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Abstract 

The goal of this research is to increase the 
value of each individual student's vocabulary 
by finding words that the student doesn’t 
know, needs to, and is ready to learn. To help 
identify such words, a better model of how 
well any given word is expected to be known 
was created. This is accomplished by using a 
semantic language model, LSA, to track how 
every word changes with the addition of more 
and more text from an appropriate corpus. We 
define the “maturity” of a word as the degree 
to which it has become similar to that after 
training on the entire corpus. 

An individual student’s average vocabu-
lary level can then be placed on the word-
maturity scale by an adaptive test. Finally, the 
words that the student did or did not know on 
the test can be used to predict what other 
words the same student knows by using mul-
tiple maturity models trained on random sam-
ples of typical educational readings. This 
detailed information can be used to generate 
highly customized vocabulary teaching and 
testing exercises, such as Cloze tests.

1 Introduction

1.1 Why “Vocabulary First”

There are many arguments for the importance 
of more effective teaching of vocabulary. Here are 
some examples: 

(1) Baker, Simmons, & Kame'enui (1997) 
found that children who enter school with limited 
vocabulary knowledge grow much more discrepant 
over time from their peers who have rich vocabu-
lary knowledge.

(2.) Anderson & Freebody (1981) found that 
the number of words in student’s meaning vocabu-

laries was the best predictor of how well they 
comprehend text. 

(3) An unpublished 1966 study of the correla-
tion between entering scores of Stanford Students 
on the SAT found the vocabulary component to be 
the best predictor of grades in every subject, in-
cluding science.    

(4) The number of words students learn varies 
greatly, from 0.2 to 8 words per day and from 50 to 
over 3,000 per year. (Anderson & Freebody,1981)

(5) Printed materials in grades 3 to 9 on average 
contain almost 90,000, distinct word families and 
nearly 500,000 word forms (including proper 
names.) (Nagy & Anderson, 1984). 

(6) Nagy and Anderson (1984) found that on 
average not knowing more than one word in a sen-
tence prevented its tested understanding, and that 
the probability of learning the meaning of a new 
word by one encounter on average was less than 
one in ten.

(7) John B. Carroll’s (1993) meta-analysis of 
factor analyses of measured cognitive ability found 
the best predictor to be tests of vocabulary.

(8) Hart and Risley’s large randomized obser-
vational study of the language used in households 
with young children found that the number of 
words spoken within hearing of a child was associ-
ated with a three-fold difference in vocabulary by 
school entry.

1.2 The Challenge

Several published sources and inspection of the 
number of words taught in recent literacy text-
books and online tools suggest that less than 400 
words per year are directly tutored in American 
schools. Thus, the vast majority of vocabulary 
must be acquired from language exposure, espe-
cially from print because the oral vocabulary of 
daily living is usually estimated to be about 20,000 
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words, of which most are known by early school 
years. But it would obviously be of great value to 
find a way to make the explicit teaching of vocabu-
lary more effective, and to make it multiply the 
effects of reading. These are the goals of the new 
methodologies reported here.

It is also clear that words are not learned in iso-
lation: learning the meaning of a new word re-
quires prior knowledge of many other words, and 
by most estimates it takes a (widely variable) aver-
age of ten encounters in different and separated 
contexts. (This, by the way, is what is required to 
match human adult competence in the computa-
tional language model used here. Given a text cor-
pus highly similar to that experienced by a 
language learner, the model learns at very close to 
the same rate as an average child, and it learns new 
words as much as four times faster the more old 
words it knows (Landauer & Dumais, 1997).)

An important aside here concerns a widely cir-
culated inference from the Nagy and Anderson
(1984) result that teaching words by presenting 
them in context doesn’t produce enough vocabu-
lary growth to be the answer. The problem is that 
the experiments actually show only that the in-
serted target word itself is usually not learned well 
enough to pass a test. But in the simulations, words 
are learned a little at a time; exposure to a sentence 
increases the knowledge of many other words, both 
ones in the sentence and not. Every encounter with 
any word in context percolates meaning through 
the whole current and future vocabulary. Indeed, in 
the simulator, indirect learning is three to five 
times as much as direct, and is what accounts for 
its ability to match human vocabulary growth and 
passage similarity. Put differently, the helpful thing 
that happens on encountering an unknown word is 
not guessing its meaning but its contribution to 
underlying understanding of language. 

