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Abstract 

We present an efficient approach for dis-
course parsing within and across sen-
tences, where the unit of processing is an 
entire document, and not a single sen-
tence.  We apply shift-reduce algorithms 
for dependency and constituent parsing to 
determine syntactic dependencies for the 
sentences in a document, and subse-
quently a Rhetorical Structure Theory 
(RST) tree for the entire document.  Our 
results show that our linear-time shift-
reduce framework achieves high accu-
racy and a large improvement in effi-
ciency compared to a state-of-the-art ap-
proach based on chart parsing with dy-
namic programming.  

1 Introduction 

Transition-based dependency parsing using shift-
reduce algorithms is now in wide use for de-
pendency parsing, where the goal is to determine 
the syntactic structure of sentences.  State-of-the-
art results have been achieved for syntactic 
analysis in a variety of languages (Bucholz and 
Marsi, 2006).  In contrast to graph-based ap-
proaches, which use edge-factoring to allow for 
global optimization of parameters over entire tree 
structures using dynamic programming or maxi-
mum spanning tree algorithms (McDonald et al., 
2005) transition-based models are usually opti-
mized at the level of individual shift-reduce ac-
tions, and can be used to drive parsers that pro-
duce competitive accuracy using greedy search 
strategies in linear time. 

Recent research in data-driven shift-reduce 
parsing has shown that the basic algorithms used 
for determining dependency trees  (Nivre, 2004) 
can be extended to produce constituent structures 
(Sagae and Lavie, 2005), and more general de-

pendency graphs, where words can be linked to 
more than one head (Henderson et al., 2008; Sa-
gae and Tsujii, 2008).  A remarkably similar 
parsing approach, which predates the current 
wave of interest in data-driven shift-reduce pars-
ing sparked by Yamada and Matsumoto (2003) 
and Nivre and Scholz (2004), was proposed by 
Marcu (1999) for data-driven discourse parsing, 
where the goal is to determine the rhetorical 
structure of a document, including relationships 
that span multiple sentences.  The linear-time 
shift-reduce framework is particularly well suited 
for discourse parsing, since the length of the in-
put string depends on document length, not sen-
tence length, making cubic run-time chart pars-
ing algorithms often impractical. 

Soricut and Marcu (2003) presented an ap-
proach to discourse parsing that relied on syntac-
tic information produced by the Charniak (2000) 
parser, and used a standard bottom-up chart pars-
ing algorithm with dynamic programming to 
determine discourse structure.  Their approach 
greatly improved on the accuracy of Marcu’s 
shift-reduce approach, showing the value of us-
ing syntactic information in discourse analysis, 
but recovered only discourse relations within 
sentences.   

We present an efficient approach to discourse 
parsing using syntactic information, inspired by 
Marcu’s application of a shift-reduce algorithm 
for discourse analysis with Rhetorical Structure 
Theory (RST), and Soricut and Marcu’s use of 
syntactic structure to help determine discourse 
structure.  Our transition-based discourse parsing 
framework combines elements from Nivre 
(2004)’s approach to dependency parsing, and 
Sagae and Lavie (2005)’s approach to constituent 
parsing.  Our results improve on accuracy over 
existing approaches for data-driven RST parsing, 
while also improving on speed over Soricut and 
Marcu’s chart parsing approach, which produces 
state-of-the-art results for RST discourse rela-
tions within sentences. 
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2 Discourse analysis with the RST Dis-
course Treebank 

The discourse parsing approach presented here is 
based on the formalization of Rhetorical Struc-
ture Theory (RST) (Mann and Thompson, 1988) 
used in the RST Discourse Treebank (Carlson et 
al., 2003).  In this scheme, the discourse structure 
of a document is represented as a tree, where the 
leaves are contiguous spans of text, called ele-
mentary discourse units, or EDUs.  Each node in 
the tree corresponds to a contiguous span of text 
formed by concatenation of the spans corre-
sponding to the node’s children, and represents a 
rhetorical relation (attribution, enablement, 
elaboration, consequence, etc.) between these 
text segments.  In addition, each node is marked 
as a nucleus or as a satellite, depending on 
whether its text span represents an essential unit 
of information, or a supporting or background 
unit of information, respectively.  While the no-
tions of nucleus and satellite are in some ways 
analogous to head and dependent in syntactic 
dependencies, RST allows for multi-nuclear rela-
tions, where two nodes marked as nucleus can be 
linked into one node. 

