
Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 81–84,
Paris, October 2009. c©2009 Association for Computational Linguistics

Analysis of Discourse Structure with Syntactic Dependencies and
Data-Driven Shift-Reduce Parsing

 Kenji Sagae

USC Institute for Creative Technologies
Marina del Rey, CA 90292 USA

sagae@ict.usc.edu

Abstract

We present an efficient approach for dis-
course parsing within and across sen-
tences, where the unit of processing is an
entire document, and not a single sen-
tence. We apply shift-reduce algorithms
for dependency and constituent parsing to
determine syntactic dependencies for the
sentences in a document, and subse-
quently a Rhetorical Structure Theory
(RST) tree for the entire document. Our
results show that our linear-time shift-
reduce framework achieves high accu-
racy and a large improvement in effi-
ciency compared to a state-of-the-art ap-
proach based on chart parsing with dy-
namic programming.

1 Introduction

Transition-based dependency parsing using shift-
reduce algorithms is now in wide use for de-
pendency parsing, where the goal is to determine
the syntactic structure of sentences. State-of-the-
art results have been achieved for syntactic
analysis in a variety of languages (Bucholz and
Marsi, 2006). In contrast to graph-based ap-
proaches, which use edge-factoring to allow for
global optimization of parameters over entire tree
structures using dynamic programming or maxi-
mum spanning tree algorithms (McDonald et al.,
2005) transition-based models are usually opti-
mized at the level of individual shift-reduce ac-
tions, and can be used to drive parsers that pro-
duce competitive accuracy using greedy search
strategies in linear time.

Recent research in data-driven shift-reduce
parsing has shown that the basic algorithms used
for determining dependency trees (Nivre, 2004)
can be extended to produce constituent structures
(Sagae and Lavie, 2005), and more general de-

pendency graphs, where words can be linked to
more than one head (Henderson et al., 2008; Sa-
gae and Tsujii, 2008). A remarkably similar
parsing approach, which predates the current
wave of interest in data-driven shift-reduce pars-
ing sparked by Yamada and Matsumoto (2003)
and Nivre and Scholz (2004), was proposed by
Marcu (1999) for data-driven discourse parsing,
where the goal is to determine the rhetorical
structure of a document, including relationships
that span multiple sentences. The linear-time
shift-reduce framework is particularly well suited
for discourse parsing, since the length of the in-
put string depends on document length, not sen-
tence length, making cubic run-time chart pars-
ing algorithms often impractical.

Soricut and Marcu (2003) presented an ap-
proach to discourse parsing that relied on syntac-
tic information produced by the Charniak (2000)
parser, and used a standard bottom-up chart pars-
ing algorithm with dynamic programming to
determine discourse structure. Their approach
greatly improved on the accuracy of Marcu’s
shift-reduce approach, showing the value of us-
ing syntactic information in discourse analysis,
but recovered only discourse relations within
sentences.

We present an efficient approach to discourse
parsing using syntactic information, inspired by
Marcu’s application of a shift-reduce algorithm
for discourse analysis with Rhetorical Structure
Theory (RST), and Soricut and Marcu’s use of
syntactic structure to help determine discourse
structure. Our transition-based discourse parsing
framework combines elements from Nivre
(2004)’s approach to dependency parsing, and
Sagae and Lavie (2005)’s approach to constituent
parsing. Our results improve on accuracy over
existing approaches for data-driven RST parsing,
while also improving on speed over Soricut and
Marcu’s chart parsing approach, which produces
state-of-the-art results for RST discourse rela-
tions within sentences.

81

2 Discourse analysis with the RST Dis-
course Treebank

The discourse parsing approach presented here is
based on the formalization of Rhetorical Struc-
ture Theory (RST) (Mann and Thompson, 1988)
used in the RST Discourse Treebank (Carlson et
al., 2003). In this scheme, the discourse structure
of a document is represented as a tree, where the
leaves are contiguous spans of text, called ele-
mentary discourse units, or EDUs. Each node in
the tree corresponds to a contiguous span of text
formed by concatenation of the spans corre-
sponding to the node’s children, and represents a
rhetorical relation (attribution, enablement,
elaboration, consequence, etc.) between these
text segments. In addition, each node is marked
as a nucleus or as a satellite, depending on
whether its text span represents an essential unit
of information, or a supporting or background
unit of information, respectively. While the no-
tions of nucleus and satellite are in some ways
analogous to head and dependent in syntactic
dependencies, RST allows for multi-nuclear rela-
tions, where two nodes marked as nucleus can be
linked into one node.