However, a vicious negative feedback loop 
lurks in this process. Learning from reading re-
quires vocabulary knowledge. So the vocabulary-
rich get richer and the vocabulary-poor get rela-
tively poorer. Fortunately, however, in absolute 
terms there is a positive feedback loop: the more 
words you know, the faster you can learn new 
ones, generating exponential positive growth. Thus 
the problem and solution may boil down to in-
creasing the growth parameter for a given student 
enough to make natural reading do its magic better. 

Nonetheless, importantly, it is patently obvious 
that it matters greatly what words are taught how, 
when and to which students. 

The hypothesis, then, is that a set of tools that 
could determine what particular words an individ-
ual student knows and doesn’t, and which ones 
learned (and sentences understood) would most 
help other words to be learned by that student 
might have a large multiplying effect. It is such a 
toolbox that we are endeavoring to create by using 
a computational language model with demon-
strated ability to simulate human vocabulary 
growth to a reasonably close approximation. The 
principal foci are better selection and “personaliza-
tion” of what is taught and teaching more quickly 
and with more permanence by application of opti-
mal spacing of tests and practice—into which we 
will not go here. 

1.3 Measuring vocabulary knowledge 

Currently there are three main methods for 
measuring learner vocabulary, all of which are in-
adequate for the goal. They are:

1. Corpus Frequency. Collect a large sample 
of words used in the domain of interest, for exam-
ple a collection of textbooks and readers used in 
classrooms, text from popular newspapers, a large 
dictionary or the Internet. Rank the words by fre-
quency of occurrence. Test students on a random 
subset of, say, the 1,000, 2,000 and 5,000 most 
frequent words, compute the proportion known at 
each “level” and interpolate and extrapolate. This 
is a reasonable method, because frequently en-
countered words are the ones most frequently 
needed to be understood. 

2. Educational Materials. Sample vocabulary 
lessons and readings over classrooms at different 
school grades.

3. Expert Judgments. Obtain informed expert 
opinions about what words are important to know 
by what age for what purposes.

Some estimates combine two or more of these 
approaches, and they vary in psychometric sophis-
tication. For example, one of the most sophisti-
cated, the Lexile Framework, uses Rasch scaling
(Rasch, 1980) of a large sample of student vocabu-
lary test scores (probability right on a test, holding 
student ability constant) to create a difficulty 
measure for sentences and then infers the difficulty 
of words, in essence, from the average difficulty of 
the sentences in which they appear.
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The problem addressed in the present project 
goal is that all of these methods measure only the 
proportion of tested words known at one or more 
frequency ranges, in chosen school grades or for
particular subsets of vocabulary (e.g. “academic” 
words), and for a very small subset—those tested -
some of the words that the majority of a class 
knows.  What they don’t measure is exactly which 
words in the whole corpus a given student knows 
and to what extent, or which words would be most 
important for that student to learn.

A lovely analog of the problem comes from 
Ernst Rothkopf’s (1970) metaphor that everyone 
passes through highly different “word swarms” 
each day on their way to their (still highly differen-
tiated) adult literacy. 

2 A new metric: Word Maturity

The new metric first applies Latent Semantic 
Analysis (LSA) to model how representation of
individual words changes and grows toward their 
adult meaning as more and more language is en-
countered. Once the simulation has been created, 
an adaptive testing method can be applied to place 
individual words on separate growth curves - char-
acteristic functions in psychometric terminology. 
Finally, correlations between growth curves at 
given levels can be used to estimate the achieved 
growth of other words.

