is 249. The average num-
ber of segments per document is, thus, 9.96. The
number of segments per document varies between
2 and 30. For the purpose of automatic evaluation,
4 human reference translations and automatic out-
puts by 8 different MT systems are available. In
addition, we count on the results of a process of
manual evaluation. Each translation segment was
assessed by two judges. After independently and
completely assessing the entire set, the judges re-
viewed their individual assessments together and
settled on a single final score. Average system ad-
equacy is 5.38.

In our experiments, metrics are evaluated in
terms of their correlation with human assess-
ments. We have computed Pearson, Spearman
and Kendall correlation coefficients between met-
ric scores and adequacy assessments. Document-
level and system-level assessments have been ob-
tained by averaging over segment-level assess-
ments. We have computed correlation coefficients
and confidence intervals applying bootstrap re-
sampling at a 99% statistical significance (Efron
and Tibshirani, 1986; Koehn, 2004). Since the
cost of exhaustive resampling was prohibitive, we
have limited to 1,000 resamplings. Confidence in-
tervals, not shown in the tables, are in all cases
lower than10−3.

3.2 Metric Performance

Table 1 shows correlation coefficients at the docu-
ment level for several DR metric representatives,
and their document-level counterparts (DRdoc).
For the sake of comparison, the performance of
the METEOR metric is also reported4.

Contrary to our expectations, DRdoc variants
obtain lower levels of correlation than their DR

4We have used METEOR version 1.0 with default param-
eters optimized by its developers over adequacy and fluency
assessments. The METEOR metric is publicly available at
http://www.cs.cmu.edu/ ˜ alavie/METEOR/
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Metric Pearsonρ Spearmanρ Kendallτ
METEOR 0.9182 0.8478 0.6728
DR-Or(⋆) 0.8567 0.8061 0.6193
DR-Orp(⋆) 0.8286 0.7790 0.5875
DR-STM 0.7880 0.7468 0.5554
DRdoc-Or(⋆) 0.7936 0.7784 0.5875
DRdoc-Orp(⋆) 0.7219 0.6737 0.4929
DRdoc-STM 0.7553 0.7421 0.5458

Table 1: Meta-evaluation results at document level

Metric Pearsonρ Spearmanρ Kendallτ
METEOR 0.9669 0.9151 0.8533
DR-Or(⋆) 0.9100 0.6549 0.5764
DR-Orp(⋆) 0.9471 0.7918 0.7261
DR-STM 0.9295 0.7676 0.7165
DRdoc-Or(⋆) 0.9534 0.8434 0.7828
DRdoc-Orp(⋆) 0.9595 0.9101 0.8518
DRdoc-STM 0.9676 0.9655 0.9272
DR-Or(⋆)

′ 0.9836 0.9594 0.9296
DR-Orp(⋆)

′ 0.9959 1.0000 1.0000
DR-STM′ 0.9933 0.9634 0.9307

Table 2: Meta-evaluation results at system level

counterparts. There are three different factors
which could provide a possible explanation for
this negative result. First, the C&C Tools, like any
other automatic linguistic processor are not per-
fect. Parsing errors could be causing the metric
to confer less informed scores. This is especially
relevant taking into account that candidate transla-
tions are not always well-formed. Secondly, we
argue that the way in which we have obtained
document-level quality assessments, as an average
of segment-level assessments, may be biasing the
correlation. Thirdly, perhaps the similarity mea-
sures employed are not able to take advantage of
the document-level features provided by the dis-
course analysis. In the following subsection we
show some error analysis we have conducted by
inspecting particular cases.

Table 2 shows correlation coefficients at system
level. In the case of DR and DRdoc metrics, sys-
tem scores are computed by simple average over
individual documents. Interestingly, in this case
DRdoc variants seem to obtain higher correlation
than their DR counterparts. The improvement is
especially substantial in terms of Spearman and
Kendall coefficients, which do not consider ab-
solute values but ranking positions. However, it
could be the case that it was just an average ef-

fect. While DR metrics compute system scores as
an average of segment scores, DRdoc metrics av-
erage directly document scores. In order to clarify
this result, we have modified DR metrics so as to
compute system scores as an average of document
scores (DR′ variants, the last three rows in the ta-
ble). It can be observed that DR’ variants out-
perform their DRdoc counterparts, thus confirming
our suspicion about the averaging effect.

3.3 Analysis

It is worth noting that DRdoc metrics are able to
detect and deal with several linguistic phenomena
related to both syntax and semantics at sentence
and document level. Below, several examples il-
lustrating the potential of this metric are presented.

Control structures. Control structures (either
subject or object control) are always a
difficult issue as they mix both syntactic and
semantic knowledge. In Example 1 a couple
of control structures must be identified
and DRdoc metrics deal correctly with the
argument structure of all the verbs involved.
Thus, in the first part of the sentence, a
subject control verb can be identified being
“the minister” the agent of both verb forms
“go” and “say” . On the other hand, in the
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quoted question, the verb“invite” works as
an object control verb because its patient
“Chechen representatives”is also the agent
of the verbvisit.

Example 1: The minister went on to say,
“What would Moscow say if we were to invite
Chechen representatives to visit Jerusalem?”

Anaphora and pronoun resolution. Whenever
there is a pronoun whose antecedent is a
named entity (NE), the metric identifies
correctly its antecedent. This feature is
highly valuable because a relationship be-
tween syntax and semantics is established.
Moreover, when dealing with Semantic
Roles the roles of Agent or Patient are given
to the antecedents instead of the pronouns.
Thus, in Example 2 the antecedent of the
relative pronoun“who” is the NE “Putin”
and the patient of the verb“classified” is
also the NE“Putin” instead of the relative
pronoun“who” .

Example 2: Putin, who was not classified
as his country Hamas as “terrorist organiza-
tions”, recently said that the European Union
is “a big mistake” if it decided to suspend fi-
nancial aid to the Palestinians.

Nevertheless, although Boxer was expected
to deal with long-distance anaphoric relations
beyond the sentence, after analyzing several
cases, results show that it did not succeed in
capturing this type of relations as shown in
Example 3. In this example, the antecedent
of the pronoun“he” in the second sentence
is the NE “Roberto Calderoli” which ap-
pears in the first sentence. DRdoc metrics
should be capable of showing this connec-
tion. However, although the proper noun
“Roberto Calderoli” is identified as a NE, it
does not share the same reference as the third
person singular pronoun“he” .

Example 3: Roberto Calderoli does not in-
tend to apologize. The newspaper Corriere
Della Sera reported today, Saturday, that
he said “I don’t feel responsible for those
deaths.”

4 Our Submission

Instead of participating with individual metrics,
we have combined them by averaging their scores

as described in (Giménez and Màrquez, 2008).
This strategy has proven as an effective means of
combining the scores conferred by different met-
rics (Callison-Burch et al., 2008; Callison-Burch
et al., 2009). Metrics submitted are:

DRdoc an arithmetic mean over a heuristically-
defined set of DRdoc metric variants, respec-
tively computing lexical overlap, morphosyn-
tactic overlap, and semantic tree match-
ing (M = {‘DRdoc-Or(⋆)’, ‘DRdoc-Orp(⋆)’, ‘DRdoc-

STM4’}). Since DRdoc metrics do not operate
over individual segments, we have assigned
each segment the score of the document in
which it is contained.

DR a measure analog to DRdoc but using the de-
fault version of DR metrics operating at the
segment level (M = {‘DR-Or(⋆)’, ‘DR-Orp(⋆)’,

‘DR-STM4’}).

ULCh an arithmetic mean over a heuristically-
defined set of metrics operating at differ-
ent linguistic levels, including lexical met-
rics, and measures of overlap between con-
stituent parses, dependency parses, seman-
tic roles, and discourse representations (M =

{‘ROUGEW ’, ‘METEOR’, ‘DP-HWCr ’, ‘DP-Oc(⋆)’,

‘DP-Ol(⋆)’, ‘DP-Or(⋆)’, ‘CP-STM4’, ‘SR-Or(⋆)’,

‘SR-Orv ’, ‘DR-Orp(⋆)’}). This metric corre-
sponds exactly to the metric submitted in our
previous participation.

The performance of these metrics at the docu-
ment and system levels is shown in Table 3.

5 Conclusions and Future Work

We have presented a modified version of the DR
metrics by Giménez and Màrquez (2009) which,
instead of limiting their scope to the segment level,
are able to capture and exploit document-level fea-
tures. However, results in terms of correlation
with human assessments have not reported any im-
provement of these metrics over their sentence-
level counterparts as document and system quality
predictors. It must be clarified whether the prob-
lem is on the side of the linguistic tools, in the
similarity measure, or in the way in which we have
built document-level human assessments.

For future work, we plan to continue the er-
ror analysis to clarify why DRdoc metrics do not
outperform their DR counterparts at the document
level, and how to improve their behavior. This
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Document level System level
Metric Pearsonρ Spearmanρ Kendallτ Pearsonρ Spearmanρ Kendallτ
ULCDR 0.8418 0.8066 0.6135 0.9349 0.7936 0.7145
ULCDRdoc 0.7739 0.7358 0.5474 0.9655 0.9062 0.8435
ULCh 0.8963 0.8614 0.6848 0.9842 0.9088 0.8638

Table 3: Meta-evaluation results at document and system level for submitted metrics

may imply defining new metrics possibly using
alternative linguistic processors. In addition, we
plan to work on the identification and analysis
of discourse markers. Finally, we plan to repeat
this experiment over other test beds with docu-
ment structure, such as those from the 2009 Work-
shop on Statistical Machine Translation shared
task (Callison-Burch et al., 2009) and the 2009
NIST MT Evaluation Campaign (Przybocki et al.,
2009). In the case that document-level assess-
ments are not provided, we will also explore the
possibility of producing them ourselves.
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Abstract

This paper describes our submission to
the WMT10 Shared Evaluation Task and
MetricsMATR10. We present a version
of the METEOR-NEXT metric with para-
phrase tables for five target languages. We
describe the creation of these paraphrase
tables and conduct a tuning experiment
that demonstrates consistent improvement
across all languages over baseline ver-
sions of the metric without paraphrase re-
sources.

1 Introduction

Workshops such as WMT (Callison-Burch et al.,
2009) and MetricsMATR (Przybocki et al., 2008)
focus on the need for accurate automatic met-
rics for evaluating the quality of machine transla-
tion (MT) output. While these workshops evalu-
ate metric performance on many target languages,
most metrics are limited to English due to the rel-
ative lack of lexical resources for other languages.

This paper describes a language-independent
method for adding paraphrase support to the
METEOR-NEXT metric for all WMT10 target lan-
guages. Taking advantage of the large parallel cor-
pora released for the translation tasks often accom-
panying evaluation tasks, we automatically con-
struct paraphrase tables using the pivot method
(Bannard and Callison-Burch, 2005). We use the
WMT09 human evaluation data to tune versions
of METEOR-NEXT with and without paraphrases
and report significantly better performance for ver-
sions with paraphrase support.

2 The METEOR-NEXT Metric

The METEOR-NEXT metric (Denkowski and
Lavie, 2010) evaluates a machine translation hy-
pothesis against a reference translation by calcu-
lating a similarity score based on an alignment be-

tween the two strings. When multiple references
are provided, the hypothesis is scored against each
and the reference producing the highest score is
used. Alignments are formed in two stages: search
space construction and alignment selection.

For a single hypothesis-reference pair, the space
of possible alignments is constructed by identify-
ing all possible word and phrase matches between
the strings according to the following matchers:
Exact: Words are matched if and only if their sur-
face forms are identical.
Stem: Words are stemmed using a language-
appropriate Snowball Stemmer (Porter, 2001) and
matched if the stems are identical.
Synonym: Words are matched if they are both
members of a synonym set according to the Word-
Net (Miller and Fellbaum, 2007) database.
Paraphrase: Phrases are matched if they are
listed as paraphrases in a paraphrase table. The
tables used are described in Section 3.

Previously, full support has been limited to En-
glish, with French, German, and Spanish having
exact and stem match support only, and Czech
having exact match support only.

Although the exact, stem, and synonym match-
ers identify word matches while the paraphrase
matcher identifies phrase matches, all matches can
be generalized to phrase matches with a start po-
sition and phrase length in each string. A word
occurring less than length positions after a match
start is considered covered by the match. Ex-
act, stem, and synonym matches always cover one
word in each string.

Once the search space is constructed, the final
alignment is identified as the largest possible sub-
set of all matches meeting the following criteria in
order of importance:

1. Each word in each sentence is covered by
zero or one matches

2. Largest number of covered words across both
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sentences

3. Smallest number of chunks, where a chunk
is defined as a series of matched phrases that
is contiguous and identically ordered in both
sentences

4. Smallest sum of absolute distances between
match start positions in the two sentences
(prefer to align words and phrases that occur
at similar positions in both sentences)

Once an alignment is selected, the METEOR-
NEXT score is calculated as follows. The num-
ber of words in the translation hypothesis (t) and
reference (r) are counted. For each of the match-
ers (mi), count the number of words covered by
matches of this type in the hypothesis (mi(t)) and
reference (mi(r)) and apply matcher weight (wi).
The weighted Precision and Recall are then calcu-
lated:

P =

∑
iwi ·mi(t)

|t|
R =

∑
iwi ·mi(r)

|r|

The parameterized harmonic mean of P and R
(van Rijsbergen, 1979) is then calculated:

Fmean =
P ·R

α · P + (1− α) ·R

To account for gaps and differences in word or-
der, a fragmentation penalty (Lavie and Agar-
wal, 2007) is calculated using the total number of
matched words (m) and number of chunks (ch):

Pen = γ ·
(
ch

m

)β
The final METEOR-NEXT score is then calculated:

Score = (1− Pen) · Fmean

The parameters α, β, γ, and wi...wn can be
tuned to maximize correlation with various types
of human judgments.

3 The METEOR Paraphrase Tables

To extend support for WMT10 target languages,
we use released parallel corpora to construct para-
phrase tables for English, Czech, German, Span-
ish, and French. These tables are used by the
METEOR-NEXT paraphrase matcher to identify
additional phrase matches in each language.

3.1 Paraphrasing with Parallel Corpora

Following Bannard and Callison-Burch (2005),
we extract paraphrases automatically from bilin-
gual corpora using a pivot phrase method. For a
given language pair, word alignment, phrase ex-
traction, and phrase scoring are conducted on par-
allel corpora to build a single bilingual phrase ta-
ble for the language pair. For each native phrase
(n1) in the table, we identify each foreign phrase
(f ) that translates n1. Each alternate native phrase
(n2 6= n1) that translates f is considered a para-
phrase of n1 with probability P (f |n1) · P (n2|f).
The total probability of n2 paraphrasing n1 is
given as the sum over all f :

P (n2|n1) =
∑
f

P (f |n1) · P (n2|f)

The same method can be used to identify foreign
paraphrases (f1, f2) given native pivot phrases
n. To merge same-language paraphrases ex-
tracted from different parallel corpora, we take the
mean of the corpus-specific paraphrase probabili-
ties (PC) weighted by the size of the corpora (C)
used for paraphrase extraction:

P (n2|n1) =

∑
C |C| · PC(n2|n1)∑

C |C|

To improve paraphrase accuracy, we apply mul-
tiple filtering techniques during paraphrase extrac-
tion. The following are applied to each paraphrase
instance (n1, f, n2):

1. Discard paraphrases with very low probabil-
ity (P (f |n1) · P (n2|f) < 0.001)

2. Discard paraphrases for which n1, f , or n2

contain any punctuation characters.

3. Discard paraphrases for which n1, f , or
n2 contain only common words. Common
words are defined as having relative fre-
quency of 0.001 or greater in the parallel cor-
pus.

Remaining phrase instances are summed to con-
struct corpus-specific paraphrase tables. Same-
language paraphrase tables are selectively merged
as part of the tuning process described in Sec-
tion 4.2. Final paraphrase tables are further fil-
tered to include only paraphrases with probabili-
ties above a final threshold (0.01).
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Language Pair Corpus Phrase Table
Target Source Sentences Phrase Pairs
English Czech 7,321,950 128,326,269
English German 1,630,132 84,035,599
English Spanish 7,965,250 363,714,779
English French 8,993,161 404,883,736
German Spanish 1,305,650 70,992,157

Table 1: Sizes of training corpora and phrase ta-
bles used for paraphrase extraction

Language Pivot Languages Phrase Pairs
English German, Spanish, 6,236,236

French
Czech English 756,113
German English, Spanish 3,521,052
Spanish English, German 6,352,690
French English 3,382,847

Table 2: Sizes of final paraphrase tables

3.2 Available Data
We conduct paraphrase extraction using parallel
corpora released for the WMT10 Shared Trans-
lation Task. This includes Europarl corpora
(French-English, Spanish-English, and German-
English), news commentary (French-English,
Spanish-English, German-English, and Czech-
English), United Nations corpora (French-English
and Spanish-English), and the CzEng (Bojar and
Žabokrtský, 2009) corpus sections 0-8 (Czech-
English). In addition, we use the German-Spanish
Europarl corpus released for WMT08 (Callison-
Burch et al., 2008).

3.3 Paraphrase Table Construction
Using all available data for each language pair,
we create bilingual phrase tables for the follow-
ing: French-English, Spanish-English, German-
English, Czech-English, and German-Spanish.
The full training corpora and resulting phrase ta-
bles are described in Table 1. For each phrase ta-
ble, both foreign and native paraphrases are ex-
tracted. Same-language paraphrases are selec-
tively merged as described in Section 4.2 to pro-
duce the final paraphrase tables described in Ta-
ble 2. To keep table size reasonable, we only ex-
tract paraphrases for phrases occurring in target
corpora consisting of the pooled development data
from the WMT08, WMT09, and WMT10 trans-
lation tasks (10,158 sentences for Czech, 20,258
sentences for all other languages).

Target Systems Usable Judgments
English 45 20,357
Czech 5 11,242
German 11 6,563
Spanish 9 3,249
French 12 2,967

Table 3: Human ranking judgment data from
WMT09

4 Tuning METEOR-NEXT

4.1 Development Data
As part of the WMT10 Shared Evaluation Task,
data from WMT09 (Callison-Burch et al., 2009),
including system output, reference translations,
and human judgments, is available for metric de-
velopment. As metrics are evaluated primarily
on their ability to rank system output on the seg-
ment level, we select the human ranking judg-
ments from WMT09 as our development set (de-
scribed in Table 3).

4.2 Tuning Procedure
Tuning a version of METEOR-NEXT consists of
selecting parameters (α, β, γ, wi...wn) that opti-
mize an objective function for a given language.
If multiple paraphrase tables exist for a language,
tuning also requires selecting the optimal set of ta-
bles to merge.

For WMT10, we tune to rank consistency on the
WMT09 data. Following Callison-Burch et. al
(2009), we discard judgments where system out-
puts are deemed equivalent and calculate the pro-
portion of remaining judgments preserved when
system outputs are ranked by automatic metric
scores. For each target language, tuning is con-
ducted as an exhaustive grid search over metric pa-
rameters and possible paraphrase tables, resulting
in global optima for both.

5 Experiments

To evaluate the impact of our paraphrase ta-
bles on metric performance, we tune versions of
METEOR-NEXT with and without the paraphrase
matchers for each language. For further compar-
ison, we tune a version of METEOR-NEXT using
the TERp English paraphrase table (Snover et al.,
2009) used by previous versions of the metric.

As shown in Table 4, the addition of paraphrases
leads to a better tuning point for every target lan-
guage. The best scoring subset of paraphrase ta-
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Language Paraphrases Rank Consistency α β γ wexact wstem wsyn wpar
English none 0.619 0.85 2.35 0.45 1.00 0.80 0.60 –

TERp 0.625 0.70 1.40 0.25 1.00 0.80 0.80 0.60
de+es+fr 0.629 0.75 0.60 0.35 1.00 0.80 0.80 0.60

Czech none 0.564 0.95 0.20 0.70 1.00 – – –
en 0.574 0.95 2.15 0.35 1.00 – – 0.40

German none 0.550 0.20 0.75 0.25 1.00 0.80 – –
en+es 0.576 0.75 0.80 0.90 1.00 0.20 – 0.80

Spanish none 0.586 0.95 0.55 0.90 1.00 0.80 – –
en+de 0.608 0.15 0.25 0.75 1.00 0.80 – 0.40

French none 0.696 0.95 0.80 0.35 1.00 0.60 – –
en 0.707 0.90 0.85 0.45 1.00 0.00 – 0.60

Table 4: Optimal METEOR-NEXT parameters with and without paraphrases for WMT10 target languages

bles for English also outperforms the TERp para-
phrase table.

Analysis of the phrase matches contributed by
the paraphrase matchers reveals an interesting
point about the task of paraphrasing for MT eval-
uation. Despite filtering techniques, the final para-
phrase tables include some unusual, inaccurate,
or highly context-dependent paraphrases. How-
ever, the vast majority of matches identified be-
tween actual system output and reference trans-
lations correspond to valid paraphrases. In many
cases, the evaluation task itself acts as a final filter;
to produce a phrase that can match a spurious para-
phrase, not only must a MT system produce incor-
rect output, but it must produce output that over-
laps exactly with an obscure paraphrase of some
phrase in the reference translation. As systems
are far more likely to produce phrases with similar
words to those in reference translations, far more
valid paraphrases exist in typical system output.

6 Conclusions

We have presented versions of METEOR-NEXT

and paraphrase tables for five target languages.
Tuning experiments indicate consistent improve-
ments across all languages over baseline versions
of the metric. Created for MT evaluation, the ME-
TEOR paraphrase tables can also be used for other
tasks in MT and natural language processing. Fur-
ther, the techniques used to build the paraphrase
tables are language-independent and can be used
to improve evaluation support for other target lan-
guages. METEOR-NEXT, the METEOR paraphrase
tables, and the software used to generate para-
phrases are released under an open source license
and made available via the METEOR website.
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0.9: Large Parallel Treebank with Rich Annotation.
Prague Bulletin of Mathematical Linguistics.

Chris Callison-Burch, Cameron Fordyce, Philipp
Koehn, Christof Monz, and Josh Schroeder. 2008.
Further meta-evaluation of machine translation. In
Proc. of WMT08.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. 2009. Findings of WMT09. In
Proc. of WMT09.

Michael Denkowski and Alon Lavie. 2010. Extend-
ing the METEOR Machine Translation Metric to
the Phrase Level for Improved Correlation with Hu-
man Post-Editing Judgments. In Proc. NAACL/HLT
2010.

Alon Lavie and Abhaya Agarwal. 2007. METEOR:
An Automatic Metric for MT Evaluation with High
Levels of Correlation with Human Judgments. In
Proc. of WMT07.

George Miller and Christiane Fellbaum. 2007. Word-
Net. http://wordnet.princeton.edu/.

Martin Porter. 2001. Snowball: A language for stem-
ming algorithms. http://snowball.tartarus.org/texts/.

M. Przybocki, K. Peterson, and S Bronsart. 2008. Offi-
cial results of the NIST 2008 ”Metrics for MAchine
TRanslation” Challenge (MetricsMATR08).

Matthew Snover, Nitin Madnani, Bonnie Dorr, and
Richard Schwartz. 2009. Fluency, Adequacy, or
HTER? Exploring Different Human Judgments with
a Tunable MT Metric. In Proc. of WMT09.

C. van Rijsbergen, 1979. Information Retrieval, chap-
ter 7. 2nd edition.

342



Proceedings of the Joint 5th Workshop on Statistical Machine Translation and MetricsMATR, pages 343–348,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Normalized Compression Distance Based Measures for
MetricsMATR 2010

Marcus Dobrinkat and Jaakko Väyrynen and Tero Tapiovaara
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Abstract

We present the MT-NCD and MT-mNCD
machine translation evaluation metrics
as submission to the machine transla-
tion evaluation shared task (MetricsMATR
2010). The metrics are based on nor-
malized compression distance (NCD), a
general information theoretic measure of
string similarity, and evaluated against hu-
man judgments from the WMT08 shared
task. The experiments show that 1)
our metric improves correlation to hu-
man judgments by using flexible match-
ing, 2) segment replication is effective,
and 3) our NCD-inspired method for mul-
tiple references indicates improved results.
Generally, the proposed MT-NCD and
MT-mNCD methods correlate competi-
tively with human judgments compared to
commonly used machine translations eval-
uation metrics, for instance, BLEU.

1 Introduction

The quality of automatic machine translation
(MT) evaluation metrics plays an important role
in the development of MT systems. Human eval-
uation would no longer be necessary if automatic
MT metrics correlated perfectly with manual judg-
ments. Besides high correlation with human judg-
ments of translation quality, a good metric should
be language independent, fast to compute and sen-
sitive enough to reliably detect small improve-
ments in MT systems.

Recently there have been some experiments
with normalized compression distance (NCD) as a
method for automatic evaluation of machine trans-
lation. NCD is a general string similarity measure

that has been useful for clustering in various tasks
(Cilibrasi and Vitanyi, 2005).

Parker (2008) introduced BADGER, a machine
translation evaluation metric that uses NCD to-
gether with a language independent word normal-
ization method. Kettunen (2009) independently
applied NCD to the direct evaluation of transla-
tions. He showed with a small corpus of three lan-
guage pairs that the scores of NCD and METEOR
(v0.6) from translations of 10–12 MT systems
were highly correlated.

Väyrynen et al. (2010) have extended the work
by showing that NCD can be used to rank transla-
tions of different MT systems so that the ranking
order correlates with human rankings at the same
level as BLEU (Papineni et al., 2001). For trans-
lations into English, NCD had an overall system-
level correlation of 0.66 whereas the best method,
ULC had an overall correlation of 0.76, and BLEU
had an overall correlation of 0.65. NCD presents
a viable alternative to the de facto standard BLEU.
Both metrics are language independent, simple
and efficient to compute. However, NCD is a
general measure of similarity that has been ap-
plied in many domains. More advanced meth-
ods achieve better correlation with human judg-
ments, but typically use additional language spe-
cific linguistic resources. Dobrinkat et al. (2010)
experimented with relaxed word matching, adding
language specific resources to NCD. The metric
called mNCD, which works similarly to mBLEU
(Agarwal and Lavie, 2008), showed improved cor-
relation to human judgments in English, the only
language where a METEOR synonym module was
used.

The motivation for this challenge submission is
to evaluate the MT-NCD and MT-mNCD metric
performance in an open competition with state-of-
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the-art MT evaluation metrics. Our experiments
and submission build on NCD and mNCD. We ex-
pand NCD to handle multiple references and re-
port experimental results for replicating segments
as a preprocessing step that improves the NCD as
an MT evaluation metric.

2 NCD-based MT evaluation metrics

NCD-based MT evaluation metrics build on the
idea that a string x is similar to another string y,
when both share common substrings. When de-
scribing y, common substrings do not have to be
repeated, but can be referenced to x. This is done
when compressing the concatenation of x and y,
which results in smaller output when more infor-
mation of y is already included in x.

2.1 Normalized Compression Distance

The normalized compression distance, as defined
by Cilibrasi and Vitanyi (2005) is given in Equa-
tion 1, in which C(x) is the length of the compres-
sion of x and C(x, y) is the length of the compres-
sion of the concatenation of x and y.

NCD(x, y) =
C(x, y)−min {C(x), C(y)}

max {C(x), C(y)}
(1)

NCD computes the distance as a score closer to
one for very different strings and closer to zero for
more similar strings. Most MT evaluation met-
rics are defined as similarity measures in contrast
to NCD, which is a distance measure. For eas-
ier comparison with other MT evaluation metrics,
we define the NCD based MT evaluation similar-
ity metric MT-NCD as 1− NCD.

NCD is a practically usable form of the uncom-
putable normalized information distance (NID), a
general metric for the similarity of two objects.
NID is based on the notion of Kolmogorov com-
plexity K(x), a theoretical measure for the algo-
rithmic information content of a string x. It is de-
fined as the shortest universal Turing machine that
prints x and stops (Solomonoff, 1964). NCD ap-
proximates NID by the use of a compressor C(x)
that presents a computable approximation of the
Kolmogorov complexity K(x).

2.2 NCD with multiple references

Most ideas can be described with in different
ways, therefore using only one reference transla-
tion for the evaluation of a candidate sentence is

not ideal and the exploitation of knowledge in sev-
eral different reference translations is helpful for
automatic MT evaluation.

One simple way for handling multiple refer-
ences is to evaluate against each reference indi-
vidually and select the maximum score. Although
this works, it is clearly not optimal. We developed
the NCDm metric, which is inspired by NCD. It
considers all references simultaneously and the
quality of a translation t against multiple refer-
ences R = {r1, . . . , rm} is assessed as

NCDm(t, R) =
max{C(t|R),min

r∈R
C(r|t}

max{C(t),min
r∈R

C(r)}
(2)

where C(x|y) = C(x, y) − C(y) approximates
conditional algorithmic information with the com-
pressor C. The NCDm similarity metric with a
single reference (m = 1) is equal to NCD in Equa-
tion 1. Again, we define MT-NCDm as 1−NCDm.

Figure 1 shows how both, the MT-NCDm and
the BLEU metric change with a different num-
ber of references when the translation is varied
from correct to a random sequence of words. The
scores are computed with 249 sentences from the
LDC2010E28Dev data set using the first reference
as the correct translation. A higher score with mul-
tiple references against the correct translation indi-
cates that the measure is able to take into account
information from multiple references at the same
time.

The words in the candidate translation are re-
placed with probability p with a word randomly
selected with uniform probability from a lexicon
created from all reference translations. This simu-
lates partially correct translations. The words are
changed in a simple way without deletions, inser-
tions or word order permutations. The MT-NCDm

score increases with more than one reference
translation and random changes to the sentence re-
duce the score roughly proportional to the number
of changed words. With BLEU, the score is af-
fected more by a small number of changes.

2.3 mNCD
One enhancement to the basic NCD as auto-
matic evaluation metric is mNCD (Dobrinkat et
al., 2010), which provides relaxed word matching
based on the flexible matching modules of ME-
TEOR (Agarwal and Lavie, 2008).

What mNCD does is that it changes the ref-
erence sentence to be more similar to the candi-
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Figure 1: The MT-NCDm and BLEU scores with
a different number of multiple references against
correct translation with random word change
probability (p).

date, given that some of the words are synonyms
or share the same stem. Subsequent analysis using
any n-gram based automatic analysis should result
in a larger similarity score in the hope that this re-
flects more than just the surface similarity between
the candidate and the reference.

Given suitable Wordnet resources, mNCD
should alleviate the problem of translation vari-
ability especially in absence of multiple refer-
ence translations. Our submission uses the de-
fault METEOR exact stem synonym mod-
ules, which provide synonyms only for English.
We base our submission metric on the MT-NCD
metric and therefore define MT-mNCD as 1 −
mNCD.

3 MT Evaluation System Description

3.1 System Parameters

The system parameters for the submission metrics
include how candidates and references are prepro-
cessed, the choice of compressor for the NCD it-
self, as well as the granularity of how large seg-
ments are evaluated by NCD and how they are

combined into a final score.
Partly due to time constraints we decided not to

introduce language specific parameters, therefore
we chose those parameter values that perform well
in overall and are simple to compute.

3.1.1 Preprocessing
Character casing For MT-NCD, we did ex-
periments without preprocessing and with lower-
casing candidates and references. On average over
all tasks for language pairs into English, lower-
casing consistently decreased the RANK correla-
tion scores but increased the CONST correlation
scores. No consistent effect could be found for the
language pairs from English. In our submission
metrics we use no preprocessing.

For MT-mNCD the used METEOR matching
module lower-cases the adapted words by default.
After adapting a synonym in a reference, we tried
to keep the casing as it was in the candidate, which
we called real-casing. We use no real-casing for
our submitted MT-mNCD metric as this did not
improve results consistently over all task into En-
glish.

Segment Replication Compression algorithms
may not work optimally with short strings, which
would deteriorate the approximation of Kol-
mogorov complexity. Our hypothesis was that
a replication of a string (”abc”) multiple times
(3 × ”abc” = ”abcabcabc”) could help the com-
pression algorithm to produce a better estimate of
the algorithmic information. This was tested in
the MT evaluation framework, and correlation be-
tween MT-NCD and human judgments improved
when the segments were replicated two times.
Further replication did not produce improvements.

Results for the MT-NCD metric with replica-
tions one, two and three times are shown in Ta-
ble 1. The results are averages over all used lan-
guages. With two compared to one replication, the
details for each language show that RANK corre-
lation is improved for the target languages English
and French, but degrades for German and Spanish.
CONST andYES/NO correlation improve for all
languages except German. We did not use repli-
cation in our submissions.

3.1.2 Block size
The block size parameter governs the number of
joined segments that are compared with NCD as a
single string. On one extreme, with block size one,
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MT-NCD rep 1 .61 .71 .73 .68
MT-NCD rep 2 .62 .73 .75 .70
MT-NCD rep 3 .61 .72 .74 .69

Table 1: Effect of the replication factor on
MT-NCD correlation scores for the bz2 compres-
sor with block size one as average over all lan-
guages.

each segment is evaluated separately and the seg-
ment scores are aggregated to a document score.
This is similar to how other MT metrics, for ex-
ample, BLEU, work. The other extreme is to join
all segments together, with block size equal to the
number of segments, and evaluate it as a single
string, which is similar to document comparison.
For block aggregation we experimented with arith-
metic and geometric mean and obtained very sim-
ilar results. We selected arithmetic mean for the
submission metrics.

Figure 2 shows the block size effect on the cor-
relation between MT-NCD and human judgments
for different target languages. Except for Spanish,
our experiments indicate that the block size value
has little effect. Therefore, and given how other
evaluation metrics work, we chose a block size of
one for our submission metrics. We noticed incon-
sistencies with Spanish in other settings as well
and will investigate these issues further.

3.1.3 Compressor
There are several universal compressors that can
be utilized with NCD, for instance, zlib/gzip, bz2
and PPMZ, which represent different approaches
to compression. In terms of compression rate,
PPMZ is the best of the mentioned methods, but
it is considerably slower to compute compared to
the other methods. In terms of correlation with hu-
man judgments, NCD using bz2 performs slightly
worse than using PPMZ. Given much shorter com-
pression times for bz2 with very little correlation
performance degradation, our choice for the sub-
mission is the more standard bz2 compressor.

3.1.4 Segment Interleaving
Computation of NCD between longer texts (e.g.
documents) may exceed the internal compressor
window size that is present in some compression
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Figure 2: Effect of the block size on the correlation
of MT-NCD to human judgments for the system
level evaluation.

algorithms (Cebrian et al., 2005). In this case,
only a part of the texts to be compared are visible
at any time to the compressor and similarities to
the text outside the window will be missed. One
solution for the MT evaluation task is to use uti-
lize the known parallel segments of candidate and
reference translations. The two segment lists can
be interleaved so that the corresponding segments
are always adjacent and the compression window
size is not exceeded for matching segments.

For our submission, we chose a block size of
one, therefore every segment is evaluated individ-
ually. As a result, segment interleaving does not
have any effect. Segment interleaving is affective
in the block size evaluation and results shown in
Figure 2.

3.2 Evaluation Experiments

We chose parameters and evaluated our metrics
using the WMT08 part of the MetricsMATR 2010
development data, which contains human judg-
ments of the 2008 ACL Workshop on Statistical
Machine Translation (Callison-Burch et al., 2008)
for translations from a total of 30 MT systems be-
tween English and five other European languages.
There are human evaluations and several auto-
matic evaluations for the translations, divided into
several tasks defined by the language pair and the
domain of the translated sentences. For each of
these tasks, the WMT08 data contains about 2 000
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reference sentences (segments) plus their aligned
translations for 12 to 17 different translation sys-
tems, depending on the language pair.

The human judgments include three categories
which contain evaluations for at most one segment
at a time, not whole documents. In the RANK

category, humans had to rank the output of five
MT systems according to quality. The CONST

category contains rankings for short phrases (con-
stituents), and the YES/NO category contains bi-
nary answers to judge if a short phrase is an ac-
ceptable translation or not.

We report RANK, CONST and YES/NO system
level correlations to human judgments as results of
our metrics for French, Spanish and German both
from and to English. The English–Spanish news
task was left out as most metrics had negative cor-
relation with human judgments.

The evaluation methodology used in Callison-
Burch et al. (2008) allows us to measure how each
MT evaluation metric correlates with human judg-
ments on the system level, in which all translations
from each MT system are aggregated into a single
score. The system rankings based on the scores
are compared to human judgments.

Spearman’s rank correlation coefficient ρ was
calculated between each MT metric and human
judgment category using the simplified equation:

ρ = 1−
6

∑
i di

n(n2 − 1)
(3)

where for each system i, di is the difference be-
tween the rank derived from annotators’ input and
the rank obtained from the metric. From the anno-
tators’ input, the nMT systems were ranked based
on the number of times each system’s output was
selected as the best translation divided by the num-
ber of times each system was part of a judgment.

3.3 Results
The results for WMT08 data for our submitted
metrics are shown in Table 2 and are sorted by the
RANK category separately for language pairs from
English and into English.