Our parsing framework includes three compo-
nents: (1) syntactic dependency parsing, where
standard techniques for sentence-level parsing
are applied; (2) discourse segmentation, which
uses syntactic and lexical information to segment
text into EDUs; and (3) discourse parsing, which
produces a discourse structure tree from a string
of EDUs, also benefiting from syntactic informa-
tion. In contrast to the approach of Soricut and
Marcu (2003), which also includes syntactic
parsing, discourse segmentation and discourse
parsing, our approach assumes that the unit of
processing for discourse parsing is an entire
document, and that discourse relations may exist
within sentences as well as across sentences,
while Soricut and Marcu’s processes one sen-
tence at a time, independently, finding only dis-
course relations within individual sentences.
Parsing entire documents at a time is made pos-
sible in our approach through the use of linear-
time transition-based parsing. An additional mi-
nor difference is that in our approach syntactic
information is represented using dependencies,
while Soricut and Marcu used constituent trees.

2.1 Syntactic parsing and discourse seg-
mentation

Assuming the document has been segmented into
sentences, a task for which there are approaches

with very high accuracy (Gillick, 2009), we start
by finding the dependency structure for each sen-
tence. This includes part-of-speech (POS) tag-
ging using a CRF tagger trained on the Wall
Street Journal portion of the Penn Treebank, and
transition-based dependency parsing using the
shift-reduce arc-standard algorithm (Nivre, 2004)
trained with the averaged perceptron (Collins,
2002). The dependency parser is also trained
with the WSJ Penn Treebank, converted to de-
pendencies using the head percolation rules of
Yamada and Matsumoto (2003).

Discourse segmentation is performed as a bi-
nary classification task on each word, where the
decision is whether or not to insert an EDU
boundary between the word and the next word.
In a sentence of length n, containing the words
w1, w2 … wn, we perform one classification per
word, in order. For word wi, the binary choice is
whether to insert an EDU boundary between wi
and wi+1. The EDUs are then the words between
EDU boundaries (assuming boundaries exist in
the beginning and end of each sentence).

The features used for classification are: the
current word, its POS tag, its dependency label,
and the direction to its head (whether the head
appears before or after the word); the previous
two words, their POS tags and dependency la-
bels; the next two words, their POS tags and de-
pendency labels; the direction from the previous
word to its head; the leftmost dependent to the
right of the current word, and its POS tag; the
rightmost dependent to the left of the current
word, and its POS tag; whether the head of the
current word is between the previous EDU
boundary and the current word; whether the head
of the next word is between the previous EDU
boundary and the current word. In addition, we
used templates that combine these features (in
pairs or triples). Classification was done with
the averaged perceptron.

2.2 Transition-based discourse parsing

RST trees can be represented in a similar way as
constituent trees in the Penn Treebank, with a
few differences: the trees represent entire docu-
ments, instead of single sentences; the leaves of
the trees are EDUs consisting of one or more
contiguous words; and the node labels contain
nucleus/satellite status, and possibly the name of
a discourse relation. Once the document has
been segmented into a sequence of EDUs, we
use a transition-based constituent parsing ap-
proach (Sagae and Lavie, 2005) to build an RST
tree for the document.

82

Sagae and Lavie’s constituent parsing algo-
rithm uses a stack that holds subtrees, and con-
sumes the input string (in our case, a sequence of
EDUs) from left to right, using four types of ac-
tions: (1) shift, which removes the next token
from the input string, and pushes a subtree con-
taining exactly that token onto the stack; (2) re-
duce-unary-LABEL, which pops the stack, and
push onto it a new subtree where a node with
label LABEL dominates the subtree that was
popped (3) reduce-left-LABEL, and (4) reduce-
right-LABEL, which each pops two items from
the stack, and pushes onto it a new subtree with
root LABEL, which has as right child the subtree
previously on top of the stack, and as left child
the subtree previously immediately below the top
of the stack. The difference between reduce-left
and reduce-right is whether the head of the new
subtree comes from the left or right child. The
algorithm assumes trees are lexicalized, and in
our use of the algorithm for discourse parsing,
heads are entire EDUs, and not single words.