2.1 How it works in more detail: LSA.

A short review of how LSA works will be use-
ful here because it is often misunderstood and a 
correct interpretation is important in what follows. 
LSA models how words combine into meaningful 
passages, the aspect of verbal meaning we take to 
be most critical to the role of words in literacy. It 
does this by assuming that the “meaning” (please 
bear with the nickname) of a meaningful passage is 
the sum of the meanings of its words:

Meaning of passage = 
{meaning of first wd} + 
{meaning of second word} + …  + 
{meaning of last word}

A very large and representative corpus of the 
language to be modeled is first collected and repre-
sented as a term-by-document matrix. A powerful 
matrix algebra method called Singular Value De-

composition is then used to make every paragraph 
in the corpus conform to the above objective func-
tion—word representations sum to passage repre-
sentations - up to a best least-squares 
approximation. A dimensionality-reduction step is 
performed, resulting in each word and passage 
meanings represented as a (typically) 300 element 
real number vector. Note that the property of a vec-
tor standing for a word form in this representation 
is the effect that it has on the vector standing for 
the passage. (In particular, it is only indirectly a 
reflection of how similar two words are to each 
other or how frequently they have occurred in the 
same passages.) In the result, the vector for a word 
is the average of the vectors for all the passages in 
which it occurs, and the vector for a passage is, of 
course, the average all of its words.

In many previous applications to education, in-
cluding automatic scoring of essays, the model’s
similarity to human judgments (e.g. by mutual in-
formation measures) has been found to be 80 to 
90% as high as that between two expert humans, 
and, as mentioned earlier, the rate at which it 
learns the meaning of words as assessed by various 
standardized and textbook-based tests has been 
found to closely match that of students. For more 
details, evaluations and previous educational appli-
cations, see (Landauer et al., 2007).

2.2 How it works in more detail: Word Ma-
turity.

Taking LSA to be a sufficiently good approxi-
mation of human learning of the meanings con-
veyed by printed word forms, we can use it to track 
their gradual acquisition as a function of increasing 
exposure to text representative in size and content 
of that which students at successive grade levels
read. 

Thus, to model the growth of meaning of indi-
vidual words, a series of sequentially accumulated 
LSA “semantic spaces” (the collection of vectors 
for all of the words and passages) are created. Cu-
mulative portions of the corpus thus emulate the 
growing total amount of text that has been read by 
a student. At each step, a new LSA semantic space 
is created from a cumulatively larger subset of the 
full adult corpus. 

Several different ways of choosing the succes-
sive sets of passages to be added to the training set 
have been tried, ranging from ones based on read-
ability metrics (such as Lexiles or DRPs) to en-
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tirely randomly selected subsets. Here, the steps 
are based on Lexiles to emulate their order of en-
counter in typical school reading. 

This process results in a separate LSA model of 
word meanings corresponding to each stage of lan-
guage learning. To determine how well a word or 
passage is known at a given stage of learning—a 
given number or proportion of passages from the 
corpus—its vector in the LSA model correspond-
ing to a particular stage is compared with the vec-
tor of the full adult model (one that has been 
trained on a corpus corresponding to a typical 
adult’s amount of language exposure). This is done 
using a linear transformation technique known as 
Procrustes Alignment to align the two spaces—
those after a given step to those based on the full 
corpus, which we call its “adult” meaning.

Word maturity is defined as the similarity of a 
word’s vector at a given stage of training and that 
at its adult stage as measured by cosine. It is scaled 
as values ranging between 0 (least mature) and 1 
(most mature).

Figure 1 shows growth curves for an illustrative 
set of words. In this example, 17 successive cumu-
lative steps were created, each containing ~5000 
additional passages. 
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Figure 1. An illustration of meaning maturity growth of sev-
eral words as a function of language exposure.

Some words (e.g. “dog”) are almost at their 
adult meaning very early. Others hardly get started 
until later. Some grow quickly, some slowly. Some 
grow smoothly, some in spurts. Some, like “tur-
key,” grow rapidly, plateau, then resume growing 
again, presumably due to multiple senses 
(“Thanksgiving bird” vs. “country”) learned at dif-
ferent periods (in LSA, multiple “senses” are com-
bined in a word representation approximately in 
proportion to their frequency.) 

The maturity metric has several conceptual ad-
vantages over existing measures of the status of 
a word’s meaning, and in particular should be kept 
conceptually distinct from the ambiguous and often 
poorly defined term “difficulty” and from whether 
or not students in general or at some developmen-
tal stage can properly use, define or understand its 
meaning. It is a mathematical property of a word 
that may or may not be related to what particular 
people can do with it. 

