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Abstract

There has been much recent interest in the
extraction of PPIs (protein-protein interac-
tions) from biomedical texts, but in order
to assist with curation efforts, thePPIs must
be enriched with further information of bi-
ological interest. This paper describes the
implementation of a system to extract and
enrich PPIs, developed and tested using an
annotated corpus of biomedical texts, and
employing both machine-learning and rule-
based techniques.

1 Introduction

The huge volume of literature generated in the
biomedical field is such that researchers are unable
to read all the papers that interest them. Instead they
must rely on curated databases, containing informa-
tion extracted from the literature about, for example,
which proteins interact.

These curated databases are expensive to produce
as they rely on qualified biologists to select the pa-
pers, read them to extract the relevant information,
enter this information into the database, and cross-
check the information for quality control, a proce-
dure which can be very time-consuming. If NLP
techniques could be used to aid curators in their task
then the costs of producing curated databases could
be substantially reduced.

In the context of biomedical information extrac-
tion, there has been much recent interest in the
automated extraction ofPPIs (protein-protein in-
teractions) from biomedical literature. The recent
BioCreAtIvE Challenge highlights the desire to uti-
lize these extraction techniques to automatically or

semi-automatically populate curatedPPI databases.
However, just identifying the interactions is not nec-
essarily sufficient, as curators typically require ad-
ditional information about the interactions, such as
the experimental method used to detect the interac-
tion, and the names of any drugs used to influence
the behaviour of the proteins. Furthermore, curators
may only be interested in interactions which are ex-
perimentally proven within the paper, or where the
proteins physically touch during the interaction.

This paper describes the implementation of a
system designed to extract mentions ofPPIs from
biomedical text, and to enrich thosePPIs with ad-
ditional information of biological interest. The en-
riched information consists of properties (name-
value pairs associated with aPPI, for example a di-
rectness property could indicate whether the inter-
action is direct or not direct) and attributes (rela-
tions between thePPI relation or its participating
entities and other entities, such as the experimental
method used to detect thePPI). This system for ex-
tracting and enrichingPPIs was developed as part of
theTXM programme, which aims to develop tools to
help with the curation of biomedical papers.

After reviewing related work in the following sec-
tion, a detailed description of how the annotated cor-
pus was created and its descriptive statistics is pro-
vided in section 3. The methods used to extract the
properties and attributes are explained in section 4,
and then evaluated and discussed in section 5. Some
conclusions and suggestions for further work are of-
fered in section 6.
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2 Related Work

There has been much recent interest in extracting
PPIs from abstracts and full text papers (Bunescu
and Mooney, 2006; Giuliano et al., 2006; Plake et
al., 2005; Blaschke and Valencia, 2002; Donaldson
et al., 2003). In these systems however, the focus has
been on extracting just thePPIs without attempts to
enrich thePPIs with further information. Enriched
PPIs can be seen as a type of biological event ex-
traction (Alphonse et al., 2004; Wattarujeekrit et al.,
2004), a technique for mapping entities found in text
to roles in predefined templates which was made
popular in the MUC tasks (Marsh and Perzanowski,
1998). There has also been work to enrich sentences
with semantic categories (Shah and Bork, 2006) and
qualitative dimensions such as polarity (Wilbur et
al., 2006).

Using NLP to aid in curation was addressed in
the KDD 2002 Cup (Yeh et al., 2002), where par-
ticipants attempted to extract records curatable with
respect to the FlyBase database, and has been further
studied by many groups (Xu et al., 2006; Karamanis
et al., 2007; Ursing et al., 2001).

The Protein-Protein Interaction task of the recent
BioCreAtIvE challenge (Krallinger et al., 2007) was
concerned with selecting papers and extracting in-
formation suitable for curation. ThePPI detection
subtask (IPS) required participants not simply to de-
tect PPI mentions, but to detect curatablePPI men-
tions, in other words to enrich thePPI mentions with
extra information. Furthermore, another of the sub-
tasks (IMS) required participants to add information
about experimental methods to the curatablePPIs.