Our process for lexicalization of discourse
trees, which is required for the parsing algorithm
to function properly, is a simple percolation of
“head EDUs,” performed in the same way as
lexical heads can be assigned in Penn Treebank-
style trees using a head percolation table
(Collins, 1999). To determine head EDUs, we
use the nucleus/satellite status of nodes, as fol-
lows: for each node, the leftmost child with nu-
cleus status is the head; if no child is a nucleus,
the leftmost satellite is the head. Most nodes
have exactly two children, one nucleus and one
satellite. The parsing algorithm deals only with
binary trees. We use the same binarization trans-
form as Sagae and Lavie, converting the trees in
the training set to binary trees prior to training
the parser, and converting the binary trees pro-
duced by the parser at run-time into n-ary trees.

As with the dependency parser and discourse
segmenter, learning is performed using the aver-
aged perceptron. We use similar features as Sa-
gae and Lavie, with one main difference: since
there is usually no single head-word associated
with each node, but a EDU that contains a se-
quence of words, we use the dependency struc-
ture of the EDU to determine what lexical fea-
tures and POS tags should be used as features
associated with each RST tree node. In place of
the head-word and POS tag of the top four items
on the stack, and the next four items in the input,
we use subsets of the words and POS tags in the
EDUs for each of those items. The subset of
words (and POS tags) that represent an EDU

contain the first two and last words in the EDU,
and each word in the EDU whose head is outside
of the EDU. In the vast majority of EDUs, this
subset of words with heads outside the EDU (the
EDU head set) contains a single word. In addi-
tion, we extract these features for the top three
(not four) items on the stack, and the next three
(not four) words in the input. For the top two
items on the stack, in addition to subsets of
words and POS tags described above, we also
take the words and POS tags for the leftmost and
rightmost children of each word in the EDU head
set. Finally, we use feature templates that com-
bine these and other individual features from Sa-
gae and Lavie, who used a polynomial kernel
and had no need for such templates (at the cost of
increased time for both training and running).

3 Results

To test our discourse parsing approach, we used
the standard training and testing sections of the
RST Discourse Treebank and the compacted 18-
label set described by Carlson et al. (2003). We
used approximately 5% of the standard training
set as a development set.

Our part-of-speech tagger and syntactic parser
were not trained using the standard splits of the
Penn Treebank for those tasks, since there are
documents in the RST Discourse Treebank test
section that are included in the usual training sets
for POS taggers and parsers. The POS tagger
and syntactic parser were then trained on sec-
tions 2 to 21 of the WSJ Penn Treebank, exclud-
ing the specific documents used in the test sec-
tion of the RST Discourse Treebank.

Table 1 shows the precision, recall and f-score
of our discourse segmentation approach on the
test set, compared to that of Soricut and Marcu
(2003) and Marcu (1999). In all cases, results
were obtained with automatically produced syn-
tactic structures. We also include the total time
required for syntactic parsing (required in our

 Prec. Recall F-score Time
Marcu99 83.3 77.1 80.1 -
S&M03 83.5 82.7 83.1 361s
this work 87.4 86.0 86.7 40s

Table 1: Precision, recall, f-score and time
for discourse segmenters, tested on the RST
Discourse Treebank. Time includes syntactic
parsing, Charniak (2000) for S&M03, and
our implemetation of Nivre arc-standard for
our segmenter.

83

segmentation approach and Soricut and Marcu’s)
and segmentation. For comparison with previous
results, we include only segmentation within sen-
tences (if all discourse boundaries are counted,
including sentence boundaries, our f-score is
92.9).