For tasks into English, the correlations show
that MT-mNCD improves over the MT-NCD met-
ric in all categories. Also the flexible match-
ing seems to work better for NCD-based metrics
than for BLEU, where mBLEU only improves
the CONST correlation scores. For tasks from
English, MT-mNCD shows slightly higher cor-
relation compared to MT-NCD, except for the

YES/NO category. The standard BLEU correla-
tion score is best of the shown evaluation met-
rics. Relaxed matching using mBLEU does not
improve BLEU’s RANK correlation scores here
either, but CONST and YES/NO correlation per-
forms better relative to BLEU than MT-mNCD
compared to MT-NCD.
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TA
L

IN
T

O
E

N MT-mNCD .61 .74 .75 .70
MT-NCD .57 .69 .71 .66
mBLEU .50 .76 .70 .65

BLEU .50 .72 .74 .65

F
R

O
M

E
N BLEU .68 .79 .79 .75

MT-mNCD .67 .76 .74 .72
MT-NCD .65 .73 .75 .71
mBLEU .63 .81 .81 .75

Table 2: Average system-level correlations for the
WMT08 data sorted by RANK into English and
from English for our submitted metrics MT-NCD
and MT-mNCD and for BLEU and mBLEU

4 Conclusions

In our submissions, we applied MT-NCD and
MT-mNCD metrics and extended the NCD MT
evaluation metric to handle multiple references.
The reported experiment indicate a possible im-
provement for the multiple references.

We showed that a replication of segments as a
preprocessing step improves the correlation to hu-
man judgments. The string replication might alle-
viate problems in the compressor for short strings
and thus could provide better estimates of the al-
gorithmic information.

The results of our experiments show that re-
laxed matching in MT-mNCD works well with
proper synonym dictionaries, but is less effective
for tasks from English, which only use stemming.

MT-mNCD and MT-NCD are reasonably sim-
ple to compute and utilize standard and widely
used resources, such as the bz2 compression al-
gorithm and WordNet. The metrics perform com-
parable to the de facto standard BLEU. Improve-
ments with language dependent resources, in par-
ticular relaxed matching using synonym dictionar-
ies proved to be useful.
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Abstract

We describe DCU’s LFG dependency-
based metric submitted to the shared eval-
uation task of WMT-MetricsMATR 2010.

The metric is built on the LFG F-structure-
based approach presented in (Owczarzak
et al., 2007). We explore the following
improvements on the original metric: 1)
we replace the in-house LFG parser with
an open source dependency parser that
directly parses strings into LFG depen-
dencies; 2) we add a stemming module
and unigram paraphrases to strengthen the
aligner; 3) we introduce a chunk penalty
following the practice of METEOR to re-
ward continuous matches; and 4) we intro-
duce and tune parameters to maximize the
correlation with human judgement. Exper-
iments show that these enhancements im-
prove the dependency-based metric’s cor-
relation with human judgement.

1 Introduction

String-based automatic evaluation metrics such as
BLEU (Papineni et al., 2002) have led directly
to quality improvements in machine translation
(MT). These metrics provide an alternative to ex-
pensive human evaluations, and enable tuning of
MT systems based on automatic evaluation results.

However, there is widespread recognition in
the MT community that string-based metrics are
not discriminative enough to reflect the translation
quality of today’s MT systems, many of which
have gone beyond pure string-based approaches
(cf. (Callison-Burch et al., 2006)).

With that in mind, a number of researchers have
come up with metrics which incorporate more so-
phisticated and linguistically motivated resources.
Examples include METEOR (Banerjee and Lavie,
2005; Lavie and Denkowski, 2009) and TERP

(Snover et al., 2010), both of which now uti-
lize stemming, WordNet and paraphrase informa-
tion. Experimental and evaluation campaign re-
sults have shown that these metrics can obtain bet-
ter correlation with human judgements than met-
rics that only use surface-level information.

Given that many of today’s MT systems incor-
porate some kind of syntactic information, it was
perhaps natural to use syntax in automatic MT
evaluation as well. This direction was first ex-
plored by (Liu and Gildea, 2005), who used syn-
tactic structure and dependency information to go
beyond the surface level matching.

Owczarzak et al. (2007) extended this line of
research with the use of a term-based encoding of
Lexical Functional Grammar (LFG:(Kaplan and
Bresnan, 1982)) labelled dependency graphs into
unordered sets of dependency triples, and calculat-
ing precision, recall, and F-score on the triple sets
corresponding to the translation and reference sen-
tences. With the addition of partial matching and
n-best parses, Owczarzak et al. (2007)’s method
considerably outperforms Liu and Gildea’s (2005)
w.r.t. correlation with human judgement.

The EDPM metric (Kahn et al., 2010) im-
proves this line of research by using arc labels
derived from a Probabilistic Context-Free Gram-
mar (PCFG) parse to replace the LFG labels,
showing that a PCFG parser is sufficient for pre-
processing, compared to a dependency parser in
(Liu and Gildea, 2005) and (Owczarzak et al.,
2007). EDPM also incorporates more information
sources: e.g. the parser confidence, the Porter
stemmer, WordNet synonyms and paraphrases.

Besides the metrics that rely solely on the de-
pendency structures, information from the depen-
dency parser is a component of some other metrics
that use more diverse resources, such as the textual
entailment-based metric of (Pado et al., 2009).

In this paper we extend the work of (Owczarzak
et al., 2007) in a different manner: we use an
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adapted version of the Malt parser (Nivre et al.,
2006) to produce 1-best LFG dependencies and
allow triple matches where the dependency la-
bels are different. We incorporate stemming, syn-
onym and paraphrase information as in (Kahn et
al., 2010), and at the same time introduce a chunk
penalty in the spirit of METEOR to penalize dis-
continuous matches. We sort the matches accord-
ing to the match level and the dependency type,
and weight the matches to maximize correlation
with human judgement.

The remainder of the paper is organized as fol-
lows. Section 2 reviews the dependency-based
metric. Sections 3, 4, 5 and 6 introduce our im-
provements on this metric. We report experimen-
tal results in Section 7 and conclude in Section 8.

2 The Dependency-Based Metric

In this section, we briefly review the metric pre-
sented in (Owczarzak et al., 2007).

2.1 C-Structure and F-Structure in LFG

In Lexical Functional Grammar (Kaplan and Bres-
nan, 1982), a sentence is represented as both a hi-
erarchical c-(onstituent) structure which captures
the phrasal organization of a sentence, and a f-
(unctional) structure which captures the functional
relations between different parts of the sentence.
Our metric currently only relies on the f-structure,
which is encoded as labeled dependencies in our
metric.

2.2 MT Evaluation as Dependency Triple
Matching

The basic method of (Owczarzak et al., 2007) can
be illustrated by the example in Table 1.

The metric in (Owczarzak et al., 2007) performs
triple matching over the Hyp- and Ref-Triples and
calculates the metric score using the F-score of
matching precision and recall. Let m be the num-
ber of matches, h be the number of triples in the
hypothesis and e be the number of triples in the
reference. Then we have the matching precision
P = m/h and recall R = m/e. The score of the
hypothesis in (Owczarzak et al., 2007) is the F-
score based on the precision and recall of match-
ing as in (1):

Fscore =
2PR

P + R
(1)

Table 1: Sample Hypothesis and Reference
Hypothesis
rice will be held talks in egypt next week
Hyp-Triples
adjunct(will, rice)
xcomp(will, be)
adjunct(talks, held)
xcomp(be, talks)
adjunct(talks, in)
obj(in, egypt)
adjunct(week, next)
adjunct(talks, week)
Reference
rice to hold talks in egypt next week
Ref-Triples
obl(rice, to)
obj(hold, to)
adjunct(week, talks)
adjunct(talks, in)
obj(in, egypt)
adjunct(week, next)
obj(hold, week)

2.3 Details of the Matching Strategy

(Owczarzak et al., 2007) uses several techniques
to facilitate triple matching. First of all, consider-
ing that the MT-generated hypotheses have vari-
able quality and are sometimes ungrammatical,
the metric will search the 50-best parses of both
the hypothesis and reference and use the pair that
has the highest F-score to compensate for parser
noise.

Secondly, the metric performs complete or par-
tial matching according to the dependency labels,
so the metric will find more matches on depen-
dency structures that are presumably more infor-
mative.

More specifically, for all except the LFG
Predicate-Only labeled triples of the form
dep(head, modifier), the method does not
allow a match if the dependency labels (deps)
are different, thus enforcing a complete match.
For the Predicate-Only dependencies, par-
tial matching is allowed: i.e. two triples are con-
sidered identical even if only the head or the
modifier are the same.

Finally, the metric also uses linguistic resources
for better coverage. Besides using WordNet syn-
onyms, the method also uses the lemmatized out-
put of the LFG parser, which is equivalent to using
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an English lemmatizer.
If we do not consider these additional lin-

guistic resources, the metric would find the fol-
lowing matches in the example in Table 1:
adjunct(talks, in), obj(in, egypt)
and adjunct(week, next), as these three
triples appear both in the reference and in the hy-
pothesis.

2.4 Points for Improvement

We see several points for improvement from Table
1 and the analysis above.

• More linguistic resources: we can use more
linguistic resources than WordNet in pursuit
of better coverage.

• Using the 1-best parse instead of 50-best
parses: the parsing model we currently use
does not produce k-best parses and using only
the 1-best parse significantly improves the
speed of triple matching. We allow ‘soft’
triple matches to capture the triple matches
which we might otherwise miss using the 1-
best parse.

• Rewarding continuous matches: it
would be more desirable to reflect
the fact that the 3 matching triples
adjunct(talks, in), obj(in,
egypt) and adjunct(week, next)
are continuous in Table 1.

We introduce our improvements to the metric
in response to these observations in the following
sections.

3 Producing and Matching LFG
Dependency Triples

3.1 The LFG Parser

The metric described in (Owczarzak et al., 2007)
uses the DCU LFG parser (Cahill et al., 2004)
to produce LFG dependency triples. The parser
uses a Penn treebank-trained parser to produce
c-structures (constituency trees) and an LFG f-
structure annotation algorithm on the c-structure
to obtain f-structures. In (Owczarzak et al., 2007),
triple matching on f-structures produced by this
paradigm correlates well with human judgement,
but this paradigm is not adequate for the WMT-
MetricsMatr evaluation in two respects: 1) the in-
house LFG annotation algorithm is not publicly

available and 2) the speed of this paradigm is not
satisfactory.

We instead use the Malt Parser1 (Nivre et al.,
2006) with a parsing model trained on LFG de-
pendencies to produce the f-structure triples. Our
collaborators2 first apply the LFG annotation algo-
rithm to the Penn Treebank training data to obtain
f-structures, and then the f-structures are converted
into dependency trees in CoNLL format to train
the parsing model. We use the liblinear (Fan et
al., 2008) classification module to for fast parsing
speed.

3.2 Hard and Soft Dependency Matching

Currently our parser produces only the 1-best
outputs. Compared to the 50-best parses in
(Owczarzak et al., 2007), the 1-best parse limits
the number of triple matches that can be found. To
compensate for this, we allow triple matches that
have the same Head and Modifier to consti-
tute a match, even if their dependency labels are
different. Therefore for triples Dep1(Head1,
Mod1) and Dep2(Head2, Mod2), we allow
three types of match: a complete match if
the two triples are identical, a partial match if
Dep1=Dep2 and Head1=Head2, and a soft
match if Head1=Head2 and Mod1=Mod2.

4 Capturing Variations in Language

In (Owczarzak et al., 2007), lexical variations at
the word-level are captured by WordNet. We
use a Porter stemmer and a unigram paraphrase
database to allow more lexical variations.

With these two resources combined, there are
four stages of word level matching in our sys-
tem: exact match, stem match, WordNet match and
unigram paraphrase match. The stemming mod-
ule uses Porter’s stemmer implementation3 and the
WordNet module uses the JAWS WordNet inter-
face.4 Our metric only considers unigram para-
phrases, which are extracted from the paraphrase
database in TERP5 using the script in the ME-
TEOR6 metric.

1http://maltparser.org/index.html
2Özlem Çetinoğlu and Jennifer Foster at the National

Centre for Language Technology, Dublin City University
3http://tartarus.org/˜martin/

PorterStemmer/
4http://lyle.smu.edu/˜tspell/jaws/

index.html
5http://www.umiacs.umd.edu/˜snover/

terp/
6http://www.cs.cmu.edu/˜alavie/METEOR/
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5 Adding Chunk Penalty to the
Dependency-Based Metric

The metric described in (Owczarzak et al., 2007)
does not explicitly consider word order and flu-
ency. METEOR, on the other hand, utilizes this in-
formation through a chunk penalty. We introduce
a chunk penalty to our dependency-based metric
following METEOR’s string-based approach.

Given a reference r = wr1...wrn, we denote
wri as ‘covered’ if it is the head or modifier of
a matched triple. We only consider the wris that
appear as head or modifier in the reference
triples. After this notation, we follow METEOR’s
approach by counting the number of chunks in
the reference string, where a chunk wrj ...wrk is
a sequence of adjacent covered words in the refer-
ence. Using the hypothesis and reference in Ta-
ble 1 as an example, the three matched triples
adjunct(talks, in), obj(in, egypt)
and adjunct(week, next) will cover a con-
tinuous word sequence in the reference (under-
lined), constituting one single chunk:

rice to hold talks (in) egypt next week

Based on this observation, we introduce a simi-
lar chunk penalty Pen as in METEOR in our met-
ric, as in 2:

Pen = γ · ( #chunks

#matches
)β (2)

where β and γ are free parameters, which we tune
in Section 6.2. We add this penalty to the depen-
dency based metric (cf. Eq. (1)), as in Eq. (3).

score = (1 − Pen) · Fscore (3)

6 Parameter Tuning

6.1 Parameters of the Metric

In our metric, dependency triple matches can be
categorized according to many criteria. We as-
sume that some matches are more critical than
others and encode the importance of matches by
weighting them differently. The final match will
be the sum of weighted matches, as in (4):

m =
∑

λtmt (4)

where λt and mt are the weight and number of
match category t. We categorize a triple match ac-
cording to three perspectives: 1) the level of match
L={complete, partial}; 2) the linguistic resource

used in matching R={exact, stem, WordNet, para-
phrase}; and 3) the type of dependency D. To
avoid too large a number of parameters, we only
allow a set of frequent dependency types, along
with the type other, which represents all the other
types and the type soft for soft matches. We have
D={app, subj, obj, poss, adjunct, topicrel, other,
soft}.

Therefore for each triple match m, we can have
the type of the match t ∈ L×R×D.

6.2 Tuning
In sum, we have the following parameters to tune
in our metric: precision weight α, chunk penalty
parameters β, γ, and the match type weights
λ1...λn. We perform Powell’s line search (Press et
al., 2007) on the sufficient statistics of our metric
to find the set of parameters that maximizes Pear-
son’s ρ on the segment level. We perform the op-
timization on the MT06 portion of the NIST Met-
ricsMATR 2010 development set with 2-fold cross
validation.

7 Experiments

We experiment with four settings of the metric:
HARD, SOFT, SOFTALL and WEIGHTED in or-
der to validate our enhancements. The first two
settings compare the effect of allowing/not al-
lowing soft matches, but only uses WordNet as
in (Owczarzak et al., 2007). The third setting ap-
plies our additional linguistic features and the final
setting tunes parameter weights for higher correla-
tion with human judgement.

We report Pearson’s r, Spearman’s ρ and
Kendall’s τ on segment and system levels on the
NIST MetricsMATR 2010 development set using
Snover’s scoring tool.7

Table 2: Correlation on the Segment Level
r ρ τ

HARD 0.557 0.586 0.176
SOFT 0.600 0.634 0.213
SOFTALL 0.633 0.662 0.235
WEIGHTED 0.673 0.709 0.277

Table 2 shows that allowing soft triple matches
and using more linguistic features all lead
to higher correlation with human judgement.
Though the parameters might somehow overfit on

7http://www.umiacs.umd.edu/˜snover/
terp/scoring/
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the data set even if we apply cross validation, this
certainly confirms the necessity of weighing de-
pendency matches according to their types.

Table 3: Correlation on the System Level
r ρ τ

HARD 0.948 0.905 0.786
SOFT 0.964 0.905 0.786
SOFTALL 0.975 0.976 0.929
WEIGHTED 0.989 1.000 1.000

When considering the system-level correlation
in Table 3, the trend is very similar to that of the
segment level. The improvements we introduce all
lead to improvements in correlation with human
judgement.

8 Conclusions and Future Work

In this paper we describe DCU’s dependency-
based MT evaluation metric submitted to WMT-
MetricsMATR 2010. Building upon the LFG-
based metric described in (Owczarzak et al.,
2007), we use a publicly available parser instead
of an in-house parser to produce dependency la-
bels, so that the metric can run on a third party
machine. We improve the metric by allowing more
lexical variations and weighting dependency triple
matches depending on their importance according
to correlation with human judgement.

For future work, we hope to apply this method
to languages other than English, and perform more
refinement on dependency type labels and linguis-
tic resources.
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Abstract

We present TESLA-M and TESLA, two
novel automatic machine translation eval-
uation metrics with state-of-the-art perfor-
mances. TESLA-M builds on the suc-
cess of METEOR and MaxSim, but em-
ploys a more expressive linear program-
ming framework. TESLA further exploits
parallel texts to build a shallow seman-
tic representation. We evaluate both on
the WMT 2009 shared evaluation task and
show that they outperform all participating
systems in most tasks.

1 Introduction

In recent years, many machine translation (MT)
evaluation metrics have been proposed, exploiting
varying amounts of linguistic resources.

Heavyweight linguistic approaches including
RTE (Pado et al., 2009) and ULC (Giménez and
Màrquez, 2008) performed the best in the WMT
2009 shared evaluation task. They exploit an ex-
tensive array of linguistic features such as parsing,
semantic role labeling, textual entailment, and dis-
course representation, which may also limit their
practical applications.

Lightweight linguistic approaches such as ME-
TEOR (Banerjee and Lavie, 2005), MaxSim
(Chan and Ng, 2008), wpF and wpBleu (Popović
and Ney, 2009) exploit a limited range of linguis-
tic information that is relatively cheap to acquire
and to compute, including lemmatization, part-of-
speech (POS) tagging, and synonym dictionaries.

Non-linguistic approaches include BLEU (Pap-
ineni et al., 2002) and its variants, TER (Snover et
al., 2006), among others. They operate purely at
the surface word level and no linguistic resources
are required. Although still very popular with MT
researchers, they have generally shown inferior
performances than the linguistic approaches.

We believe that the lightweight linguistic ap-
proaches are a good compromise given the current
state of computational linguistics research and re-
sources. In this paper, we devise TESLA-M and
TESLA, two lightweight approaches to MT eval-
uation. Specifically: (1) the core features are F-
measures derived by matching bags of N-grams;
(2) both recall and precision are considered, with
more emphasis on recall; and (3) WordNet syn-
onyms feature prominently.

The main novelty of TESLA-M compared to
METEOR and MaxSim is that we match the N-
grams under a very expressive linear programming
framework, which allows us to assign weights to
the N-grams. This is in contrast to the greedy ap-
proach of METEOR, and the more restrictive max-
imum bipartite matching formulation of MaxSim.

In addition, we present a heavier version
TESLA, which combines the features using a lin-
ear model trained on development data, making
it easy to exploit features not on the same scale,
and leaving open the possibility of domain adapta-
tion. It also exploits parallel texts of the target lan-
guage with other languages as a shallow semantic
representation, which allows us to model phrase
synonyms and idioms. In contrast, METEOR and
MaxSim are capable of processing only word syn-
onyms from WordNet.

The rest of this paper is organized as follows.
Section 2 gives a high level overview of the eval-
uation task. Sections 3 and 4 describe TESLA-M
and TESLA, respectively. Section 5 presents ex-
perimental results in the setting of the WMT 2009
shared evaluation task. Finally, Section 6 con-
cludes the paper.

2 Overview

We consider the task of evaluating machine trans-
lation systems in the direction of translating the
source language to the target language. Given a
reference translation and a system translation, the
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goal of an automatic machine translation evalua-
tion algorithm such as TESLA(-M) is to output a
score predicting the quality of the system transla-
tion. Neither TESLA-M nor TESLA requires the
source text, but as additional linguistic resources,
TESLA makes use of phrase tables generated from
parallel texts of the target language and other lan-
guages, which we refer to as pivot languages. The
source language may or may not be one of the
pivot languages.

3 TESLA-M

This section describes TESLA-M, the lighter
one among the two metrics. At the highest
level, TESLA-M is the arithmetic average of F-
measures between bags of N-grams (BNGs). A
BNG is a multiset of weighted N-grams. Math-
ematically, a BNG B consists of tuples (bi, b

W
i ),

where each bi is an N-gram and bW
i is a posi-

tive real number representing its weight. In the
simplest case, a BNG contains every N-gram in a
translated sentence, and the weights are just the
counts of the respective N-grams. However, to
emphasize the content words over the function
words, we discount the weight of an N-gram by
a factor of 0.1 for every function word in the N-
gram. We decide whether a word is a function
word based on its POS tag.

In TESLA-M, the BNGs are extracted in the tar-
get language, so we call them bags of target lan-
guage N-grams (BTNGs).

3.1 Similarity functions
To match two BNGs, we first need a similarity
measure between N-grams. In this section, we
define the similarity measures used in our exper-
iments.

We adopt the similarity measure from MaxSim
as sms. For unigrams x and y,

• If lemma(x) = lemma(y), then sms = 1.

• Otherwise, let

a = I(synsets(x) overlap with synsets(y))
b = I(POS(x) = POS(y))

where I(·) is the indicator function, then
sms = (a + b)/2.

The synsets are obtained by querying WordNet
(Fellbaum, 1998). For languages other than En-
glish, a synonym dictionary is used instead.

We define two other similarity functions be-
tween unigrams:

slem(x, y) = I(lemma(x) = lemma(y))
spos(x, y) = I(POS(x) = POS(y))

All the three unigram similarity functions general-
ize to N-grams in the same way. For two N-grams
x = x1,2,...,n and y = y1,2,...,n,

s(x, y) =

{
0 if ∃i, s(xi, yi) = 0
1
n

∑n
i=1 s(xi, yi) otherwise

3.2 Matching two BNGs
Now we describe the procedure of matching two
BNGs. We take as input the following:

1. Two BNGs, X and Y . The ith entry in X
is xi and has weight xW

i (analogously for yj

and yW
j ).

2. A similarity measure, s, that gives a similar-
ity score between any two entries in the range
of 0 to 1.

Intuitively, we wish to align the entries of the two
BNGs in a way that maximizes the overall simi-
larity. As translations often contain one-to-many
or many-to-many alignments, we allow one entry
to split its weight among multiple alignments. An
example matching problem is shown in Figure 1a,
where the weight of each node is shown, along
with the similarity for each edge. Edges with a
similarity of zero are not shown. The solution to
the matching problem is shown in Figure 1b, and
the overall similarity is 0.5 × 1.0 + 0.5 × 0.6 +
1.0× 0.2 + 1.0× 0.1 = 1.1.

Mathematically, we formulate this as a (real-
valued) linear programming problem1. The vari-
ables are the allocated weights for the edges

w(xi, yj) ∀i, j

We maximize∑
i,j

s(xi, yj)w(xi, yj)

subject to

w(xi, yj) ≥ 0 ∀i, j∑
j

w(xi, yj) ≤ xW
i ∀i

∑
i

w(xi, yj) ≤ yW
j ∀j

1While integer linear programming is NP-complete, real-
valued linear programming can be solved efficiently.
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w=1.0 w=0.8 w=0.2 w=0.1

w=1.0 w=0.8 w=0.1

w=0.2

s=0.5 s=1.0s=0.5 s=1.0

(a) The matching problem

w=1.0 w=0.8 w=0.2 w=0.1

w=1.0 w=0.8 w=0.1

w=0.2

w=1.0 w=0.2w=0.6 w=0.1

(b) The solution

Figure 1: A BNG matching problem

The value of the objective function is the overall
similarity S. Assuming X is the reference and Y
is the system translation, we have

Precision =
S∑
j yW

j

Recall =
S∑
i x

W
i

The F-measure is derived from the precision and
the recall:

F =
Precision× Recall

α× Precision + (1− α)× Recall

In this work, we set α = 0.8, following MaxSim.
The value gives more importance to the recall than
the precision.

3.3 Scoring
The TESLA-M sentence-level score for a refer-
ence and a system translation is the arithmetic av-
erage of the BTNG F-measures for unigrams, bi-
grams, and trigrams based on similarity functions
sms and spos. We thus have 3× 2 = 6 features for
TESLA-M.

We can compute a system-level score for a ma-
chine translation system by averaging its sentence-
level scores over the complete test set.

3.4 Reduction
When every xW

i and yW
j is 1, the linear program-

ming problem proposed above reduces to weighted
bipartite matching. This is a well known result;
see for example, Cormen et al. (2001) for details.

This is the formalism of MaxSim, which precludes
the use of fractional weights.

If the similarity function is binary-valued
and transitive, such as slem and spos, then
we can use a much simpler and faster greedy
matching procedure: the best match is simply∑

g min(
∑

xi=g xW
i ,

∑
yi=g yW

i ).

4 TESLA

Unlike the simple arithmetic average used in
TESLA-M, TESLA uses a general linear com-
bination of three types of features: BTNG F-
measures as in TESLA-M, F-measures between
bags of N-grams in each of the pivot languages,
called bags of pivot language N-grams (BPNGs),
and normalized language model scores of the sys-
tem translation, defined as 1

n log P , where n is
the length of the translation, and P the language
model probability. The method of training the lin-
ear model depends on the development data. In
the case of WMT, the development data is in the
form of manual rankings, so we train SVM rank

(Joachims, 2006) on these instances to build the
linear model. In other scenarios, some form of re-
gression can be more appropriate.

The rest of this section focuses on the genera-
tion of the BPNGs. Their matching is done in the
same way as described for BTNGs in the previous
section.

4.1 Phrase level semantic representation

Given a sentence-aligned bitext between the target
language and a pivot language, we can align the
text at the word level using well known tools such
as GIZA++ (Och and Ney, 2003) or the Berkeley
aligner (Liang et al., 2006; Haghighi et al., 2009).

We observe that the distribution of aligned
phrases in a pivot language can serve as a se-
mantic representation of a target language phrase.
That is, if two target language phrases are often
aligned to the same pivot language phrase, then
they can be inferred to be similar in meaning.
Similar observations have been made by previous
researchers (Bannard and Callison-Burch, 2005;
Callison-Burch et al., 2006; Snover et al., 2009).

We note here two differences from WordNet
synonyms: (1) the relationship is not restricted to
the word level only, and (2) the relationship is not
binary. The degree of similarity can be measured
by the percentage of overlap between the seman-
tic representations. For example, at the word level,
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the phrases good morning and hello are unrelated
even with a synonym dictionary, but they both very
often align to the same French phrase bonjour, and
we conclude they are semantically related to a high
degree.

4.2 Segmenting a sentence into phrases

To extend the concept of this semantic represen-
tation of phrases to sentences, we segment a sen-
tence in the target language into phrases. Given a
phrase table, we can approximate the probability
of a phrase p by:

Pr(p) =
N(p)∑
p′ N(p′)

(1)

where N(·) is the count of a phrase in the phrase
table. We then define the likelihood of seg-
menting a sentence S into a sequence of phrases
(p1, p2, . . . , pn) by:

Pr(p1, p2, . . . , pn|S) =
1

Z(S)

n∏
i=1

Pr(pi) (2)

where Z(S) is a normalizing constant. The seg-
mentation of S that maximizes the probability can
be determined efficiently using a dynamic pro-
gramming algorithm. The formula has a strong
preference for longer phrases, as every Pr(p) is
a small fraction. To deal with out-of-vocabulary
(OOV) words, we allow any single word w to be
considered a phrase, and if N(w) = 0, we set
N(w) = 0.5 instead.

4.3 BPNGs as sentence level semantic
representation

Simply merging the phrase-level semantic rep-
resentation is insufficient to produce a sensible
sentence-level semantic representation. As an ex-
ample, we consider two target language (English)
sentences segmented as follows:

1. ||| Hello , ||| Querrien ||| . |||

2. ||| Morning , sir . |||

A naive comparison of the bags of aligned pivot
language (French) phrases would likely conclude
that the two sentences are completely unrelated,
as the bags of aligned phrases are likely to be
completely disjoint. We tackle this problem by
constructing a confusion network representation
of the aligned phrases, as shown in Figures 2 and

Bonjour , / 0.9

Salut , / 0.1

Querrien / 1.0 . / 1.0

Figure 2: A confusion network as a semantic rep-
resentation

Bonjour , monsieur . / 1.0

Figure 3: A degenerate confusion network as a se-
mantic representation

3. A confusion network is a compact representa-
tion of a potentially exponentially large number of
weighted and likely malformed French sentences.
We can collect the N-gram statistics of this ensem-
ble of French sentences efficiently from the confu-
sion network representation. For example, the tri-
gram Bonjour , Querrien 2 would receive a weight
of 0.9 × 1.0 = 0.9 in Figure 2. As with BTNGs,
we discount the weight of an N-gram by a factor
of 0.1 for every function word in the N-gram, so
as to place more emphasis on the content words.

The collection of all such N-grams and their
corresponding weights forms the BPNG of a sen-
tence. The reference and system BPNGs are then
matched using the algorithm outlined in Section
3.2.

4.4 Scoring
The TESLA sentence-level score is a linear com-
bination of (1) BTNG F-measures for unigrams,
bigrams, and trigrams based on similarity func-
tions sms and spos, (2) BPNG F-measures for un-
igrams, bigrams, and trigrams based on similar-
ity functions slem and spos for each pivot lan-
guage, and (3) normalized language model scores.
In this work, we use two language models. We
thus have 3 × 2 features from the BTNGs, 3 ×
2 × #pivot languages features from the BPNGs, and
2 features from the language models. Again, we
can compute system-level scores by averaging the
sentence-level scores.

5 Experiments

5.1 Setup
We test our metrics in the setting of the WMT
2009 evaluation task (Callison-Burch et al., 2009).
The manual judgments from WMT 2008 are used

2Note that the N-gram can span more than one segment.
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as the development data and the metric is evalu-
ated on WMT 2009 manual judgments with re-
spect to two criteria: sentence level consistency
and system level correlation.

The sentence level consistency is defined as the
percentage of correctly predicted pairs among all
the manually judged pairs. Pairs judged as ties
by humans are excluded from the evaluation. The
system level correlation is defined as the average
Spearman’s rank correlation coefficient across all
translation tracks.

5.2 Pre-processing
We POS tag and lemmatize the texts using the fol-
lowing tools: for English, OpenNLP POS-tagger3

and WordNet lemmatizer; for French and German,
TreeTagger4; for Spanish, the FreeLing toolkit
(Atserias et al., 2006); and for Czech, the Morce
morphological tagger5.

For German, we additionally perform noun
compound splitting. For each noun, we choose the
split that maximizes the geometric mean of the fre-
quency counts of its parts, following the method in
(Koehn and Knight, 2003):

max
n,p1,p2,...,pn

[
n∏

i=1

N(pi)

] 1
n

The resulting compound split sentence is then POS
tagged and lemmatized.

Finally, we remove all non-alphanumeric tokens
from the text in all languages. To generate the lan-
guage model features, we train SRILM (Stolcke,
2002) trigram models with modified Kneser-Ney
discounting on the supplied monolingual Europarl
and news commentary texts.

We build phrase tables from the supplied news
commentary bitexts. Word alignments are pro-
duced by the Berkeley aligner. The widely used
phrase extraction heuristic in (Koehn et al., 2003)
is used to extract phrase pairs and phrases of up to
4 words are collected.

5.3 Into-English task
For each of the BNG features, we generate three
scores, for unigrams, bigrams, and trigrams re-
spectively. For BPNGs, we generate one such
triple for each of the four pivot languages supplied,
namely Czech, French, German, and Spanish.

3opennlp.sourceforge.net
4www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
5ufal.mff.cuni.cz/morce/index.php

System
correlation

Sentence
consistency

TESLA 0.8993 0.6324
TESLA-M 0.8718 0.6097

ulc 0.83 0.63
maxsim 0.80 0.62

meteor-0.6 0.72 0.50

Table 1: Into-English task on WMT 2009 data

Table 1 compares the scores of TESLA and
TESLA-M against three participants in WMT
2009 under identical settings6: ULC (a heavy-
weight linguistic approach with the best per-
formance in WMT 2009), MaxSim, and ME-
TEOR. The results show that TESLA outperforms
all these systems by a substantial margin, and
TESLA-M is very competitive too.

5.4 Out-of-English task

A synonym dictionary is required for target lan-
guages other than English. We use the freely avail-
able Wiktionary dictionary7 for each language.
For Spanish, we additionally use the Spanish
WordNet, a component of FreeLing.

Only one pivot language (English) is used for
the BPNG. For the English-Czech task, we only
have one language model instead of two, as the
Europarl language model is not available.

Tables 2 and 3 show the sentence-level consis-
tency and system-level correlation respectively of
TESLA and TESLA-M against the best reported
results in WMT 2009 under identical setting. The
results show that both TESLA and TESLA-M
give very competitive performances. Interestingly,
TESLA and TESLA-M obtain similar scores in the
out-of-English task. This could be because we use
only one pivot language (English), compared to
four in the into-English task. We plan to inves-
tigate this phenomenon in our future work.

6 Conclusion

This paper describes TESLA-M and TESLA. Our
main contributions are: (1) we generalize the
bipartite matching formalism of MaxSim into a
more expressive linear programming framework;

6The original WMT09 report contained erroneous results.
The scores here are the corrected results released after publi-
cation.

7www.wiktionary.org
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en-fr en-de en-es en-cz Overall

TESLA 0.6828 0.5734 0.5940 0.5519 0.5796

TESLA-M 0.6390 0.5890 0.5927 0.5656 0.5847

wcd6p4er 0.67 0.58 0.61 0.59 0.60

wpF 0.66 0.60 0.61 n/a 0.61

terp 0.62 0.50 0.54 0.31 0.43

Table 2: Out-of-English task sentence-level con-
sistency on WMT 2009 data

en-fr en-de en-es en-cz Overall

TESLA 0.8529 0.7857 0.7272 0.3141 0.6700

TESLA-M 0.9294 0.8571 0.7909 0.0857 0.6657

wcd6p4er -0.89 0.54 -0.45 -0.1 -0.22

wpF 0.90 -0.06 0.58 n/a n/a

terp -0.89 0.03 -0.58 -0.40 -0.46

Table 3: Out-of-English task system-level correla-
tion on WMT 2009 data

(2) we exploit parallel texts to create a shallow se-
mantic representation of the sentences; and (3) we
show that they outperform all participants in most
WMT 2009 shared evaluation tasks.
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Abstract 

This paper describes the latest version of the 
ATEC metric for automatic MT evaluation, 
with parameters optimized for word choice 
and word order, the two fundamental features 
of language that the metric relies on. The 
former is assessed by matching at various 
linguistic levels and weighting the informa-
tiveness of both matched and unmatched 
words. The latter is quantified in term of 
word position and information flow. We also 
discuss those aspects of language not yet 
covered by other existing evaluation metrics 
but carefully considered in the formulation of 
our metric.  

1 Introduction 

It is recognized that the proposal of the BLEU 
metric (Papineni et al., 2002) has piloted a para-
digm evolution to MT evaluation. It provides a 
computable solution to the task and turns it into 
an engineering problem of measuring text simi-
larity and simulating human judgments of trans-
lation quality. Related studies in recent years 
have extensively revealed more essential charac-
teristics of BLEU, including its strengths and 
weaknesses. This has aroused the proposal of 
different new evaluation metrics aimed at ad-
dressing such weaknesses so as to find some oth-
er hopefully better alternatives for the task. Ef-
fort in this direction brings up some advanced 
metrics such as METEOR (Banerjee and Lavie, 
2005) and TERp (Snover et al., 2009) that seem 
to have already achieved considerably strong 
correlations with human judgments. Nevertheless, 
few metrics have really nurtured our understand-
ing of possible parameters involved in our lan-
guage comprehension and text quality judgment. 
This inadequacy limits, inevitably, the applica-
tion of the existing metrics. 

The ATEC metric (Wong and Kit, 2008) was 
developed as a response to this inadequacy, with 
a focus to account for the process of human 
comprehension of sentences via two fundamental 
features of text, namely word choice and word 
order. It integrates various explicit measures for 
these two features in order to provide an intuitive 
and informative evaluation result. Its previous 
version (Wong and Kit, 2009b) has already illu-
strated a highly comparable performance to the 
few state-of-the-art evaluation metrics, showing 
a great improvement over its initial version for 
participation in MetricsMATR081. It is also ap-
plied to evaluate online MT systems for legal 
translation, to examine its applicability for lay 
users’ use to select appropriate MT systems 
(Wong and Kit, 2009a). 

In this paper we describe the formulation of 
ATEC, including its new features and optimiza-
tion of parameters. In particular we will discuss 
how the design of this metric can complement 
the inadequacies of other metrics in terms of its 
treatment of word choice and word order and its 
utilization of multiple references in the evalua-
tion process. 

2 The ATEC Metric 

2.1 Word Choice 

In general, word is the basic meaning bearing 
unit of language. In a semantic theory such as 
Latent Semantic Analysis (LSA) (Landauer et al., 
1998), lexical selection is even the sole consider-
ation of the meaning of a text. A recent study of 
the major errors in MT outputs by Vilar et al. 
(2006) also reveals that different kinds of error 
related to word choices constitute a majority of 
error types. It is therefore of prime importance 

                                                 
1 http://www.itl.nist.gov/iad/mig/tests/metricsmatr/2008/ 
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for MT evaluation metrics to diagnose the ade-
quacy of word selection by an MT system. 