3 Data Collection and Corpus

3.1 Annotation of the Corpus

A total of 217 papers were selected for annotation
from PubMed and PubMedCentral as having exper-
imentally proven protein-protein interactions (PPIs).
The papers were annotated by a team of nine anno-
tators, all qualified in biology to at least PhD level,
over a period of approximately five months.

The XML versions of the papers were used wher-
ever possible, otherwise theHTML versions were
used and converted toXML using an in-house tool.
The full-text of each paper, including figure cap-
tions, was annotated, although the materials and

methods sections were not included in the annota-
tion.

From the 217 annotated papers, a total of 65
were selected randomly for double annotation and
27 for triple annotation. These multiply-annotated
papers were used to measure inter-annotator agree-
ment (IAA ), by taking each pair of annotations on
the same paper, and scoring one annotation against
the other using the same algorithm as for scoring the
system against the annotated data (see Section 5).
Each doubly annotated paper contributed one pair of
annotations, whilst the triply annotated papers con-
tributed three pairs of annotations. The overallIAA

score is the micro-average of theF1 scores on each
pair of corresponding annotations, where it should
be emphasised that theF1 does not depend on the
order in which the annotated papers were combined.
The multiply annotated papers were not reconciled
to produce a single gold version, rather the multiple
versions were left in the corpus.

The papers were annotated for entities and rela-
tions, and the relations were enriched with proper-
ties and attributes. The entities chosen for anno-
tation were those involved inPPIs (Protein, Com-
plex, Fusion, Mutant and Fragment) and those
which could be attributes ofPPIs (CellLine, Drug-
Compound, ExperimentalMethod and Modification-
Type). A description of the properties and attributes,
as well as counts andIAA scores are shown in Ta-
bles 1 and 2.

Once annotated, the corpus was split randomly
into three sections,TRAIN (66%), DEVTEST (17%)
and TEST (17%). TRAIN andDEVTEST were to be
used during the development of the system, for fea-
ture exploration, parameter tuning etc., whilstTEST

was reserved for scoring the final system. The splits
were organised so that multiply annotated versions
of the same paper were placed into the same section.

3.2 Descriptive Statistics of Corpus

The total number of distinctPPIs annotated in the
336 papers was 11523, and thePPI IAA, measured
usingF1, was 64.77. The following are examples of
enrichedPPIs, with the entities in bold face:

(1) Tat may also increase initiation of HIV-
1 transcription by enhancingphosphoryla-
tion of SP1, a transcription factor involved
in the basal HIV-1 transcription [14].
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Name Explanation Values Counts Pct IAA

IsPositive The polarity of the statement about thePPI.
Positive 10718 93.01 99.57
Negative 836 7.26 90.12

IsDirect Whether thePPI is direct or not.
Direct 7599 65.95 86.59
NotDirect 3977 34.51 61.38

IsProven Whether thePPI is proven in the paper or not.
Proven 7562 65.63 87.75
Referenced 2894 25.11 88.61
Unspecified 1096 9.51 34.38

Table 1: The properties that were attached toPPIs, their possible values, counts and IAA

Name Entity type Explanation Count IAA

InteractionDetectionMethod ExperimentalMethod Method used to detect the
PPI.

2085 59.96

ParticipantIdentificationMethod ExperimentalMethod Method used to detect the
participant.

1250 36.83

ModificationBefore Modification Modification of partici-
pant before interaction.

240 68.13

ModificationAfter Modification Modification of partici-
pant after interaction.

1198 86.47

DrugTreatment DrugCompound Treatment applied to par-
ticipant.

844 49.00

CellLine CellLine Cell-line from which par-
ticipant was drawn.

2000 64.38

Table 2: The attributes that could be attached to thePPIs, with their entity type, counts and IAA

(2) To confirm thatLIS1 and Tat interact in
vivo, we usedyeast two-hybrid system, in
whichTat was expressed as a bait andLIS1
as a prey. Again, we found thatLIS1 and
Tat interacted in this system.