Our parsing framework includes three compo-
nents: (1) syntactic dependency parsing, where 
standard techniques for sentence-level parsing 
are applied; (2) discourse segmentation, which 
uses syntactic and lexical information to segment 
text into EDUs; and (3) discourse parsing, which 
produces a discourse structure tree from a string 
of EDUs, also benefiting from syntactic informa-
tion.  In contrast to the approach of Soricut and 
Marcu (2003), which also includes syntactic 
parsing, discourse segmentation and discourse 
parsing, our approach assumes that the unit of 
processing for discourse parsing is an entire 
document, and that discourse relations may exist 
within sentences as well as across sentences, 
while Soricut and Marcu’s processes one sen-
tence at a time, independently, finding only dis-
course relations within individual sentences.  
Parsing entire documents at a time is made pos-
sible in our approach through the use of linear-
time transition-based parsing.  An additional mi-
nor difference is that in our approach syntactic 
information is represented using dependencies, 
while Soricut and Marcu used constituent trees. 

2.1 Syntactic parsing and discourse seg-
mentation 

Assuming the document has been segmented into 
sentences, a task for which there are approaches 

with very high accuracy (Gillick, 2009), we start 
by finding the dependency structure for each sen-
tence.  This includes part-of-speech (POS) tag-
ging using a CRF tagger trained on the Wall 
Street Journal portion of the Penn Treebank, and 
transition-based dependency parsing using the 
shift-reduce arc-standard algorithm (Nivre, 2004) 
trained with the averaged perceptron (Collins, 
2002).  The dependency parser is also trained 
with the WSJ Penn Treebank, converted to de-
pendencies using the head percolation rules of 
Yamada and Matsumoto (2003). 

Discourse segmentation is performed as a bi-
nary classification task on each word, where the 
decision is whether or not to insert an EDU 
boundary between the word and the next word.  
In a sentence of length n, containing the words 
w1, w2 … wn, we perform one classification per 
word, in order.  For word wi, the binary choice is 
whether to insert an EDU boundary between wi 
and wi+1.  The EDUs are then the words between 
EDU boundaries (assuming boundaries exist in 
the beginning and end of each sentence).   

The features used for classification are: the 
current word, its POS tag, its dependency label, 
and the direction to its head (whether the head 
appears before or after the word); the previous 
two words, their POS tags and dependency la-
bels; the next two words, their POS tags and de-
pendency labels; the direction from the previous 
word to its head; the leftmost dependent to the 
right of the current word, and its POS tag; the 
rightmost dependent to the left of the current 
word, and its POS tag; whether the head of the 
current word is between the previous EDU 
boundary and the current word; whether the head 
of the next word is between the previous EDU 
boundary and the current word.  In addition, we 
used templates that combine these features (in 
pairs or triples).  Classification was done with 
the averaged perceptron. 

2.2 Transition-based discourse parsing 

RST trees can be represented in a similar way as 
constituent trees in the Penn Treebank, with a 
few differences: the trees represent entire docu-
ments, instead of single sentences; the leaves of 
the trees are EDUs consisting of one or more 
contiguous words; and the node labels contain 
nucleus/satellite status, and possibly the name of 
a discourse relation.  Once the document has 
been segmented into a sequence of EDUs, we 
use a transition-based constituent parsing ap-
proach (Sagae and Lavie, 2005) to build an RST 
tree for the document. 
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Sagae and Lavie’s constituent parsing algo-
rithm uses a stack that holds subtrees, and con-
sumes the input string (in our case, a sequence of 
EDUs) from left to right, using four types of ac-
tions: (1) shift, which removes the next token 
from the input string, and pushes a subtree con-
taining exactly that token onto the stack; (2) re-
duce-unary-LABEL, which pops the stack, and 
push onto it a new subtree where a node with 
label LABEL dominates the subtree that was 
popped (3) reduce-left-LABEL, and (4) reduce-
right-LABEL, which each pops two items from 
the stack, and pushes onto it a new subtree with 
root LABEL, which has as right child the subtree 
previously on top of the stack, and as left child 
the subtree previously immediately below the top 
of the stack.  The difference between reduce-left 
and reduce-right is whether the head of the new 
subtree comes from the left or right child.  The 
algorithm assumes trees are lexicalized, and in 
our use of the algorithm for discourse parsing, 
heads are entire EDUs, and not single words. 