It is a general consensus that the performance 
of an evaluation metric can be improved by 
matching more words between MT outputs and 
human references. Linguistic resources like 
stemmer and WordNet are widely applied by 
many metrics for matching word stems and syn-
onyms. ATEC is equipped with these two mod-
ules as well, and furthermore, with two measures 
for word similarity, including a WordNet-based 
(Wu and Palmer, 1994) and a corpus-based 
measure (Landauer et al., 1998) for matching 
word pairs of similar meanings. Our previous 
work (Wong, 2010) shows that the inclusion of 
semantically similar words results in a positive 
correlation gain comparable to the use of Word-
Net for synonym identification. 

In addition to increasing the number of legiti-
mate matches, we also consider the importance 
of each match. Although most metrics score 
every matched word with equal weight, different 
words indeed contribute different amount of in-
formation to the meaning of a sentence. In Ex-
ample 1 below, both C1 and C2 contain the same 
number of words matched with Ref, but the 
matches in C1 are more informative and there-
fore should be assigned higher weights. 

 
Example 1 
C1: it was not first time that prime minister con-

fronts northern league … 
C2: this is not the prime the operation with the 

north … 
Ref: this is not the first time the prime minister 

has faced the northern league … 
 

The informativeness of a match is weighted by 
the tf-idf measure, which has been widely used in 
information retrieval to assess the relative impor-
tance of a word as an indexing term for a docu-
ment. A word is more important to a document 
when it occurs more frequently in this document 
and less in others. In ATEC, we have “document” 
to refer to “sentence”, the basic text unit in MT 
evaluation. This allows a more sensitive measure 
for words in different sentences, and gets around 
the problem of an evaluation dataset containing 
only one or a few long documents. Accordingly, 
the tf-idf measure is formulated as: 

)log(),( ,
i

ji sf
Ntfjitfidf ⋅=  

where tfi,j is the occurrences of word wi in sen-
tence sj, sfi the number of sentences containing 
word wi, and N the total number of sentences in 

the evaluation set. In case of a high-frequency 
word whose tf-idf weight is less than 1, it is then 
rounded up to 1. 

In addition to matched words, unmatched 
words are also considered to have a role to play 
in determining the quality of word choices of an 
MT output. As illustrated in Example 1, the un-
matched words in Ref for C1 and C2 are [this | is 
| the | the | has | faced | the] and [first | time | mi-
nister | has | faced | northern | league] respective-
ly. One can see that the words missing in C2 are 
more significant. It is therefore necessary to ap-
ply the tf-idf weighting to unmatched reference 
words so as to quantify the information missed in 
the MT outputs in question.  

2.2 Word Order 

In MT evaluation, word order refers to the extent 
to which an MT output is interpretable following 
the information flow of its reference translation. 
It is not rare that an MT output has many 
matched words but does not make sense because 
of a problematic word order. Currently it is ob-
served that consecutive matches represent a legi-
timate local ordering, causing some metrics to 
extend the unit of matching from word to phrase. 
Birch et al. (2010) show, however, that the cur-
rent metrics including BLEU, METEOR and 
TER are highly lexical oriented and still cannot 
distinguish between sentences of different word 
orders. This is a serious problem in MT evalua-
tion, for many MT systems have become capable 
of generating more and more suitable words in 
translations, resulting in that the quality differ-
ence of their outputs lies more and more crucial-
ly in the variances of word order.  

ATEC uses three explicit features for word or-
der, namely position distance, order distance and 
phrase size. Position distance refers to the diver-
gence of the locations of matches in an MT out-
put and its reference. Example 2 illustrates two 
candidates with the same match, whose position 
in C1 is closer to its corresponding position in 
Ref than that in C2. We conceive this as a signif-
icant indicator of the accuracy of word order: the 
closer the positions of a matched word in the 
candidate and reference, the better match it is. 
 
Example 2 
C1: non-signatories these acts victims but it 

caused to incursion transcendant 
C2: non-signatories but it caused to incursion 

transcendant these acts victims 
Ref: there were no victims in this incident but 

they did cause massive damage 
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The calculation of position distance is based 
on the position indices of words in a sentence. In 
particular, we align every word in a candidate to 
its closest counterpart in a reference. In Example 
3, all the candidate words have a match in the 
reference. As illustrated by the two “a” in the 
candidate, the shortest alignments (strict lines) 
are preferred over any farther alternatives (dash 
lines). In a case like this, only two matches, i.e., 
thief and police, vary in position by a distance of 
3. 
 
Example 3 
Candidate: a thief chases a police 
Pos distance:        0     3         0      0      3 
Pos index: 1    2         3      4      5  
 
Reference: a police chases a thief 
Pos index: 1     2         3        4       5  

 
This position distance is sensitive to sentence 

length as it simply makes use of word position 
indices without any normalization. Example 4 
illustrates two cases of different lengths. The po-
sition distance of the bold matched words is 3 in 
C1 but 14 in C2. Indeed, the divergence of word 
order in C1 does not hinder our understanding, 
but in C2 it poses a serious problem. This exces-
sive length inevitably magnifies the interference 
effect of word order divergence. 
 
Example 4 
C1: Short1 and2 various3 international4 news5 
R1: International1 news2 brief3 
C2: Is1 on2 a3 popular4 the5 very6 in7 Iraq8 to9 

those10 just11 like12 other13 world14 in15 
which16 young17 people18 with19 the20 and21 
flowers22 while23 awareness24 by25 other26 
times27 of28 the29 countries30 of31 the32 

R2: Valentine’s1 day2 is3 a4 very5 popular6 day7 
in8 Iraq9 as10 it11 is12 in13 the14 other15 coun-
tries16 of17 the18 world19. Young20 men21 ex-
change22 with23 their24 girlfriends25 sweets26, 
flowers27, perfumes28 and29 other30 gifts31. 

 
Another feature, the order distance, concerns 

the information flow of a sentence in the form of 
the sequence of matches. Each match in a candi-
date and a reference is first assigned an order 
index in a sequential manner. Then, the differ-
ence of two counterpart indices is measured, so 
as to see if a variance exists. Examples 5a and 5b 
exemplify two kinds of order distance and their 
corresponding position distance. Both cases have 

two matches with the same sum of position dis-
tance. However, the matches are in an identical 
sequence in 5a but cause a cross in 5b, resulting 
in a larger order distance for the latter.  
 
Example 5a 
Position index 
Order index 
Candidate: 
 
Reference: 
Order index 
Position index 
 
Position distance 
Order distance 

1      2     3     4 
1            2 

A    B    C    D 
 

B    E    D    F 
1           2 
1     2     3     4 
 
(2-1) + (4-3) = 2 
(1-1) + (2-2) = 0 

 
Example 5b 
Position index 
Order index 
Candidate: 
 
Reference: 
Order index 
Position index 
 
Position distance 
Order distance 

1      2     3     4 
        1     2 
A    B    C    D 
 
C    B    E    F 
1      2 
1      2     3     4 
 
(2-2) + (3-1) = 2 
(2-1) + (2-1) = 2 

 
In practice, ATEC operates on phrases like 

many other metrics. But unlike these metrics that 
count only the number of matched phrases, 
ATEC gives extra credit to a longer phrase to 
reward its valid word sequence. In Example 6, 
C1 and C2 represent two MT outputs of the same 
length, with matched words underlined. Both 
have 10 matches in 3 phrases, and will receive 
the same evaluation score from a metric like 
METEOR or TERp, ignoring the subtle differ-
ence in the sizes of the matched phrases, which 
are [8,1,1] and [4,3,3] words for C1 and C2 re-
spectively. In contrast, ATEC uses the size of a 
phrase as a reduction factor to its position dis-
tance, so as to raise the contribution of a larger 
phrase to the metric score.  
 
Example 6 
C1: w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 
C2: w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 

2.3 Multiple References 

The availability of multiple references allows 
more legitimate word choices and word order of 
an MT output to be accounted. Some existing 
metrics only compute the scores of a candidate 
against each reference and select the highest one. 
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This deficit can be illustrated by a well-known 
example from Papineni et al. (2002), as repli-
cated in Example 7 with slight modification. It 
shows that nearly all candidate words can find 
their matches in either reference. However, if we 
resort to single reference, only around half of 
them can have a match, which would seriously 
underrate the quality of the candidate.  
 
Example 7 
C:   It is a guide to action which ensures that the 

military always obeys the commands of the 
party. 

 
R1: It is a guide to action that ensures that the 

military will forever heed Party commands. 
 
R2: It is the guiding principle which guarantees 

the military forces always being under the 
commands of the party. 

 
ATEC exploits multiple references in this fa-

shion to maximize the number of matches in a 
candidate. It begins with aligning the longest 
matches with either reference. The one with the 
shortest position distance is preferred if more 
than one alternative available in the same phrase 
size. This process repeats until no more candi-
date word can find a match. 

2.4 Formulation of ATEC 

The computation of an ATEC score begins with 
alignment of phrases, as described above. For 
each matched phase, we first sum up the score of 
each word i in the phrase as 

∑
∈

−=
}{

)(
phrasei i

match
typematch tfidf

Info
wW  

where wtype refers to a basic score of a matched 
word depending on its match type. It is then 
minus its information load, i.e., the tf-idf score of 
the matched word with a weight factor, Infomatch. 

There is also a distance penalty for a phrase, 

orderorder

e

pospos disw
c
pdiswDis +−= )

||
||1(

 ,
 

where dispos and disorder refer to the position 
distance and order distance, and wpos and worder 
are their corresponding weight factors, 
respectively. The position distance is further 
weighted according to the size of phrase |p| with 

an exponential factor e, in proportion to the 
length of candidate |c|.  

The score of a matched phrase is then 
computed by 

⎩
⎨
⎧

−
⋅

=
,

,
DisW

LimitW
Phrase

match

dismatch  if  Dis > Wmatch·Limitdis; 

otherwise, 

Limitdis is an upper limit for the distance penalty. 
Accordingly, the score C of all phrases in a can-
didate is  

∑
∈

=
}{candidatej

jPhraseC
. 

Then, we move on to calculating the informa-
tion load of unmatched reference words Wunmatch, 
approximated as 

)(
}{

∑
∈

−=
unmatchk k

unmatch
typeunmatch tfidf

Info
wW

.
 

The overall score M accounting for both the 
matched and unmatched is defined as 

⎩
⎨
⎧

−

⋅
=

,

,

unmatch

Info

WC

LimitC
M

if  Wunmatch > C·LimitInfo; 
otherwise, 

LimitInfo is an upper limit for the information 
penalty of the unmatched words. 

Finally, the ATEC score is computed using the 
conventional F-measure in terms of precision P 
and recall R as  

RP
PRATEC

)1( αα −+
=  

where             || c
MP =

,
 

|| r
MR =

.
 

The parameter α adjusts the weights of P and R, 
and |c| and |r| refer to the length of candidate and 
reference, respectively. In the case of multiple 
references, |r| refers to the average length of ref-
erences. 

We have derived the optimized values for the 
parameters involved in ATEC calculation using 
the development data of NIST MetricsMATR10 
with adequacy assessments by a simple hill 
climbing approach. The optimal parameter set-
ting is presented in Table 1 below. 

3 Conclusion 

In the above sections we have presented the lat-
est version of our ATEC metric with particular 
emphasis on word choice and word order as two 
fundamental features of language. Each of these 
features contains multiple parameters intended to 
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have a comprehensive coverage of different tex-
tual factors involved in our interpretation of a 
sentence. The optimal offsetting for the parame-
ters is expected to report an empirical observa-
tion of the relative merits of each factor in ade-
quacy assessment. We are currently exploring 
their relation with the errors of MT outputs, to 
examine the potential of automatic error analysis. 
The ATEC package is obtainable at:  
http://mega.ctl.cityu.edu.hk/ctbwong/ATEC/ 
 
Acknowledgments 
The research work described in this paper was 
supported by City University of Hong Kong 
through the Strategic Research Grant (SRG) 
7002267. 

References 
Satanjeev Banerjee and Alon Lavie. 2005. METEOR: 

An Automatic Metric for MT Evaluation with Im-
proved Correlation with Human Judgments. Pro-
ceedings of Workshop on Intrinsic and Extrinsic 
Evaluation Measures for MT and/or Summariza-
tion at the 43th Annual Meeting of the Association 
of Computational Linguistics (ACL), pages 65-72, 
Ann Arbor, Michigan, June 2005. 

Alexandra Birch, Miles Osborne and Phil Blunsom. 
2010. Metrics for MT Evaluation: Evaluating 
Reordering. Machine Translation (forthcoming). 

Thomas Landauer, Peter W. Foltz and Darrell Laham. 
1998. Introduction to Latent Semantic Analysis. 
Discourse Processes 25: 259–284. 

Kishore Papineni, Salim Roukos, Todd Ward, and 
Wei-Jing Zhu. 2002. BLEU: A Method for Auto-
matic Evaluation of Machine Translation. Proceed-
ings of 40th Annual Meeting of the Association for 
Computational Linguistics (ACL), pages 311–318, 
Philadelphia, PA, July 2002. 

Matthew Snover, Nitin Madnani, Bonnie Dorr, and 
Richard Schwartz. 2009. Fluency, Adequacy, or 
HTER? Exploring Different Human Judgments 
with a Tunable MT Metric. Proceedings of the 
Fourth Workshop on Statistical Machine Transla-
tion at the 12th Meeting of the European Chapter 
of the Association for Computational Linguistics 
(EACL), pages 259-268, Athens, Greece, March, 
2009. 

David Vilar, Jia Xu, Luis Fernando D'Haro and Her-
mann Ney. 2006. Error Analysis of Statistical Ma-
chine Translation Output. Proceedings of the 5th 
International Conference on Language Resources 
and Evaluation (LREC), pages 697-702, Genova, 
Italy, May 2006. 

Billy T-M Wong. 2010. Semantic Evaluation of Ma-
chine Translation. Proceedings of the 7th Interna-
tional Conference on Language Resources and 
Evaluation (LREC), Valletta, Malta, May, 2010. 

Billy T-M Wong and Chunyu Kit. 2008. Word choice 
and Word Position for Automatic MT Evaluation.  
AMTA 2008 Workshop: MetricsMATR, 3 pages, 
Waikiki, Hawai'i, October, 2008. 

Billy T-M Wong and Chunyu Kit. 2009a. Meta-
Evaluation of Machine Translation on Legal Texts. 
Proceedings of the 22nd International Conference 
on the Computer Processing of Oriental Languag-
es (ICCPOL), pages 343-350, Hong Kong, March, 
2009. 

Billy Wong and Chunyu Kit. 2009b. ATEC: Automat-
ic Evaluation of Machine Translation via Word 
Choice and Word Order. Machine Translation, 
23(2):141-155. 

Zhibiao Wu and Martha Palmer. 1994. Verb Seman-
tics and Lexical Selection. Proceedings of the 32nd 
Annual Meeting of the Association for Computa-
tional Linguistics, pages 133-138, Las Cruces, 
New Mexico. 

Parameters Values 
wtype 1        (exact match), 
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Abstract

We present a unified approach to perform-
ing minimum risk training and minimum
Bayes risk (MBR) decoding with BLEU

in a phrase-based model. Key to our ap-
proach is the use of a Gibbs sampler that
allows us to explore the entire probabil-
ity distribution and maintain a strict prob-
abilistic formulation across the pipeline.
We also describe a new sampling algo-
rithm called corpus sampling which al-
lows us at training time to use BLEU in-
stead of an approximation thereof. Our
approach is theoretically sound and gives
better (up to +0.6%BLEU) and more sta-
ble results than the standard MERT opti-
mization algorithm. By comparing our ap-
proach to lattice MBR, we are also able to
gain crucial insights about both methods.

1 Introduction

According to statistical decision theory, the opti-
mal decision rule for any statistical model is the
solution that minimizes its risk (expected loss).
This solution is often referred to as the Minimum
Bayes Risk (MBR) solution (Kumar and Byrne,
2004). Since machine translation (MT) mod-
els are typically evaluated by BLEU (Papineni et
al., 2002), a loss function which rewards partial
matches, the MBR solution is to be preferred to
the Maximum A Posteriori (MAP) solution.

In most statistical MT (SMT) systems, MBR
is implemented as a reranker of a list1 of trans-
lations generated by a first-pass decoder. This de-
coder typically assigns unnormalised log probabil-
ities (known as scores) to each translation hypoth-

1We use the term list to denote any enumerable represen-
tation of translation hypotheses e.g n-best list, translation lat-
tice or forest.

esis, so these scores must be converted to proba-
bilities in order to apply MBR. In order to perform
this conversion, it is first necessary to compute the
normalization function Z. Since Z is defined as
an intractable sum over all possible translations, it
is approximated by summing over the translations
in the list. The second step is to find the correct
scale factor for the scores using a hyper-parameter
search over held-out data. This is needed because
the model parameters for the first-pass decoder are
normally learnt using MERT (Och, 2003), which
is invariant under scaling of the scores.

Both these steps are theoretically unsatisfactory
methods of estimating the posterior probability
distribution since the approximation to Z is an un-
bounded term and the scaling factor is an artificial
way of inducing a probability distribution.

Recently, (Tromble et al., 2008; Kumar et al.,
2009) have shown that using a search lattice to im-
prove the estimation of the true probability distri-
bution can lead to improved MBR performance.
However, these approaches still rely on MERT for
training the base model, and in fact introduce sev-
eral extra parameters which must also be estimated
using either grid search or a second MERT run.
The lattice pruning required to make these tech-
niques tractable is quite drastic, and is in addi-
tion to the pruning already performed during the
search. Such extensive pruning is liable to render
any probability estimates heavily biased (Blunsom
and Osborne, 2008; Bouchard-Côté et al., 2009).

Here, we present a unified approach to training
and decoding in a phrase-based translation model
(Koehn et al., 2003) which keeps the objective
constant across the translation pipeline and so ob-
viates the need for any extra hyper-parameter fit-
ting. We use the phrase-based Gibbs sampler of
Arun et al. (2009) at training time to compute the
gradient of our minimum risk training objective in
order to apply first-order optimization techniques,
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and at test time we use it to estimate the posterior
distribution required by MBR (Section 3).

We experimented with two different objective
functions for training (Section 4). First, follow-
ing (Arun et al., 2009), we define our objective
at the sentence-level using a sentence-level variant
of BLEU. Then, in order to reduce the mismatch
between training and test loss functions, we also
tried directly optimising the expected corpus level
BLEU, where we introduce a novel sampling tech-
nique, which we call corpus sampling to calculate
the required expectations.

The methods presented in this paper are theo-
retically sound. Moreover, experimental evidence
on three language pairs shows that our training
regime is more stable than MERT, able to gener-
alize better and generally leads to improvement in
translation when used with sampling based MBR
(Section 5). An added benefit is that the trained
weights also lead to better performance when used
with a beam-search based decoder.

2 Inference methods for MT

We assume a phrase-based machine translation
model, defined with a log-linear form, with feature
function vector h and parametrized by weight vec-
tor θ, as described in Koehn et al. (2003). The in-
put sentence, f , is segmented into phrases, which
are sequences of adjacent words. Each source
phrase is translated into the target language, to
produce an output sentence e and an alignment
a representing the mapping from source to target
phrases. Phrases are allowed to be reordered.

p(e, a|f ; θ) =
exp [θ · h(e, a, f)]∑

〈e′,a′〉 exp [θ · h(e′, a′, f)]
(1)

MAP decoding under this model consists of
finding the most likely output string, e∗:

e∗ = argmaxe
∑

a∈4(e,f)

p(e, a|f) (2)

where4(e, f) is the set of all derivations of output
string e given source string f .

Summing over all the derivations is intractable,
making approximations necessary. The most com-
mon of these approximations is the Viterbi approx-
imation, which simply chooses the most likely
derivation 〈e∗, a∗〉. This approximation can be
computed in polynomial time via dynamic pro-
gramming (DP). Though fast and effective for
many problems, it has two serious drawbacks for
probabilistic inference. First, the error incurred

by the Viterbi maximum with respect to the true
model maximum is unbounded. Second, the DP
solution requires substantial pruning and restricts
the use of non-local features. The latter problem
persists even in the variational approximations of
Li et al. (2009), which attempt to solve the former.

2.1 Gibbs sampling for phrase-based MT
An alternate approximate inference method for
phrase-based MT without any of the previously
mentioned drawbacks is the Gibbs sampler (Ge-
man and Geman, 1984) of Arun et al. (2009)
which draws samples from the posterior distribu-
tion of the translation model. For the work pre-
sented in this paper, we use this sampler.

The sampler produces a sequence of samples,
SN1 = (e1, a1) . . . (eN , aN ), that are drawn from
the distribution p(e, a|f). These samples can be
used to estimate the expectation of a function
h(e, a, f) as follows:

Ep(a,e|f)[h] = lim
N→∞

1
N

N∑
i=1

h(ai, ei, f) (3)

3 Decoding

In this work, we are interested in performing MBR
decoding with BLEU. We define the MBR decision
rule following Tromble et al. (2008):

e∗ = arg max
e∈εH

∑
e′∈εE

BLEUe(e′)p(e′|f) (4)

where εH refers to the hypothesis space from
which translations are chosen, εE refers to the
evidence space used for calculating risk and
BLEUe(e′) is a gain function that indicates the re-
ward of hypothesising e′ when the reference solu-
tion is e.

To perform MBR decoding using the sampler,
let the function h in Equation 3 be the indica-
tor function h = δ(a, â)δ(e, ê). Then, Equa-
tion 3 provides an estimate of p(â, ê|f), and using
h = δ(e, ê) marginalizes over all derivations a′,
yielding an estimate of p(ê|f). MBR is computed
at the sentence-level while BLEU is a corpus-level
metric, so instead we use a sentence-level approx-
imation of BLEU.2

The sampler can be used to perform two other
decoding tasks: the mode of the estimated dis-
tribution p(â, ê|f) is the maximum derivation
(MaxDeriv) solution while the mode of p(ê|f) is
the maximum translation (MaxTrans) solution.

2The ngram precision counts are smoothed by adding 0.01
for n > 1
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4 Minimum Risk Training

In order to train models suitable for use with Max-
Trans or MBR decoding, we need to employ a
training method which takes account of the whole
distribution. To this end, we employ minimum risk
training to find weights θ for Equation 1 that mini-
mize the expected loss on the training set. We con-
sider two variants of minimum risk training: sen-
tence sampling optimizes an objective defined at
the sentence level and corpus sampling a corpus-
based objective.

4.1 Sentence sampling
Since BLEU, the metric we care about, is a gain
function, our objective function maximizes the ex-
pected gain of our model. The expected gain, G
of a probabilistic translation model on a corpus D,
defined with respect to the gain function BLEUê(e)
is given by

G =
∑
〈ê,f〉∈D

∑
e,a

p(e, a|f)BLEUê(e) (5)

where ê is the reference translation, e is a hypoth-
esis translation and BLEU refers to the sentence-
level approximation of the metric.

Using the probabilistic formulation of Equation
1, the optimization of the objective in (5) is facil-
itated by the fact that it is continuous and differ-
entiable with respect to the model parameters θ to
give

∂G
∂θk

=
∑
〈ê,f〉
∈D

∑
e,a

BLEUê(e)
∂p

∂θk

where
∂p

∂θk
=
(
hk − Ep(e,a|f)[hk]

)
p(e, a|f)

(6)

Since the gradient is expressed in terms of ex-
pectations of feature values, it can easily be calcu-
lated using the sampler and then first-order opti-
mization techniques can be applied to find optimal
values of θ. Because of the noise introduced by
the sampler, we used stochastic gradient descent
(SGD), with a learning rate that gets updated after
each step proportionally to difference in succes-
sive gradients (Schraudolph, 1999).

While our initial formulation of minimum risk
training is similar to that of Arun et al. (2009), in
preliminary experiments we observed a tendency
for translation performance on held-out data to
quickly increase to a maximum and then plateau.
Hypothesizing that we were being trapped in lo-
cal maxima as G is non-convex, we decided to

employ deterministic annealing (Rose, 1998) to
smooth the objective function to ensure that the
optimizer explored as large a region as possible of
the space before it settled on an optimal weight set.
Our instantiation of deterministic annealing (DA)
is based on the work of Smith and Eisner (2006),
and involves the addition of an entropic prior to
the objective in Equation 5 to give

Ĝ =
∑
〈ê,f〉∈D

[(∑
e,a

p(e, a|f)BLEUê(e)

)
+ T.H(p)

]
where H(p) is the entropy of the probability dis-
tribution p(e, a|f), and T > 0 is a temperature
paramater which is gradually lowered as the opti-
mization progresses according to some annealing
schedule.

Differentiating with respect to θk then shows
that the annealed gradient is given by the follow-
ing expression:∑

〈ê,f〉
∈D

∑
e,a

(BLEUê(e)− T (1 + log p))
∂p

∂θk

where
∂p

∂θk
=
(
hk − Ep(e,a|f)[hk]

)
p(e, a|f)

A high value of T leads the optimizer to find
weights which describe a fairly flat distribution,
whereas a lower value of T pushes the optimizer
towards a more peaked distribution. We perform
10 to 20 iterations of SGD at each temperature.

In their deterministic annealing formulation,
(Smith and Eisner, 2006; Li and Eisner, 2009), ex-
press the parameterization of the distribution θ as
γθ̂ (where γ is the scaling factor) and perform op-
timization in two steps, the first optimizing θ̂ and
the second optimizing γ. We experimented with
this two stage optimization process, but found that
simply performing an unconstrained optimization
on θ gave better results.

4.2 Corpus sampling
While the objective functions in Equations 5 and
4.1 use a sentence-level variant of BLEU, the
model’s test-time performance is evaluated with
corpus level BLEU. The lack of correlation be-
tween sentence-level BLEU and corpus BLEU is
well-known (Chiang et al., 2008a). Therefore, in
an effort to address this issue, we tried maximizing
expected corpus BLEU directly.

In other words, given a training corpus of the
form 〈CF , CÊ〉 where CF is a set of source sen-
tences and CÊ its corresponding reference transla-
tions, we consider a gain function defined on the
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hypothesized translation CE of the input CF with
respect to CÊ .

The objective in equation 5 therefore becomes:

G =
∑
CE

P (CE |CF )BLEUCÊ (CE) (7)

The pair (CE , CF ) is denoted as a cor-
pus sample corresponding to a sequence
(e1, a1), . . . , (eN , aN ) of derivations of the
corresponding source strings f1, . . . , fN of
source corpus CF .

Although the sampler described in Section 2
generates samples at the sentence level, we can use
it to generate corpus samples by applying the fol-
lowing procedure (see Figure 1). For each source
sentence f i in the corpus, we generate a sequence
of samples (ei1, a

i
1), . . . , (e

i
n, a

i
n) using the sam-

pler. From each of these sequences of samples, we
then resample new sequences of derivation sam-
ples, one for each source sentence in the corpus.
The first corpus sample is then obtained by iter-
ating through the source sentences and taking the
first resampled derivation for each sentence, then
the second corpus sample by taking the second re-
sampled derivation, and so on. The resampling
step is necessary to eliminate any biases due to the
order of the generated samples.

The corpus sampling procedure invariably gen-
erates a set of samples which are all distinct and so
would give us a uniform estimate of the probabil-
ity distribution P (CE |CF ). However this is not a
problem since we are not interested in evaluating
the actual distribution; we just need to calculate
expectations of feature values and BLEU scores
over the distribution. The feature values of a cor-
pus sample are the average of the feature values of
its constituting derivations and its BLEU score is
computed based on the yield of its derivations.

When training using corpus sampling we pro-
cess the training corpus in batches 〈CF , CÊ〉, treat-
ing each batch as a corpus in its own right, and
updating the weights after each batch.

The gradient for the objective function in (7) is:
∂G
∂θk

=
∑
CE

BLEUCÊ (CE)
∂P

∂θk

where
∂P

∂θk
=
(
hCk − EP (CE |CF )[h

C
k ]
)
P (CE |CF )

where hCk is the k-th component of a corpus
sample feature vector.

During deterministic annealing for sentence
sampling, the entropy term is computed over the

f1 f2 f3

A D K

B E L

A F L

C G L

B H M

f1 f2 f3

A F L

B E L

SAMPLE FROM 

EMPIRICAL 

DISTRIBUTION

Extract Corpus 
Samples

f1 f2 f3

{A, F, L }Corpus Sample 1

{B, E, L }Corpus Sample 2

SAMPLE FROM 
P(e,a | f)

Figure 1: Example illustrating the extraction of 2
corpus samples for a corpus of source sentences
f1, f2, f3. In the first step, we sample 5 deriva-
tions for each source sentence. We then resample
2 derivations from the empirical distributions of
each source sentence.

distribution p(e, a|f) of each individual sentence.
While corpus sampling, we are considering the
distribution P (CE |CF ) but the estimated distribu-
tion is always uniform. So we define the entropic
prior term over the distribution p(e, a|f) of the
sentences making up the corpus sample.

The annealed corpus sampling objective is
therefore:∑
CE

P (CE |CF )BLEUCÊ (CE)+
T

|CF |
∑
f∈CF

H(p(e, a|f))

The gradient of this objective is of similar form
to the sentence sampling gradient in Equation (6).

5 Experiments

5.1 Training Data and Preparation
The experiments in this section were performed
using the Europarl section of the French-English
and German-English parallel corpora from the
WMT09 shared translation task (Callison-Burch et
al., 2009), as well as 300k parallel Arabic-English
sentences from the NIST MT evaluation train-
ing data.3 For all language pairs, we constructed

3The Arabic-English training data consists of the
eTIRR corpus (LDC2004E72), the Arabic news corpus
(LDC2004T17), the Ummah corpus (LDC2004T18), and the
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a phrase-based translation model as described in
Koehn et al. (2003), limiting the phrase length to
5. The target side of the parallel corpus was used
to train 3-gram language models. For the German
and French systems, the DEV2006 set was used
for model tuning and the first half of TEST2007
(in-domain) for heldout testing. Final testing was
performed on NEWS-DEV2009B (out-of-domain)
and the first half of TEST2008 (in-domain). For
the Arabic system, the MT02 set (10 reference
translations) was used for tuning and MT03 and
MT05 (4 reference translations, each) were used
for held-out testing and final testing respectively.
To reduce the size of the phrase table, we used the
association-score technique suggested by Johnson
et al. (2007). Translation quality is reported using
case-insensitive BLEU.

5.2 Baseline

Our baseline system is phrase-based
Moses (Koehn et al., 2007) with feature weights
trained using MERT. Moses and the Gibbs
sampler use identical feature sets.4

The MERT optimization algorithm uses multi-
ple random restarts to avoid getting stuck in a poor
local optima. Therefore, every time MERT is run,
it produces a slightly different final weight vector
leading to varying test set results. While this char-
acteristic of MERT is typically ignored, we ac-
count for it by performing MERT training 10 times
for each of the 3 language pairs, decoding the test
sets with each of the 10 optimized weight sets. We
present the best and the worst test set results along
with the mean and the standard deviation (σ) of
these results in Table 1. We report results using
the Moses implementation of Viterbi, nbest MBR
and lattice MBR decoding (Kumar et al., 2009). 5

For both nbest and lattice MBR decoding, the hy-
pothesis set was composed of the top 1000 unique
translations produced by the Viterbi decoder, and
the same 1000 translations were used as evidence
set for nbest MBR.

As Table 1 shows, translation results using
MERT optimized weights vary markedly from one

sentences with confidence c > 0.995 in the ISI automatically
extracted web parallel corpus (LDC2006T02).

4We use 5 translation model scores, distance-based distor-
tion, language model and word penalty. The reordering limit
is set to 6 for all experiments.

5For nbest and lattice MBR decoding, we optimized for
the scaling factor using a grid-search on held-out data. For
lattice MBR decoding, we optimized the lattice density and
set the p and r parameters as per Tromble et al. (2008).

tuning run to the other, with results varying from
a range of 0.3% BLEU to 1.3% BLEU when using
Viterbi decoding. We also see that, bar in-domain
German to English, MBR decoding gives a small
improvement on all other datasets.

Surprisingly, lattice MBR only gives improve-
ments on two datasets and actually leads to a drop
in performance on the other 3 datasets. We discuss
possible reasons for this in Section 6.

5.3 Sentence sampling

At training time, the optimization algorithm is ini-
tialized with zero weights and the sampler is ini-
tialized with a random derivation from Moses. To
get rid of any initialization biases, the first 100
samples are discarded.6 We then run the sampler
for 1000 iterations after which we perform reheat-
ing whereby the distribution is progressively flat-
tened. Samples are not collected during this pe-
riod. Reheating allows the sampler more mobil-
ity around the search space thus possibly escaping
any local optima it might be trapped in. We subse-
quently run the sampler for 1000 more iterations.
We denote this procedure as running 2 chains of
the sampler. We use batch sizes of 96 randomly
selected sentences for SGD optimization.

During DA, our cooling schedule is an exponen-
tially decaying one with decay rate set to 0.9, per-
forming 20 iterations of SGD optimization at each
temperature setting. Five training runs were per-
formed and the BLEU scores averaged. The fea-
ture weights were output every 50 iterations and
performance measured on the heldout set by run-
ning the sampler as a decoder. At decode time,
we use the same sampler configurations as during
training but run 2 chains each for 5000 iterations.

For MBR decoding, we use the entirety of this
sample set as our evidence set and use the top 1000
most probable translations as the hypothesis set.

5.4 Corpus sampling

For our corpus sampling experiments, we sample
using the same procedure as in sentence sampling
but using 2 chains of 2000 iterations. We then
resample 2000 corpus samples from the empiri-
cal distribution estimated from the first 4000 sam-
ples. For Arabic-English training, we used batch
sizes of 100 randomly selected sentences for ex-
periments without DA and batches of 400 random

6This procedure is referred to as burn-in in the MCMC
literature.
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Viterbi nMBR lMBR
min max mean σ min max mean σ min max mean σ

AR-EN MT05 43.7 44.3 44.0 0.17 44.2 44.5 44.4 0.13 44.2 44.6 44.5 0.12
FR-EN In 33.1 33.4 33.3 0.10 33.2 33.6 33.4 0.12 32.3 32.7 32.6 0.13
FR-EN Out 19.1 19.6 19.4 0.18 19.3 19.7 19.5 0.12 19.1 19.4 19.3 0.12
DE-EN In 27.6 27.9 27.8 0.10 27.6 27.9 27.7 0.10 27.2 27.5 27.4 0.10
DE-EN Out 14.9 16.2 15.7 0.33 15.0 16.3 15.7 0.33 15.3 16.4 16.0 0.30

Table 1: Baseline results - MERT trained models decoded using Viterbi, nbest MBR (nMBR) and lattice
MBR (lMBR). MERT was run 10 times for each language pair. We report minimum, maximum, mean
and standard deviation of test set BLEU scores across the 10 runs.
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Figure 2: Heldout performance for German-English training averaged across 5 minimum risk training
runs. Best scores achieved are indicated by dotted line.

sentences with DA. The size of the batches cor-
responds to the number of sentences that form a
corpus sample. For German/French to English ex-
periments, we used batches of 100 random sen-
tences for training with and without DA. We per-
form 10 optimizations at each temperature setting
during deterministic annealing. Test time condi-
tions are identical to the sentence sampling ones
and we measure performance on a held-out set af-
ter every 20 iterations of the learner.

5.5 Results

Figures 2 and 3 show the scores on the German-
English and Arabic-English held-out sets respec-
tively comparing all four training regimes: corpus
vs sentence sampling, DA vs without DA. Results
for French-English training are similar.

We focus our analysis on the Arabic-English ex-
perimental setup. Without deterministic anneal-
ing, the learner converges quickly, usually after
just 20 iterations, after which performance de-
grades steadily. The magnitudes of the weights
are large, sharpening the distribution. There is
not much diversity amongst the sampled deriva-
tions, i.e. the entropy of the sample set is low.
Therefore, all 3 decoding regimes give very simi-
lar results. With the addition of the entropic prior,
the model is slow to converge before the so-called
phase transition occurs (usually after around 50

iterations), after which performance goes up to
reach a peak (45.2 BLEU) higher than that without
the prior (44.2 BLEU), before steadily declining.
The entropic prior encourages diversity among the
sample set, especially at high temperature settings.

In the presence of diversity, the benefits of
marginalization over derivations is clear: Max-
Trans does better than MaxDeriv and MBR does
best, confirm recent findings of (Blunsom et al.,
2008; Arun et al., 2009) that MaxTrans improves
over MaxDeriv decoding for models trained to ac-
count for multiple derivations. As the temperature
decreases to zero, the model sharpens, effectively
intent on maximizing one-best performance and
thus voiding the benefits of MaxTrans and MBR.
Figures 2 and 3 also show that corpus sampling
improves over sentence sampling, although not by
much (+ 0.3 BLEU).

5.6 Comparison with MERT baseline

Having established the superiority of the pipeline
of expected corpus BLEU training with DA fol-
lowed by MBR decoding over other alternatives
considered, we compare it to the best results ob-
tained with MERT optimized Moses (bold scores
from Table 1). To account for sampler variance
during both training and decoding, we average
scores across 50 runs; 10 decoding runs each using
the best weight set from 5 training runs. Results
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Figure 3: Heldout performance for Arabic-English training averaged across 5 minimum risk training
runs. Best scores achieved are indicated by dotted line.

are shown in Table 2.7

We observe that on 3 out of 5 datasets, the sam-
pler results are much more stable than MERT and
as stable on the other 2 datasets. We attribute the
improved stability to the more powerful optimiza-
tion algorithm used by the sampler which uses gra-
dient information to steer the model towards better
weights. MERT, alternatively, optimizes one fea-
ture at a time using line search and therefore does
not explore the full feature space as thoroughly.

Translation results with the sampler are better
than with MERT on 2 datasets, are equal on an-
other 2 and worse in one case. The improvements
withe the sampler are obtained in the case of out-
of-domain data suggesting that the minimum risk
training objective generalizes better than the 1-
best objective of MERT.