In Example 1, the properties attached to thePPI be-
tween “Tat” and “SP1” are Referenced, Direct and
Positive, and “phosphorylated” is attached as a Mod-
ificationAfter attribute. Example 2 shows aPPI be-
tween “Tat” and “LIS1” (in the second sentence)
which is given the properties Proven, Direct and
Positive, and has the InteractionDetectionMethod at-
tribute “yeast two-hybrid system”. This second ex-
ample indicates that attributes do not have to occur
in the same sentence.

Statistics on the occurrence of properties are
shown in Table 1. For most of the property val-
ues, there are significant numbers ofPPIs, except
for Unspecified and Negative, which are used in less
than 10% of cases. Note that annotators were per-
mitted to mark more than onePPI between a given

pair of entities if, for example, they wished to mark
both Positive and NegativePPIs because the author
is making a statement that proteins interact under
one condition and not under another condition. For
the purposes of data analysis and to make modelling
easier, suchPPIs have been collapsed to give a single
PPI which may have multiple values for each prop-
erty and attribute.

Table 2 shows occurrence statistics for attributes,
where, as for properties, there can be multiple val-
ues for the same attribute. A notable feature of the
attribute attachment counts is that certain attributes
(ModificationBefore and DrugTreatment especially)
are quite rarely attached, making it difficult to use
statistical techniques.

Also shown in Tables 1 and 2 are theIAA figures
for all properties and attributes. TheIAA for proper-
ties is generally high, excepted for the Unspecified
value of the IsProven property. This being some-
thing of a “none of the above” category means that
the annotators probably have different standards re-
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garding the uncertainty required before thePPI is
placed in this class. TheIAA for attributes is, on
the whole, lower, with some attributes showing par-
ticularly low IAA (ParticipantIdentificationMethod).
A closer investigation shows that the bulk of the dis-
agreement is about when to attach, in other words if
both annotators decide to attach an attribute to a par-
ticular PPI, they generally agree about which one,
scoring a micro-averaged overallF1 of 95.10 in this
case.

4 Methods

4.1 Pipeline Processing

The property and attribute assignment modules were
implemented as part of an NLP pipeline based on
the LT-XML 2 architecture1. The pipeline consists of
tokenisation, lemmatisation, part-of-speech tagging,
species word identification, abbreviation detection
and chunking, named entiry recognition (NER) and
relation extraction. The part-of-speech tagging uses
the Curran and Clark POS tagger (Curran and Clark,
2003) trained on MedPost data (Smith et al., 2004),
whilst the other preprocessing stages are all rule
based. Tokenisation, species word identification and
chunking were implemented in-house using theLT-
XML 2 tools (Grover and Tobin, 2006), whilst ab-
breviation extraction used the Schwartz and Hearst
abbreviation extractor (Schwartz and Hearst, 2003)
and lemmatisation used morpha (Minnen et al.,
2000).

The NER module uses the Curran and Clark NER
tagger (Curran and Clark, 2003), augmented with
extra features tailored to the biomedical domain. Fi-
nally, a relation extractor based on a maximum en-
tropy model and a set of shallow linguistic features
is employed, as described in (Nielsen, 2006).

4.2 Properties

To assign properties to eachPPI extracted by the
relation extraction component, a machine learning
based property tagger was trained on a set of features
extracted from the context of thePPI. The property
tagger used a separate classifier for each property,
but with the same feature set, and both Maximum
Entropy (implemented using Zhang Le’s maxent2)
and Support Vector Machines (implemented using

1http://www.ltg.ed.ac.uk/software/xml/
2http://homepages.inf.ed.ac.uk/s0450736/

maxent_toolkit.html

svmlight3) were tested. To choose an optimal fea-
ture set, an iterative greedy optimisation procedure
was employed. A set of potential features were im-
plemented, with options to turn parts of the feature
set on or off. The full feature set was then tested on
the DEVTEST data with each of the feature options
knocked out in turn. After examining the scores on
all possible feature knockouts, the one which offered
the largest gain in performance was selected and re-
moved permanently. The whole procedure was then
repeated until knockouts produced no further gains
in performance. The resulting optimised feature set
contains the following features:
ngram Both unigrams and bigrams were imple-

mented, although, after optimisation, unigrams
were switched off. The ngram feature usesvlw
backoff, which means that words are replaced
by their verb stems, backed off to lemmas and
then to the word itself if not available. Further-
more, all digits in the words are replaced with
“0”. Ngrams are extracted from the sentences
containing the participants in thePPI, and all
sentences in between. Ngrams occurring be-
fore, between and after the participants of the
PPI are treated as separate features.