Our process for lexicalization of discourse 
trees, which is required for the parsing algorithm 
to function properly, is a simple percolation of 
“head EDUs,” performed in the same way as 
lexical heads can be assigned in Penn Treebank-
style trees using a head percolation table 
(Collins, 1999).  To determine head EDUs, we 
use the nucleus/satellite status of nodes, as fol-
lows: for each node, the leftmost child with nu-
cleus status is the head; if no child is a nucleus, 
the leftmost satellite is the head.  Most nodes 
have exactly two children, one nucleus and one 
satellite.  The parsing algorithm deals only with 
binary trees.  We use the same binarization trans-
form as Sagae and Lavie, converting the trees in 
the training set to binary trees prior to training 
the parser, and converting the binary trees pro-
duced by the parser at run-time into n-ary trees.   

As with the dependency parser and discourse 
segmenter, learning is performed using the aver-
aged perceptron.  We use similar features as Sa-
gae and Lavie, with one main difference: since 
there is usually no single head-word associated 
with each node, but a EDU that contains a se-
quence of words, we use the dependency struc-
ture of the EDU to determine what lexical fea-
tures and POS tags should be used as features 
associated with each RST tree node.  In place of 
the head-word and POS tag of the top four items 
on the stack, and the next four items in the input, 
we use subsets of the words and POS tags in the 
EDUs for each of those items.  The subset of 
words (and POS tags) that represent an EDU 

contain the first two and last words in the EDU, 
and each word in the EDU whose head is outside 
of the EDU.  In the vast majority of EDUs, this 
subset of words with heads outside the EDU (the 
EDU head set) contains a single word.  In addi-
tion, we extract these features for the top three 
(not four) items on the stack, and the next three 
(not four) words in the input.  For the top two 
items on the stack, in addition to subsets of 
words and POS tags described above, we also 
take the words and POS tags for the leftmost and 
rightmost children of each word in the EDU head 
set.  Finally, we use feature templates that com-
bine these and other individual features from Sa-
gae and Lavie, who used a polynomial kernel 
and had no need for such templates (at the cost of 
increased time for both training and running). 

3 Results 

To test our discourse parsing approach, we used 
the standard training and testing sections of the 
RST Discourse Treebank and the compacted 18-
label set described by Carlson et al. (2003).  We 
used approximately 5% of the standard training 
set as a development set. 

Our part-of-speech tagger and syntactic parser 
were not trained using the standard splits of the 
Penn Treebank for those tasks, since there are 
documents in the RST Discourse Treebank test 
section that are included in the usual training sets 
for POS taggers and parsers.  The POS tagger 
and syntactic parser were then trained on sec-
tions 2 to 21 of the WSJ Penn Treebank, exclud-
ing the specific documents used in the test sec-
tion of the RST Discourse Treebank. 

Table 1 shows the precision, recall and f-score 
of our discourse segmentation approach on the 
test set, compared to that of Soricut and Marcu 
(2003) and Marcu (1999).  In all cases, results 
were obtained with automatically produced syn-
tactic structures.  We also include the total time 
required for syntactic parsing (required in our 

 Prec. Recall F-score Time 
Marcu99  83.3 77.1 80.1 - 
S&M03 83.5 82.7 83.1 361s 
this work 87.4 86.0 86.7 40s 
 
Table 1: Precision, recall, f-score and time 
for discourse segmenters, tested on the RST 
Discourse Treebank.  Time includes syntactic 
parsing, Charniak (2000) for S&M03, and 
our implemetation of Nivre arc-standard for 
our segmenter. 
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segmentation approach and Soricut and Marcu’s) 
and segmentation.  For comparison with previous 
results, we include only segmentation within sen-
tences (if all discourse boundaries are counted, 
including sentence boundaries, our f-score is 
92.9). 

Using our discourse segmentation and transi-
tion-based discourse parsing approach, we obtain 
42.9 precision and 46.2 recall (44.5 f-score) for 
all discourse structures in the test set.  Table 2 
shows f-score of labeled bracketing for discourse 
relations within sentences only, for comparison 
with previously published results.  We note that 
human performance on this task has f-score 77.0. 

While our f-score is still far below that of hu-
man performance, we have achieved a large gain 
in speed of processing compared to a state-of-
the-art approach. 

4 Conclusion 

We have presented an approach to discourse 
analysis based on transition-based algorithms for 
dependency and constituent trees.  Dependency 
parsing is used to determine the syntactic struc-
ture of text, which is then used in discourse seg-
mentation and parsing.  A simple discriminative 
approach to segmentation results in an overall 
improvement in discourse parsing f-score, and 
the use of a linear-time algorithm results in an a 
large improvement in speed over a state-of-the-
art approach. 
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