MERT/Moses Sampler
Test set Best σ MBR σ

AR-EN MT05 44.5 (lMBR) 0.12 44.5 0.14
FR-EN In 33.4 (nMBR) 0.12 33.2 0.06
FR-EN Out 19.5 (nMBR) 0.12 19.8 0.05
DE-EN In 27.8 (Viterbi) 0.10 27.8 0.11
DE-EN Out 16.0 (lMBR) 0.30 16.6 0.12

Table 2: Final results comparing MERT/Moses
pipeline with unified sampler pipeline. Sampler
uses corpus sampling during training and MBR
decoding at test time. Moses results are aver-
aged across decoding runs using weights from
10 MERT runs and sampler results are averaged
across 10 decoding runs for each of 5 different
training runs. We report BLEU scores and standard
deviation (σ).

7The MBR decoding times, averaged over 10 decoding
runs of 50 sentences each, are 10 secs/sent for Moses nbest
MBR, 40 secs/sent for Moses lattice MBR and 180 secs/sent
for the sampler.

Viterbi nMBR lMBR Sampler
MBR

AR-EN MT05 44.2 44.4 44.8 44.8
FR-EN In 33.1 33.2 33.3 33.3
FR-EN Out 19.6 19.8 19.9 19.9
DE-EN In 27.7 27.9 28.0 28.0
DE-EN Out 16.0 16.3 16.6 16.6

Table 3: Comparison of decoding methods using
expected BLEU trained weights. We report Viterbi,
nbest MBR (nMBR) and lattice MBR (lMBR) de-
coding scores vs best sampler MBR decoding per-
formance. We selected the best weight set based
on performance on heldout data.

5.7 Moses with expected BLEU weights

In a final set of experiments, we reran the Moses
decoder this time using weights obtained through
expected BLEU optimization. Here, for each lan-
guage pair, we picked the weight set that gave the
best results on held-out data. Note that the results
which we show in Table 3 are over one run only,
so are not strictly comparable to those in Table 2
which are averaged over several training and de-
coding runs. We also report the best results ob-
tained with the sampler MBR decoder using these
weights.

In contrast to Table 1, here we see a consistent
improvement across all test-sets when going from
Viterbi decoding to n-best then to lattice MBR.
Except for in-domain French-English, the transla-
tion results are superior to the best scores shown
(in bold) in Table 1, confirming that the minimum
risk training objective is able to find good weight
sets. Interestingly, we also observe that sampler
MBR gets the same exact results for all test sets as
lattice MBR.
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6 Discussion

We have shown that the sampler of Arun et al.
(2009) can be used to perform minimum risk train-
ing over an unpruned search space. Our pro-
posed corpus sampling technique, like MERT, is
able to optimize corpus BLEU directly whereas
alternate parameter estimation techniques usually
employed in SMT optimize approximations of
BLEU. Chiang et al. (2008b) accounts for the on-
line nature of the MIRA optimization algorithm
by smoothing the sentence-level BLEU precision
counts of a translation with a weighted average of
the precision counts of previously decoded sen-
tences, thus approximating corpus BLEU. As
for minimum risk training, prior implementations
have either used sentence-level BLEU (Zens et al.,
2007) or a linear approximation to BLEU (Smith
and Eisner, 2006; Li and Eisner, 2009).

At test time, the sampler works best as an MBR
decoder, but also allows us to verify past claims
about the benefits of marginalizing over align-
ments during decoding. We compare the sam-
pler MBR decoder’s performance against MERT-
optimized Moses run under three different decod-
ing regimes, finding that the sampler does as well
or better on 4 out of 5 datasets.

Our training and testing pipeline has the advan-
tage of being able to handle a large number of both
local and global features so we expect in the future
to outperform the standard MERT and dynamic
programming-based search pipeline further.

As shown in Section 5.2, lattice MBR in some
cases leads to a marked drop in performance. (Ku-
mar et al., 2009) mention that the linear approx-
imation to BLEU used in their lattice MBR algo-
rithm is not guaranteed to match corpus BLEU, es-
pecially on unseen test sets. To account for these
cases, they allow their algorithm to back-off to the
MAP solution. One possible reason for the drop
in performance in our lattice MBR experiments is
that the implementation we use does not employ
this back-off strategy.

Table 3 provides valuable insights as to the mer-
its of the lattice MBR approach versus our own
sampling based pipeline. Firstly, whereas with
MERT optimized weights, the benefits of lattice
MBR are debatable (Table 1), running Moses with
minimum risk trained weights gives results that
are in line with what we would expect - lattice
MBR does systematically better than competing
decoding algorithms. This suggests that the unbi-

ased minimum risk training criterion used by the
sampler is a better fit for lattice MBR than the
MERT criterion, and also that the mismatch be-
tween linear and corpus BLEU mentioned before
might not be the reason for the results in Table 1.

Secondly, we find that sampling MBR matches
lattice MBR on the minimum risk trained weights.
The MBR sampler uses samples drawn from the
distribution as hypothesis and evidence sets, typi-
cally 1000 samples for the former and 10000 sam-
ples for the latter. In the lattice MBR experiments
of Tromble et al. (2008), it is shown that this size
of hypothesis set is sufficient. Their evidence set,
however, is significantly larger than ours.8Table 3
suggests that, since it is not biased by heuris-
tic pruning, the sampler’s limited evidence set is
enough to give a good estimate of the probabil-
ity distribution whereas beam-search based MBR
needs to scale from using n-best lists to lattices to
get equivalent results.

Sampling the phrase-based model is expensive,
meaning that lattice MBR is still faster (around
4x) to run than sampler MBR. However, due to
the unified nature of the training and decoding cri-
terion in our approach, the minimum risk trained
weights can be plugged directly into the sam-
pler MBR decoder, whereas lattice MBR requires
an additional expensive step of tuning the model
hyper-parameters (Kumar et al., 2009).

In future work, we also intend to look at more
efficient ways of generating samples. One pos-
sibility is to interleave Gibbs sampling steps us-
ing low order ngram language model distributions
with Metropolis-Hasting steps that use higher or-
der language model distributions.

7 Related Work

Expected BLEU training for phrase-based models
has been successfully attempted by (Smith and
Eisner, 2006; Zens et al., 2007), however they both
used biased n-best lists to approximate the pos-
terior distribution. Li and Eisner (2009) present
work on performing expected BLEU training with
deterministic annealing on translation forests gen-
erated by Hiero (Chiang, 2007). Since BLEU does
not factorize over the search graph, they use the
linear approximation of Tromble et al. (2008) in-
stead.

Pauls et al. (2009) present an alternate training
criterion over translation forests called CoBLEU,

8up to 1081 as per Tromble et al. (2008)
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similar in spirit to expected BLEU training, but
aimed to maximize the expected counts of n-grams
appearing in reference translations. This training
criterion is used in conjunction with consensus de-
coding (DeNero et al., 2009), a linear-time ap-
proximation of MBR.

In contrast to the approaches above, the algo-
rithms presented in this paper are able to explore
an unpruned search space. By using corpus sam-
pling, we can perform minimum risk training with
corpus BLEU rather than any approximations of
this metric. Also, since we maintain a probabilis-
tic formulation across training and decoding, our
approach does not require a grid-search for a scal-
ing factor as in Tromble et al. (2008).

8 Conclusions

We have presented a unified approach to the task
of parameter estimation and decoding for a phrase-
based system using the standard translation eval-
uation metric, BLEU. Using a Gibbs sampler to
explore the entire probability distribution allows
us to implement two probabilistic sound algo-
rithms, minimum risk training and its equivalent,
MBR decoding, in an unbiased way. The proba-
bilistic formulation also allows us to use gradient
based optimization techniques which produce sta-
ble model parameters. At decoding time, we show
the benefits of marginalizing over derivations and
that MBR gives better results than other decoding
criteria.

Since our optimization algorithm can cope with
a large number of features, in future work, we
plan to incorporate more expressive features in
the model. We use a Gibbs sampler for inference
so there is scope for exploring non-local features
which might not easily be added to dynamic pro-
gramming based models.
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Abstract

We propose a new framework for N-best
reranking on sparse feature sets. The idea
is to reformulate the reranking problem as
a Multitask Learning problem, where each
N-best list corresponds to a distinct task.

This is motivated by the observation that
N-best lists often show significant differ-
ences in feature distributions. Training a
single reranker directly on this heteroge-
nous data can be difficult.

Our proposed meta-algorithm solves this
challenge by using multitask learning
(such asℓ1/ℓ2 regularization) to discover
common feature representations across N-
best lists. This meta-algorithm is simple to
implement, and its modular approach al-
lows one to plug-in different learning algo-
rithms from existing literature. As a proof
of concept, we show statistically signifi-
cant improvements on a machine transla-
tion system involving millions of features.

1 Introduction

Many natural language processing applications,
such as machine translation (MT), parsing, and
language modeling, benefit from the N-best
reranking framework (Shen et al., 2004; Collins
and Koo, 2005; Roark et al., 2007). The advan-
tage of N-best reranking is that it abstracts away
the complexities of first-pass decoding, allowing
the researcher to try new features and learning al-
gorithms with fast experimental turnover.

In the N-best reranking scenario, the training
data consists of sets of hypotheses (i.e. N-best
lists) generated by a first-pass system, along with
their labels. Given a new N-best list, the goal is
to rerank it such that the best hypothesis appears
near the top of the list. Existing research have fo-
cused on training asingle reranker directly on the

entire data. This approach is reasonable if the data
is homogenous, but it fails when features vary sig-
nificantly across different N-best lists. In partic-
ular, when one employssparse feature sets, one
seldom finds features that are simultaneously ac-
tive on multiple N-best lists.

In this case, we believe it is more advantageous
to view the N-best reranking problem as amulti-
task learning problem, where each N-best list cor-
responds to a distinct task. Multitask learning, a
subfield of machine learning, focuses on how to
effectively train on a set of different but related
datasets (tasks). Our heterogenous N-best list data
fits nicely with this assumption.

The contribution of this work is three-fold:

1. We introduce the idea of viewing N-best
reranking as a multitask learning problem.
This view is particularly apt to any general
reranking problem with sparse feature sets.

2. We propose a simple meta-algorithm that
first discovers common feature representa-
tions across N-bests (via multitask learning)
before training a conventional reranker. Thus
it is easily applicable to existing systems.

3. We demonstrate that our proposed method
outperforms the conventional reranking ap-
proach on a English-Japanese biomedical
machine translation task involving millions
of features.

The paper is organized as follows: Section 2 de-
scribes the feature sparsity problem and Section 3
presents our multitask solution. The effectiveness
of our proposed approach is validated by experi-
ments demonstrated in Section 4. Finally, Sections
5 and 6 discuss related work and conclusions.

2 The Problem of Sparse Feature Sets

For concreteness, we will describe N-best rerank-
ing in terms of machine translation (MT), though
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our approach is agnostic to the application. In MT
reranking, the goal is to translate a foreign lan-
guage sentencef into an English sentencee by
picking from a set of likely translations. A stan-
dard approach is to use a linear model:

ê = arg max
e∈N(f)

wT · h(e, f) (1)

whereh(e, f) is a D-dimensional feature vector,
w is the weight vector to be trained, andN(f) is
the set of likely translations off , i.e. the N-best
list. The featureh(e, f) can be any quantity de-
fined in terms of the sentence pair, such as transla-
tion model and language model probabilities.

Here we are interested in situations where the
feature definitions can be quite sparse. A com-
mon methodology in reranking is to first design
feature templates based on linguistic intuition and
domain knowledge. Then, numerous features are
instantiated based on the training data seen. For
example, the work of (Watanabe et al., 2007) de-
fines feature templates based on bilingual word
alignments, which lead to extraction of heavily-
lexicalized features of the form:

h(e, f) =















1 if foreign word “Monsieur”
and English word “Mr.”
co-occur ine,f

0 otherwise
(2)

One can imagine that such features are sparse
because it may only fire for input sentences that
contain the word “Monsieur”. For all other input
sentences, it is an useless, inactive feature.

Another common feature involves word ngram
templates, for example:

h(e, f) =







1 if English trigram
“Mr. Smith said” occurs ine

0 otherwise
(3)

In this case, all possible trigrams seen in the N-
best list are extracted as features. One can see
that this kind of feature can be very sensitive to
the first-pass decoder: if the decoder has loose re-
ordering constraints, then we may extract expo-
nentially many nonsense ngram features such as
“Smith said Mr.” and “said Smith Mr.”. Granted,
the reranker training algorithm may learn that
these nonsense ngrams are indicative of poor hy-
potheses, but it is unlikely that the exact same non-

sense ngrams will appear given a different test sen-
tence.

In summary, the following issues compound to
create extremely sparse feature sets:

1. Feature templates are heavily-lexicalized,
which causes the number of features to grow
unbounded as the the amount of data in-
creases.

2. The input (f ) has high variability (e.g. large
vocabulary size), so that features for different
inputs are rarely shared.

3. The N-best list output also exhibits high vari-
ability (e.g. many different word reorder-
ings). LargerN may improve reranking per-
formance, but may also increase feature spar-
sity.

When the number of features is too large, even
popular reranking algorithms such as SVM (Shen
et al., 2004) and MIRA (Watanabe et al., 2007;
Chiang et al., 2009) may fail. Our goal here is to
address this situation.

3 Proposed Reranking Framework

In the following, we first give an intuitive com-
parison between single vs. multiple task learning
(Section 3.1), before presenting the general meta-
algorithm (Section 3.2) and particular instantia-
tions (Section 3.3).

3.1 Single vs. Multiple Tasks

Given a set ofI input sentences{f i}, the training
data for reranking consists of a set ofI N-best lists
{(Hi,yi)}i=1,...,I , whereHi are features andyi

are labels.
To clarify the notation:1 for an input sentence

f i, there is a N-best listN(f i). For a N-best list
N(f i), there areN feature vectors corresponding
to theN hypotheses, each with dimensionD. The
collection of feature vectors forN(f i) is repre-
sented byHi, which can be seen as aD × N
matrix. Finally, theN -dimensional vector of la-
belsyi indicates the translation quality of each hy-
pothesis inN(f i). The purpose of the reranker
training algorithm is to find good parameters from
{(Hi,yi)}.

1Generally we use bold fonth to represent a vector, bold-
capital fontH to represent a matrix. Scripth andh(·) may
be scalar, function, or sentence (depends on context).
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The conventional method of training a single
reranker (single task formulation) involves opti-
mizing a generic objective such as:

arg min
w

I
∑

i=1

L(w,Hi,yi) + λΩ(w) (4)

wherew ∈ R
D is the reranker trained on all lists,

and L(·) is some loss function.Ω(w) is an op-
tional regularizer, whose effect is traded-off by the
constantλ. For example, the SVM reranker for
MT (Shen et al., 2004) definesL(·) to be some
function of sentence-level BLEU score, andΩ(w)
to be the large margin regularizer.2

On the other hand, multitask learning involves
solving for multiple weights,w1,w2, . . . ,wI ,
one for each N-best list. One class of multitask
learning algorithms, Joint Regularization, solves
the following objective:

arg min
w1,..,wI

I
∑

i=1

L(wi,Hi,yi) + λΩ(w1, ..,wI )

(5)
The loss decomposes by task but the joint regu-

larizerΩ(w1, ..,wI) couples together the different
weight parameters. The key is to note that multi-
ple weights allow the algorithm to fit the heteroge-
nous data better, compared to a single weight vec-
tor. Yet these weights are still tied together so that
some information can be shared across N-best lists
(tasks).

One instantiation of Eq. 5 isℓ1/ℓ2 regular-
ization: Ω(w1, ..,wI) , ||W||1,2, whereW =
[w1|w2| . . . |wI ]T is a I-by-D matrix of stacked
weight vectors. The norm is computed by first tak-
ing the 2-norm on columns ofW, then taking a
1-norm on the resultingD-length vector. This en-
courages the optimizer to choose a small subset of
features that are useful across all tasks.

For example, suppose two different sets of
weight vectorsWa andWb for a 2 lists, 4 fea-
tures reranking problem. Theℓ1/ℓ2 norm forWa

is 14; theℓ1/ℓ2 norm forWb is 12. If both have
the same lossL(·) in Eq. 5, the multitask opti-
mizer would preferWb since more features are
shared:

Wa :

»

4 0 0 3
0 4 3 0

–

Wb :

»

4 3 0 0
0 4 3 0

–

4 4 3 3 → 14 4 5 3 0 → 12

2In MT, evaluation metrics like BLEU do not exactly de-
compose across sentences, so for some training algorithms
this loss is an approximation.

3.2 Proposed Meta-algorithm

We are now ready to present our general reranking
meta-algorithm (see Algorithm 1), termed Rerank-
ing by Multitask Learning (RML).

Algorithm 1 Reranking by Multitask Learning

Input: N-best data{(Hi,yi)}i=1,...,I

Output: Common feature representationhc(e, f)
and weight vectorwc

1: [optional] RandomHashing({Hi})
2: W = MultitaskLearn({(Hi ,yi)})
3: hc = ExtractCommonFeature(W)
4: {Hi

c} = RemapFeature({Hi}, hc)
5: wc = ConventionalReranker({(Hi

c ,y
i)})

The first step, random hashing, is optional. Ran-
dom hashing is an effective trick for reducing the
dimension of sparse feature sets without suffer-
ing losses in fidelity (Weinberger et al., 2009;
Ganchev and Dredze, 2008). It works by collaps-
ing random subsets of features. This step can be
performed to speed-up multitask learning later. In
some cases, the original feature dimension may be
so large that hashed representations may be neces-
sary.

The next two steps are key. A multitask learn-
ing algorithm is run on the N-best lists, and a com-
mon feature space shared by all lists is extracted.
For example, if one uses the multitask objective
of Eq. 5, the result of step 2 is a set of weights
W. ExtractCommonFeature(W) then returns the
feature id’s (either from original or hashed repre-
sentation) that receive nonzero weight in any of
W.3 The new featureshc(e, f) are expected to
have lower dimension than the original features
h(e, f). Section 3.3 describes in detail different
multitask methods that can be plugged-in to this
step.

The final two steps involve a conventional
reranker. In step 4, we remap the N-best list
data according to the new feature representations
hc(e, f). In step 5, we train a conventional
reranker on this common representation, which by
now should have overcome sparsity issues. Us-
ing a conventional reranker at the end allows us
to exploit existing rerankers designed for specific
NLP applications. In a sense, our meta-algorithm
simply involves a change of representation for
the conventional reranking scenario, where the

3For example inWb, features 1-3 have nonzero weights
and are extracted. Feature 4 is discarded.
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new representation is found by multitask methods
which are well-suited to heterogenous data.

3.3 Multitask Objective Functions

Here, we describe various multitask methods that
can be plugged in Step 2 of Algorithm 1. Our
goal is to demonstrate that a wide range of existing
methods from the multitask learning literature can
be brought to our problem. We categorize multi-
task methods into two major approaches:

1. Joint Regularization: Eq. 5 is an exam-
ple of joint regularization, withℓ1/ℓ2 norm being
a particular regularizer. The idea is to use the reg-
ularizer to ensure that the learned functions of re-
lated tasks are close to each other. The popular
ℓ1/ℓ2 objective can be optimized by various meth-
ods, such as boosting (Obozinski et al., 2009) and
convex programming (Argyriou et al., 2008). Yet
another regularizer is theℓ1/ℓ∞ norm (Quattoni et
al., 2009), which replaces the 2-norm with a max.

One could also define a regularizer to ensure
that each task-specificwi is close to some average
parameter, e.g.

∑

i ||w
i − wavg||2. If we inter-

pretwavg as a prior, we begin to see links toHier-
archical Bayesian methods for multitask learning
(Finkel and Manning, 2009; Daume, 2009).

2. Shared Subspace: This approach assumes
that there is an underlying feature subspace that
is common to all tasks. Early works on multi-
task learning implement this by neural networks,
where different tasks have different output layers
but share the same hidden layer (Caruana, 1997).

Another method is to write the weight vector
as two partsw = [u;v] and let the task-specific
function beuT · h(e, f) + vT ·Θ · h(e, f) (Ando
and Zhang, 2005).Θ is aD′×D matrix that maps
the original features to a subspace common to all
tasks. The new feature representation is computed
by the projectionhc(e, f) , Θ · h(e, f).

Multitask learning is a vast field and relates to
areas like collaborative filtering (Yu and Tresp,
2005) and domain adaptation. Most methods as-
sume some common representation and is thus ap-
plicable to our framework. The reader is urged to
refer to citations in, e.g. (Argyriou et al., 2008) for
a survey.

4 Experiments and Results

As a proof of concept, we perform experiments
on a MT system with millions of features. We
use a hierarchical phrase-based system (Chiang,
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Figure 1: This log-log plot shows that there are
many rare features and few common features. The
probability that a feature occurs inx number of N-
best lists behaves according to the power-lawx−α,
whereα = 2.28.

2007) to generate N-best lists (N=100). Sparse
features used in reranking are extracted according
to (Watanabe et al., 2007). Specifically, the major-
ity are lexical features involving joint occurrences
of words within the N-best lists and source sen-
tences.

It is worth noting that the fact that the first pass
system is a hierarchical system is not essential to
the feature extraction step; similar features can be
extracted with other systems as first-pass, e.g. a
phrase-based system. That said, the extent of the
feature sparsity problem may depend on the per-
formance of the first-pass system.

We experiment with medical domain MT, where
large numbers of technical vocabulary cause spar-
sity challenges. Our corpora consists of English
abstracts from PubMed4 with their Japanese trans-
lations. The first-pass system is built on hierarchi-
cal phrases extracted from 17k sentence pairs and
target (Japanese) language models trained on 800k
medical-domain sentences. For our reranking ex-
periments, we used 500 lists as the training set5,
500 lists as held-out, and another 500 for test.

4.1 Data Characteristics

We present some statistics to illustrate the feature
sparsity problem: From 500 N-best lists, we ex-
tracted a total of 2.4 million distinct features. By
type, 75% of these features occur inonly one N-
best list in the dataset. Less than 3% of features

4A database of the U.S. National Library of Medicine.
5In MT, training data for reranking is sometimes referred

to as “dev set” to distinguish from the data used in first-pass.
Also, while the 17k bitext may seem small compared to other
MT work, we note that 1st pass translation quality (around 28
BLEU) is high enough to evaluate reranking methods.
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occur in ten or more lists. The distribution of fea-
ture occurrence is clearly Zipfian, as seen in the
power-law plot in Figure 1.

We can also observe thefeature growth rate (Ta-
ble 1). This is the number of new features intro-
duced when an additional N-best list is seen. It is
important to note that on average, 2599 new fea-
tures are added everytime a new N-best list is seen.
This is as much as2599/4188 = 62% of the ac-
tive features. Imagine an online training algorithm
(e.g. MIRA or perceptron) on this kind of data:
whenever a loss occurs and we update the weight
vector, less than half of the weight vector update
applies to data we have seen thus far. Herein lies
the potential for overfitting.

From observing the feature grow rate, one may
hypothesize that adding large numbers of N-best
lists to the training set (500 in the experiments
here) may not necessarily improve results. While
adding data potentially improves the estimation
process, it also increases the feature space dramat-
ically. Thus we see the need for a feature extrac-
tion procedure.

(Watanabe et al., 2007) also reports the possibil-
ity of overfitting in their dataset (Arabic-English
newswire translation), especially when domain
differences are present. Here we observe this ten-
dency already on the same domain, which is likely
due to the highly-specialized vocabulary and the
complex sentence structures common in research
paper abstracts.

4.2 MT Results

Our goal is to compare different feature represen-
tations in reranking: Thebaseline reranker uses
the original sparse feature representation. This is
compared to feature representations discovered by
three different multitask learning methods:

• Joint Regularization (Obozinski et al., 2009)
• Shared Subspace (Ando and Zhang, 2005)
• Unsupervised Multitask Feature Selection

(Abernethy et al., 2007).6

We use existing implementations of the above
methods.7 The conventional reranker (Step 5, Al-

6This is not a standard multitask algorithm since most
multitask algorithms are supervised. We include it to see
if unsupervised or semi-supervised multitask algorithms is
promising. Intuitively, the method tries to select subsetsof
features that are correlated across multiple tasks using ran-
dom sampling (MCMC). Features that co-occur in different
tasks form a high probability path.

7Available at http://multitask.cs.berkeley.edu

Nbest id #NewFt #SoFar #Active
1 3900 3900 3900
2 7535 11435 7913
3 6078 17513 7087
4 3868 21381 4747
5 1896 23277 2645
6 3542 26819 4747
....
100 2440 289118 4299
101 1639 290757 2390
102 3468 294225 4755
103 2350 296575 3824
Average 2599 – 4188

Table 1: Feature growth rate: For N-best listi in
the table, we have (#NewFt = number of new fea-
tures introduced since N-besti − 1) ; (#SoFar =
Total number of features defined so far); and (#Ac-
tive = number of active features for N-besti). E.g.,
we extracted 7535 new features from N-best 2;
combined with the 3900 from N-best 1, the total
features so far is 11435.

gorithm 1) used in all cases is SVMrank.8 Our
initial experiments show that the SVM baseline
performance is comparable to MIRA training, so
we use SVM throughout. The labels for the SVM
are derived as in (Shen et al., 2004), where top
10% of hypotheses by smoothed sentence-BLEU
is ranked before the bottom 90%. All multitask
learning methods work on hashed features of di-
mension 4000 (Step 1, Algorithm 1). This speeds
up the training process.

All hyperparameters of the multitask method
are tuned on the held-out set. In particular, the
most important is the number of common features
to extract, which we pick from{250, 500, 1000}.

Table 2 shows the results by BLEU (Papineni
et al., 2002) and PER. The Oracle results are ob-
tained by choosing the best hypothesis per N-best
list by sentence-level BLEU, which achieved 36.9
BLEU in both Train and Test. A summary of our
observations is:

1. The baseline (All sparse features) overfits. It
achieves the oracle BLEU score on the train
set (36.9) but performs poorly on the test
(28.6).

2. Similar overfitting occurs when traditionalℓ1

regularization is used to select features on
8Available at http://svmlight.joachims.org
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the sparse feature representation9. ℓ1 reg-
ularization is a good method of handling
sparse features for classification problems,
but in reranking the lack of tying between
lists makes this regularizer inappropriate. A
small set of around 1200 features are chosen:
they perform well independently on each task
in the training data, but there is little sharing
with the test data.

3. All three multitask methods obtained features
that outperformed the baseline. The BLEU
scores are 28.8, 28.9, 29.1 for Unsupervised
Feature Selection, Joint Regularization, and
Shared Subspace, respectively, which all out-
perform the 28.6 baseline. All improvements
are statistically significant by bootstrap sam-
pling test (1000 samples,p < 0.05) (Zhang
et al., 2004).

4. Shared Subspace performed the best. We
conjecture this is because its feature projec-
tion can create new feature combinations that
is more expressive than the feature selection
used by the two other methods.

5. PER results are qualitatively similar to BLEU
results.

6. As a further analysis, we are interested in see-
ing whether multitask learning extracts novel
features, especially those that have low fre-
quency. Thus, we tried an additional feature
representation (feature threshold) which only
keeps features that occur in more thanx N-
bests, and concatenate these high-frequency
features to the multitask features. The fea-
ture threshold alone achieves nice BLEU re-
sults (29.0 forx > 10), but the combination
outperforms it by statistically significant mar-
gins (29.3-29.6). This implies that multitask
learning is extracting features that comple-
ment well with high frequency features.

For the multitask features, improvements of 0.2
to 1.0 BLEU are modest butconsistent. Figure
2 shows the BLEU of bootstrap samples obtained
as part of the statistical significance test. We see
that multitask almost never underperformbase-
line in any random sampling of the data. This im-
plies that the proposed meta-algorithm is very sta-

9Optimized by the Vowpal Wabbit toolkit:
http://hunch.net/vw/

ble, i.e. it is not a method that sometimes improves
and sometimes degrades.

Finally, a potential question to ask is: what
kinds of features are being selected by the
multitask learning algorithms? We found that
that two kinds of features are usually selected:
one is general features that are not lexicalized,
such as “count of phrases”, “count of dele-
tions/insertions”, “number of punctuation marks”.
The other kind is lexicalized features, such as
those in Equations 2 and 3, but involving functions
words (like the Japanese characters “wa”, “ga”,
“ni”, “de”) or special characters (such as numeral
symbol and punctuation). These are features that
can be expected to be widely applicable, and it is
promising that multitask learning is able to recover
these from the millions of potential features.10
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Figure 2: BLEU difference of 1000 bootstrap sam-
ples. 95% confidence interval is[.15, .90] The
proposed approach therefore seems to be a stable
method.

5 Related Work in NLP

Previous reranking work in NLP can be classified
into two different research focuses:

1. Engineering better features: In MT, (Och
and others, 2004) investigates features extracted
from a wide variety of syntactic representations,
such as parse tree probability on the outputs. Al-
though their results show that the proposed syntac-
tic features gave little improvements, they point to
some potential reasons, such as domain mismatch
for the parser and overfitting by the reranking

10Note: In order to do this analysis, we needed to run Joint
Regularization on the original feature representation, since
the hashed representations are less interpretable. This turns
out to be computationally prohibitive in the time being so we
only ran on a smaller data set of 50 lists. Recently new op-
timization methods that are orders of magnitude faster have
been developed (Liu et al., 2009), which makes larger-scale
experiments possible.
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Train Test Test
Feature Representation #Feature BLEU BLEU PER
(baselines)
First pass 20 29.5 28.5 38.3
All sparse features (Main baseline) 2.4M 36.9 28.6 38.2
All sparse features w/ℓ1 regularization 1200 36.5 28.5 38.6
Random hash representation 4000 33.0 28.5 38.2
(multitask learning)
Unsupervised FeatureSelect 500 32.0 28.8 37.7
Joint Regularization 250 31.8 28.9 37.5
Shared Subspace 1000 32.9 29.1 37.3
(combination w/ high-frequency features)
(a) Feature thresholdx > 100 3k 31.7 27.9 38.2
(b) Feature thresholdx > 10 60k 35.8 29.0 37.9
Unsupervised FeatureSelect + (b) 60.5k 36.2 29.3 37.6
Joint Regularization + (b) 60.25k 36.1 29.4 37.5
Shared Subspace + (b) 61k 36.2 29.6 37.3
Oracle (best possible) – 36.9 36.9 33.1

Table 2: Results for different feature sets, with corresponding feature size and train/test BLEU/PER. All
multitask features give statistically significant improvements over the baselines (boldfaced), e.g. Shared
Subspace: 29.1 BLEU vs Baseline: 28.6 BLEU. Combinations ofmultitask features with high frequency
features also give significant improvements over the high frequency features alone.

method. Recent work by (Chiang et al., 2009) de-
scribes new features for hierarchical phrase-based
MT, while (Collins and Koo, 2005) describes
features for parsing. Evaluation campaigns like
WMT (Callison-Burch et al., 2009) and IWSLT
(Paul, 2009) also contains a wealth of information
for feature engineering in various MT tasks.

2. Designing better training algorithms: N-
best reranking can be seen as a subproblem of
structured prediction, so many general structured
prediction algorithms (c.f. (Bakir et al., 2007))
can be applied. In fact, some structured predic-
tion algorithms, such as the MIRA algorithm used
in dependency parsing (McDonald et al., 2005)
and MT (Watanabe et al., 2007) uses iterative
sets of N-best lists in its training process. Other
training algorithms include perceptron-style algo-
rithms (Liang et al., 2006), MaxEnt (Charniak and
Johnson, 2005), and boosting variants (Kudo et al.,
2005).

The division into two research focuses is conve-
nient, but may be suboptimal if the training algo-
rithm and features do not match well together. Our
work can be seen as re-connecting the two focuses,
where the training algorithm is explicitly used to
help discover better features.

Multitask learning is currently an active subfield

within machine learning. There has already been
some applications in NLP: For example, (Col-
lobert and Weston, 2008) uses a deep neural net-
work architecture for multitask learning on part-
of-speech tagging, chunking, semantic role label-
ing, etc. They showed that jointly learning these
related tasks lead to overall improvements. (De-
selaers et al., 2009) applies similar methods for
machine transliteration. In information extraction,
learning different relation types can be naturally
cast as a multitask problem (Jiang, 2009; Carlson
et al., 2009). Our work can be seen as following
the same philosophy, but applied to N-best lists.

In other areas, (Reichart et al., 2008) introduced
an active learning strategy for annotating multitask
linguistic data. (Blitzer et al., 2006) applies the
multitask algorithm of (Ando and Zhang, 2005)
to domain adaptation problems in NLP. We expect
that more novel applications of multitask learning
will appear in NLP as the techniques become scal-
able and standard.

6 Discussion and Conclusion

N-best reranking is a beneficial framework for ex-
perimenting with large feature sets, but unfortu-
nately feature sparsity leads to overfitting. We ad-
dressed this by re-casting N-best lists as multitask
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learning data. Our MT experiments show consis-
tent statistically significant improvements.

From the Bayesian view, multitask formulation
of N-best lists is actually very natural: Each N-
best is generated by a different data-generating
distribution since the input sentences are different,
i.e. p(e|f1) 6= p(e|f2). Yet these N-bests are re-
lated since the generalp(e|f) distribution depends
on the same first-pass models.

The multitask learning perspective opens up
interesting new possibilities for future work, e.g.:

• Different ways to partition data into tasks,
e.g. clustering lists by document structure, or
hierarchical clustering of data

• Multitask learning on lattices or N-best lists
with larger N. It is possible that a larger hy-
pothesis space may improve the estimation of
task-specific weights.

• Comparing multitask learning to sparse on-
line learning of batch data, e.g. (Tsuruoka et
al., 2009).

• Modifying the multitask objective to incorpo-
rate application-specific loss/decoding, such
as Minimum Bayes Risk (Kumar and Byrne,
2004)

• Using multitask learning to aid large-scale
feature engineering and visualization.
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Abstract

Structured perceptrons are attractive due
to their simplicity and speed, and have
been used successfully for tuning the
weights of binary features in a machine
translation system. In attempting to apply
them to tuning the weights of real-valued
features with highly skewed distributions,
we found that they did not work well. This
paper describes a modification to the up-
date step and compares the performance
of the resulting algorithm to standard min-
imum error-rate training (MERT). In ad-
dition, preliminary results for combining
MERT or structured-perceptron tuning of
the log-linear feature weights with coordi-
nate ascent of other translation system pa-
rameters are presented.

1 Introduction

Structured perceptrons are a relatively recent
(Collins, 2002) update of the classic perceptron
algorithm which permit the prediction of vec-
tors of values. Initially developed for part of
speech taggers, they have been applied to tuning
the weights of the features in the log-linear mod-
els used by statistical machine translation (Arun
and Koehn, 2007), and found to have performance
similar to the Margin-Infused Relaxed Algorithm
(MIRA) by Crammer and Singer (2003; 2006) and
Minimum-Error Rate Training (MERT) by Och
(2003). Parameter tuning is an important aspect of
current data-driven machine translation systems,
as an improper selection of feature weights can
dramatically reduce scores on evaluation metrics
such as BLEU (Papineni et al., 2002) or METEOR
(Banerjee and Lavie, 2005).

When we recently added new features to the
CMU-EBMT translation system (Brown, 1996;

Brown, 2008)1, in addition to splitting a number of
composite features into their components, our pre-
vious method of parameter tuning via coordinate
ascent2 became impractical. With now more than
50 features partaking in the scoring model, MERT
no longer seemed a good choice, as the common
wisdom is that it is not able to reliably optimize
more than about 20 features (Chiang et al., 2008).

We had been using coordinate ascent because of
a need to tune a substantial number of parameters
which are not directly part of the log-linear model
which can be tuned by MERT or similar methods.
Our system generates a translation lattice by run-
time lookup in the training corpus rather than us-
ing a precomputed phrase table, so important pa-
rameters include

• the size of the sample of retrieved training
instances for a given input phrase which are
aligned,
• the weight of source features for ranking

training instances during sampling, and
• the minimum alignment score to accept a

translation instance

Decoder parameters which are important to tune,
but which are generally not mentioned in the liter-
ature include

• how many alternative translations of a phrase
to consider during decoding,
• the size of the reordering window, and
• the rank of the language model (4-gram, 5-

gram, etc.)

In addition, it is desirable to tune parameters such
as beam width to minimize translation time with-
out degrading performance.

1Source code for CMU-EBMT is available from
http://cmu-ebmt.sourceforge.net.

2Coordinate ascent is described in more detail in Sec-
tion 7.
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As a result of the non-model parameters, a full
system tuning will involve multiple runs of the
tuning algorithm for the feature weights, since the
other parameters will affect the optimal weights.
Thus, speed is an important consideration for any
method to be used in this setting. The structured
perceptron algorithm is ideally suited due to its
speed, provided that it can produce competitive re-
sults.

2 Related Work

The perceptron algorithm (Rosenblatt, 1958) itself
is over 50 years old, but variations such as voted
and averaged perceptrons have gained popularity
in the past ten years. In particular, Collins (2002)
adapted the perceptron algorithm to structured
prediction tasks such as part of speech tagging and
noun phrase chunking. Arun and Koehn (2007)
subsequently applied Collins’ structured percep-
tron algorithm to the task of tuning feature weights
in a statistical machine translation system, demon-
strating the extreme scalability of the algorithm by
applying it to vectors containing four to six mil-
lion binary features. However, their work left open
the question of how well structured perceptrons
would deal with continuous-valued features. They
were unable to apply a language model due to the
lack of continuous-valued features and hence had
to compare performance against a standard statis-
tical machine translation (SMT) system which had
been stripped of its language model, with a conse-
quent loss of several BLEU points in performance.

