
Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X),
pages 176–180, New York City, June 2006.c©2006 Association for Computational Linguistics

Dependency Parsing by Inference over High-recall Dependency Predictions

Sander Canisius, Toine Bogers,
Antal van den Bosch, Jeroen Geertzen
ILK / Computational Linguistics and AI

Tilburg University, P.O. Box 90153,
NL-5000 LE Tilburg, The Netherlands
{S.V.M.Canisius,A.M.Bogers,

Antal.vdnBosch,J.Geertzen}@uvt.nl

Erik Tjong Kim Sang
Informatics Institute

University of Amsterdam, Kruislaan 403
NL-1098 SJ Amsterdam, The Netherlands

erikt@science.uva.nl

1 Introduction

As more and more syntactically-annotated corpora
become available for a wide variety of languages,
machine learning approaches to parsing gain inter-
est as a means of developing parsers without having
to repeat some of the labor-intensive and language-
specific activities required for traditional parser de-
velopment, such as manual grammar engineering,
for each new language. The CoNLL-X shared task
on multi-lingual dependency parsing (Buchholz et
al., 2006) aims to evaluate and advance the state-of-
the-art in machine learning-based dependency pars-
ing by providing a standard benchmark set compris-
ing thirteen languages1. In this paper, we describe
two different machine learning approaches to the
CoNLL-X shared task.

Before introducing the two learning-based ap-
proaches, we first describe a number of baselines,
which provide simple reference scores giving some
sense of the difficulty of each language. Next, we
present two machine learning systems: 1) an ap-
proach that directly predicts all dependency relations
in a single run over the input sentence, and 2) a cas-
cade of phrase recognizers. The first approach has
been found to perform best and was selected for sub-
mission to the competition. We conclude this paper
with a detailed error analysis of its output for two of
the thirteen languages, Dutch and Spanish.

1The data sets were extracted from various existing tree-
banks (Hajič et al., 2004; Simov et al., 2005; Simov and Osen-
ova, 2003; Chen et al., 2003; Böhmová et al., 2003; Kromann,
2003; van der Beek et al., 2002; Brants et al., 2002; Kawata and
Bartels, 2000; Afonso et al., 2002; Džeroski et al., 2006; Civit
Torruella and Martı́ Antonı́n, 2002; Nilsson et al., 2005; Oflazer
et al., 2003; Atalay et al., 2003)

2 Baseline approaches

Given the diverse range of languages involved in
the shared task, each having different characteristics
probably requiring different parsing strategies, we
developed four different baseline approaches for as-
signing labeled dependency structures to sentences.
All of the baselines produce strictly projective struc-
tures. While the simple rules implementing these
baselines are insufficient for achieving state-of-the-
art performance, they do serve a useful role in giving
a sense of the difficulty of each of the thirteen lan-
guages. The heuristics for constructing the trees and
labeling the relations used by each of the four base-
lines are described below.

Binary right-branching trees The first baseline
produces right-branching binary trees. The first to-
ken in the sentence is marked as the top node with
HEAD 0 and DEPREL ROOT. For the rest of the
tree, token n − 1 serves as the HEAD of token n.
Figure 1 shows an example of the kind of tree this
baseline produces.

Binary left-branching trees The binary left-
branching baseline mirrors the previous baseline.
The penultimate token in the sentence is marked as
the top node with HEAD 0 and DEPREL ROOT
since punctuation tokens can never serve as ROOT2.
For the rest of the tree, the HEAD of token n is token
n+1. Figure 2 shows an example of a tree produced
by this baseline.

2We simply assume the final token in the sentence to be
punctuation.

176



Inward-branching trees In this approach, the
first identified verb3 is marked as the ROOT node.
The part of the sentence to the left of the ROOT is
left-branching, the part to the right of the ROOT is
right-branching. Figure 3 shows an example of a
tree produced by this third baseline.

Nearest neighbor-branching trees In our most
complex baseline, the first verb is marked as the
ROOT node and the other verbs (with DEPREL vc)
point to the closest preceding verb. The other to-
kens point in the direction of their nearest neighbor-
ing verb, i.e. the two tokens at a distance of 1 from
a verb have that verb as their HEAD, the two tokens
at a distance of 2 have the tokens at a distance of 1
as their head, and so on until another verb is a closer
neighbor. In the case of ties, i.e. tokens that are
equally distant from two different verbs, the token is
linked to the preceding token. Figure 4 clarifies this
kind of dependency structure in an example tree.

verb verb punct

ROOT

Figure 1: Binary right-branching tree for an example
sentence with two verbs.

verb verb punct

ROOT

Figure 2: Binary left-branching tree for the example
sentence.

verb verb punct

ROOT

Figure 3: Binary inward-branching tree for the ex-
ample sentence.

3We consider a token a verb if its CPOSTAG starts with a
‘V’. This is an obviously imperfect, but language-independent
heuristic choice.

ROOT

verb verb punct

Figure 4: Nearest neighbor-branching tree for the
example sentence.

Labeling of identified relations is done using a
three-fold back-off strategy. From the training set,
we collect the most frequent DEPREL tag for each
head-dependent FORM pair, the most frequent DE-
PREL tag for each FORM, and the most frequent
DEPREL tag in the entire training set. The rela-
tions are labeled in this order: first, we look up if the
FORM pair of a token and its head was present in
the training data. If not, then we assign it the most
frequent DEPREL tag in the training data for that
specific token FORM. If all else fails we label the
token with the most frequent DEPREL tag in the en-
tire training set (excluding punct4 and ROOT).

language baseline unlabeled labeled
Arabic left 58.82 39.72
Bulgarian inward 41.29 29.50
Chinese NN 37.18 25.35
Czech NN 34.70 22.28
Danish inward 50.22 36.83
Dutch NN 34.07 26.87
German NN 33.71 26.42
Japanese right 67.18 64.22
Portuguese right 25.67 22.32
Slovene right 24.12 19.42
Spanish inward 32.98 27.47
Swedish NN 34.30 21.47
Turkish right 49.03 31.85

Table 1: The labeled and unlabeled scores for the
best performing baseline for each language (NN =
nearest neighbor-branching).