entity The entity feature includes the text and type
of the entities in thePPI.

headword This feature is essentially constructed in
the same way as the ngram feature, except that
only head verbs of chunks in the context are
included, and the vlw backoff is not used.

entity-context In the entity context feature, the vlw
backoffs of the two words on either side of each
of the entities in thePPIare included, with their
positions marked.

4.3 Attributes

For attribute assignment, experiments were per-
formed with both rule-based and machine-learning
approaches. The following sections summarise the
methods used for each approach.

4.3.1 Rule-based

In the rule-based approach, hand-written rules
were written for each attribute, using part-of-speech
tags, lemmas, chunk tags, head words and the NER
tags. In all, 20 rules were written. Each rule is

3http://svmlight.joachims.org/
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Rule Protein Prec Count

P1 ATT P2 P2 100 13
P1 is ATT by P2 P1 100 1
ATT of P2 P2 86.1 112
ATT of P1 P1 74.5 80
P1 * ATT site P1 72.2 13
P1 * ATT by * P2 P2 70.0 100
P1 * (ATT pass)* P1 P2 64.0 16
P1 * ATT * P2 P2 67.5 187
P2 ATT P2 75.0 100
P2 - any-word ATT P1 73.7 14

Table 3: The rules used to assign ModificationAfter
attributes. The protein column indicates whether the
attribute attaches to the 1st or 2nd protein, the prec
field indicates the precision of the rule on the train-
ing set and the count indicates the number of times
the rule applied correctly in training. In the rules,
P1 refers to the first protein,P2 refers to the sec-
ond protein,ATT refers to the attribute,* refers to
any number of words,any-word refers to any single
word, and pass refers to the passive voice. For exam-
ple, the rule “P2 - any-word ATT” applied to the sen-
tence “protein 1 is regulated by protein 2-dependent
phosphorylation” would result in the attributephos-
phorylation being assigned as the ModificationAfter
attribute toprotein 1.

ranked according to its precision as determined on
the TRAIN set, and the rules are applied in order
of their precision. This is particularly important
with modification attributes which are constrained
so that a given modification entity can only be at-
tached once per interaction. Table 3 lists the rules
used to assign the ModificationAfter attribute.

4.3.2 Machine Learning

For this approach, attributes are modelled as rela-
tions betweenPPIs and other entities. For eachPPI

in a document, a set of candidate relations is cre-
ated between each of the entities in thePPI and each
of the attribute entities contained in the same sen-
tence(s) as thePPI4. If there are no entities of the
appropriate type for a given attribute in the same
sentence as thePPI, the sentences before and af-
ter the PPI are also scanned for candidate entities.
Each of the candidate relations that correspond to

4PPIs spanning more than 2 sentences were ignored

attributes annotated in the gold standard are consid-
ered positive examples, whilst those that were not
annotated are considered negative examples. For ex-
ample, given the following sentence:

Protein A phosphorylates protein B
[Protein] [Modification] [Protein]

If the gold standard indicates aPPI between Pro-
tein A and Protein B with phosphorylates assigned
as a ModificationAfter attribute to Protein B, four
candidate relations will be created as shown in Ta-
ble 4

Type Entity 1 Entity 2 Label

Mod Before Prot A phosphorylates neg
Mod Before Prot B phosphorylates neg
Mod After Prot A phosphorylates neg
Mod After Prot B phosphorylates pos

Table 4: Candidate Attribute Relations for Protein A
phosphorylates Protein B

A set of features is extracted for each of the exam-
ples and a maximum entropy (ME) model is trained
using Zhang Le’s maxent toolkit. The features used
are listed below:
entity The text and part-of-speech of the attribute,

as used for properties.
entity-context The entity context feature used for

properties, except that the context size was in-
creased to 4, and parts-of-speech of the context
words were also included.

ngram This is the same as the ngram feature
used for properties, except that unigrams were
switched on.

entities-between The entities that appear between
the two entities involved in the candidate rela-
tion.

parent-relation-feature Indicates the position of
the attribute entity with respect to parentPPI

(i.e. before, after, or in between). For attributes
that are in between the two entities involved in
the PPI, also indicates if the sentence is active
or passive.