During the same period, Crammer et al (2003;
2006) developed a number of “ultraconservative”
learning algorithms, including MIRA, the Margin-
Infused Relaxed Algorithm (which was also ap-
plied to large binary feature vectors by Arun and
Koehn) and variations of what they referred to as
Passive-Aggressive algorithms including PA-I and
PA-II. These algorithms have in common the no-
tion of updating a weight vector “just enough” to
account for a new training instance which is in-
correctly predicted by the existing weight vector.
In contrast, the perceptron algorithm aggressively
updates the weight vector and relies on averaging
effects over the whole of the training set.

3 Structured Perceptrons

The structured perceptron algorithm can be ap-
plied to tasks where the goal is to select the best
among competing hypotheses, where each hypoth-

esis has an associated vector of feature values and
the score for a hypothesis is a linear combination
of its feature values.

Beginning with a zero vector for the feature
weights, the structured perceptron algorithm it-
erates through each element of the training set,
updating the weight vector after processing each
training instance. The training set is processed re-
peatedly (each pass is known as a training epoch)
until convergence. The update step is very sim-
ple: if the best hypothesis according to the prod-
uct of feature vector and weight vector is not the
correct answer, add the difference between the fea-
ture vectors of the correct answer and the model’s
selected answer to the weight vector.

Thus, the entire algorithm may be summarized
with just two equations:

~w ← 0 (1)

~w ← ~w + (Φoracle − Φtop1) (2)

where Φx is the feature vector (φ1, φ2, ..., φn) for
hypothesis x.

Repeated application of Equation 2 results in
a weight vector which reflects the relative impor-
tance (on average) of each feature to making the
correct selection. Since selecting the best hypoth-
esis is an arg max operation, the absolute mag-
nitudes of the weights are not important.

4 More Conservative Updates for
Structured Perceptrons

One issue which arises in using learning algo-
rithms for machine translation is that there is no
one correct answer. In addition, it may not even
be possible for the MT system to generate the
reference translation at all. This is commonly
addressed by using the highest-scoring (by some
metric such as BLEU) translation which the sys-
tem can generate as a pseudo-oracle.

Our initial implementation closely followed the
description in (Arun and Koehn, 2007), includ-
ing the refinement of using the objective-function
score of the pseudo-oracle translation from the n-
best list to modulate the learning rate of the update
step, i.e.

~w ← ~w + SΦoracle
× (Φoracle − Φtop1) (3)

As can be seen, the difference between Equa-
tions 2 and 3 is simply the additional factor of
SΦoracle

.
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While we initially used sentence-level
smoothed BLEU as the objective function,
we found it to perform very poorly (the full BLEU
scores on the Haitian Creole tuning set were well
below 0.10), and instead adopted the Rouge-S
(skip bigrams) metric by Lin and Och (2004a)
with a maximum skip distance of four words,
which was found to best correlate with human
quality judgements (Lin and Och, 2004b).

In early testing, we found that both the feature
weights and performance as measured by the av-
erage objective score over the tuning set oscillated
wildly. Analyzing the results, it became appar-
ent that the update function was overly aggres-
sive. Unlike the binary features used in (Arun
and Koehn, 2007), our continuous-valued features
have different operating ranges for each feature,
e.g. the total distance moved as a result of reorder-
ing could reach 100 on a long sentence, while the
proportion of training instances with at least six
words of adjacent context in the bilingual corpus
is unlikely to exceed 0.05, even where sampling
is biased toward training instances with adjacent
context.

The first attempt to address the disparity in op-
erating ranges was to perform feature-wise nor-
malization on the update. Instead of taking the
simple difference in feature vectors between the
n-best entry with the highest log-linear score and
the one with the highest objective score, we con-
struct Φdiff such that

φi(diff)← (φi(oracle)− φi(top1))
r2

(4)

where

r ← max(0.01,maxj |φi(j)|) (5)

i.e. we estimate the operating range by finding the
n-best entry with the highest magnitude value of
the feature, and then divide by the square of that
magnitude since large feature values also magnify
the effects of weight changes. Normalization is
limited by clipping the normalization factor to be
at least 0.01 so that features whose values are al-
ways very near zero do not dominate the overall
score.

While the feature-wise normalization did
largely control the wild swings in feature weights,
it did not curb the oscillations in the objective
scores and produced only a minor improvement in
tuning results.

We next looked at MIRA and related work
on so-called Passive-Aggressive algorithms, and
in particular at the update functions described in
(Crammer et al., 2006). We decided on their PA-
II update rule (PA-II being akin to 1-best MIRA),
with which the learning step becomes

~w ← ~w + δ × (Φoracle − Φtop1) (6)

where
loss← SΦoracle

− SΦtop1 (7)

δ ← loss

||Φoracle − Φtop1||2 + 1
2C

(8)

with C an “aggressiveness” parameter.
This version of the update function produced

the desired smooth changes in feature weights
from iteration to iteration, though objective scores
still do not converge. Allowing multiple passes
through the tuning set before re-decoding with up-
dated feature weights now frequently results in
weights where the pseudo-oracle is the top-ranked
translation in 80 to 90 percent of all sentences.
None of our previous experiments had achieved
even a fraction of this level due to the erratic be-
havior of the feature weights. However, as the ex-
treme overfitting necessary to achieve such high
rankings of the oracle translation results in poor
BLEU scores, we have since used only one pass
over the tuning set before re-decoding with up-
dated weights.

5 The Final Algorithm

After the various attempts at taming the behav-
ior of the structured perceptron approach just de-
scribed, the final algorithm used for the experi-
ments described below was

1. Structured perceptron, with
2. passive-aggressive updates,
3. run in semi-batch mode,
4. using sentence-level modified Rouge-S4 as

the objective function

Semi-batch mode here means that while the per-
ceptron algorithm updates the weight vector af-
ter each sentence, those updates are not commu-
nicated to the decoder until the end of a complete
pass through the tuning set. An exception is made
for the very first iteration, as it starts with uniform
weights of 10−9 (rather than the conventional zero,
which would cause problems with decoding). This
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permits the exact determination of the overall ob-
jective score for the weight vector which is even-
tually returned as the tuned optimal weights, and
permits parallelization of the decoding (though the
latter has not yet been implemented).

We slightly modified the Rouge-S scoring func-
tion to use the generalized F-measure

Fβ =
(1 + β2)× precision× recall
β2 × precision+ recall

(9)

instead of the standard F1, allowing us to give
more weight to recall over precision by increas-
ing β above 1.0. This change was prompted by
the observation that the tuning process strongly
favored shorter outputs, resulting in substantial
brevity penalties from BLEU.

6 Experiments

We present the results of experiments on three
data sets in the next section. The data sets
are English-to-Haitian, French-to-English, and
Czech-to-English.

The English-to-Haitian system was built using
the data released by Carnegie Mellon University
(2010). It consists of a medical phrasebook, a
glossary, and a modest amount of newswire text,
each available as a set of sentence pairs in En-
glish and Haitian Creole. For training, we used
all of the glossary, all but the last 300 phrase pairs
of the medical phrasebook (these had previously
been used for development and testing of a “toy”
system), and the first 12,500 sentence pairs of the
newswire text. Tuning was performed using the
next 217 sentence pairs of the newswire text, and
the test set consisted of the final 800 sentence pairs
of the newswire text. The target language model
was built solely from the target half of the training
corpus, as we did not have any additional Haitian
Creole text.

The French-to-English system was built using
the Europarl (Koehn, 2005) version 3 data for
French and English. As is usual practice, text from
the fourth quarter of 2000 was omitted from the
training set. Tuning was performed using 200 sen-
tences from the “devtest2006” file and all 2000
sentences of “test2007” were used as the final test
set. Two target language models were built and
interpolated during decoding; the first was trained
on the target half of the bilingal corpus, and the
second was built using the Canadian Hansards text
released by ISI (Natural Language Group, 2001).

The Czech-to-English system was built us-
ing the parallel data made available for the
2010 Workshop on Statistical Machine Transla-
tion (WMT10). The target language model was
built from the target half of the bilingual training
corpus. Tuning was performed on a 200-sentence
subset of the “news-2008-test” data, and all 2525
sentences of the “news-2009-test” data were used
as unseen test data. As these experiments were
the very first time that the CMU-EBMT system
was applied to Czech, there are undoubtedly nu-
merous pre-processing and training improvements
which will increase scores above the values pre-
sented here.

Parameter tuning was performed using CMERT
0.5, the reimplemented MERT program included
with recent releases of the MOSES translation
system (specifically, the version included with
the 2010-04-01 release), the annealing-based op-
timizer included with Cunei (Phillips and Brown,
2009; Phillips, 2010), and the Structured Percep-
tron optimizer. Feature weights were initialized
to a uniform value of 1.0 for MERT and 10−9

for annealing and Perceptron (since the usual zero
causes problems for the decoder). Both versions
of MERT were permitted to run for 15 iterations
or until features weights converged and remained
(nearly) unchanged from one iteration to the next,
using merged n-best lists from the current and the
three most recent prior iterations. Annealing was
run with gamma values from 0.25 to 4.0, skipping
the entropy phase. The Structured Perceptron was
allowed to run for 18 iterations and to choose the
weights from the iteration which resulted in the
highest average Rouge-S score for the top trans-
lation in the n-best list. For French-English, this
proved to be the sixth iteration, while for English-
Haitian it was the twelfth. We have found that the
objective score increases for the first six to eight
iterations of SP, after which it fluctuates with no
trend up or down (but occasionally setting a new
high, which is why we decided to run 18 itera-
tions).

For French-English, we determined the best
value of β for the Rouge-S scoring to be 1.5,
and the best value of the aggressiveness parame-
ter C to be 0.1, using a 40-sentence subset of the
French-English tuning set, and then applied those
value for the full tuning set. For English-Haitian,
we used β = 1.2 and C = 0.01 (lower values
of C provide more smoothing and overall smaller
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updates, which is necessary for sparse or noisy
data). Due to limited time prior to submission, the
English-Haitian values for β and C were re-used
for Czech, with no attempt at tuning.

7 Combining Log-Linear Tuning with
Coordinate Ascent

As noted in the introduction, translation systems
using SMT-style decoders incorporate various fea-
tures that affect performance (and/or speed), but
which do not contribute directly to the log-linear
scoring model. Thus, neither MERT nor the struc-
tured perceptron training presented in this paper is
a complete solution for parameter tuning.

The CMU-EBMT system has long used a coor-
dinate ascent approach to parameter tuning. Each
parameter is varied in turn, with the MT system
performing a translation for each setting, and the
value which produces the best score is retained
while the next parameter is varied. If the best
scoring value is the highest or lowest in the list of
values to be checked, the range is extended; like-
wise, unless the interval between adjacent values
is already very small, the intervals on each side
of the highest-scoring value (which is not one of
the extremes) is divided in half and the two addi-
tional points are evaluated. This process continues
until convergence (cycling through all parameters
without changing any of them) or until a pre-set
maximum number of parameter combinations is
scored. Naturally, the approach becomes slower
as the number of parameters increases, but it was
still (barely) practical with 20 to 25 parameters.

A recent change in the internals of CMU-EBMT
led to a decomposition of multiple composite
scores and the addition of numerous others, bal-
looning the total number of tunable parameters to
more than 60. Fortunately, most of the tunable
parameters are feature weights, which can all be
treated as a unit, leaving only about a dozen fea-
tures for coordinate ascent.

The tuning program operates by calling an eval-
uation script which in turn invokes the machine
translation on a modified configuration file pro-
vided by the tuner and returns the score corre-
sponding to the given parameter settings. When
given an optional flag, the evaluation script first
invokes either MERT or SP to further adjust the
parameters before performing the actual evalua-
tion, and modifies the given configuration file ac-
cordingly. The tuner reads the modified parame-

ters from the configuration file and stores then for
further use.

Both MERT and SP can produce settings which
actually decrease the resulting BLEU score, since
they are optimizing toward a surrogate metric. If
the evaluation score after an invocation of MERT
or SP is less than 0.98 times the previous best
score, the parameter settings are rolled back; oth-
erwise, the best score is set to the evaluation score.
This permits MERT/SP to move the parameters
to a different space if necessary, without allowing
them to substantially degrade overall scores.

There was time for only one experiment involv-
ing complete tuning, as summarized in Table 4.
Starting with the Haitian-Creole feature weights
found for the results in Table 1, the tuner ran-
domly perturbed the non-feature-weight parame-
ters by a small amount (up to 2% relative) twenty
times, then started coordinate ascent from the best-
scoring of those 20 trials. The tuner requested a
MERT/SP run before ascending on the first pa-
rameter, and after every fourth parameter was pro-
cessed thereafter. Because both MERT and SP
started from previously-tuned feature weights, the
number of iterations was reduced from 15 to 4 for
MERT and from 18 to 5 for SP. The maximum
number of parameter combinations for coordinate
ascent was set to 750, which is approximately four
cycles through all parameters (the exact number of
combinations per cycle varies, as the tuner can add
new combinations by extended the range which is
searched or adding intermediate points around a
maximum).

In Table 4, the three different Perceptron en-
tries refer to the results starting from the pre-
vious experiment’s feature weights (“Perceptron
1”), starting from the results of the complete tun-
ing (“Perceptron 2”), and starting from uniform
feature weights (“Perceptron 3”). The third run
was stopped before convergence due to the loom-
ing submission deadline.

8 Results

Tables 1, 2, and 3 present the results of running the
tuning methods on the English-Haitian, French-
English, and Czech-English data sets, respectively.
Performance is shown both in terms of the time re-
quired to perform a tuning run as well as the BLEU
score achieved using the resulting feature weights.

Structured perceptrons are the clear winner for
speed, thanks to the simplicity of the algorithm.
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Method Run-Time Iter BLEU (dev) BLEU (test) #words / ratio
CMERT 0.5 73m 5 0.0993 –
new MERT 58m 3 0.0964 –
CMERT 0.51 138m 15 0.1073 0.0966 22298 / 1.213x
new MERT1 187m 15 0.1516 0.1347 17375 / 0.945x
Perceptron 22m 18 0.1619 0.1534 15565 / 0.847x

1 omitting several unused features, as noted in the text

Table 1: English-to-Haitian tuning performance

Method Run-Time Iter BLEU (dev) BLEU (test) #words / ratio
CMERT 0.5 3h53m 15 0.12952 0.13927 100875 / 1.709x
new MERT 5h52m 15 0.22533 0.23315 60354 / 1.023x
Annealing 6h46m - 0.25017 0.25943 58518 / 0.992x
Perceptron 1h23m 18 0.24214 0.26048 57408 / 0.973x

Table 2: French-to-English tuning performance

While MERT takes two to three times as long to
process ten random starting points as it does to
decode the test set, SP is three orders of magni-
tude faster than decoding. As a result, SP tuning
requires one-third or less of the time that MERT
does, even though we used 18 iterations of SP
compared to 15 for MERT. Note that the time dif-
ference between the two versions of MERT is in
part due to different amounts of time spent decod-
ing as a result of the different feature weights.

MERT unexpectedly has considerable difficulty
with our new feature set, as can be seen by
its much lower BLEU scores, particularly in the
case of CMERT. An analysis of the actual fea-
ture weights produced by MERT shows that it
places nearly all of the mass on a single feature,
and that the feature receiving the bulk of the mass
changes from iteration to iteration. In contrast, SP
produces BLEU scores consistent with those pro-
duced by pure coordinate ascent prior to the pro-
liferation of features.

We believe that the difference in performance
between the two versions of MERT is due pri-
marily to the simple difference in output format:
CMERT 0.5 prints its tuned weights using a fixed-
point format having six digits after the decimal
point, while the new MERT program prints us-
ing scientific notation. Because the tuned weight
vector is highly skewed, most features have low
weights after L1 normalization, and thus CMERT
truncated many weights to zero (and indeed, loses
significant digits for any features assigned weights
less than 0.1), including such critical weights as

length features and language model scores. We
suspect that this preservation of significant digits
contributes substantially to the improved BLEU
scores Bertoldi et al (2009) reported for the new
implementation compared to CMERT.

The features which, at one time or another, re-
ceive the bulk of the mass have one thing in com-
mon: for most translations, they have a default
value, and in a small proportion of cases they have
a value which varies from the default by only a
small amount. Initially, most such features had
a default value of zero in CMU-EBMT, but this
meant that the line optimization in MERT had ab-
solutely no constraint on raising the weight of the
feature, and thus obtaining feature vectors where
one feature has 1018 or even 1020 times the weight
of any other feature. The same problem occurs
with features that are unused but have a small jit-
ter in their values due to rounding errors, for ex-
ample, if there are no document boundaries (as is
the case for the Haitian data described previously),
the document-similarity score may be 1.000000
for 99% of the arcs in the translation lattices and
0.999999 for the remainder. Offsetting the mostly-
zero features so that their default value is 1 or -1
(depending on the sense of the feature) and elim-
inating unused features mitigated but did not en-
tirely solve the problem. In Table 1, two results are
shown for both CMERT and new MERT; the first
includes all 52 features while the second excludes
five features which are not used in a baseline-
trained CMU-EBMT system. In the former case,
both programs placed all the mass on a single fea-
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Method Run-Time Iter BLEU (dev) BLEU (test)
new MERT 56m 15 0.0584 0.0743
Perceptron 14m 18 0.0830 0.1163

Table 3: Czech-to-English tuning performance

Method Run-Time BLEU (dev) BLEU (test) length ratio
new MERT 48h 0.1821 0.1633 0.942
Perceptron 1 25h 0.1675 0.1547 0.833
Perceptron 2 38h 0.1738 0.1597 0.837
Perceptron 3 12h∗ 0.1705 0.1647 0.939

∗ truncated run (see text)

Table 4: English-to-Haitian tuning performance (including coordinate ascent)

ture and left all the others at 10−14 or less (dis-
played as 0.000000 in the case of CMERT).

The full tuning runs summarized in Table 4
show that SP is often competitive with MERT
while running more quickly, but still requires fur-
ther analysis to determine the causes of variability
in its performance. One initial conclusion from
examining the logs of the SP runs is that weight
updates are perhaps too conservative when ap-
plied in conjunction with coordinate ascent. While
MERT frequently shifted settings in response to
changes in the non-feature parameters, SP rarely
does so, typically preferring to retain the exist-
ing feature weights as the best setting encountered
during the five iterations performed at each invo-
cation. The “Perceptron 3” run starting with small
uniform feature weights resulted from the obser-
vation that a first, buggy attempt at integration
reached tuning-set BLEU scores in excess of 0.18
before early termination. The bug in question was
that many of the feature weights were initially read
in from the configuration file as zero rather than
the correct value.

As shown in the rightmost column of Tables 1,
2 and 4, the Perceptron algorithm tends toward
short output, yielding translations which are about
97% as long as the reference translation in French-
English, a mere 85% as long for English-Haitian,
and even shorter than that in two of three Czech
runs. This tendency towards short translations
prompted the inclusion of the β parameter –
the French-English output was originally much
shorter, but β has little effect on Haitian given the
sparse training data. The extremely long output
for CMERT on French-English is due to a large
number of zero weights, including those for length

features.

9 Conclusion and Future Work

Structured perceptrons with passive-aggressive
updates are a viable alternative to the usual MERT
feature-weight tuning, particularly where the num-
ber of features exceeds that which MERT can
reliably handle, or when some of the features
have characteristics which confuse MERT. Struc-
tured perceptrons are also a good alternative where
speed is important, such as in a hybrid tuning
scheme which alternates between (re-)tuning the
log-linear model and performing coordinate ascent
on parameters which do not directly contribute
weight to the log-linear model.

We have thus far implemented two objective
functions which operate on individual sentences
without regard for choices made on other sen-
tences. When the final evaluation metric incorpo-
rates global statistics, however, an objective func-
tion which takes them into account is desirable.
For example, when using BLEU, it makes a big
difference whether individual sentences are both
longer and shorter than the reference or system-
atically shorter than the reference, but these two
cases can not be distinguished by single-sentence
objective functions. Our plan is to implement a
windowed or moving-average version of BLEU as
in (Chiang et al., 2008).

We also plan to further speed up the tuning pro-
cess by parallelizing the decoding of the sentences
in the tuning set. As we have used a semi-batch
update method which leaves the decoder’s weights
unchanged for an entire pass through the tuning
set, there is no data dependency between individ-
ual sentences, allowing them to be decoded in par-
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allel. The perceptron algorithm itself remains se-
quential, but as it is three orders of magnitude
faster than the decoding, this will have negligible
impact on overall speedup factors until hundreds
of CPUs are used for simultaneous decoding.
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Abstract

The translation model of statistical ma-
chine translation systems is trained on par-
allel data coming from various sources and
domains. These corpora are usually con-
catenated, word alignments are calculated
and phrases are extracted. This means
that the corpora are not weighted accord-
ing to their importance to the domain of
the translation task. This is in contrast
to the training of the language model for
which well known techniques are used to
weight the various sources of texts. On
a smaller granularity, the automatic cal-
culated word alignments differ in quality.
This is usually not considered when ex-
tracting phrases either.

In this paper we propose a method to auto-
matically weight the different corpora and
alignments. This is achieved with a resam-
pling technique. We report experimen-
tal results for a small (IWSLT) and large
(NIST) Arabic/English translation tasks.
In both cases, significant improvements in
the BLEU score were observed.

1 Introduction

Two types of resources are needed to train statis-
tical machine translation (SMT) systems: parallel
corpora to train the translation model and mono-
lingual texts in the target language to build the
language model. The performance of both mod-
els depends of course on the quality and quantity
of the available resources.

Today, most SMT systems are generic, i.e. the
same system is used to translate texts of all kinds.
Therefore, it is the domain of the training re-
sources that influences the translations that are se-
lected among several choices. While monolingual

texts are in general easily available in many do-
mains, the freely available parallel texts mainly
come from international organisations, like the
European Union or the United Nations. These
texts, written in particular jargon, are usually
much larger than in-domain bitexts. As an exam-
ple we can cite the development of an NIST Ara-
bic/English phrase-based translation system. The
current NIST test sets are composed of a news
wire part and a second part of web-style texts.
For both domains, there is only a small number
of in-domain bitexts available, in comparison to
almost 200 millions words of out-of-domain UN
texts. The later corpus is therefore likely to domi-
nate the estimation of the probability distributions
of the translation model.

It is common practice to use a mixture language
model with coefficients that are optimized on the
development data, i.e. by these means on the do-
main of the translation task. Domain adaptation
seems to be more tricky for the translation model
and it seems that very little research has been done
that seeks to apply similar ideas to the translation
model. To the best of our knowledge, there is no
commonly accepted method to weight the bitexts
coming from different sources so that the transla-
tion model is best optimized to the domain of the
task. Mixture models are possible when only two
different bitexts are available, but are rarely used
for more corpora (see discussion in the next sec-
tion).

In this work we propose a new method to adapt
the translation model of an SMT system. We only
perform experiments with phrase-based systems,
but the method is generic and could be easily ap-
plied to an hierarchical or syntax-based system.
We first associate a weighting coefficient to each
bitext. The main idea is to use resampling to pro-
duce a new collection of weighted alignment files,
followed by the standard procedure to extract the
phrases. In a second step, we also consider the
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alignment score of each parallel sentence pair, em-
phasizing by these means good alignments and
down-weighting less reliable ones. All the param-
eters of our procedure are automatically tuned by
optimizing the BLEU score on the development
data.

The paper is organized as follows. The next
section describes related work on weighting the
corpora and model adaptation. Section 3 de-
scribes the architecture allowing to resample and
to weight the bitexts. Experimental results are pre-
sented in section 4 and the paper concludes with a
discussion.

2 Related Work

Adaptation of SMT systems is a topic of in-
creasing interest since few years. In previous
work, adaptation is done by using mixture mod-
els, by exploiting comparable corpora and by self-
enhancement of translation models.

Mixture models were used to optimize the co-
efficients to the adaptation domain. (Civera and
Juan, 2007) proposed a model that can be used
to generate topic-dependent alignments by exten-
sion of the HMM alignment model and derivation
of Viterbi alignments. (Zhao et al., 2004) con-
structed specific language models by using ma-
chine translation output as queries to extract sim-
ilar sentences from large monolingual corpora.
(Foster and Kuhn, 2007) applied a mixture model
approach to adapt the system to a new domain by
using weights that depend on text distances to mix-
ture components. The training corpus was divided
into different components, a model was trained on
each part and then weighted appropriately for the
given context. (Koehn and Schroeder, 2007) used
two language models and two translation models:
one in-domain and other out-of-domain to adapt
the system. Two decoding paths were used to
translate the text.

Comparable corpora are exploited to find addi-
tional parallel texts. Information retrieval tech-
niques are used to identify candidate sentences
(Hildebrand et al., 2005). (Snover et al., 2008)
used cross-lingual information retrieval to find
texts in the target language that are related to the
domain of the source texts.

A self-enhancing approach was applied by
(Ueffing, 2006) to filter the translations of the
test set with the help of a confidence score and
to use reliable alignments to train an additional

phrase table. This additional table was used with
the existing generic phrase table. (Ueffing, 2007)
further refined this approach by using transduc-
tive semi-supervised methods for effective use of
monolingual data from the source text. (Chen et
al., 2008) performed domain adaptation simulta-
neously for the translation, language and reorder-
ing model by learning posterior knowledge from
N-best hypothesis. A related approach was in-
vestigated in (Schwenk, 2008) and (Schwenk and
Senellart, 2009) in which lightly supervised train-
ing was used. An SMT system was used to trans-
late large collections of monolingual texts, which
were then filtered and added to the training data.

(Matsoukas et al., 2009) propose to weight each
sentence in the training bitext by optimizing a dis-
criminative function on a given tuning set. Sen-
tence level features were extracted to estimate the
weights that are relevant to the given task. Then
certain parts of the training bitexts were down-
weighted to optimize an objective function on the
development data. This can lead to parameter
over-fitting if the function that maps sentence fea-
tures to weights is complex.

The technique proposed in this paper is some-
how related to the above approach of weighting
the texts. Our method does not require an ex-
plicit specification of the in-domain and out-of-
domain training data. The weights of the corpora
are directly optimized on the development data us-
ing a numerical method, similar to the techniques
used in the standard minimum error training of the
weights of the feature functions in the log-linear
criterion. All the alignments of the bitexts are re-
sampled and given equal chance to be selected and
therefore, influence the translation model in a dif-
ferent way. Our proposed technique does not re-
quire the calculation of extra sentence level fea-
tures, however, it may use the alignments score as-
sociated with each aligned sentence pair as a con-
fidence score.

3 Description of the algorithm

The architecture of the algorithm is summarized in
figure 1. The starting point is an (arbitrary) num-
ber of parallel corpora. We first concatenate these
bitexts and perform word alignments in both direc-
tions using GIZA++. This is done on the concate-
nated bitexts since GIZA++ may perform badly
if some of the individual bitexts are rather small.
Next, the alignments are separated in parts corre-
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Figure 1: Architecture of SMT Weighting System

sponding to the individual bitexts and a weighting
coefficient is associated to each one. We are not
aware of a procedure to calculate these coefficients
in an easy and fast way without building an actual
SMT system. Note that there is an EM procedure
to do this for language modeling.

In the next section, we will experimentally com-
pare equal coefficients, coefficients set to the same
values than those obtained when building an inter-
polated language model on the source language,
and a new method to determine the coefficients by
optimizing the BLEU score on the development
data.

One could imagine to directly use these coef-
ficients when calculating the various probabilities
of the extracted phrases. In this work, we propose
a different procedure that makes no assumptions
on how the phrases are extracted and probabilities
are calculated. The idea is to resample alignments
from the alignment file corresponding to the indi-
vidual bitexts according to their weighting coeffi-
cients. By these means, we create a new, poten-
tially larger alignment file, which then in turn will

be used by the standard phrase extraction proce-
dure.

3.1 Resampling the alignments
In statistics, resampling is based upon repeated
sampling within the same sample until a sample
is obtained which better represents a given data
set (Yu, 2003). Resampling is used for validating
models on given data set by using random subsets.
It overcomes the limitations to make assumptions
about the distribution of the data. Usually resam-
pling is done several times to better estimate and
select the samples which better represents the tar-
get data set. The more often we resample, the
closer we get to the true probability distribution.

In our case we performed resampling with re-
placement according to the following algorithm:

Algorithm 1 Resampling
1: for i = 0 to required size do
2: Select any alignment randomly
3: Alscore ← normalized alignment score
4: Threshold← rand[0, 1]
5: if Alscore > Threshold then
6: keep it
7: end if
8: end for

Let us call resampling factor, the number of
times resampling should be done. An interesting
question is to determine the optimal value of this
resampling factor.

It actually depends upon the task or data we are
experimenting on. We may start with one time
resampling and could stop when results becomes
stable. Figure 2 plots a typical curve of the BLEU
score as a function of the number of times we re-
sample. It can be observed that the curve is grow-
ing proportionally to the resampling factor until it
becomes stable after a certain point.

3.2 Weighting Schemes
We concentrated on translation model adaptation
when the bitexts are heterogeneous, e.g. in-
domain and out-of-domain or of different sizes. In
this case, weighting these bitexts seems interest-
ing and can be used in order to select data which
better represent the target domain. Secondly when
sentences are aligned, some alignments are reli-
able and some are less. Using unreliable align-
ments can put negative effect on the translation
quality. So we need to exclude or down-weight
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Figure 2: The curve shows that by increasing the
resampling factor we get better and stable results
on Dev and Test.

unreliable alignments and keep or up-weight the
good ones. We conceptually divided the weight-
ing in two parts that is (i) weighting the corpora
and (ii) weighting the alignments

3.2.1 Weighting Corpora
We started to resample the bitexts with equal
weights to see the effect of resampling. This gives
equal importance to each bitext without taking into
account the domain of the text to be translated.
However, it should be better to give appropriate
weights according to a given domain as shown in
equation 1

α1bitext1 + α2bitext2 + ..+ αnbitextn (1)

where the αn are the coefficients to optimize.
One important question is how to find out the ap-
propriate coefficient for each corpus. We investi-
gated a technique similar to the algorithm used to
minimize the perplexity of an interpolated target
LM. Alternatively, it is also possible to construct a
interpolated language model on the source side of
bitexts. This approach was implemented and these
coefficients were used as the weights for each bi-
text. One can certainly ask the question whether
the perplexity is a good criterion for weighting bi-
texts. Therefore, we worked on direct optimiza-
tion of these coefficients by CONDOR (Berghen
and Bersini, 2005). This freely available tool is a
numerical optimizer based on Powell’s UOBYQA
algorithm (Powell, 1994). The aim of CONDOR
is to minimize a objective function using the least
number of function evaluations. Formally, it is
used to find x∗ ∈ Rn with given constraints which

satisfies
F (x∗) = min

x
F (x) (2)

where n is the dimension of search space and x∗

is the optimum of x. The following algorithm was
used to weight the bitexts.

Algorithm 2 WeightingCorpora

1: Determine word to word alignment with
GIZA++ on concatenated bitext.

2: while Not converged do
3: Run Condor initialized with LM weights.
4: Create new alignment file by resampling

according to weights given by Condor.
5: Use the alignment file to extract phrases

and build the translation table (phrase table)
6: Tune the system with MERT (this step can

be skipped until weights are optimized to
save time)

7: Calculate the BLEU score
8: end while

3.2.2 Weighting Alignments
Alignments produced by GIZA++ have alignment
scores associated with each sentence pair in both
direction, i.e. source to target and target to source.
We used these alignment scores as confidence
measurement for each sentence pair. Alignment
scores depend upon the length of each sentence,
therefore, they must be normalized regarding the
size of the sentence. Alignment scores have a very
large dynamic range and we have applied a loga-
rithmic mapping in order to flatten the probability
distribution :

log(λ ·
( ntrg
√
asrc trg + nsrc

√
atrg src)

2
) (3)

where a is the alignment score, n the size of a
sentence and λ a coefficient to optimize. This is
also done by Condor.

Of course, some alignments will appear several
times, but this will increase the probability of cer-
tain phrase-pairs which are supposed to be more
related to the target domain. We have observed
that the weights of an interpolated LM build on
the source side of the bitext are good initial val-
ues for CONDOR. Moreover, weights optimized
by Condor are in the same order than these “LM
weights”. Therefore, we do not perform MERT
of the SMT systems build at each step of the op-
timization of the weights αi and λ by CONDOR,
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IWSLT Task NIST Task
Dev (Dev6) Test (Dev7) Dev (NIST06) Test (NIST08)

Baseline 53.98 53.37 43.16 42.21
With equal weights 53.71 53.20 43.10 42.11
With LM weights 54.20 53.71 43.42 42.22
Condor weights 54.80 53.98 43.49 42.28

Table 1: BLEU scores when weighting corpora (one time resampling)

IWSLT Task NIST Task
Dev (Dev6) Test (Dev7) Dev (NIST06) Test (NIST08)

Baseline 53.98 53.37 43.16 42.21
With equal weights 53.80 53.30 43.13 42.15
With LM weights 54.32 53.91 43.54 42.37
Condor weights 55.10 54.13 43.80 42.40

Table 2: BLEU scores when weighting corpora (optimum number of resampling)

IWSLT Task NIST Task
Dev (Dev6) Test (Dev7) TER(Test) Dev (NIST06) Test (NIST08) TER(Test)

Baseline 53.98 53.37 32.75 43.16 42.21 51.69
With equal weights 53.85 53.33 32.80 43.28 42.21 51.72
With LM weights 54.80 54.10 31.50 43.42 42.41 51.50
Condor weights 55.48 54.58 31.31 43.95 42.54 51.35

Table 3: BLEU and TER scores when weighting corpora and alignments (optimum number of resam-
pling)

but use the values obtained by running MERT on
a system obtained by using the “LM weights” to
weight the alignments. Once CONDOR has con-
verged to optimal weights, we can then tune our
system by MERT. This saves lot of time taken by
the tuning process and it had no impact on the re-
sults.

4 Experimental evaluation

The baseline system is a standard phrase-based
SMT system based on the Moses SMT toolkit
(Koehn and et al., 2007). In our system we
used fourteen features functions. These features
functions include phrase and lexical translation
probabilities in both directions, seven features for
lexicalized distortion model, a word and phrase
penalty, and a target language model. The MERT
tool is used to tune the coefficients of these fea-
ture functions. We considered Arabic to English
translation. Tokenization of the Arabic source
texts is done by a tool provided by SYSTRAN
which also performs a morphological decompo-

sition. We considered two well known official
evaluation tasks to evaluate our approach, namely
NIST and IWSLT.

For IWSLT, we used the BTEC bitexts (194M
words), Dev1, Dev2, Dev3 (60M words each) as
training data, Dev6 as development set and Dev7
as test set. From previous experiments, we have
evidence that the various development corpora are
not equally important and weighting them cor-
rectly should improve the SMT system. We an-
alyze the translation quality as measured by the
BLEU score for the three methods: equal weights,
LM weights and Condor weights and considering
one time resampling. Further experiments were
performed using the optimized number of resam-
pling with and without weighting the alignments.
We have realized that it is beneficial to always in-
clude the original alignments. Even if we resample
many times there is a chance that some alignments
might never be selected but we do not want to
loose any information. By keeping original align-
ments, all alignments are given a chance to be se-
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lected at least once. All these results are summa-
rized in tables 1, 2 and 3.

One time resampling along with equal weights
gave worse results than the baseline system while
improvements in the BLEU score were observed
with LM and Condor weights for the IWSLT task,
as shown in table 1. Resampling many times al-
ways gave more stable results, as already shown
in figure 2 and as theoretically expected. For this
task, we resampled 15 times. The improvements
in the BLEU score are shown in table 2. Fur-
thermore, using the alignment scores resulted in
additional improvements in the BLEU score. For
the IWSLT task, we achieved and overall improve-
ment of 1.5 BLEU points on the development set
and 1.2 BLEU points on the test set as shown in
table 3

To validate our approach we further experi-
mented with the NIST evaluation task. Most of
the training data used in our experiments for the
NIST task is made available through the LDC. The
bitexts consist of texts from the GALE project1

(1.6M words), various news wire translations2

(8.0M words) on development data from pre-
vious years (1.6M words), LDC treebank data
(0.4M words) and the ISI extracted bitexts (43.7M
words). The official NIST06 evaluation data was
used as development set and the NIST08 evalua-
tion data was used as test set. The same procedure
was adapted for the NIST task as for the IWSLT
task. Results are shown in table 1 by using differ-
ent weights and one time resampling. Further im-
provements in the results are shown in table 2 with
the optimum number of resampling which is 10
for this task. Finally, results by weighting align-
ments along with weighting corpora are shown in
table 3. Our final system achieved an improve-
ment of 0.79 BLEU points on the development set
and 0.33 BLEU points on the test set. TER scores
are also shown on test set of our final system in
table 3. Note that these results are state-of-the-art
when compared to the official results of the 2008
NIST evaluation3.

The weights of the different corpora are shown
in table 4 for the IWSLT and NIST task. In both
cases, the weights optimized by CONDOR are
substantially different form those obtained when

1LDC2005E83, 2006E24, E34, E85 and E92
2LDC2003T07, 2004E72, T17, T18, 2005E46 and

2006E25.
3http://www.nist.gov/speech/tests/mt/

2008/

creating an interpolated LM on the source side of
the bitexts. In any case, the weights are clearly
non uniform, showing that our algorithm has fo-
cused on in-domain data. This can be nicely seen
for the NIST task. The Gale texts were explictely
created to contain in-domain news wire and WEB
texts and actually get a high weight despite their
small size, in comparison to the more general news
wire collection from LDC.