What it does is provide a detailed view of the 
course of development of a word’s changing repre-
sentation—its “meaning”, reciprocally defined as 
its effect on the “meaning” of passages in which it 
occurs,—as a function of the amount and nature of 
the attestedly meaningful passages in which it has 
been encountered. Its relation to “difficulty” as 
commonly used would depend, among other 
things, on whether a human could use it for some 
purpose at some stage of development of the word. 
Thus, its relation to a student’s use of a word re-
quires a second step of aligning the student’s word 
knowledge with the metric scaling. This is analo-
gous to describing a runner’s “performance” by 
aligning it with well-defined metrics for time and 
distance.

It is nevertheless worth noting that the word 
maturity metric is not based directly on corpus fre-
quency as some other measures of word status are 
(although its average level over all maturities is 
moderately highly correlated with total corpus fre-
quency as it should be) or on other heuristics, such 
as grade of first use or expert opinions of suitabil-
ity.

What is especially apparent in the graph above 
is that after a given amount of language exposure, 
analogous to age or school grade, there are large 
differences in the maturity of different words. In 
fact the correlation between frequency of occur-
rence in a particular one of the 17 intermediate cor-
pora and word maturity is only 0.1, measured over 
20,000 random words. According to the model--
and surely common sense--words of the same fre-
quency of encounter (or occurrence in a corpus) 
are far from equally well known. Thus, all methods 
for “leveling” text and vocabulary instruction 
based on word frequency must hide a great range 
of differences.

To illustrate this in more detail, Table 1, shows 
computed word maturities for a set of words that 
have nearly the same frequency in the full corpus 
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(column four) when they have been added only 
505 times (column two). The differences are so 
large as to suggest the choice of words to teach 
students in a given school grade would profit much 
from being based on something more discrimina-
tive than either average word frequency or word 
frequency as found in the texts being read or in the 
small sample that can be humanly judged. Even 
better, it would appear, should be to base what is 
taught to a given student on what that student does 
and doesn’t know but needs to locally and would 
most profit from generally.

Word Occurrences 
in intermedi-
ate corpus
(level 5)

Occurrences 
in adult 
corpus

Word 
maturity 
(at level 
5)

marble 54 485 0.21
sunshine 49 508 0.31
drugs 53 532 0.42
carpet 48 539 0.59
twin 48 458 0.61
earn 53 489 0.70
beam 47 452 0.76

Table 1 A sample of words with roughly the same number of 
occurrences in both intermediate (~50) and adult (~500) cor-
pus

The word maturity metric appears to perform 
well when validated by some external methods. 
For example, it reliably discriminates between 
words that were assigned to be taught in different 
school grades by (Biemiller, 2008), based on a 
combination of expert judgments and comprehen-
sion tests (p < 0.03), as shown in Table 2.
grade 2,
known 
by > 80%

grade 2,
known by 
40-80%

grade 6,
known by 
40-80%

grade 6,
known 
by < 40%

n=1034 n=606 n=1125 n=1411
4.4 6.5 8.8 9.5

Table 2 Average level for each word to reach a 0.5 maturity 
threshold, for words that are known at different levels by stu-
dents of different grades (Biemiller, 2008).

Median word maturity also tracks the differ-
ences (p < 0.01) between essays written by stu-
dents in different grades as shown in Figure 2.

Percent of "adult" words in essay
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Figure 2 Percentage of “adult” words used in essays written 
by students of different grade levels. “Adult” words are de-
fined as words that reach a 0.5 word maturity threshold at or 
later than the point where half of the words in the language 
have reached 0.5 threshold.

2.3 Finding words to teach individual stu-
dents

Using the computed word maturity values, a 
sigmoid characteristic curve is generated to ap-
proximate the growth curve of every word in the 
corpus. A model similar to one used in item re-
sponse theory (Rasch, 1980) can be constructed 
from the growth curve due to its similarity in shape 
and function to an IRT characteristic curve; both 
curves represent the ability of a student.  The char-
acteristic curve for the IRT is needed to properly 
administer adaptive testing, which greatly in-
creases the precision and generalizeability of the 
exam. Words to be tested are chosen from the cor-
pus beginning at the average maturity of words at 
the approximate grade level of the student. Thirty 
to fifty word tests are used to home in on the stu-
dent’s average word maturity level. In initial trials, 
a combination of yes/no and Cloze tests are being 
used. Because our model does not treat all words 
of a given frequency as equivalent, this alone sup-
ports a more precise and personalized measure of a 
student’s vocabulary. In plan, the student level will 
be updated by the results of additional tests admin-
istered in school or by Internet delivery.