5 Evaluation

5.1 Properties

To score the property tagger, precision, recall and
F1 are calculated for each of the seven possible
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Name Value Baseline Maximum Entropy SVM
Gold Predicted Gold Predicted Gold Predicted

IsPositive Positive 96.87 97.33 97.10 98.22 97.08 98.27
Negative 0.00 0.00 38.46 48.39 45.45 57.53

IsDirect Direct 78.66 81.90 82.05 85.54 81.94 86.87
NotDirect 0.00 0.00 58.92 54.33 60.80 63.44

IsProven Proven 78.21 78.85 87.86 82.73 88.08 88.51
Referenced 0.00 0.00 81.46 69.65 82.83 81.97
Unspecified 0.00 0.00 25.74 29.41 22.77 28.00

Overall 74.20 76.24 83.87 83.33 84.09 86.79

Table 5: The performance of the property tagger, measured bytraining onTRAIN andDEVTEST combined,
then testing onTEST. The two scores given for each system are for testing on goldPPIs, and testing on
predictedPPIs. AnF1 score is shown for each property value, as well as a microaveraged overall score.

property values and then theF1 scores are micro-
averaged to give an overall score. As mentioned in
Section 3.1, all versions of the annotation for each
multiply-annotated document were included in the
training and test sets, taking care that all versions of
the same document were included in the same set.
This has the disadvantage that the system can never
achieve 100% in cases where the annotators differ,
but the advantage of giving partial credit where there
is genuine ambiguity and the system agrees with one
of the options chosen by the annotators.

The scores for all property values, tested onTEST,
are shown in Table 5, both using the model (with
Maximum Entropy and SVM) and using a base-
line where the most popular value is assigned. Two
scores are shown, the performance as measured
when the test set has the goldPPIs, and the per-
formance when the test set has the predictedPPIs,
scored only on thosePPIs where both system and
gold agree. The relation extractor used to predict
the PPIs is trained on the same documents as were
used to train the property tagger.

To see which features were most effective, a
knockout (lesion) test was conducted in which fea-
tures were knocked out one by one and performance
was measured on theDEVTEST set. In each feature
knockout, one of the features from the list in Sec-
tion 4.2 was removed. Table 6 shows how the overall
performance is affected by the different knockouts.
From the knockout experiment it is clear that the
ngram (actually bigram) feature is by far the most
effective, with the other features only contributing
marginally to the results.

Feature Knockout score Difference

vanilla 86.08 0.00
ngram 81.86 -4.22
entity 85.30 -0.77
headword 84.38 -0.50
entity-context 85.54 -0.54

Table 6: The effect of knocking out features on the
property score. Tests are conducted by training on
TRAIN and testing onDEVTEST, on predictedPPIs.
“vanilla” refers to the case where the optimal fea-
tures set is employed.

5.2 Attributes

The attributes are scored in the same manner as the
properties. Table 7 summarises the results for both
the rule-based and machine learning attribute sys-
tems. These are compared to a baseline system that
simply attaches the nearest entity of the appropriate
type for each attribute.