5 Conclusion and future work

We have proposed a new technique to adapt the
translation model by resampling the alignments,
giving a weight to each corpus and using the
alignment score as confidence measurement of
each aligned phrase pair. Our technique does not
change the phrase pairs that are extracted,4 but
only the corresponding probability distributions.
By these means we hope to adapt the translation
model in order to increase the weight of transla-
tions that are important to the task, and to down-
weight the phrase pairs which result from unreli-
able alignments.

We experimentally verified the new method on
the low-resource IWSLT and the resource-rich
NIST’08 tasks. We observed significant improve-
ment on both tasks over state-of-the-art baseline
systems. This weighting scheme is generic and
it can be applied to any language pair and target
domain. We made no assumptions on how the
phrases are extracted and it should be possible to
apply the same technique to other SMT systems
which rely on word-to-word alignments.

On the other hand, our method is computation-
ally expensive since the optimisation of the coef-
ficients requires the creation of a new phrase table
and the evaluation of the resulting system in the
tuning loop. Note however, that we run GIZA++
only once.

In future work, we will try to directly use the
weights of the corpora and the alignments in the
algorithm that extracts the phrase pairs and cal-
culates their probabilities. This would answer
the interesting question whether resampling itself
is needed or whether weighting the corpora and
alignments is the key to the observed improve-
ments in the BLEU score.

Finally, it is straight forward to consider more
feature functions when resampling the alignments.
This may be a way to integrate linguistic knowl-

4when also including the original alignments
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IWSLT Task BTEC Dev1 Dev2 Dev3
# of Words 194K 60K 60K 60K
LM Coeffs 0.7233 0.1030 0.0743 0.0994

Condor Coeffs 0.6572 0.1058 0.1118 0.1253

NIST TASK Gale NewsWire TreeBank Dev ISI
# of words 1.6M 8.1M 0.4M 1.7M 43.7M
LM Coeffs 0.3215 0.1634 0.0323 0.1102 0.3726

Condor Coeffs 0.4278 0.1053 0.0489 0.1763 0.2417

Table 4: Weights of the different bitexts.

edge into the SMT system, e.g. giving low scores
to word alignments that are “grammatically not
reasonable”.
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Abstract

This paper proposes an unsupervised
word segmentation algorithm that identi-
fies word boundaries in continuous source
language text in order to improve the
translation quality of statistical machine
translation (SMT) approaches. The
method can be applied to any language
pair where the source language is unseg-
mented and the target language segmen-
tation is known. First, an iterative boot-
strap method is applied to learn multi-
ple segmentation schemes that are consis-
tent with the phrasal segmentations of an
SMT system trained on the resegmented
bitext. In the second step, multiple seg-
mentation schemes are integrated into a
single SMT system by characterizing the
source language side and merging iden-
tical translation pairs of differently seg-
mented SMT models. Experimental re-
sults translating five Asian languages into
English revealed that the method of in-
tegrating multiple segmentation schemes
outperforms SMT models trained on any
of the learned word segmentations and
performs comparably to available state-of-
the-art monolingually-built segmentation
tools.

1 Introduction

The task of word segmentation, i.e., identifying
word boundaries in continuous text, is one of the
fundamental preprocessing steps of data-driven
NLP applications like Machine Translation (MT).
In contrast to Indo-European languages like En-
glish, many Asian languages like Chinese do not
use a whitespace character to separate meaningful
word units. The problems of word segmentation
are:

(1) ambiguity, e.g., for Chinese, a single charac-
ter can be a word component in one context,
but a word by itself in another context.

(2) unknown words, i.e., existing words can be
combined into new words such as proper
nouns, e.g. “White House”.

Purely dictionary-based approaches like (Cheng
et al., 1999) addressed these problems by max-
imum matching heuristics. Recent research on
unsupervised word segmentation focuses on ap-
proaches based on probabilistic methods. For ex-
ample, (Brent, 1999) proposes a probabilistic seg-
mentation model based on unigram word distri-
butions, whereas (Venkataraman, 2001) uses stan-
dard n-gram language models. An alternative non-
parametric Bayesian inference approach based on
the Dirichlet process incorporating unigram and
bigram word dependencies is introduced in (Gold-
water et al., 2006).

The focus of this paper, however, is to
learn word segmentations that are consistent with
phrasal segmentations of SMT translation mod-
els. In case of small translation units, e.g. sin-
gle Chinese or Japanese characters, it is likely
that such tokens have been seen in the training
corpus, thus these tokens can be translated by
an SMT engine. However, the contextual infor-
mation provided by these tokens might not be
enough to obtain a good translation. For exam-
ple, a Japanese-English SMT engine might trans-
late the two successive characters “

�
” (“white”)

and “ � ” (“bird”) as “white bird”, while a human
would translate “

� � ” as “swan”. Therefore, the
longer the translation unit, the more context can be
exploited to find a meaningful translation. On the
other hand, the longer the translation unit, the less
likely it is that such a token will occur in the train-
ing data due to data sparseness of the language
resources utilized to train the statistical translation
models. Therefore, a word segmentation that is
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“consistent with SMT models” is one that identi-
fies translation units that are small enough to be
translatable, but large enough to be meaningful in
the context of the given input sentence, achieving a
trade-off between the coverage and the translation
task complexity of the statistical models in order to
improve translation quality.

The use of monolingual probabilistic models
does not necessarily yield a better MT perfor-
mance (Chang et al., 2008). However, improve-
ments have been reported for approaches taking
into account not only monolingual, but also bilin-
gual information, to derive a word segmentation
suitable for SMT. Due to the availability of lan-
guage resources, most recent research has focused
on optimizing Chinese word segmentation (CWS)
for Chinese-to-English SMT. For example, (Xu et
al., 2008) proposes a Bayesian Semi-Supervised
approach for CWS that builds on (Goldwater et al.,
2006). The generative model first segments Chi-
nese text using an off-the-shelf segmenter and then
learns new word types and word distributions suit-
able for SMT. Similarly, a dynamic programming-
based variational Bayes approach using bilingual
information to improve MT is proposed in (Chung
and Gildea, 2009). Concerning other languages,
for example, (Kikui and Yamamoto, 2002) ex-
tended Hidden-Markov-Models, where hidden n-
gram probabilities were affected by co-occurring
words in the target language part for Japanese
word segmentation.

Recent research on SMT is also focusing on the
usage of multiple word segmentation schemes for
the source language to improve translation qual-
ity. For example, (Zhang et al., 2008) combines
dictionary-based and CRF-based approaches for
Chinese word segmentation in order to avoid out-
of-vocabulary (OOV) words. Moreover, the com-
bination of different morphological decomposi-
tion of highly inflected languages like Arabic or
Finnish is proposed in (de Gispert et al., 2009) to
reduce the data sparseness problem of SMT ap-
proaches. Similarly, (Nakov et al., 2009) utilizes
SMT engines trained on different word segmenta-
tion schemes and combines the translation outputs
using system combination techniques as a post-
process to SMT decoding.

In order to integrate multiple word segmenta-
tion schemes into the SMT decoder, (Dyer et al.,
2008) proposed to generate word lattices covering
all possible segmentations of the input sentence

and to decode the lattice input. An extended ver-
sion of the lattice approach that does not require
the use (and existence) of monolingual segmenta-
tion tools was proposed in (Dyer, 2009) where a
maximum entropy model is used to assign prob-
abilities to the segmentations of an input word to
generate diverse segmentation lattices from a sin-
gle automatically learned model.

The method of (Ma and Way, 2009) also uses
a word lattice decoding approach, but they itera-
tively extract multiple word segmentation schemes
from the training bitext. This dictionary-based
approach uses heuristics based on the maximum
matching algorithm to obtain an agglomeration of
segments that are covered by the dictionary. It uses
all possible source segmentations that are consis-
tent with the extracted dictionary to create a word
lattice for decoding.

The method proposed in this papers differs from
previous approaches in the following points:

• it works for any language pair where the
source language is unsegmented and the tar-
get language segmentation is known.

• it can be applied for the translation of a
source language where no linguistically mo-
tivated word segmentation tools are available.

• it applies machine learning techniques to
identify segmentation schemes that improve
translation quality for a given language pair.

• it decodes directly from unsegmented text us-
ing segmentation information implicit in the
phrase-table to generate the target and thus
avoids issues of consistency between phrase-
table and input representation.

• it uses segmentations at all iterative levels of
the bootstrap process, rather than only those
from the final iteration allowing the consid-
eration of segmentations from many levels of
granularity.

Word segmentations are learned using a parallel
corpus by aligning character-wise source language
sentences to word units separated by a white-
space in the target language. Successive characters
aligned to the same target words are merged into a
larger source language unit. Therefore, the granu-
larity of the translation unit is defined in the given
bitext context. In order to minimize the side ef-
fects of alignment errors and to achieve segmenta-
tion consistency, a Maximum-Entropy (ME) algo-
rithm is applied to learn the source language word
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segmentation that is consistent with the transla-
tion model of an SMT system trained on the re-
segmented bitext. The process is iterated until
no further improvement in translation quality is
achieved. In order to integrate multiple word seg-
mentation into a single SMT system, the statisti-
cal translation models trained on differently seg-
mented source language corpora are merged by
characterizing the source side of each translation
model, summing up the probabilities of identical
phrase translation pairs, and rescoring the merged
translation model (see Section 2).

The proposed segmentation method is applied
to the translation of five Asian languages, i.e.,
Japanese, Korean, Thai, and two Chinese dialects
(Standard Mandarin and Taiwanese Mandarin),
into English. The utilized language resources
and the outline of the experiments are summa-
rized in Section 3. The experimental results re-
vealed that the proposed method outperforms not
only a baseline system that translates character-
ized source language sentences, but also all SMT
models trained on any of the learned word seg-
mentations. In addition, the proposed method
achieves translation results comparable to SMT
models trained on linguistically segmented bitext.

2 Word Segmentation

The word segmentation method proposed in this
paper is an unsupervised, language-independent
approach that treats the task of word segmentation
as a phrase-boundary tagging task. This method
uses a parallel text corpus consisting of initially
unigram segmented source language character se-
quences and whitespace-separated target language
words. The initial bitext is used to train a stan-
dard phrase-based SMT system (SMTchr). The
character-to-word alignment results of the SMT
training procedure1 are exploited to identify suc-
cessive source language characters aligned to the
same target language word in the respective bitext
and to merge these characters into larger transla-
tion units, defining its granularity in the given bi-
text context.

The obtained translation units are then used to
learn the word segmentation that is most consis-
tent with the phrase alignments of the given SMT
system. First, each character of the source lan-
guage text is annotated with a word-boundary in-

1For the experiments presented in Section 3, the GIZA++
toolkit was used.

dicator where only two tags are used, i.e, “E”
(end-of-word character tag) and “I” (in-word
character tag). The annotations are derived from
the SMT training corpus as described in Figure 1.

(1) proc annotate-phrase-boundaries( Bitext ) ;
(2) begin
(3) for each (Src, Trg) in {Bitext} do
(4) A← align(Src, Trg) ;
(5) for each i in {1, . . . , len(Src)-1} do
(6) Trgi ← get-target(Src[i], A) ;
(7) Trgi+1 ← get-target(Src[i+1], A) ;
(8) if null(Trgi) or Trgi 6= Trgi+1 then
(9) (∗ aligned to none or different target ∗)
(10) SrcME ← assign-tag(Src[i],′ E′) ;
(11) else
(12) (∗ aligned to the same target ∗)
(13) SrcME ← assign-tag(Src[i],′ I ′) ;
(14) fi ;
(15) CorpusME ← add(SrcME) ;
(16) od ;
(17) (∗ last source token ∗)
(18) LastSrcME ← assign-tag(Src[len(Src)],′ E′) ;
(19) CorpusME ← add(LastSrcME) ;
(20) od ;
(21) return( CorpusME ) ;
(22) end ;

Figure 1: ME Training Data Annotation

Using these alignment-based word boundary
annotations, a Maximum-Entropy (ME) method is
applied to learn the word segmentation consistent
with the SMT translation model (see Section 2.1),
to resegment the original source language corpus,
and to retrain a phrase-based SMT engine that will
hopefully achieve a better translation performance
than the initial SMT engine. This process should
be repeated as long as an improvement in transla-
tion quality is achieved. Eventually, the concate-
nation of succeeding translation units will result in
overfitting, i.e., the newly created token can only
be translated in the context of rare training data ex-
amples. Therefore, a lower translation quality due
to an increase of untranslatable source language
phrases is to be expected (see Section 2.2).

However, in order to increase the coverage and
to reduce the translation task complexity of the
statistical models, the proposed method integrates
multiple segmentation schemes into the statistical
translation models of a single SMT engine so that
longer translation units are preferred for transla-
tion, if available, and smaller translation units can
be used otherwise (see Section 2.3).

2.1 Maximum-Entropy Tagging Model

ME models provide a general purpose machine
learning technique for classification and predic-
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Lexical Context Features < t0, w−2 > < t0, w−1 >

< t0, w0 >

< t0, w+1 > < t0, w+2 >

Tag Context Features < t0, t−1 > < t0, t−1, t−2 >

Table 1: Feature Set of ME Tagging Model

tion. They are versatile tools that can handle
large numbers of features, and have shown them-
selves to be highly effective in a broad range of
NLP tasks including sentence boundary detection
or part-of-speech tagging (Berger et al., 1996).

A maximum entropy classifier is an exponential
model consisting of a number of binary feature
functions and their weights (Pietra et al., 1997).
The model is trained by adjusting the weights to
maximize the entropy of the probabilistic model
given constraints imposed by the training data. In
our experiments, we use a conditional maximum
entropy model, where the conditional probability
of the outcome given the set of features is modeled
(Ratnaparkhi, 1996). The model has the form:

p(t, c) = γ

K∏

k=0

α
fk(c,t)
k · p0

where:
t is the tag being predicted;
c is the context of t;
γ is a normalization coefficient;
K is the number of features in the model;
fk are binary feature functions;
ak is the weight of feature function fk;
p0 is the default model.

The feature set is given in Table 1. The lexical
context features consist of target words annotated
with a tag t. w0 denotes the word being tagged and
w
−2, . . . , w+2 the surrounding words. t0 denotes

the current tag, t
−1 the previous tag, etc. The tag

context features supply information about the con-
text of previous tag sequences. This conditional
model can be used as a classifier. The model is
trained iteratively, and we used the improved iter-
ative scaling algorithm (IIS) (Berger et al., 1996)
for the experiments presented in Section 3.

2.2 Iterative Bootstrap Method

The proposed iterative bootstrap method to learn
the word segmentation that is consistent with an
SMT engine is summarized in Figure 2. After
the ME tagging model is learned from the ini-
tial character-to-word alignments of the respec-
tive bitext ((1)-(4)), the obtained ME tagger is

SRC text

TRG text
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segmented SRC

(1)   characterize

evalchr
decode
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SRCtoken
TRGword

alignment

(3)   extract
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…

Selected Word
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…

better
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Figure 2: Iterative Bootstrap Method

applied to resegment the source language side of
the unsegmented parallel text corpus ((5)). This
results in a resegmented bitext that can be used
to retrain and reevaluate another engine SMT1

((6)), achieving what is hoped to be a better trans-
lation performance than the initial SMT engine
(SMTchr).

The unsupervised ME tagging method can also
be applied to the token-to-word alignments ex-
tracted during the training of the SMT1 engine
to obtain an ME tagging model ME1 capable of
handling longer translation units ((7)-(8)). Such
a bootstrap method iteratively creates a sequence
of SMT engines SMTi ((9)-(J)), each of which
reduces the translation complexity, because larger
chunks can be translated in a single step leading
to fewer word order or word disambiguation er-
rors. However, at some point, the increased length
of translation units learned from the training cor-
pus will lead to overfitting, resulting in reduced
translation performance when translating unseen
sentences. Therefore, the bootstrap method stops
when the J th resegmentation of the training cor-
pus results in a lower automatic evaluation score
for the unseen sentences than the one for the previ-
ous iteration. The ME tagging model MEJ−1 that
achieved the highest automatic translation scores
is then selected as the best single-iteration word
segmenter.

2.3 Integration of Multiple Segmentations

The integration of multiple word segmentation
schemes is carried out by merging the transla-
tion models of the SMT engines trained on the
characterized and iteratively learned segmentation
schemes. This process is performed by linearly in-
terpolating the model probabilities of each of the
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models. In our experiments, equal weights were
used; however, it might be interesting to inves-
tigate varying the weights according to iteration
number, as the latter iterations may contain more
useful segmentations.

In addition, we also remove the internal seg-
mentation of the source phrases. The advantages
are twofold. Primarily it allows decoding directly
from unsegmented text. Moreover, the segmenta-
tion of the source phrase can differ between mod-
els at differing iterations; removing the source seg-
mentation at this stage makes the phrase pairs in
the translations models at various stages in the it-
erative process consistent with one another. Con-
sequently, duplicate bilingual phrase pairs appear
in the phrase table. These duplicates are combined
by normalizing their model probabilities prior to
model interpolation.

The rescored translation model covers all trans-
lation pairs that were learned by any of the
iterative models. Therefore, the selection of
longer translation units during decoding can re-
duce the complexity of the translation task. On the
other hand, overfitting problems of single-iteration
models can be avoided because multiple smaller
source language translation units can be exploited
to cover the given input parts and to generate trans-
lation hypotheses based on the concatenation of
associated target phrase expressions. Moreover,
the merging process increases the translation prob-
abilities of the source/target translation parts that
cover the same surface string but differ only in
the segmentation of the source language phrase.
Therefore, the more often such a translation pair is
learned by different iterative models, the more of-
ten the respective target language expression will
be exploited by the SMT decoder.

The translation of unseen data using the merged
translation models is carried out by (1) character-
izing the input text and (2) applying the SMT de-
coding in a standard way.

3 Experiments
The effects of using different word segmentations
and integrating them into an SMT engine are in-
vestigated using the multilingual Basic Travel Ex-
pressions Corpus (BTEC), which is a collection
of sentences that bilingual travel experts consider
useful for people going to or coming from other
countries (Kikui et al., 2006). For the word seg-
mentation experiments, we selected five Asian
languages that do not naturally separate word

BTEC train set dev set test set
# of sen 160,000 1,000 1,000
en voc 15,390 1,262 1,292

len 7.5 7.1 7.2
ja voc 17,168 1,407 1,408

len 8.5 8.2 8.2
ko voc 17,246 1,366 1,365

len 8.0 7.7 7.8
th voc 7,354 1,081 1,053

len 7.8 7.3 7.4
zh voc 11,084 1,312 1,301

len 7.1 6.4 6.5

Table 2: Language Resources

units, i.e., Japanese (ja), Korean (ko), Thai (th),
and two dialects of Chinese (Standard Mandarin
(zh) and Taiwanese Mandarin (tw)).

Table 2 summarizes the characteristics of the
BTEC corpus used for the training (train) of the
SMT models, the tuning of model weights and
stop conditions of the iterative bootstrap method
(dev), and the evaluation of translation quality
(test). Besides the number of sentences (sen)
and the vocabulary (voc), the sentence length
(len) is also given as the average number of
words per sentence. The given statistics are ob-
tained using commonly-used linguistic segmenta-
tion tools available for the respective language,
i.e., CHASEN (ja), WORDCUT (th), ICTCLAS
(zh), HanTagger (ko). No segmentation was avail-
able for Taiwanese Mandarin and therefore no
meaningful statistics could be obtained.

For the training of the SMT models, standard
word alignment (Och and Ney, 2003) and lan-
guage modeling (Stolcke, 2002) tools were used.
Minimum error rate training (MERT) was used to
tune the decoder’s parameters and performed on
the dev set using the technique proposed in (Och
and Ney, 2003). For the translation, a multi-stack
phrase-based decoder was used.

For the evaluation of translation quality, we ap-
plied standard automatic metrics, i.e., BLEU (Pap-
ineni et al., 2002) and METEOR (Lavie and Agar-
wal, 2007). We have tested the statistical signif-
cance of our results2 using the bootstrap method
reported in (Zhang et al., 2004) that (1) performs a
random sampling with replacement from the eval-
uation data set, (2) calculates the evaluation metric
score of each engine for the sampled test sentences
and the difference between the two MT system
scores, (3) repeats the sampling/scoring step itera-

22000 iterations were used for the analysis of the auto-
matic evaluation results in this paper. All reported differences
in evaluation scores are statistically significant.
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tively, and (4) applies the Student’s t-test at a sig-
nificance level of 95% confidence to test whether
the score differences are significant.

In addition, human assessment of translation
quality was carried out using the Ranking metrics.
For the Ranking evaluation, a human grader was
asked to “rank each whole sentence translation
from Best to Worst relative to the other choices
(ties are allowed)” (Callison-Burch et al., 2007).
The Ranking scores were obtained as the average
number of times that a system was judged better
than any other system and the normalized ranks
(NormRank) were calculated on a per-judge ba-
sis for each translation task using the method of
(Blatz et al., 2003).

Section 3.1 compares the proposed method to
the baseline system that translates characterized
source language sentences and to the SMT en-
gines that are trained on iteratively learned as well
as language-dependent linguistic word segmenta-
tions. The effects of the iterative learning method
are summarized in Section 3.2.

3.1 Effects of Word Segmentation

The automatic evaluation scores of the SMT en-
gines trained on the differently segmented source
language resources are given in Table 3, where
“character” refers to the baseline system of using
character-segmented source text; “single-best”3 is
the SMT engine that is trained on the corpus seg-
mented by the best-performing iteration of the
bootstrap approach; “proposed” is the SMT engine
whose models integrate multiple word segmen-
tation schemes; and “linguistic” uses language-
dependent linguistically motivated word segmen-
tation tools. The reported scores are calculated as
the mean score of all metric scores obtained for the
iterative sampling method used for statistical sig-
nificance testing and listed as percentage figures.

The results show that the proposed method out-
performs the character (single-best) system for
each of the involved languages achieving gains
of 2.0 to 9.1 (0.4 to 1.6) BLEU points and 2.0
to 5.9 (0.7 to 4.6) METEOR points, respectively.
However, the improvements depend on the source
language. For example, the smallest gains were
obtained for Standard Mandarin, because single
characters frequently form words of their own,
thus resulting in more ambiguity than Japanese,

3This approximates the approach of (Ma and Way, 2009)
and is given as a way of showing the effect of segmentation
at multiple levels of granularity.

where consecutive hiragana or katakana charac-
ters can form larger meaningful units.

Comparing the proposed method towards lin-
guistically motivated segmenters, the results show
that the proposed method outperforms the SMT
engines using linguistic segmentation tools for
tasks such as translating Korean and Standard
Mandarin into English. Slightly lower evaluation
scores were achieved for the automatically learned
word segmentation for Japanese, although the re-
sults of the proposed method are quite similar.
This is a suprisingly strong result, given the ma-
turity of the linguistically motivated segmenters,
and given that our segmenters use only the bilin-
gual corpus used to train the SMT systems.

The Thai-English experiments expose some is-
sues that are related to the definition of what
a “character” is. Our segmentation schemes
are learned directly from the bitext without any
language-specific information, and can cope well
with most languages. However, Thai seems to be
an exceptional case in our experiments, because
(1) the Thai script is a segmental writing system
which is based on consonants but in which vowel
notation is obligatory, so that the characterization
of the baseline system affects vowel dependen-
cies, (2) it uses tone markers that are placed above
the consonant, but are treated as a single charac-
ter in our approach, and (3) vowels sounding after
a consonant are non-sequential and can occur be-
fore, after, above, or below a consonant increasing
the number of word form variations in the training
corpus and reducing the accuracy of the learned
ME tagging models. This is an interesting result
that motivates further study on how to incorpo-
rate features on language scripts into our machine
learning framework. For example, Japanese is
written in three different scripts (kanji, hiragana,
katakana). Therefore, the script class of each char-
acter could be used as an additional feature to ob-
tain the initial segmentation of the training corpus.

Finally, the results for Taiwanese Mandarin,
where no linguistic tool was available to segment
the source language text, shows that the proposed
method can be applied successfully for the trans-
lation of any language where no linguistically-
motivated segmentation tools are available.

Table 4 summarizes the subjective evaluation
results which were carried out by a paid evalua-
tion expert who is a native speaker of English. The
NormRank results confirm the findings of the au-
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BLEU
source word segmentation

language character single-best proposed linguistic
ja 36.93 39.65 41.25 41.46
ko 34.72 37.32 38.51 37.19
th 41.42 50.16 50.53 56.68
zh 36.59 37.02 38.61 38.13
tw 45.71 50.95 52.21 –

METEOR
source word segmentation

language character single-best proposed linguistic
ja 59.78 60.95 65.45 66.03
ko 58.45 60.06 64.31 63.04
th 67.22 71.22 72.58 79.02
zh 61.77 62.38 63.80 62.72
tw 70.14 73.64 74.38 –

Table 3: Automatic Evaluation

NormRank
source word segmentation

language character single-best proposed linguistic
ja 2.76 2.85 3.18 3.12
ko 2.68 2.90 3.17 3.09
th 2.65 2.95 3.05 3.43
zh 2.87 3.01 3.07 3.04
tw 2.83 2.86 3.24 –

Table 4: Subjective Evaluation

tomatic evaluation. In addition, for Japanese, the
translation outputs of the proposed method were
judged better than those of the linguistically seg-
mented SMT model.

3.2 Effects of Bootstrap Iteration

In order to get an idea of the robustness of the pro-
posed method, the changes in system performance
for each source language during the iterative boot-
strap method is given in Figure 3. The results for
BLEU and METEOR show that all languages reach
their best performance after the first or second it-
eration and then slightly, but consistently decrease
with the increased number of iterations. The rea-
son for this is the effect of overfitting caused by
the concatenation of source tokens that are aligned
to longer target phrases, resulting in the segmenta-
tion of longer translation units.

The changes in the vocabulary size and the word
length are summarized in Figure 4. The amount of
words extracted by the proposed method is much
larger than the one of the baseline system, increas-
ing the vocabulary size by a factor of 10 for Stan-
dard Mandarin and Taiwanese Mandarin, 30 for
Japanese and Korean, and 100 for Thai. It is also
larger than the vocabulary obtained for the linguis-
tic tools by a factor of 1.5 to 2.5 for all investigated
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Figure 4: Change in Vocabulary Size and Length

languages. The average vocabulary length also in-
creased for each iteration whereby the length of
the translation units learned after 10 iterations al-
most doubles the word size of the initial iteration.

The overfitting problem of the iterative boot-
strap method is illustrated in the increase of out-
of-vocabulary words, i.e. source language words
contained in the unseen evaluation data set that
cannot be translated by the respective SMT. The
results given in Figure 5 show a large increase
in OOV for the first three iterations, resulting in
lower translation qualities as listed in Figure 3.

Table 5 illustrates translation examples using
different segmentation schemes for the Japanese-
English translation task. The SMT engines that
output the best translations are marked with an as-
terisk. In the first example, the concatenation of “!#"%$'&)(

” (already midnight) by the single-best
segmentation scheme leads to an OOV word, thus
only a partial translation can be achieved. How-
ever, the problem can be resolved using the pro-
posed method. The second example is best trans-
lated using the single-best word segmentation that
correctly handles the sentence coordination. The
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baseline system omits the sentence coordination
information, resulting in an unacceptable transla-
tion. The third examples illustrates that longer to-
kens reduce the translation complexity and thus
can be translated better than the other segmenta-
tion that cause more ambiguities.

4 Conclusions

This paper proposes a new language-independent
method to segment languages that do not use
whitespace characters to separate meaningful
word units in an unsupervised manner in order to
improve the performance of a state-of-the-art SMT
system. The proposed method does not need any
linguistic information about the source language
which is important when building SMT systems
for the translation of relatively resource-poor lan-
guages which frequently lack morphological anal-
ysis tools. In addition, the development costs
are far less than those for developing linguistic
word segmentation tools or even paying humans
to segment the data sets manually, since only the
bilingual corpus used to train the SMT system is
needed to train the segmenter.

The effectiveness of the proposed method was
investigated for the translation of Japanese, Ko-
rean, Thai, and two Chinese dialects (Standard
Mandarin and Taiwanese Mandarin) into English
for the domain of travel conversations. The auto-
matic evaluation of the translation results showed
consistent improvements of 2.0 to 9.1 BLEU points
and 2.0 to 5.9 METEOR points compared to a
baseline system that translates characterized input.
Moreover, it improves the best performing SMT
engine of the iterative learning procedure by 0.4
to 1.6 BLEU points and 0.7 to 4.6 METEOR points.

In addition, the proposed method achieved
translation results similar to SMT models trained
on bitext segmented with linguistically motivated
tools, even outperforming these for Korean, Chi-
nese, and Japanese in the human evaluation, al-
though no external information and only the given
bitext was used to train the segmentation models.

linguistic seg:
�	�

/ 
 /
����

/ � / ��� / ����� / ��� / ��

trans: Yes. Let’s see. It’s midnight.

character∗ seg:
�

/
�

/ 
 /
�

/
�

/


/ � / � / � / � / � / � / � /
� / � / 


trans: Yes. Well, it’s already midnight.
single-best seg:

�	� 
 /
����

/ � / ��������� / � / ����

trans: Yes. Let ’s see.

proposed∗ seg:
�

/
�

/ 
 /
�

/
�

/


/ � / � / � / � / � / � / � /
� / � / 


trans: Yes. Well, it’s already midnight.

linguistic seg: � � �"! / # / $&%(' / ) / ��� / # / � /
'	' / * / + / , � / - / .0/ 12' / 


trans: I’d like a pair of jeans.
Could you recommend a good shop?

character seg: � /
�

/
�

/
!

/ # / $ / % / ' / ) / � / � / # / � /
' / ' / * / + / , /

�
/ - / . / / / 1 / ' / 


trans: Could you recommend a good ’d like
a pair of jeans.

single-best∗ seg: � � �"! / #3$&% / ' / )3�	�	#4� /
'	' / * / +5, � / -6.0/ 12' / 


trans: I’d like some jeans.
Could you recommend a good shop?

proposed seg: � /
�

/
�

/
!

/ # / $ / % / ' / ) / � / � / # / � /
' / ' / * / + / , /

�
/ - / . / / / 1 / ' / 


trans: I ’d like a pair of jeans and
could you recommend a good shop?

linguistic seg: 7&8 / ) / 9�: / ;<� / = / ��> / ;<� / ? / 

trans: Will it be ready by this afternoon?

character seg: 7 / 8 / ) / 9 / : / ; / � / = / � / > / ; / � /
? / 


trans: It’ll be ready by this afternoon?
single-best seg: 7&8@) / 9�:A;<� / = / ��>4; / �	?4


trans: Will it be ready by this afternoon?
proposed∗ seg: 7 / 8 / ) / 9 / : / ; / � / = / � / > / ; / � /

? / 

trans: Can you have these ready by this

afternoon?

Table 5: Sample Translations

The experiments using Thai are interesting be-
cause the script is a segmental writing system us-
ing tone markers and vowel dependencies. This
exposed some issues that are related to the defini-
tion of what a “character” is and motivates further
study on how to incorporate features on language
scripts into our machine learning framework.
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Abstract

We present a new translation model
that include undecorated hierarchical-style
phrase rules, decorated source-syntax
rules, and partially decorated rules.

Results show an increase in translation
performance of up to 0.8% BLEU for
German–English translation when trained
on the news-commentary corpus, using
syntactic annotation from a source lan-
guage parser. We also experimented with
annotation from shallow taggers and found
this increased performance by 0.5% BLEU.

1 Introduction

Hierarchical decoding is usually described as a
formally syntactic model without linguistic com-
mitments, in contrast with syntactic decoding
which constrains rules and production with lin-
guistically motivated labels. However, the decod-
ing mechanism for both hierarchical and syntactic
systems are identical and the rule extraction are
similar.

Hierarchical and syntax statistical machine
translation have made great progress in the last
few years and can claim to represent the state of
the art in the field. Both use synchronous con-
text free grammar (SCFG) formalism, consisting
of rewrite rules which simultaneously parse the in-
put sentence and generate the output sentence. The
most common algorithm for decoding with SCFG
is currently CKY+ with cube pruning works for
both hierarchical and syntactic systems, as imple-
mented in Hiero (Chiang, 2005), Joshua (Li et al.,
2009), and Moses (Hoang et al., 2009)

Rewrite rules in hierarchical systems have gen-
eral applicability as their non-terminals are undec-
orated, giving hierarchical system broad coverage.
However, rules may be used in inappropriate sit-
uations without the labeled constraints. The gen-
eral applicability of undecorated rules create spu-
rious ambiguity which decreases translation per-
formance by causing the decoder to spend more
time sifting through duplicate hypotheses. Syntac-
tic systems makes use of linguistically motivated
information to bias the search space at the expense
of limiting model coverage.

This paper presents work on combining hier-
archical and syntax translation, utilizing the high
coverage of hierarchical decoding and the in-
sights that syntactic information can bring. We
seek to balance the generality of using undeco-
rated non-terminals with the specificity of labeled
non-terminals. Specifically, we will use syntac-
tic labels from a source language parser to label
non-terminal in production rules. However, other
source span information, such as chunk tags, can
also be used.

We investigate two methods for combining the
hierarchical and syntactic approach. In the first
method, syntactic translation rules are used con-
currently with a hierarchical phrase rules. Each
ruleset is trained independently and used concur-
rently to decode sentences. However, results for
this method do not improve.

The second method uses one translation model
containing both hierarchical and syntactic rules.
Moreover, an individual rule can contain both
decorated syntactic non-terminals, and undeco-
rated hierarchical-style non-terminals (also, the
left-hand-side non-terminal may, or may not be
decorated). This results in a 0.8% improvement
over the hierarchical baseline and analysis suggest
that long-range ordering has been improved.

We then applied the same methods but using
linguistic annotation from a chunk tagger (Abney,
1991) instead of a parser and obtained an improve-
ment of 0.5% BLEU over the hierarchical base-
line, showing that gains with additional source-
side annotation can be obtained with simpler tools.

2 Past Work

Hierarchical machine translation (Chiang, 2005)
extends the phrase-based model by allowing the
use of non-contiguous phrase pairs (’production
rules’). It promises better re-ordering of transla-
tion as the reordering rules are an implicit part of
the translation model. Also, hierarchical rules fol-
low the recursive structure of the sentence, reflect-
ing the linguistic notion of language.

However, the hierarchical model has several
limitations. The model makes no use of linguis-
tic information, thus creating a simple model with
broad coverage. However, (Chiang, 2005) also
describe heuristic constraints that are used during
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rule extraction to reduce spurious ambiguity. The
resulting translation model does reduces spurious
ambiguity but also reduces the search space in an
arbitrary manner which adversely affects transla-
tion quality.

Syntactic labels from parse trees can be used
to annotate non-terminals in the translation model.
This reduces incorrect rule application by restrict-
ing rule extraction and application. However,
as noted in (Ambati and Lavie, 2008) and else-
where,the naı̈ve approach of constraining every
non-terminal to a syntactic constituent severely
limits the coverage of the resulting grammar,
therefore, several approaches have been used to
improve coverage when using syntactic informa-
tion.

Zollmann and Venugopal (2006) allow rules to
be extracted where non-terminals do not exactly
span a target constituent. The non-terminals are
then labeled with complex labels which amalga-
mates multiple labels in the span. This increase
coverage at the expense of increasing data sparsity
as the non-terminal symbol set increases dramati-
cally. Huang and Chiang (2008) use parse infor-
mation of the source language, production rules
consists of source tree fragments and target lan-
guages strings. During decoding, a packed for-
est of the source sentence is used as input, the
production rule tree fragments are applied to the
packed forest. Liu et al. (2009) uses joint decod-
ing with a hierarchical and tree-to-string model
and find that translation performance increase for a
Chinese-English task. Galley et al. (2004) creates
minimal translation rules which can explain a par-
allel sentence pair but the rules generated are not
optimized to produce good translations or cover-
age in any SMT system. This work was extended
and described in (Galley et al., 2006) which cre-
ates rules composed of smaller, minimal rules, as
well as dealing with unaligned words. These mea-
sures are essential for creating good SMT systems,
but again, the rules syntax are strictly constrained
by a parser.

Others have sought to add soft linguistic con-
straints to hierarchical models using addition fea-
ture functions. Marton and Resnik (2008) add fea-
ture functions to penalize or reward non-terminals
which cross constituent boundaries of the source
sentence. This follows on from earlier work in
(Chiang, 2005) but they see gains when finer grain
feature functions which different constituency
types. The weights for feature function is tuned
in batches due to the deficiency of MERT when
presented with many features. Chiang et al. (2008)
rectified this deficiency by using the MIRA to tune

all feature function weights in combination. How-
ever, the translation model continues to be hierar-
chical.

Chiang et al. (2009) added thousands of
linguistically-motivated features to hierarchical
and syntax systems, however, the source syntax
features are derived from the research above. The
translation model remain constant but the parame-
terization changes.

Shen et al. (2009) discusses soft syntax con-
straints and context features in a dependency tree
translation model. The POS tag of the target head
word is used as a soft constraint when applying
rules. Also, a source context language model and
a dependency language model are also used as fea-
tures.