Using our discourse segmentation and transi-
tion-based discourse parsing approach, we obtain
42.9 precision and 46.2 recall (44.5 f-score) for
all discourse structures in the test set. Table 2
shows f-score of labeled bracketing for discourse
relations within sentences only, for comparison
with previously published results. We note that
human performance on this task has f-score 77.0.

While our f-score is still far below that of hu-
man performance, we have achieved a large gain
in speed of processing compared to a state-of-
the-art approach.

4 Conclusion

We have presented an approach to discourse
analysis based on transition-based algorithms for
dependency and constituent trees. Dependency
parsing is used to determine the syntactic struc-
ture of text, which is then used in discourse seg-
mentation and parsing. A simple discriminative
approach to segmentation results in an overall
improvement in discourse parsing f-score, and
the use of a linear-time algorithm results in an a
large improvement in speed over a state-of-the-
art approach.

Acknowledgments

The work described here has been sponsored by
the U.S. Army Research, Development, and En-
gineering Command (RDECOM). Statements
and opinions expressed do not necessarily reflect
the position or the policy of the United States
Government, and no official endorsement should
be inferred.

References
Buchholz, S. and Marsi, E. 2006. CoNLL-X shared

task on multilingual dependency parsing. In Proc.
of CoNLL 2006 Shared Task.

Carlson, L., Marcu, D., and Okurowski, M. E. 2003.
Building a discourse-tagged corpus in the frame-
work of Rhetorical Structure Theory. In J. van
Kuppevelt and R. W. Smith, editors, Current and
New Directions in Discourse and Dialogue. Klu-
wer Academic Publishers.

Charniak, E. 2000. A maximum-entropy-inspired
parser. In Proc. of NAACL.

Collins, M. 1999. Head-driven statistical models for
natural language processing. PhD dissertation,
University of Pennsylvania.

Collins, M. 2002. Discriminative Training Methods
for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms. In Proc. of
EMNLP. Philadelphia, PA.

Gillick, D. 2009. Sentence Boundary Detection and
the Problem with the U.S. In Proc. of the NAACL
HLT: Short Papers. Boulder, Colorado.

Henderson, J., Merlo, P., Musillo, G., Titov, I. 2008.
A Latent Variable Model of Synchronous Parsing
for Syntactic and Semantic Dependencies. In Proc.
of CoNLL 2008 Shared Task, Manchester, UK.

Mann, W. C. and Thompson, S. A. 1988. Rhetorical
Structure Theory: toward a functional theory of
text organization. Text, 8(3):243-281.

Marcu, D. 1999. A decision-based approach to rhe-
torical parsing. In Proc. of the Annual Meeting of
the Association for Computational Linguistics.

McDonald, R., Pereira, F., Ribarov, K., and Hajic, J.
2005. Non-projective dependency parsing using
spanning tree algorithms. In Proc. of HLT/EMNLP.

Nivre, J. 2004. Incrementality in Deterministic De-
pendency Parsing. In Incremental Parsing: Bring-
ing Engineering and Cognition Together (work-
shop at ACL-2004). Barcelona, Spain.

Nivre, J. and Scholz, M. 2004. Deterministic Depend-
ency Parsing of English Text. In Proc. of COLING.

Sagae, K. and Lavie, A. 2005. A classifier-based
parser with linear run-time complexity. In Proc. of
IWPT.

Sagae, K. and Tsujii, J. 2008. Shift-reduce depend-
ency DAG parsing. In Proc. of COLING.

Soricut, R. and Marcu, D. 2003. Sentence level dis-
course parsing using syntactic and lexical informa-
tion. In Proc. of NAACL. Edmonton, Canada.

Yamada, H. and Matsumoto, Y. 2003. Statistical de-
pendency analysis with support vector machines. In
Proc. of IWPT.

 F-score Time
Marcu99 37.2 -
S&M03 49.0 481s
this work 52.9 69s
human 77.0 -

Table 2: F-score for bracketing of RST dis-
course trees on the test set of the RST Dis-
course Treebank, and total time (syntactic
parsing, segmentation and discourse parsing)
required to parse the test set (S&M03 and our
approach were run on the same hardware).

84