The final step is to generalize from the assessed 
knowledge of words a particular student (let’s call 
her Alice) is tested on to other words in the corpus. 
This is accomplished by first generating a large 
number of simulated students (and their word ma-
turity curves) using the method described above. 
Each simulated student is trained on one of many ~ 
12 million word corpora, size and content ap-
proximating the lifelong reading of a typical col-
lege student, that have been randomly sampled 
from a representative corpus of more than half a 
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billion words. Some of these simulated students’ 
knowledge of the words being tested will be more 
similar to Alice than others. We can then estimate 
Alice’s knowledge of any other word w in the cor-
pus by averaging the levels of knowledge of w by 
simulated students whose patterns of tested word 
knowledge are most similar hers. The method rests 
on the assumption that there are sufficiently strong 
correlations between the words that a given student 
has learned at a given stage (e.g. resulting from 
Rothkopf’s personal “swarms’.) While simulations 
are promising, empirical evidence as to the power 
of the approach with non-simulated students is yet 
to be determined. 

3 Applying the method

On the assumption that learning words by their 
effects on passage meanings as LSA does is good, 
initial applications use Cloze items to simultane-
ously test and teach word meanings by presenting 
them in a natural linguistic context. Using the 
simulator, the context words in an item are pre-
dicted to be ones that the individual student already 
knows at a chosen level. The target words, where 
the wider pedagogy permits, are ones that are re-
lated and important to the meaning of the sentence 
or passage, as measured by LSA cosine similarity 
metric, and, ipso facto, the context tends to contex-
tually teach their meaning. They can also be cho-
sen to be those that are computationally estimated 
to be the most important for a student to know in 
order to comprehend assigned or student-chosen 
readings—because their lack has the most effect on 
passage meanings—and/or in the language in gen-
eral. Using a set of natural language processing 
algorithms (such as n-gram models, POS-tagging, 
WordNet relations and LSA) the distracter items 
for each Cloze are chosen in such a way that they 
are appropriate grammatically, but not semanti-
cally, as illustrated in the example below.

In summary, Cloze-test generation involves the 
following steps:

1. Determine the student’s overall knowledge 
level and individual word knowledge predictions 
based on previous interactions.

2. Find important words in a reading that are 
appropriate for a particular student (using metrics 
that include word maturity).

3. For each word, find a sentence in a large 
collection of natural text, such that the rest of the 
sentence semantically implies (is related to) the 
target word and is appropriate for student’s knowl-
edge level.

4.Find distracter words that are (a) level-
appropriate, (b) are sufficiently related and (c) fit 
grammatically, but (d) not semantically, into the 
sentence.

All the living and nonliving things around an ___ 
is its environment.
A. organism   B. oxygen   C. algae
Freshwater habitats can be classified according to 
the characteristic species of fish found in them, 
indicating the strong ecological relationship be-
tween an ___ and its environment.
A. adaptation   B. energy   C. organism

Table 3 Examples of auto-generated Cloze tests for the same 
word (organism) and two students of lower and higher ability, 
respectively.

4 Summary and present status

A method based on computational model-
ing of language, in particular one that makes the 
representation of the meaning of a word its effect 
on the meaning of a passage its objective, LSA, 
has been developed and used to simulate the 
growth of meaning of individual word representa-
tions towards those of literate adults. Based 
thereon, a new metric for word meaning growth 
called “Word Maturity” is proposed. The measure 
is then applied to adaptively measuring the average 
level of an individual student’s vocabulary, pre-
sumably with greater breadth and precision than 
offered by other methods, especially those based 
on knowledge of words at different corpus fre-
quency. There are many other things the metric 
may support, for example better personalized 
measurement of text comprehensibility.

However, it must be emphasized that the 
method is very new and essentially untried except 
in simulation. And it is worth noting that while the 
proposed method is based on LSA, many or all of 
its functionalities could be obtained with some 
other computational language models, for example 
the Topics model. Comparisons with other meth-
ods will be of interest, and more and more rigorous 
evaluations are needed, as are trials with more 
various applications to assure robustness. 
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