Most SMT systems uses the Viterbi approxi-
mation whereby the derivations in the log-linear
model is not marginalized, but the maximum
derivation is returned. String-to-tree models build
on this so that the most probable derivation, in-
cluding syntactic labels, is assumed to the most
probable translation. This fragments the deriva-
tion probability and the further partition the search
space, leading to pruning errors. Venugopal et al.
(2009) attempts to address this by efficiently es-
timating the score over an equivalent unlabeled
derivation from a target syntax model.

Ambati and Lavie (2008); Ambati et al. (2009)
notes that tree-to-tree often underperform models
with parse tree only on one side due to the non-
isomorphic structure of languages. This motivates
the creation of an isomorphic backbone into the
target parse tree, while leaving the source parse
unchanged.

3 Model

In extending the phrase-based model to the hier-
archical model, non-terminals are used in transla-
tion rules to denote subphrases. Hierarchical non-
terminals are undecorated so are unrestricted to the
span they cover. In contrast, SCFG-based syntac-
tic models restrict the extraction and application
of non-terminals, typically to constituency spans
of a parse tree or forest. Our soft syntax model
combine the hierarchical and source-syntactic ap-
proaches, allowing translation rules with undeco-
rated and decorated non-terminals with informa-
tion from a source language tool.

We give an example of the rules extracted from
an aligned sentence in Figure 1, with a parse tree
on the source side.

Lexicalized rules with decorated non-terminals
are extracted, we list five (non-exhaustive) exam-
ples below.
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Figure 1: Aligned parsed sentence

NP → Musharrafs letzter Akt

# Musharraf ′s Last Act

NP → NE1 letzter Akt # X1 Last Act

NP → NE1 ADJA2 Akt # X1 X2 Act

NP → NE1 letzter NN2 # X1 Last X2

TOP → NE1 ADJA2 Akt ? # X1 X2 Act ?

Hierarchical style rules are also extracted where
the span doesn’t exactly match a parse constituent.
We list 2 below.

X → letzter Akt # Last Act

X → letzter X1 # Last X1

Unlexicalized rules with decorated non-
terminals are also extracted:

TOP → NP1 PUNC2 # X1 X2

NP → NE1 ADJA2 NN3 # X1 X2 X3

Rules are also extracted which contains a mix-
ture of decorated and undecorated non-terminals.
These rules can also be lexicalized or unlexical-
ized. A non-exhaustive sample is given below:

X → ADJA1 Akt # X1 Act

NP → NE1 X2 # X1 X2

TOP → NE1 letzter X2 # X1 Last X2

At decoding time, the parse tree of the input
sentence is available to the decoder. Decorated
non-terminals in rules must match the constituent
span in the input sentence but the undecorated X
symbol can match any span.

Formally, we model translation as a string-
to-string translation using a synchronous CFG
that constrain the application of non-terminals to
matching source span labels. The source words
and span labels are represented as an unweighted
word lattice, < V,E >, where each edge in the
lattice correspond to a word or non-terminal label
over the corresponding source span. In the soft
syntax experiments, edges with the default source
label, X , are also created for all spans. Nodes
in the lattice represent word positions in the sen-
tence.

We encode the lattice in a chart, as described
in (Dyer et al., 2008). A chart is is a tuple of 2-
dimensional matrices < F,R >. Fi,j is the word
or non-terminal label of the jth transition starting
word position i. Ri,j is the end word position of
the node on the right of the jth transition leaving
word position i.

The input sentence is decoded with a set of
translation rules of the form

X →< αLs, γ,∼>

where α and γ and strings of terminals and non-
terminals. Ls and the string α are drawn from the
same source alphabet, ∆s. γ is the target string,
also consisting of terminals and non-terminals. ∼
is the one-to-one correspondence between non-
terminals in α and γ. Ls is the left-hand-side of
the source. As a string-to-string model, the left-
hand-side of the target is always the default target
non-terminal label, X .

Decoding follows the CKY+ algorithms which
process contiguous spans of the source sentence
bottom up. We describe the algorithm as inference
rules, below, omitting the target side for brevity.

Initialization

[X → •αLs, i, i]
(X → αLs) ∈ G

Terminal Symbol

[X → α • Fj,kβLs, i, j]
[X → αFj,k • βLs, i, j + 1]

Non-Terminal Symbol

[X → α • Fj,kβLs, i, j] [X, j,Rj,k]

[X → αFj,k • βLs, i, Rj,k]
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Left Hand Side

[X → α • Ls, i, Ri,j ] [Fi,j = Ls]

[X → αLs•, i, Ri,j ]

Goal
[X → αLs•, 0, |V | − 1]

This model allows translation rules to take ad-
vantage of both syntactic label and word context.
The presence of default label edges between every
node allows undecorated non-terminals to be ap-
plied to any span, allowing flexibility in the trans-
lation model.

This contrasts with the approach by (Zollmann
and Venugopal, 2006) in attempting to improve the
coverage of syntactic translation. Rather than cre-
ating ad-hoc schemes to categories non-terminals
with syntactic labels when they do not span syn-
tactic constituencies, we only use labels that are
presented by the parser or shallow tagger. Nor do
we try to expand the space where rules can ap-
ply by propagating uncertainty from the parser in
building input forests, as in (Mi et al., 2008), but
we build ambiguity into the translation rule.

The model also differs from (Marton and
Resnik, 2008; Chiang et al., 2008, 2009) by adding
informative labels to rule non-terminals and re-
quiring them to match the source span label. The
soft constraint in our model pertain not to a ad-
ditional feature functions based on syntactic infor-
mation, but to the availability of syntactic and non-
syntactic informed rules.

4 Parameterization

In common with most current SMT systems, the
decoding goal of finding the most probable target
language sentence t̂, given a source language sen-
tence s

t̂ = argmaxt p(t|s) (1)

The argmax function defines the search objec-
tive of the decoder. We estimate p(t|s) by decom-
posing it into component models

p(t|s) =
1

Z

∏
m

h′
m(t, s)λm (2)

where h′
m(t, s) is the feature function for compo-

nent m and λm is the weight given to component
m. Z is a normalization factor which is ignored in
practice. Components are translation model scor-
ing functions, language model, and other features.

The problem is typically presented in log-space,
which simplifies computations, but otherwise does

not change the problem due to the monotonicity of
the log function (hm = log h′

m)

log p(t|s) =
∑
m

λm hm(t, s) (3)

An advantage of our model over (Marton and
Resnik, 2008; Chiang et al., 2008, 2009) is the
number of feature functions remains the same,
therefore, the tuning algorithm does not need to be
replaced; we continue to use MERT (Och, 2003).

5 Rule Extraction
Rule extraction follows the algorithm described in
(Chiang, 2005). We note the heuristics used for hi-
erarchical phrases extraction include the following
constraints:

1. all rules must be at least partially lexicalized,
2. non-terminals cannot be consecutive,
3. a maximum of two non-terminals per rule,
4. maximum source and target span width of 10

word
5. maximum of 5 source symbols

In the source syntax model, non-terminals are re-
stricted to source spans that are syntactic phrases
which severely limits the rules that can be ex-
tracted or applied during decoding. Therefore, we
can adapt the heuristics, dropping some of the con-
straints, without introducing too much complexity.

1. consecutive non-terminals are allowed
2. a maximum of three non-terminals,
3. all non-terminals and LHS must span a parse

constituent

In the soft syntax model, we relax the constraint
of requiring all non-terminals to span parse con-
stituents. Where there is no constituency spans,
the default symbol X is used to denote an undeco-
rated non-terminal. This gives rise to rules which
mixes decorated and undecorated non-terminals.

To maintain decoding speed and minimize spu-
rious ambiguity, item (1) in the syntactic extrac-
tion heuristics is adapted to prohibit consecutive
undecorated non-terminals. This combines the
strength of syntactic rules but also gives the trans-
lation model more flexibility and higher coverage
from having undecorated non-terminals. There-
fore, the heuristics become:

1. consecutive non-terminals are allowed, but
consecutive undecorated non-terminals are
prohibited

2. a maximum of three non-terminals,
3. all non-terminals and LHS must span a parse

constituent
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5.1 Rule probabilities
Maximum likelihood phrase probabilities, p(̄t|̄s),
are calculated for phrase pairs, using fractional
counts as described in (Chiang, 2005). The max-
imum likelihood estimates are smoothed using
Good-Turing discounting (Foster et al., 2006). A
phrase count feature function is also create for
each translation model, however, the lexical and
backward probabilities are not used.

6 Decoding

We use the Moses implementation of the SCFG-
based approach (Hoang et al., 2009) which sup-
port hierarchical and syntactic training and decod-
ing used in this paper. The decoder implements
the CKY+ algorithm with cube pruning, as well as
histogram and beam pruning, all pruning param-
eters were identical for all experiments for fairer
comparison.

All non-terminals can cover a maximum of 7
source words, similar to the maximum rule span
feature other hierarchical decoders to speed up de-
coding time.

7 Experiments

We trained on the New Commentary 2009 cor-
pus1, tuning on a hold-out set. Table 1 gives more
details on the corpus. nc test2007 was used for
testing.

German English
Train Sentences 82,306

Words 2,034,373 1,965,325
Tune Sentences 2000
Test Sentences 1026

Table 1: Training, tuning, and test conditions

The training corpus was cleaned and filtered us-
ing standard methods found in the Moses toolkit
(Koehn et al., 2007) and aligned using GIZA++
(Och and Ney, 2003). Standard MERT weight tun-
ing was used throughout. The English half of the
training data was also used to create a trigram lan-
guage model which was used for each experiment.
All experiments use truecase data and results are
reported in case-sensitive BLEU scores (Papineni
et al., 2001).

The German side was parsed with the Bitpar
parser2. 2042 sentences in the training corpus
failed to parse and were discarded from the train-
ing for both hierarchical and syntactic models to

1http://www.statmt.org/wmt09/
2http://www.ims.uni-stuttgart.de/tcl/SOFTWARE/BitPar.html

# Model % BLEU
Using parse tree

1 Hierarchical 15.9
2 Syntax rules 14.9
3 Joint hier. + syntax rules 16.1
4 Soft syntax rules 16.7

Using chunk tags
5 Hierarchical 16.3
6 Soft syntax 16.8

Table 2: German–English results for hierarchical
and syntactic models, in %BLEU

ensure that train on identical amounts of data.
Similarly, 991 out of 1026 sentences were parsable
in the test set. To compare like-for-like, the base-
line translates the same 991 sentences, but evalu-
ated over 1026 sentences. (In the experiments with
chunk tags below, all 1026 sentences are used).

We use as a baseline the vanilla hierarchical
model which obtained a BLEU score of 15.9%
(see Table 2, line 1).

7.1 Syntactic translation
Using the naı̈ve translation model constrained
with syntactic non-terminals significantly de-
creases translation quality, Table 2, line 2. We
then ran hierarchical concurrently with the syntac-
tic models, line 3, but see little improvement over
the hierarchical baseline. However, we see a gain
of 0.8% BLEU when using the soft syntax model.

7.2 Reachability
The increased performance using the soft syn-
tax model can be partially explained by studying
the effect of changes to the extraction and decod-
ing algorithms has to the capacity of the transla-
tion pipeline. We run some analysis in which we
trained the phrase models with a corpus of one
sentence and attempt to decode the same sentence.
Pruning and recombination were disabled during
decoding to negate the effect of language model
context and model scores.

The first thousand sentences of the training cor-
pus was analyzed, Table 3. The hierarchical model
successfully decode over half of the sentences
while a translation model constrained by a source
syntax parse tree manages only 113 sentences, il-
lustrating the severe degradation in coverage when
a naive syntax model is used.

Decoding with a hierarchical and syntax model
jointly (line 3) only decode one extra sentence
over the hierarchical model, suggesting that the
expressive power of the hierarchical model almost
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# Model Reachable sentences
1 Hierarchical 57.8%
2 Syntax rules 11.3%
3 Joint hier. + syntax rules 57.9%
4 Soft syntax rules 58.5%

Table 3: Reachability of 1000 training sentences:
can they be translated with the model?

Figure 2: Source span lengths

completely subsumes that of the syntactic model.
The MERT tuning adjust the weights so that the
syntactic model is very rarely applied during joint
decoding, suggesting that the tuning stage prefers
the broader coverage of the hierarchical model
over the precision of the syntactic model.

However, the soft syntax model slightly in-
creases the reachability of the target sentences,
lines 4.

7.3 Rule Span Width
The soft syntactic model contains rules with three
non-terminals, as opposed to 2 in the hierarchical
model, and consecutive non-terminals in the hope
that the rules will have the context and linguistic
information to apply over longer spans. There-
fore, it is surprising that when decoding with a
soft syntactic grammar, significantly more words
are translated singularly and the use of long span-
ning rules is reduced, Figure 2.

However, looking at the usage of the glue rules
paints a different picture. There is significantly
less usage of the glue rules when decoding with
the soft syntax model, Figure 3. The use of
the glue rule indicates a failure of the translation
model to explain the translation so the decrease
in its usage is evidence of the better explanatory
power of the soft syntactic model.

An example of an input sentence, and the best
translation found by the hierarchical and soft syn-
tax model can be seen in Table 4. Figure 4 is the

Figure 3: Length and count of glue rules used de-
coding test set

Figure 4: Example input parse tree

parse tree given to the soft syntax model.

Input
laut János Veres wäre dies im ersten Quartal 2008

möglich .
Hierarchical output

according to János Veres this in the first quarter of 2008
would be possible .

Soft Syntax
according to János Veres this would be possible in the

first quarter of 2008 .

Table 4: Example input and best output found

Both output are lexically identical but the output
of the hierarchical model needs to be reordered to
be grammatically correct. Contrast the derivations
produced by the hierarchical grammar, Figure 5,
with that produced with the soft syntax model,
Figure 6. The soft syntax derivation makes use
of several non-lexicalized to dictate word order,
shown below.

X → NE1 NE2 # X1 X2

X → V AFIN1 PDS2 # X1 X2

X → ADJA1 NN2 # X1 X2

X → APPRART1 X2 CARD3 # X1 X2 X3

X → PP1 X2 PUNC3 # X2 X1 X3
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Figure 5: Derivation with Hierarchical model

Figure 6: Derivation with soft syntax model

The soft syntax derivation include several rules
which are partially decorated. Crucially, the last
rule in the list above reorders the PP phrase
and the non-syntactic phrase X to generate the
grammatically correct output. The other non-
lexicalized rules monotonically concatenate the
output. This can be performed by the glue rule, but
nevertheless, the use of empirically backed rules
allows the decoder to better compare hypotheses.
The derivation also rely less on the glue rules than
the hierarchical model (shown in solid rectangles).

Reducing the maximum number of non-
terminals per rule reduces translation quality but
increasing it has little effect on the soft syntax
model, Table 5. This seems to indicate that non-
terminals are useful as context when applying
rules up to a certain extent.

7.4 English to German
We experimented with the reverse language direc-
tion to see if the soft syntax model still increased

# non-terms % BLEU
2 16.5
3 16.8
5 16.8

Table 5: Effect on %BLEU of varying number of
non-terminals

# Model % BLEU
1 Hierarchical 10.2
2 Soft syntax 10.6

Table 6: English–German results in %BLEU

translation quality. The results were positive but
less pronounced, Table 6.

7.5 Using Chunk Tags

Parse trees of the source language provide use-
ful information that we have exploited to create a
better translation model. However, parsers are an
expensive resource as they frequently need manu-
ally annotated training treebanks. Parse accuracy
is also problematic and particularly brittle when
given sentences not in the same domain as the
training corpus. This also causes some sentences
to be unparseable. For example, our original test
corpus of 1026 sentences contained 35 unparsable
sentences. Thus, high quality parsers are unavail-
able for many source languages of interest.

Parse forests can be used to mitigate the accu-
racy problem, allowing the decoder to choose from
many alternative parses, (Mi et al., 2008).

The soft syntax translation model is not depen-
dent on the linguistic information being in a tree
structure, only that the labels identify contiguous
spans. Chunk taggers (Abney, 1991) does just
that. They offer higher accuracy than syntactic
parser, are not so brittle to out-of-domain data and
identify chunk phrases similar to parser-based syn-
tactic phrases that may be useful in guiding re-
ordering.

We apply the soft syntax approach as in the pre-
vious sections but replacing the use of parse con-
stituents with chunk phrases.

Figure 7: Chunked sentence
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7.6 Experiments with Chunk Tags
We use the same data as described earlier in
this chapter to train, tune and test our approach.
The Treetagger chunker (Schmidt and Schulte im
Walde, 2000) was used to tag the source (German)
side of the corpus. The chunker successfully pro-
cessed all sentences in the training and test dataset
so no sentences were excluded. The increase train-
ing data, as well as the ability to translate all sen-
tences in the test set, explains the higher hierar-
chical baseline than the previous experiments with
parser data. We use the noun, verb and preposi-
tional chunks, as well as part-of-speech tags, emit-
ted by the chunker.

Results are shown in Table 2, line 5 & 6. Using
chunk tags, we see a modest gain of 0.5% BLEU.

The same example sentence in Table 4 is shown
with chunk tags in Figure 7. The soft syntax
model with chunk tags produced the derivation
tree shown in Figure 8. The derivation make use
of an unlexicalized rule local reordering. In this
example, it uses the same number of glue rule as
the hierarchical derivation but the output is gram-
matically correct.

Figure 8: Translated chunked sentence

However, overall, the number of glue rules used
shows the same reduction that we saw using soft
syntax in the earlier section, as can be seen in Fig-
ure 9. Again, the soft syntax model, this time us-
ing chunk tags, is able to reduce the use of the glue
rule with empirically informed rules.

8 Conclusion

We show in this paper that combining the gener-
ality of the hierarchical approach with the speci-
ficity of syntactic approach can improve transla-

Figure 9: Chunk - Length and count of glue rules
used decoding test set

tion. A reason for the improvement is the bet-
ter long-range reordering made possible by the in-
crease capacity of the translation model.

Future work in this direction includes us-
ing tree-to-tree approaches, automatically created
constituency labels, and back-off methods be-
tween decorated and undecorated rules.
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Abstract
This paper proposes a novel method
for long distance, clause-level reordering
in statistical machine translation (SMT).
The proposed method separately translates
clauses in the source sentence and recon-
structs the target sentence using the clause
translations with non-terminals. The non-
terminals are placeholders of embedded
clauses, by which we reduce complicated
clause-level reordering into simple word-
level reordering. Its translation model
is trained using a bilingual corpus with
clause-level alignment, which can be au-
tomatically annotated by our alignment
algorithm with a syntactic parser in the
source language. We achieved signifi-
cant improvements of 1.4% in BLEU and
1.3% in TER by using Moses, and 2.2%
in BLEU and 3.5% in TER by using
our hierarchical phrase-based SMT, for
the English-to-Japanese translation of re-
search paper abstracts in the medical do-
main.

1 Introduction

One of the common problems of statistical ma-
chine translation (SMT) is to overcome the differ-
ences in word order between the source and target
languages. This reordering problem is especially
serious for language pairs with very different word
orders, such as English-Japanese. Many previous
studies on SMT have addressed the problem by
incorporating probabilistic models into SMT re-
ordering. This approach faces the very large com-
putational cost of searching over many possibili-
ties, especially for long sentences. In practice the
search can be made tractable by limiting its re-
ordering distance, but this also renders long dis-
tance movements impossible. Some recent stud-
ies avoid the problem by reordering source words

prior to decoding. This approach faces difficul-
ties when the input phrases are long and require
significant word reordering, mainly because their
reordering model is not very accurate.

In this paper, we propose a novel method for
translating long sentences that is different from
the above approaches. Problematic long sentences
often include embedded clauses1 such as rela-
tive clauses. Such an embedded (subordinate)
clause can usually be translated almost indepen-
dently of words outside the clause. From this
viewpoint, we propose a divide-and-conquer ap-
proach: we aim to translate the clauses sepa-
rately and reconstruct the target sentence using the
clause translations. We first segment a source sen-
tence into clauses using a syntactic parser. The
clauses can include non-terminals as placeholders
for nested clauses. Then we translate the clauses
with a standard SMT method, in which the non-
terminals are reordered as words. Finally we re-
construct the target sentence by replacing the non-
terminals with their corresponding clause transla-
tions. With this method, clause-level reordering is
reduced to word-level reordering and can be dealt
with efficiently. The models for clause translation
are trained using a bilingual corpus with clause-
level alignment. We also present an automatic
clause alignment algorithm that can be applied to
sentence-aligned bilingual corpora.

In our experiment on the English-to-Japanese
translation of multi-clause sentences, the proposed
method improved the translation performance by
1.4% in BLEU and 1.3% in TER by using Moses,
and by 2.2% in BLEU and 3.5% in TER by using
our hierarchical phrase-based SMT.

The main contribution of this paper is two-fold:
1Although various definitions of a clause can be

considered, this paper follows the definition of ”S”
(sentence) in Enju. It basically follows the Penn Tree-
bank II scheme but also includes SINV, SQ, SBAR. See
http://www-tsujii.is.s.u-tokyo.ac.jp/enju/enju-manual/enju-
output-spec.html#correspondence for details.
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1. We introduce the idea of explicit separa-
tion of in-clause and outside-clause reorder-
ing and reduction of outside-clause reorder-
ing into common word-level reordering.

2. We propose an automatic clause alignment
algorithm, by which our approach can be
used without manual clause-level alignment.

This paper is organized as follows. The next
section reviews related studies on reordering. Sec-
tion 3 describes the proposed method in detail.
Section 4 presents and discusses our experimen-
tal results. Finally, we conclude this paper with
our thoughts on future studies.

2 Related Work

Reordering in SMT can be roughly classified into
two approaches, namely a search in SMT decod-
ing and preprocessing.

The former approach is a straightforward way
that models reordering in noisy channel transla-
tion, and has been studied from the early period
of SMT research. Distance-based reordering is a
typical approach used in many previous studies re-
lated to word-based SMT (Brown et al., 1993) and
phrase-based SMT (Koehn et al., 2003). Along
with the advances in phrase-based SMT, lexical-
ized reordering with a block orientation model was
proposed (Tillmann, 2004; Koehn et al., 2005).
This kind of reordering is suitable and commonly
used in phrase-based SMT. On the other hand,
a syntax-based SMT naturally includes reorder-
ing in its translation model. A lot of research
work undertaken in this decade has used syntac-
tic parsing for linguistically-motivated translation.
(Yamada and Knight, 2001; Graehl and Knight,
2004; Galley et al., 2004; Liu et al., 2006). Wu
(1997) and Chiang (2007) focus on formal struc-
tures that can be extracted from parallel corpora,
instead of a syntactic parser trained using tree-
banks. These syntactic approaches can theoret-
ically model reordering over an arbitrary length,
however, long distance reordering still faces the
difficulty of searching over an extremely large
search space.

The preprocessing approach employs deter-
ministic reordering so that the following trans-
lation process requires only short distance re-
ordering (or even a monotone). Several previ-
ous studies have proposed syntax-driven reorder-
ing based on source-side parse trees. Xia and

McCord (2004) extracted reordering rules auto-
matically from bilingual corpora for English-to-
French translation; Collins et al. (2005) used
linguistically-motivated clause restructuring rules
for German-to-English translation; Li et al. (2007)
modeled reordering on parse tree nodes by us-
ing a maximum entropy model with surface and
syntactic features for Chinese-to-English trans-
lation; Katz-Brown and Collins (2008) applied
a very simple reverse ordering to Japanese-to-
English translation, which reversed the word order
in Japanese segments separated by a few simple
cues; Xu et al. (2009) utilized a dependency parser
with several hand-labeled precedence rules for re-
ordering English to subject-object-verb order like
Korean and Japanese. Tromble and Eisner (2009)
proposed another reordering approach based on a
linear ordering problem over source words with-
out a linguistically syntactic structure. These pre-
processing methods reorder source words close
to the target-side order by employing language-
dependent rules or statistical reordering models
based on automatic word alignment. Although
the use of language-dependent rules is a natural
and promising way of bridging gaps between lan-
guages with large syntactic differences, the rules
are usually unsuitable for other language groups.
On the other hand, statistical methods can be ap-
plied to any language pairs. However, it is very
difficult to reorder all source words so that they are
monotonic with the target words. This is because
automatic word alignment is not usually reliable
owing to data sparseness and the weak modeling
of many-to-many word alignments. Since such
a reordering is not complete or may even harm
word ordering consistency in the source language,
these previous methods further applied reordering
in their decoding. Li et al. (2007) used N-best
reordering hypotheses to overcome the reordering
ambiguity.

Our approach is different from those of previous
studies that aim to perform both short and long dis-
tance reordering at the same time. The proposed
method distinguishes the reordering of embedded
clauses from others and efficiently accomplishes it
by using a divide-and-conquer framework. The re-
maining (relatively short distance) reordering can
be realized in decoding and preprocessing by the
methods described above. The proposed frame-
work itself does not depend on a certain language
pair. It is based on the assumption that a source

419



language clause is translated to the corresponding
target language clause as a continuous segment.
The only language-dependent resource we need is
a syntactic parser of the source language. Note
that clause translation in the proposed method is a
standard MT problem and therefore any reordering
method can be employed for further improvement.

This work is inspired by syntax-based meth-
ods with respect to the use of non-terminals. Our
method can be seen as a variant of tree-to-string
translation that focuses only on the clause struc-
ture in parse trees and independently translates the
clauses. Although previous syntax-based methods
can theoretically model this kind of derivation, it
is practically difficult to decode long multi-clause
sentences as described above.

Our approach is also related to sentence sim-
plification and is intended to obtain simple and
short source sentences for better translation. Kim
and Ehara (1994) proposed a rule-based method
for splitting long Japanese sentences for Japanese-
to-English translation; Furuse et al. (1998) used
a syntactic structure to split ill-formed inputs in
speech translation. Their splitting approach splits
a sentence sequentially to obtain short segments,
and does not undertake their reordering.

Another related field is clause identification
(Tjong et al., 2001). The proposed method is not
limited to a specific clause identification method
and any method can be employed, if their clause
definition matches the proposed method where
clauses are independently translated.

3 Proposed Method

The proposed method consists of the following
steps illustrated in Figure 1.
During training:

1) clause segmentation of source sentences with
a syntactic parser (section 3.1)

2) alignment of target words with source clauses
to develop a clause-level aligned corpus (section
3.2)

3) training the clause translation models using
the corpus (section 3.3)
During testing:

1) clause translation with the clause translation
models (section 3.4)

2) sentence reconstruction based on non-
terminals (section 3.5)

Bilingual
Corpus

(Training)

source

target

parse & clause
segmentation

parse &
clause

segmen-
tation

Source Sentences
(clause-segmented)

Word Alignment
Model

Target Word Bigram
Language Model

LM training

word
alignment

Bilingual Corpus
(clause-aligned)

automatic clause alignment

Clause
Translation Models

(Phrase Table, N-gram LMs, ...)

training from scratch

Bilingual
Corpus

(Development)
(clause-segmented)

MERT

Test Sentence

Sentence
Translation

clause

clause

clause

clause
translation

clause
translation

clause
translation

sentence reconstruction
based on non-terminals

translation

Original (sentence-aligned)
corpus can also be used

Figure 1: Overview of proposed method.

3.1 Clause Segmentation of Source Sentences

Clauses in source sentences are identified by a
syntactic parser. Figure 2 shows a parse tree for
the example sentence below. The example sen-
tence has a relative clause modifying the noun
book. Figure 3 shows the word alignment of this
example.

English: John lost the book that was borrowed
last week from Mary.

Japanese: john wa (topic marker) senshu (last
week) mary kara (from) kari (borrow) ta
(past tense marker) hon (book) o (direct ob-
ject marker) nakushi (lose) ta (past tense
marker) .

We segment the source sentence at the clause level
and the example is rewritten with two clauses as
follows.

• John lost the book s0 .

• that was borrowed last week from Mary

s0 is a non-terminal symbol the serves as a place-
holder of the relative clause. We allow an arbitrary
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Figure 2: Parse tree for example English sentence.
Node labels are omitted except S.
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Figure 3: Word alignment for example bilingual
sentence.

number of non-terminals in each clause2. A nested
clause structure can be represented in the same
manner using such non-terminals recursively.

3.2 Alignment of Target Words with Source
Clauses

To translate source clauses with non-terminal sym-
bols, we need models trained using a clause-level
aligned bilingual corpus. A clause-level aligned
corpus is defined as a set of parallel, bilingual
clause pairs including non-terminals that represent
embedded clauses.

We assume that a sentence-aligned bilingual
corpus is available and consider the alignment of
target words with source clauses. We can manu-
ally align these Japanese words with the English
clauses as follows.

• john wa s0 hon o nakushi ta .
2In practice not so many clauses are embedded in a single

sentence but we found some examples with nine embedded
clauses for coordination in our corpora.

John lost the book s0 .

• senshu mary kara kari ta
that was borrowed last week from Mary

Since the cost of manual clause alignment is
high especially for a large-scale corpus, a natu-
ral question to ask is whether this resource can be
obtained from a sentence-aligned bilingual corpus
automatically with no human input. To answer
this, we now describe a simple method for deal-
ing with clause alignment data from scratch, us-
ing only the word alignment and language model
probabilities inferred from bilingual and monolin-
gual corpora.

Our method is based on the idea that automatic
clause alignment can be viewed as a classification
problem: for an English sentence with N words (e
= (e1, e2, . . . , eN )) and K clauses (ẽ1,ẽ2,. . . ,ẽK),
and its Japanese translation with M words (f
= (f1, f2, . . . , fM )), the goal is to classify each
Japanese word into one of {1, . . . ,K} classes. In-
tuitively, the probability that a Japanese word fm

is assigned to class k ∈ {1, . . . ,K} depends on
two factors:

1. The probability of translating fm into the En-
glish words of clause k (i.e.

∑
e∈ẽk p(e|fm)).

We expect fm to be assigned to a clause
where this value is high.

2. The language model probability
(i.e. p(fm|fm−1)). If this value is high,
we expect fm and fm−1 to be assigned to the
same clause.

We implement this intuition using a graph-
based method. For each English-Japanese sen-
tence pair, we construct a graph with K clause
nodes (representing English clauses) and M word
nodes (representing Japanese words). The edge
weights between word and clause nodes are de-
fined as the sum of lexical translation probabilities∑

e∈ẽk p(e|fm). The edge weights between words
are defined as the bigram probability p(fm|fm−1).
Each clause node is labeled with a class ID k ∈
{1, . . . ,K}. We then propagate these K labels
along the graph to label the M word nodes. Fig-
ure 4 shows the graph for the example sentence.

Many label propagation algorithms are avail-
able. The important thing is to use an algo-
rithm that encourages node pairs with strong edge
weights to receive the same label. We use the label
propagation algorithm of (Zhu et al., 2003). If we
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John  lost  the  book  that  was  borrowed ...

clause(1) clause(2)

John Mary fromlast week
topic

marker

p(John |           )

+ p(lost |           )

+ ...

p(that |        )

+ p(was |        )

+ ...

p(     |         ) p(         |            ) p(        |         )p(            |     )

john kara

karajohn

john wa senshu mary kara

wa  john senshu  wa mary  senshu kara  mary

Figure 4: Graph-based representation of the ex-
ample sentence. We propagate the clause labels to
the Japanese word nodes on this graph to form the
clause alignments.

assume the labels are binary, the following objec-
tive is minimized:

argmin
l∈RK+M

∑
i,j

wij(li − lj)2 (1)

where wij is the edge weight between nodes i
and j (1 ≤ i ≤ K + M , 1 ≤ j ≤ K +
M ), and l (li ∈ {0, 1}) is a vector of labels
on the nodes. The first K elements of l, lc =
(l1, l2, ..., lK)T , are constant because the clause
nodes are pre-labeled. The remaining M ele-
ments, lf = (lK+1, lK+2, ..., lK+M )T , are un-
known and to be determined. Here, we consider
the decomposition of the weight matrix W = [wij ]
into four blocks after the K-th row and column as
follows:

W =

[
W cc W cf

W fc W ff

]
(2)

The solution of eqn. (1), namely lf , is given by the
following equation:

lf = (Dff −W ff )−1W fc lc (3)

where D is the diagonal matrix with di =
∑

j wij

and is decomposed similarly to W . Each element
of lf is in the interval (0, 1) and can be regarded
as the label propagation probability. A detailed ex-
planation of this solution can be found in Section 2
of (Zhu et al., 2003). For our multi-label problem
with K labels, we slightly modified the algorithm
by expanding the vector l to an (M + K) × K
binary matrix L = [ l1 l2 ... lK ].

After the optimization, we can normalize Lf

to obtain the clause alignment scores t(lm =

k|fm) between each Japanese word fm and En-
glish clause k. Theoretically, we can simply out-
put the clause id k′ for each fm by finding k′ =
arg maxk t(lm = k|fm). In practice, this may
sometimes lead to Japanese clauses that have too
many gaps, so we employ a two-stage procedure
to extract clauses that are more contiguous.

First, we segment the Japanese sentence into K
clauses based on a dynamic programming algo-
rithm proposed by Malioutov and Barzilay (2006).
We define an M ×M similarity matrix S = [sij ]
with sij = exp(−||li−lj ||) where li is (K + i)-th
row vector in the label matrix L. sij represents
the similarity between the i-th and j-th Japanese
words with respect to their clause alignment score
distributions; if the score distributions are sim-
ilar then sij is large. The details of this algo-
rithm can be found in (Malioutov and Barzilay,
2006). The clause segmentation gives us contigu-
ous Japanese clauses f̃1, f̃2, ..., f̃K , thus min-
imizing inter-segment similarity and maximizing
intra-segment similarity. Second, we determine
the clause labels of the segmented clauses, based
on clause alignment scores T = [Tkk′ ] for English
and automatically-segmented Japanese clauses:

Tkk′ =
∑

fm∈f̃ k′

t(lm = k|fm) (4)

where f̃k′ is the j′-th Japanese clause. In descend-
ing order of the clause alignment score, we greed-
ily determine the clause label 3.

3.3 Training Clause Translation Models
We train clause translation models using the
clause-level aligned corpus. In addition we can
also include the original sentence-aligned corpus.
We emphasize that we can use standard techniques
for heuristically extracted phrase tables, word n-
gram language models, and so on.

3.4 Clause Translation
By using the source language parser, a multi-
clause source sentence is reduced to a set of
clauses. We translate these clauses with a common
SMT method using the clause translation models.

Here we present another English example I
bought the magazine which Tom recommended
yesterday. This sentence is segmented into clauses
as follows.

3Although a full search is available when the number of
clauses is small, we employ a greedy search in this paper.
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• I bought the magazine s0 .

• which Tom recommended yersterday

These clauses are translated into Japanese:

• watashi (I) wa (topic marker) s0
zasshi (magazine) o (direct object marker)
kat (buy) ta (past tense marker).

• tom ga (subject marker) kino (yesterday)
susume (recommend) ta (past tense marker)

3.5 Sentence Reconstruction

We reconstruct the target sentence from the clause
translations, based on non-terminals. Starting
from the clause translation of the top clause, we re-
cursively replace non-terminal symbols with their
corresponding clause translations. Here, if a non-
terminal is eventually deleted in SMT decoding,
we simply concatenate the translation behind its
parent clause.

Using the example above, we replace the non-
terminal symbol s0 with the second clause and
obtain the Japanese sentence:
watashi wa tom ga kino susume ta zasshi o kat ta .

4 Experiment

We conducted the following experiments on the
English-to-Japanese translation of research paper
abstracts in the medical domain. Such techni-
cal documents are logically and formally writ-
ten, and sentences are often so long and syntac-
tically complex that their translation needs long
distance reordering. We believe that the medical
domain is suitable as regards evaluating the pro-
posed method.

4.1 Resources

Our bilingual resources were taken from the med-
ical domain. The parallel corpus consisted of
research paper abstracts in English taken from
PubMed4 and the corresponding Japanese transla-
tions.

The training portion consisted of 25,500 sen-
tences (no-clause-seg.; original sentences with-
out clause segmentation). 4,132 English sen-
tences in the corpus were composed of multi-
ple clauses and were separated at the clause level

4http://www.ncbi.nlm.nih.gov/pubmed/

by the procedure in section 3.1. As the syntac-
tic parser, we used the Enju5 (Miyao and Tsu-
jii, 2008) English HPSG parser. For these train-
ing sentences, we automatically aligned Japanese
words with each English clause as described in
section 3.2 and developed a clause-level aligned
corpus, called auto-aligned corpus. We prepared
manually-aligned (oracle) clauses for reference,
called oracle-aligned clauses. The clause align-
ment error rate of the auto-aligned corpus was
14% (number of wrong clause assignments di-
vided by total number of words). The develop-
ment and test portions each consisted of 1,032
multi-clause sentences. because this paper focuses
only on multi-clause sentences. Their English-
side was segmented into clauses in the same man-
ner as the training sentences, and the development
sentences had oracle clause alignment for MERT.

We also used the Life Science Dictionary6 for
training. We extracted 100,606 unique English
entries from the dictionary including entries with
multiple translation options, which we expanded
to one-to-one entries, and finally we obtained
155,692 entries.

English-side tokenization was obtained using
Enju, and we applied a simple preprocessing that
removed articles (a, an, the) and normalized plu-
ral forms to singular ones. Japanese-side tokeniza-
tion was obtained using MeCab7 with ComeJisyo8

(dictionary for Japanese medical document tok-
enization). Our resource statistics are summarized
in Table 1.