5.3 Discussion

The results for the more common property values are
generally close to human performance (as measured
by IAA ), however performance on both IsNegative
and Unspecified is fairly low. In the case of Un-
specified, theIAA is also low, making it likely that
the training and test data is inconsistent, compound-
ing the problem of the low occurrence rate of this
value. The Negative value also suffers from a low
occurrence rate, leading to an imbalance between
Negative and Positive which makes life hard for the
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Attribute Baseline Rule-based Machine Learning
Gold Predicted Gold Predicted Gold Predicted

InteractionDetectionMethod 36.02 39.71 39.22 41.38 37.02 46.81
ParticipantIdentificationMethod 08.68 09.27 12.32 12.87 03.37 05.97
ModificationBefore 13.10 16.00 42.22 43.84 04.88 08.33
ModificationAfter 43.37 46.00 64.93 73.04 62.32 69.64
DrugTreatment 49.57 51.11 51.29 53.33 13.90 24.52
CellLine 50.19 45.90 54.47 50.47 45.13 42.28
Overall 29.68 30.32 45.26 48.32 32.08 43.11

Table 7: The performance of the attribute tagger, onTEST. The two scores given for each system are for
testing on goldPPIs, and testing on predictedPPIs. Performance on each attribute value is measured using
F1, and then microaveraged to give an overall figure.

machine learners. However it is also possible that
the shallow linguistic features used in these experi-
ments are not sufficient to make the sometimes sub-
tle distinction between a negative statement about
an interaction and a positive one, and that models
based on a deeper linguistic analysis (e.g. parse trees
as in (Moschitti, 2004)) would be more successful.
Note also that the feature set was optimised for max-
imum performance across all property values, with
all given equal weight, but if some values are more
important than others then this could be taken into
account in the optimisation, with possibly different
feature sets used for different property names.

The results for the attributes using the rule-based
system are approximately 75% of human perfor-
mance and are higher than results for the machine
learning system. However, for the Modification-
After, CellLine, and InteractionDetectionMethod at-
tributes, which occur more frequently than the other
attributes and have higherIAA , the machine learning
system is competitive and even slightly outperforms
in the case of the InteractionDetectionMethod. The
scores are directly correlated with theIAA and both
the scores and theIAA are higher for the attributes
that tend to occur in the same sentence as thePPI. On
a practical level, this suggests that those who hope to
create similar systems would be advised to start with
local attributes and pay particular attention toIAA on
non-local attributes.

5.4 Further work

As regards properties, good results were obtained
using shallow linguistic features, but it would be
interesting to learn whether machine learning tech-

niques based on a deeper linguistic analysis would
be more effective. Also, properties were treated as
additional information added on to thePPIs after the
relation extractor had run, but perhaps it would be
more effective to combine relation extraction and
property tagging to, for example, consider positive
and negativePPIs as different types of relations.

For attributes, it would be interesting to combine
the rule-based and machine learning systems. This
has the advantage of having a system that can both
learn from annotated data when it exists, but can
be potentially improved by rules when necessary or
when annotated data is not available. Another issue
may be that some attributes might not be represented
explicitly by a single entity in a document. For ex-
ample, an experimental method may be described
rather than explicitly stated. Attributes that are not
local to thePPI caused difficulty for both the anno-
tators and the system. It would be interesting to see
if it is easier to attach attributes to a singlePPI that
has been derived from the text, rather than attempt-
ing to assign attributes to each specific mention of a
PPI within the text. This could be accomplished by
attempting to merge the information gathered from
each relation along the lines described in (Hobbs,
2002)

Since the main motivation for developing the sys-
tem to extract enrichedPPIs was to develop a tool to
aid curators, it would be useful to know how effec-
tive the system is in this task. Aside from (Karama-
nis et al., 2007), there has been little work published
to date on the effect that NLP could have on the cu-
ration process. In the most recent BioCreAtIvE eval-
uation, the PPI subtasks were concerned with au-
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tomating information extraction tasks typically per-
formed by curators such as distinguishing between
curatable and non-curatablePPI mentions and spec-
ifying the details of how thePPI was detected.

6 Conclusions

A system was implemented for enriching protein-
protein interactions (PPIs) with properties and at-
tributes providing additional information useful to
biologists. It was found that a machine learning
approach to property tagging, using simple contex-
tual features, was very effective in most cases, but
less effective for values that occurred rarely, or for
which annotators found difficulty in assigning val-
ues. For the attributes, sparsity of data meant that
rule-based approaches worked best, using fairly sim-
ple rules that could be quickly developed, although
machine learning approaches could be competitive
when there was sufficient data.
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