4.2 Model and Decoder

We used two decoders in the experiments,
Moses9 (Koehn et al., 2007) and our in-
house hierarchical phrase-based SMT (almost
equivalent to Hiero (Chiang, 2007)). Moses
used a phrase table with a maximum phrase
length of 7, a lexicalized reordering model with
msd-bidirectional-fe, and a distortion
limit of 1210. Our hierarchical phrase-based SMT
used a phrase table with a maximum rule length of
7 and a window size (Hiero’s Λ) of 12 11. Both

5http://www-tsujii.is.s.u-tokyo.ac.jp/enju/index.html
6http://lsd.pharm.kyoto-u.ac.jp/en/index.html
7http://mecab.sourceforge.net/
8http://sourceforge.jp/projects/comedic/ (in Japanese)
9http://www.statmt.org/moses/

10Unlimited distortion was also tested but the results were
worse.

11A larger window size could not be used due to its mem-
ory requirements.

423



Table 1: Data statistics on training, development,
and test sets. All development and test sentences
are multi-clause sentences.

Training
Corpus Type #words #sentences

Parallel E 690,536
(no-clause-seg.) J 942,913

25,550

Parallel E 135,698
(auto-aligned) J 183,043

4,132

(oracle-aligned) J 183,147
(10,766 clauses)

E 263,175 155.692Dictionary
J 291,455 (entries)

Development
Corpus Type #words #sentences

Parallel E 34,417 1,032
(oracle-aligned) J 46,480 (2,683 clauses)
Test

Corpus Type #words #sentences
Parallel E 34,433 1,032

(clause-seg.) J 45,975 (2,737 clauses)

decoders employed two language models: a word
5-gram language model from the Japanese sen-
tences in the parallel corpus and a word 4-gram
language model from the Japanese entries in the
dictionary. The feature weights were optimized
for BLEU (Papineni et al., 2002) by MERT, using
the development sentences.

4.3 Compared Methods
We compared four different training and test con-
ditions with respect to the use of clauses in training
and testing. The development (i.e., MERT) condi-
tions followed the test conditions. Two additional
conditions with oracle clause alignment were also
tested for reference.

Table 2 lists the compared methods. First,
the proposed method (proposed) used the auto-
aligned corpus in training and clause segmen-
tation in testing. Second, the baseline method
(baseline) did not use clause segmentation in ei-
ther training or testing. Using this standard base-
line method, we focused on the advantages of the
divide-and-conquer translation itself. Third, we
tested the same translation models as used with
the proposed method for test sentences without
clause segmentation, (comp.(1)). Although this
comparison method cannot employ the proposed
clause-level reordering, it was expected to be bet-

ter than the baseline method because its transla-
tion model can be trained more precisely using the
finely aligned clause-level corpus. Finally, the sec-
ond comparison method (comp.(2)) translated seg-
mented clauses with the baseline (without clause
segmentation) model, as if each of them was a sin-
gle sentence. Its translation of each clause was
expected to be better than that of the baseline be-
cause of the efficient search over shortened inputs,
while its reordering of clauses (non-terminals) was
unreliable due to the lack of clause information
in training. Its sentence reconstruction based on
non-terminals was the same as with the proposed
method. Although non-terminals in the second
comparison method were out-of-vocabulary words
and may be deleted in decoding, all of them sur-
vived and we could reconstruct sentences from
translated clauses throughout the experiments. In
addition, two other conditions were tested: us-
ing oracle-aligned clauses in training: the pro-
posed method trained using oracle-aligned (ora-
cle) clauses and the first comparison method using
oracle-aligned (oracle-comp.) clauses.

4.4 Results

Table 3 shows the results in BLEU, Transla-
tion Edit Rate (TER) (Snover et al., 2006),
and Position-independent Word-error Rate (PER)
(Och et al., 2001), obtained with Moses and our
hierarchical phrase-based SMT, respectively. Bold
face results indicate the best scores obtained with
the compared methods (excluding oracles).

The proposed method consistently outper-
formed the baseline. The BLEU improve-
ments with the proposed method over the base-
line and comparison methods were statistically
significant according to the bootstrap sampling
test (p < 0.05, 1,000 samples) (Zhang et al.,
2004). With Moses, the improvement when us-
ing the proposed method was 1.4% (33.19% to
34.60%) in BLEU and 1.3% (57.83% to 56.50%)
in TER, with a slight improvement in PER
(35.84% to 35.61%). We observed: oracle ≫
proposed ≫ comp.(1) ≫ baseline ≫ comp.(2)
by the Bonferroni method, where the symbol
A ≫ B means “A’s improvement over B is
statistically significant.” With the hierarchical
phrase-based SMT, the improvement was 2.2%
(32.39% to 34.55%) in BLEU, 3.5% (58.36% to
54.87%) in TER, and 1.5% in PER (36.42% to
34.79%). We observed: oracle ≫ proposed ≫
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Table 2: Compared methods.
PPPPPPPPPTest

Training
w/ auto-aligned w/o aligned w/ oracle-aligned

clause-seg. proposed comp.(2) oracle
no-clause-seg. comp.(1) baseline oracle-comp.

{comp.(1), comp.(2)} ≫ baseline by the Bon-
ferroni method. The oracle results were better than
these obtained with the proposed method but the
differences were not very large.

4.5 Discussion

We think the advantage of the proposed method
arises from three possibilities: 1) better translation
model training using the fine-aligned corpus, 2) an
efficient decoder search over shortened inputs, and
3) an effective clause-level reordering model real-
ized by using non-terminals.

First, the results of the first comparison method
(comp.(1)) indicate an advantage of the transla-
tion models trained using the auto-aligned corpus.
The training of the translation models, namely
word alignment and phrase extraction, is difficult
for long sentences due to their large ambiguity.
This result suggests that the use of clause-level
alignment provides fine-grained word alignments
and precise translation models. We can also ex-
pect that the model of the proposed method will
work better for the translation of single-clause sen-
tences.

Second, the average and median lengths (in-
cluding non-terminals) of the clause-seg. test set
were 13.2 and 10 words, respectively. They were
much smaller than those of no-clause-seg. at 33.4
and 30 words and are expected to help realize
an efficient SMT search. Another observation is
the relationship between the number of clauses
and translation performance, as shown in Fig-
ure 5. The proposed method achieved a greater im-
provement in sentences with a greater number of
clauses. This suggests that our divide-and-conquer
approach works effectively for multi-clause sen-
tences. Here, the results of the second comparison
method (comp.(2)) with Moses were worse than
the baseline results, while there was an improve-
ment with our hierarchical phrase-based SMT.
This probably arose from the difference between
the decoders when translating out-of-vocabulary
words. The non-terminals were handled as out-of-
vocabulary words under the comp.(2) condition.
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Figure 5: Relationship between TER and number
of clauses for proposed, baseline, and comp.(2)
when using our hierarchical phrase-based SMT.

Moses generated erroneous translations around
such non-terminals that can be identified at a
glance, while our hierarchical phrase-based SMT
generated relatively good translations. This may
be a decoder-dependent issue and is not an essen-
tial problem.

Third, the results obtained with the proposed
method reveal an advantage in reordering in ad-
dition to the previous two advantages. The differ-
ence between the PERs with the proposed method
and the baseline with Moses was small (0.2%)
in spite of the large differences in BLEU and
TER (about 1.5%). This suggests that the pro-
posed method is better in word ordering and im-
plies our method is also effective in reordering.
With the hierarchical phrase-based SMT, the pro-
posed method showed a large improvement from
the baseline and comparison methods, especially
in TER which was better than the best Moses
configuration (proposed). This suggests that the
decoding of long sentences with long-distance
reordering is not easy even for the hierarchical
phrase-based SMT due to its limited window size,
while the hierarchical framework itself can natu-
rally model a long-distance reordering. If we try to
find a derivation with such long-distance reorder-
ing, we will probably be faced with an intractable
search space and computation time. Therefore,
we can conclude that the proposed divide-and-
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Table 3: Experimental results obtained with Moses and our hierarchical phrase-based SMT, in BLEU,
TER, and PER.

Moses : BLEU (%) / TER (%) / PER (%)
PPPPPPPPPTest

Training
w/ auto-aligned w/o aligned w/ oracle-aligned

clause-seg. 34.60 / 56.50 / 35.61 32.14 / 58.78 / 36.08 35.31 / 55.12 / 34.42
no-clause-seg. 34.22 / 56.90 / 35.20 33.19 / 57.83 / 35.84 34.24 / 56.67 / 35.03

Hierarchical : BLEU (%) / TER (%) / PER (%)
PPPPPPPPPTest

Training
w/ auto-aligned w/o aligned w/ oracle-aligned

clause-seg. 34.55 / 54.87 / 34.79 33.03 / 56.70 / 36.03 35.08 / 54.22 / 34.77
no-clause-seg. 33.41 / 57.02 / 35.86 32.39 / 58.36 / 36.42 33.83 / 56.26 / 34.96

conquer approach provides more practical long-
distance reordering at the clause level.

We also analyzed the difference between auto-
matic and manual clause alignment. Since auto-
aligned corpus had many obvious alignment er-
rors, we suspected these noisy clauses hurt the
clause translation model. However, they were not
serious in terms of final translation performance.
So we can conclude that our proposed divide-and-
conquer approach is promising for long sentence
translation. Although we aimed to see whether we
could bootstrap using existing bilingual corpora in
this paper, we imagine better clause alignment can
be obtained with some supervised classifiers.

One problem with the divide-and-conquer ap-
proach is that its independently-translated clauses
potentially cause disfluencies in final sentence
translations, mainly due to wrong inflections. A
promising solution is to optimize a whole sentence
translation by integrating search of each clause
translation but this may require a much larger
search space for decoding. More simply, we may
be able to approximate it using n-best clause trans-
lations. This problem should be addressed for fur-
ther improvement in future studies.

5 Conclusion

In this paper we proposed a clause-based divide-
and-conquer approach for SMT that can re-
duce complicated clause-level reordering to sim-
ple word-level reordering. The proposed method
separately translates clauses with non-terminals by
using a well-known SMT method and reconstructs
a sentence based on the non-terminals, to reorder
long clauses. The clause translation models are
trained using a bilingual corpus with clause-level
alignment, which can be obtained with an un-

supervised graph-based method using sentence-
aligned corpora. The proposed method improves
the translation of long, multi-clause sentences and
is especially effective for language pairs with
large word order differences, such as English-to-
Japanese.

This paper focused only on clauses as segments
for division. However, other long segments such
as prepositional phrases are similarly difficult to
reorder correctly. The divide-and-conquer ap-
proach itself can be applied to long phrases, and
it is worth pursuing such an extension. As another
future direction, we must develop a more sophis-
ticated method for automatic clause alignment if
we are to use the proposed method for various lan-
guage pairs and domains.
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Abstract

We present a method for incorporat-
ing arbitrary context-informed word at-
tributes into statistical machine trans-
lation by clustering attribute-quali�ed
source words, and smoothing their
word translation probabilities using bi-
nary decision trees. We describe two
ways in which the decision trees are
used in machine translation: by us-
ing the attribute-quali�ed source word
clusters directly, or by using attribute-
dependent lexical translation probabil-
ities that are obtained from the trees,
as a lexical smoothing feature in the de-
coder model. We present experiments
using Arabic-to-English newswire data,
and using Arabic diacritics and part-of-
speech as source word attributes, and
show that the proposed method im-
proves on a state-of-the-art translation
system.

1 Introduction

Modern statistical machine translation (SMT)
models, such as phrase-based SMT or hierar-
chical SMT, implicitly incorporate source lan-
guage context. It has been shown, however,
that such systems can still bene�t from the
explicit addition of lexical, syntactic or other
kinds of context-informed word features (Vick-
rey et al., 2005; Gimpel and Smith, 2008;
Brunning et al., 2009; Devlin, 2009). But the
bene�t obtained from the addition of attribute
information is in general countered by the in-
crease in the model complexity, which in turn
results in a sparser translation model when es-
timated from the same corpus of data. The
increase in model sparsity usually results in a
deterioration of translation quality.

In this paper, we present a method for using
arbitrary types of source-side context-informed
word attributes, using binary decision trees to
deal with the sparsity side-e�ect. The deci-
sion trees cluster attribute-dependent source
words by reducing the entropy of the lexi-
cal translation probabilities. We also present
another method where, instead of clustering
the attribute-dependent source words, the de-
cision trees are used to interpolate attribute-
dependent lexical translation probability mod-
els, and use those probabilities to compute a
feature in the decoder log-linear model.

The experiments we present in this paper
were conducted on the translation of Arabic-
to-English newswire data using a hierarchical
system based on (Shen et al., 2008), and using
Arabic diacritics (see section 2.3) and part-of-
speech (POS) as source word attributes. Pre-
vious work that attempts to use Arabic dia-
critics in machine translation runs against the
sparsity problem, and appears to lose most of
the useful information contained in the dia-
critics when using partial diacritization (Diab
et al., 2007). Using the methods proposed
in this paper, we manage to obtain consistent
improvements from diacritics against a strong
baseline. The methods we propose, though,
are not restrictive to Arabic-to-English trans-
lation. The same techniques can also be used
with other language pairs and arbitrary word
attribute types. The attributes we use in the
described experiments are local; but long dis-
tance features can also be used.

In the next section, we review relevant pre-
vious work in three areas: Lexical smoothing
and lexical disambiguation techniques in ma-
chine translation; using decision trees in nat-
ural language processing, and especially ma-
chine translation; and Arabic diacritics. We
present a brief exposition of Arabic orthogra-
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phy, and refer to previous work on automatic
diacritization of Arabic text. Section 3 de-
scribes the procedure for constructing the deci-
sion trees, and the two methods for using them
in machine translation. In section 4 we de-
scribe the experimental setup and present ex-
perimental results. Finally, section 5 concludes
the paper and discusses future directions.

2 Previous Work

2.1 Lexical Disambiguation and

Lexical Smoothing

Various ways have been proposed to improve
the lexical translation choices of SMT systems.
These approaches typically incorporate local
context information, either directly or indi-
rectly.

The use of Word Sense Disambiguation
(WSD) has been proposed to enhance ma-
chine translation by disambiguating the source
words (Cabezas and Resnick, 2005; Carpuat
and Wu, 2007; Chan et al., 2007). WSD
usually requires that the training data be la-
beled with senses, which might not be avail-
able for many languages. Also, WSD is tra-
ditionally formulated as a classi�cation prob-
lem, and therefore does not naturally lend it-
self to be integrated into the generative frame-
work of machine translation. Carpuat and Wu
(2007) formulate the SMT lexical disambigua-
tion problem as a WSD task. Instead of learn-
ing from word sense corpora, they use the SMT
training data, and use local context features to
enhance the lexical disambiguation of phrase-
based SMT.

Sarikaya et al. (2007) incorporate context
more directly by using POS tags on the target
side to model word context. They augmented
the target words with POS tags of the word
itself and its surrounding words, and used the
augmented words in decoding and for language
model rescoring. They reported gains on Iraqi-
Arabic-to-English translation.

Finally, using word-to-word context-free lex-
ical translation probabilities has been shown
to improve the performance of machine trans-
lation systems, even those using much more
sophisticated models. This feature, usually
called lexical smoothing, has been used in
phrase-based systems (Koehn et al., 2003).
Och et al. (2004) also found that including

IBM Model 1 (Brown et al., 1993) word prob-
abilities in their log-linear model works better
than most other higher-level syntactic features
at improving the baseline. The incorporation
of context on the source or target side en-
hances the gain obtained from lexical smooth-
ing. Gimpel and Smith (2008) proposed us-
ing source-side lexical features in phrase-based
SMT by conditioning the phrase probabilities
on those features. They used word context,
syntactic features or positional features. The
features were added as components into the
log-linear decoder model, each with a tunable
weight. Devlin (2009) used context lexical fea-
tures in a hierarchical SMT system, interpolat-
ing lexical counts based on multiple contexts.
It also used target-side lexical features.
The work in the paper incorporates con-

text information based on the reduction of the
translation probability entropy.

2.2 Decision Trees

Decision trees have been used extensively in
various areas of machine learning, typically
as a way to cluster patterns in order to im-
prove classi�cation (Duda et al., 2000). They
have, for instance, been long used success-
fully in speech recognition to cluster context-
dependent phoneme model states (Young et
al., 1994).
Decision trees have also been used in ma-

chine translation, although to a lesser extent.
In this respect, our work is most similar to
(Brunning et al., 2009), where the authors ex-
tended word alignment models for IBM Model
1 and Hidden Markov Model (HMM) align-
ments. They used decision trees to cluster the
context-dependent source words. Contexts be-
longing to the same cluster were grouped to-
gether during Expectation Maximization (EM)
training, thus providing a more robust proba-
bility estimate. While Brunning et al. (2009)
used the source context clusters for word align-
ments, we use the attribute-dependent source
words directly in decoding. The approach we
propose can be readily used with any align-
ment model.
Stroppa et al. (2007) presented a general-

ization of phrase-based SMT (Koehn et al.,
2003) that also takes into account source-
side context information. They conditioned
the target phrase probability on the source
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phrase as well as source phrase context, such
as bordering words, or part-of-speech of bor-
dering words. They built a decision tree for
each source phrase extracted from the train-
ing data. The branching of the tree nodes
was based on the di�erent context features,
branching on the most class-discriminative fea-
tures �rst. Each node is associated with the
set of aligned target phrases and correspond-
ing context-conditioned probabilities. The de-
cision tree thus smoothes the phrase probabil-
ities based on the di�erent features, allowing
the model to back o� to less context, or no
context at all depending on the presence of
that context-dependent source phrase in the
training data. The model, however, did not
provide for a back-o� mechanism if the phrase
pair was not found in the extracted phrase ta-
ble. The method presented in this paper di�ers
in various aspects. We use context-dependent
information at the source word level, rather
than the phrase level, thus making it readily
applicable to any translation model and not
just phrase-based translation. By incorporat-
ing context at the word level, we can decode
directly with attribute-augmented source data
(see section 3.2).

2.3 Arabic Diacritics

Since an important part of the experiments
described in this paper use diacritized Arabic
source, we present a brief description of Arabic
orthography, and speci�cally diacritics.

The Arabic script, like that of most other
Semitic languages, only represents consonants
and long vowels using letters 1. Short vowels
can be written as small marks written above
or below the preceding consonant, called di-
acritics. The diacritics are, however, omit-
ted from written text, except in special cases,
thus creating an additional level of lexical am-
biguity. Readers can usually guess the cor-
rect pronunciation of words in non-diacritized
text from the sentence and discourse context.
Grammatical case on nouns and adjectives are
also marked using diacritics at the end of
words. Arabic MT systems use undiacritized
text, since most available Arabic data is undi-
acritized.

1Such writing systems are sometimes referred to as
Abjads (See Daniels, Peter T., et al. eds. The World's
Writing Systems Oxford. (1996), p.4.)

Automatic diacritization of Arabic has been
done with high accuracy, using various genera-
tive and discriminative modeling techniques.
For example, Ananthakrishnan et al. (2005)
used a generative model that incorporates
word level n-grams, sub-word level n-grams
and part-of-speech information to perform di-
acritization. Nelken and Shieber (2005) mod-
eled the generative process of dropping dia-
critics using weighted transducers, then used
Viterbi decoding to �nd the most likely gener-
ator. Zitouni et al. (2006) presented a method
based on maximum entropy classi�ers, us-
ing features like character n-grams, word n-
grams, POS and morphological segmentation.
Habash and Rambow (2007) determined vari-
ous morpho-syntactic features of the word us-
ing SVM classi�ers, then chose the correspond-
ing diacritization. The experiments in this
paper use the automatic diacritizer by Sakhr
Software. The diacritizer determines word di-
acritics through rule-based morphological and
syntactic analysis. It outputs a diacritization
for both the internal stem and case ending
markers of the word, with an accuracy of 97%
for stem diacritization and 91% for full dia-
critization (i.e., including case endings).

There has been work done on using dia-
critics in Automatic Speech Recognition, e.g.
(Vergyri and Kirchho�, 2004). However, the
only previous work on using diacritization for
MT is (Diab et al., 2007), which used the di-
acritization system described in (Habash and
Rambow, 2007). It investigated the e�ect
of using full diacritization as well as partial
diacritization on MT results. The authors
found that using full diacritics deteriorates MT
performance. They used partial diacritiza-
tion schemes, such as diacritizing only passive
verbs, keeping the case endings diacritics, or
only gemination diacritics. They also saw no
gain in most con�gurations. The authors ar-
gued that the deterioration in performance is
caused by the increase in the size of the vo-
cabulary, which in turn makes the translation
model sparser; as well as by errors during the
automatic diacritization process.
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3 Decision Trees for Source Word

Attributes

3.1 Growing the Decision Tree

In this section, we describe the procedure
for growing the decision trees using context-
informed source word attributes.
The attribute-quali�ed source-side of the

parallel training data is �rst aligned to the
target-side data. If S is the set of attribute-
dependent forms of source word s, and tj is a
target word aligned to si ∈ S, then we de�ne:

p (tj |si) =
count(si,tj)
count(si)

(1)

where count(si, tj) is the count of alignment
links between si and tj .
A separate binary decision tree is grown for

each source word. We start by including all the
attribute-dependent forms of the source word
at the root of the tree. We split the set of at-
tributes at each node into two child nodes, by
choosing the splitting that maximizes the re-
duction in weighted entropy of the probability
distribution in (1). In other words, at node n,
we choose the partition (S?1 , S

?
2) such that:

(S?1 , S
?
2) =

argmax
(S1,S2)

S1∪S2=S

{h(S)− (h(S1) + h(S2))}
(2)

where h(S) is the entropy of the probabil-
ity distribution p(tj |si ∈ S), weighted by the
number of samples in the training data of the
source words in S. We only split a node if the
entropy is reduced by more than a threshold
θh. This step is repeated recursively until the
tree cannot be grown anymore.
Weighting the entropy by the source word

counts gives more weight to the context-
dependent source words with a higher number
of samples in the training data, sine the lex-
ical translation probability estimates for fre-
quent words can be trusted better. The ratio-
nale behind the splitting criterion used is that
the split that reduces the entropy of the lexical
translation probability distribution the most
is also the split that best separates the list of
forms of the source word in terms of the target
word translation. For a source word that has
multiple meanings, depending on its context,

the decision tree will tend to implicitly sepa-
rate those meanings using the information in
the lexical translation probabilities.
Although we describe this method as grow-

ing one decision tree for each word, and using
one attribute type at a time, a decision tree
can clearly be constructed for multiple words,
and more than one attribute type can be used
in the same decision tree.

3.2 Trees for Source Word Clustering

The source words could be augmented to ex-
plicitly incorporate the word attributes (dia-
critics or other attribute types). The aug-
mented source will be less ambiguous if the
attributes do in fact contain disambiguating
information. This, in principle, helps machine
translation performance. The �ip side is that
the resulting increase in vocabulary size in-
creases the translation model sparsity, usually
with a detrimental e�ect on translation.
To mitigate the e�ect of the increase in vo-

cabulary, decision trees can be use to cluster
the attribute-augmented source words. More
speci�cally, a decision tree is grown for each
source word as described in the previous sec-
tion, using a prede�ned entropy threshold θh.
When the tree cannot be expanded anymore,
its leaf nodes will contain a multi-set parti-
tioning of the list of attribute-dependent forms
of that source word. Each of the clusters is
treated as an equivalence class, and all forms
in that class are mapped to a unique form (e.g.
an arbitrarily chosen member of the cluster).
The mappings are used to map the tokens in
the parallel training data before alignment is
run on the mapped data. The test data is
also mapped consistently. This clustering pro-
cedure will only keep the attribute-dependent
forms of the source words that decrease the un-
certainty in the translation probabilities, and
are thus useful for translation.
The experiments we report on use diacritics

as an attribute type. The various diacritized
forms of a source word are thus used to train
the decision trees. The resulting clusters are
used to map the data into a subset of the vo-
cabulary that is used in translation training
and decoding (see section 4.2 for results). Di-
acritics are obviously speci�c to Arabic. But
this method can be used with other attribute
types, by �rst appending the source words with
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{sijona,sijni}

sjn�{sijona,sijni,sajona,sajonu,sajana}

{sajana}{sajona,sajonu}

Figure 1: Decision tree for source word sjn using

diacritics as an attribute.

their context (e.g. attach to each source word
its part-of-speech tag or context), and then
training decision trees and mapping the source
side of the data.
Figure 1 shows an example of a decision

tree for the Arabic word sjn2 using diacritics
as a source attribute. The root contains the
various diacritized forms (sijona `prison AC-

CUSATIVE', sijoni `prison DATIVE', sajona

`imprisonment ACCUSATIVE.', sajoni `im-

prisonment ACCUSATIVE.', sajana `he im-

prisoned '). The leaf nodes contain the
attribute-dependent clusters.

3.3 Trees for Lexical Smoothing

As mentioned in section 2.1, lexical smoothing,
computed from word-to-word translation prob-
abilities, is a useful feature, even in SMT sys-
tems that use sophisticated translation mod-
els. This is likely due to the robustness of
context-free word-to-word translation proba-
bility estimates compared to the probabilities
of more complicated models. In those models,
the rules and probabilities are estimated from
much larger sample spaces.
In our system, the lexical smoothing feature

is computed as follows:

f(U)=
∏

tj∈T (U)

(
1−

∏
si∈{S(U)∪NULL}

(1−p̄(tj |si))

)
(3)

where U is the modeling unit speci�c to the
translation model used. For a phrase-based
system, U is the phrase pair, and for a hierar-
chical system U is the translation rule. S (U)

2Examples are written using Buckwalter transliter-
ation.

sjn�{sijona,sijni,sajona,sajonu,sajana}

{sajana}
{sijona} {sijoni}

{sajona} {sajonu}

{sijona} {sijoni}

Figure 2: Decision tree for source word sjn grown

fully using diacritics.

is the set of terminals on the source side of U,
and T (U) is the set of terminals on its tar-
get. The NULL term in the equation above
accounts for unaligned target words, which we
found in our experiments to be bene�cial. One
way of interpreting equation (3) is that f (U)
is the probability that for each target word tj
in U, tj is a likely translation of at least one
word si on the source side. The feature value
is then used as a component in the log-linear
model, with a tunable weight.

In this work, we generalize the lexical
smoothing feature to incorporate the source
word attributes. A tree is grown for each
source word as described in section 3.1, but
using an entropy threshold θh = 0. In other
words, the tree is grown all the way until each
leaf node contains one attribute-dependent
form of the source word. Each node in the
tree contains a cluster of attribute-dependent
forms of the source word, and a corresponding
attribute-dependent lexical translation prob-
ability distribution. The lexical translation
probability models at the root nodes are those
of the regular attribute-independent lexical
translation probabilities. The models at the
leaf nodes are the most �ne-grained, since they
are conditioned on only one attribute value.
Figure 2 shows a fully grown decision tree for
the same source word as the example in Figure
1.

The lexical probability distribution at the
leafs are from sparser data than the original
distributions, and are therefore less robust. To
address this, the attribute-dependent lexical
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smoothing feature is estimated by recursively
interpolating the lexical translation probabil-
ities up the tree. The probability distribu-
tion pn at each node n is interpolated with
the probability of its parent node as follows:

pn =

{
pn if n is root,
wnpn + (1− wn)pm otherwise

where m is the parent of n
(4)

A fraction of the parent probability mass is
thus given to the probability of the child node.
If the probability estimate of an attribute-
dependent form of a source word with a cer-
tain target word t is not reliable, or if the
probability estimate is 0 (because the source
word in this context is not aligned with t),
then the model gracefully backs o� by using
the probability estimates from other attribute-
dependent lexical translation probability mod-
els of the source word.
The interpolation weight is a logistic regres-

sion function of the source word count at a
node n:

wn =
1

1 + e−α−β log(count(Sn))
(5)

The weight varies depending on the count
of the attribute-quali�ed source word in each
node, thus re�ecting the con�dence in the es-
timates of each node's distribution. The two
global parameters of the function, a bias α and
a scale β are tuned to maximize the likelihood
of a set of alignment counts from a heldout
data set of 179K sentences. The tuning is done
using Powell's method (Brent, 1973).
During decoding, we use the probability dis-

tribution at the leaves to compute the feature
value f(R) for each hierarchical rule R. We
train and decode using the regular, attribute-
independent source. The source word at-
tributes are used in the decoder only to in-
dex the interpolated probability distribution
needed to compute f (R).

4 Experiments

4.1 Experimental Setup

As mentioned before, the experiments we re-
port on use a string-to-dependency-tree hier-
archical translation system based on the model
described in (Shen et al., 2008). Forward and

Likelihood %

baseline -1.29 -

Diacs.

dec. trees
-1.25 +2.98%

POS dec.

trees
-1.24 +3.41%

Table 1: Normalized likelihood of the test set align-

ments without decision trees, then with decision trees

using diacritics and part-of-speech respectively.

backward context-free lexical smoothing are
used as decoder features in all the experiments.
Other features such as rule probabilities and
dependency tree language model (Shen et al.,
2008) are also used. We use GIZA++ (Och
and Ney, 2003) for word alignments. The de-
coder model parameters are tuned using Mini-
mum Error Rate training (Och, 2003) to max-
imize the IBM BLEU score (Papineni et al.,
2002).

For training the alignments, we use 27M
words from the Sakhr Arabic-English Paral-
lel Corpus (SSUSAC27). The language model
uses 7B words from the English Gigaword and
from data collected from the web. A 3-gram
language model is used during decoding. The
decoder produces an N-best list that is re-
ranked using a 5-gram language model.

We tune and test on two separate data sets
consisting of documents from the following col-
lections: the newswire portion of NIST MT04,
MT05, MT06, and MT08 evaluation sets, the
GALE Phase 1 (P1) and Phase 2 (P2) evalu-
ation sets, and the GALE P2 and P3 develop-
ment sets. The tuning set contains 1994 sen-
tences and the test set contains 3149 sentences.
The average length of sentences is 36 words.
Most of the documents in the two data sets
have 4 reference translations, but some have
only one. The average number of reference
translations per sentence is 3.94 for the tun-
ing set and 3.67 for the test set.

In the next section, we report on measure-
ments of the likelihood of test data, and de-
scribe the translation experiments in detail.

4.2 Results

In order to assess whether the decision trees
are in fact helpful in decreasing the uncer-
tainty in the lexical translation probabilities
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Figure 3: BLEU scores of the clustering experiments

as a function of the entropy threshold on tuning set.

on unseen data, we compute the likelihood
of the test data with respect to these prob-
abilities with and without the decision tree
splitting. We align the test set with its ref-
erence using GIZA++, and then obtain the
link count l_count(si, tj) for each alignment
link i = (si,ti) in the set of alignment links I.
We calculate the normalized likelihood of the
alignments:

L = log

(∏
i

p(ti | si)l_count(si,ti)

) 1
|I|


=
1

|I|
∑
i∈I

l_count(si, ti) log p̄ (ti | si) (6)

where p̄ (ti | si) is the probability for the word
pair (ti, si) in equation (4). If the same in-
stance of source word si is aligned to two tar-
get words ti and tj , then these two links are
counted separately. If a source in the test set
is out-of-vocabulary, or if a word pair (ti, si)
is aligned in the test alignment but not in the
training alignments (and thus has no probabil-
ity estimate), then it is ignored in the calcula-
tion of the log-likelihood.
Table 1 shows the likelihood for the baseline

case, where one lexical translation probability
distribution is used per source word. It also
shows the likelihoods calculated using the lex-
ical distributions in the leaf nodes of the de-
cision trees, when either diacritics or part-of-
speech are used as an attribute type. The table
shows an increase in the likelihood of 2.98% us-
ing diacritics, and 3.41% using part-of-speech.
The translation result tables present MT

scores in two di�erent metrics: Translation
Edit Rate (Snover et al., 2006) and IBM

TER BLEU

Test

baseline 40.14 52.05

full diacritics 40.31 52.39

+0.17 +0.34

dec. trees, diac (θh = 50) 39.75 52.60

-0.39 +0.55

Table 2: Results of experiments using decision trees

to cluster source words.

BLEU. The reader is reminded that a higher
BLEU score and a lower TER are desired. The
tables also show the di�erence in scores be-
tween the baseline and each experiment. It is
worth noting that the gains reported are rela-
tive to a strong baseline that uses a state-of-
the-art system with many features, and a fairly
large training corpus.

The decision tree clustering experiment as
described in section 3.2 depends on a global
parameter, namely the threshold in entropy re-
duction θh. We tune this parameter manually
on a tuning set. Figure 3 shows the BLEU
scores as a function of the threshold value, with
diacritics as an attribute type. The most gain
is obtained for an entropy threshold of 50.

The fully diacritized data has an average of
1.78 diacritized forms per source word. The av-
erage weighted by the number of occurrences is
6.28, which indicates that words with more di-
acritized forms tend to occur more frequently.
After clustering using a value of θh = 50,
the average number of diacritized forms be-
comes 1.11, and the occurrence weighted av-
erage becomes 3.69. The clustering proce-
dure thus seems to eliminate most diacritized
forms, which likely do not contain helpful dis-
ambiguating information.

Table 2 lists the detailed results of experi-
ments using diacritics. In the �rst experiment,
we show that using full diacritization results in
a small gain on the BLEU score and no gain on
TER, which is somewhat consistent with the
result obtained by Diab et al. (2007). The next
experiment shows the results of clustering the
diacritized source words using decision trees
for the entropy threshold of 50. The TER loss
of the full diacritics becomes a gain, and the
BLEU gain increases. This con�rms our spec-
ulation that the use of fully diacritized data in-
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TER BLEU

Test

baseline 40.14 52.05

dec. trees, diacs 39.75 52.55

-0.39 +0.50

dec. trees, POS 40.05 52.40

-0.09 +0.35

dec. trees, diacs, no interpolation 39.98 52.09

-0.16 +0.04

Table 3: Results of experiments using the word attribute-dependent lexical smoothing feature.

creases the model sparsity, which undoes most
of the bene�t obtained from the disambiguat-
ing information that the diacritics contain. Us-
ing the decision trees to cluster the diacritized
source data prunes diacritized forms that do
not decrease the entropy of the lexical trans-
lation probability distributions. It thus �nds
a sweet-spot between the negative e�ect of in-
creasing the vocabulary size and the positive
e�ect of disambiguation.

In our experiments, using diacritics with
case endings gave consistently better score
than using diacritics with no case endings, de-
spite the fact that they result in a higher vo-
cabulary size. One possible explanation is that
diacritics not only help in lexical disambigua-
tion, but they might also be indirectly help-
ing in phrase reordering, since the diacritics on
the �nal letter indicate the word's grammatical
function.

The results from using decision trees to in-
terpolate attribute-dependent lexical smooth-
ing features are summarized in table 3. In
the �rst experiment, we show the results of
using diacritics to estimate the interpolated
lexical translation probabilities. The results
show a gain of +0.5 BLEU points and 0.39
TER points. The gain is statistically signi�-
cant with a 95% con�dence level. Using part-
of-speech as an attribute gives a smaller, but
still statistically signi�cant gain. We also ran
a control experiment, where we used diacritic-
dependent lexical translation probabilities ob-
tained from the decision trees, but did not per-
form the probability interpolation of equation
(4). The gains mostly disappear, especially on
BLEU, showing the importance of the inter-
polation step for the proper estimation of the
lexical smoothing feature.

5 Conclusion and Future Directions

We presented in this paper a new method for
incorporating explicit context-informed word
attributes into SMT using binary decision
trees. We reported on experiments on Arabic-
to-English translation using diacritized Ara-
bic and part-of-speech as word attributes, and
showed that the use of these attributes in-
creases the likelihood of source-target word
pairs of unseen data. We proposed two spe-
ci�c ways in which the results of the decision
tree training process are used in machine trans-
lation, and showed that they result in better
translation results.

For future work, we plan on using multi-
ple source-side attributes at the same time.
Di�erent attributes could have di�erent dis-
ambiguating information, which could pro-
vide more bene�t than using any of the at-
tributes alone. We also plan on investigat-
ing the use of multi-word trees; trees for word
clusters can for instance be grown instead
of growing a separate tree for each source
word. Although the experiments presented
in this paper use local word attributes, noth-
ing in principle prevents this method from be-
ing used with long-distance sentence context,
or even with document-level or discourse-level
features. Our future plans include the investi-
gation of using such features as well.
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Huet, Stéphane, 103
Hunsicker, Sabine, 77

Iglesias, Gonzalo, 155
Irvine, Ann, 133
Isozaki, Hideki, 244, 375

Jellinghaus, Michael, 110
Joanis, Eric, 127
Johnson, Howard, 127

Kettunen, Kimmo, 343

439



Khudanpur, Sanjeev, 133
Kit, Chunyu, 360
Koehn, Philipp, 17, 115, 252, 365, 409
Kolovratnı́k, David, 110
Kos, Kamil, 60
Kozat, S. Serdar, 276
Kuhn, Roland, 11, 127
Kurimo, Mikko, 195

Lambert, Patrik, 121
Langlais, Philippe, 103
Larkin, Samuel, 127
Lavie, Alon, 82, 301, 339
Le Nagard, Ronan, 252
Leusch, Gregor, 93, 315
Li, Zhifei, 133
Liu, Chang, 354

Makhoul, John, 428
Mansikkaniemi, Andre, 195
Mansour, Saab, 93
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Väyrynen, Jaakko, 195, 343
Vilar, David, 262
Virpioja, Sami, 195
Vogel, Stephan, 1, 307

Waibel, Alex, 138
Wang, Ziyuan, 133
Way, Andy, 143, 290, 349
Weese, Jonathan, 133
Williams, Philip, 115
Wong, Billy, 360
Wu, Dekai, 167
Wuebker, Joern, 93

Xu, Jia, 77

Yan, Song, 67
Yuret, Deniz, 282
Yvon, Francois, 54
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