The best baseline performance (labeled and un-
labeled scores) for each language is listed in Table
1. There was no single baseline that outperformed
the others on all languages. The nearest neighbor
baseline outperformed the other baselines on five
of the thirteen languages. The right-branching and

4Since the evaluation did not score on punctuation.

177



inward-branching baselines were optimal on four
and three languages respectively. The only language
where the left-branching trees provide the best per-
formance is Arabic.

3 Parsing by inference over high-recall
dependency predictions

In our approach to dependency parsing, a machine
learning classifier is trained to predict (directed) la-
beled dependency relations between a head and a de-
pendent. For each token in a sentence, instances are
generated where this token is a potential dependent
of each of the other tokens in the sentence5. The
label that is predicted for each classification case
serves two different purposes at once: 1) it signals
whether the token is a dependent of the designated
head token, and 2) if the instance does in fact corre-
spond to a dependency relation in the resulting parse
of the input sentence, it specifies the type of this re-
lation, as well.

The features we used for encoding instances for
this classification task correspond to a rather simple
description of the head-dependent pair to be clas-
sified. For both the potential head and dependent,
there are features encoding a 2-1-2 window of words
and part-of-speech tags6; in addition, there are two
spatial features: a relative position feature, encoding
whether the dependent is located to the left or to the
right of its potential head, and a distance feature that
expresses the number of tokens between the depen-
dent and its head.

One issue that may arise when considering each
potential dependency relation as a separate classifi-
cation case is that inconsistent trees are produced.
For example, a token may be predicted to be a de-
pendent of more than one head. To recover a valid
dependency tree from the separate dependency pre-
dictions, a simple inference procedure is performed.
Consider a token for which the dependency relation
is to be predicted. For this token, a number of clas-
sification cases have been processed, each of them

5To prevent explosion of the number of classification cases
to be considered for a sentence, we restrict the maximum dis-
tance between a token and its potential head. For each language,
we selected this distance so that, on the training data, 95% of the
dependency relations is covered.

6More specifically, we used the part-of-speech tags from the
POSTAG column of the shared task data files.

indicating whether and if so how the token is related
to one of the other tokens in the sentence. Some of
these predictions may be negative, i.e. the token is
not a dependent of a certain other token in the sen-
tence, others may be positive, suggesting the token
is a dependent of some other token.

If all classifications are negative, the token is as-
sumed to have no head, and consequently no depen-
dency relation is added to the tree for this token; the
node in the dependency tree corresponding to this
token will then be an isolated one. If one of the clas-
sifications is non-negative, suggesting a dependency
relation between this token as a dependent and some
other token as a head, this dependency relation is
added to the tree. Finally, there is the case in which
more than one prediction is non-negative. By defi-
nition, at most one of these predictions can be cor-
rect; therefore, only one dependency relation should
be added to the tree. To select the most-likely can-
didate from the predicted dependency relations, the
candidates are ranked according to the classification
confidence of the base classifier that predicted them,
and the highest-ranked candidate is selected for in-
sertion into the tree.

For our base classifier we used a memory-based
learner as implemented by TiMBL (Daelemans et
al., 2004). In memory-based learning, a machine
learning method based on the nearest-neighbor rule,
the class for a given test instance is predicted by per-
forming weighted voting over the class labels of a
certain number of most-similar training instances.
As a simple measure of confidence for such a pre-
diction, we divide the weight assigned to the major-
ity class by the total weight assigned to all classes.
Though this confidence measure is a rather ad-hoc
one, which should certainly not be confused with
any kind of probability, it tends to work quite well
in practice, and arguably did so in the context of
this study. The parameters of the memory-based
learner have been optimized for accuracy separately
for each language on training and development data
sampled internally from the training set.

The base classifier in our parser is faced with a
classification task with a highly skewed class dis-
tribution, i.e. instances that correspond to a depen-
dency relation are largely outnumbered by those that
do not. In practice, such a huge number of nega-
tive instances usually results in classifiers that tend

178



to predict fairly conservatively, resulting in high pre-
cision, but low recall. In the approach introduced
above, however, it is better to have high recall, even
at the cost of precision, than to have high precision at
the cost of recall. A missed relation by the base clas-
sifier can never be recovered by the inference proce-
dure; however, due to the constraint that each token
can only be a dependent of one head, excessive pre-
diction of dependency relations can still be corrected
by the inference procedure. An effective method for
increasing the recall of a classifier is down-sampling
of the training data. In down-sampling, instances
belonging to the majority class (in this case the neg-
ative class) are removed from the training data, so
as to obtain a more balanced distribution of negative
and non-negative instances.

Figure 5 shows the effect of systematically re-
moving an increasingly larger part of the negative in-
stances from the training data. First of all, the figure
confirms that down-sampling helps to improve re-
call, though it does so at the cost of precision. More
importantly however, it also illustrates that this im-
proved recall is beneficial for the performance of the
dependency parser. The shape of the performance
curve of the dependency parser closely follows that
of the recall. Remarkably, parsing performance con-
tinues to improve with increasingly stronger down-
sampling, even though precision drops considerably
as a result of this. This shows that the confidence
of the classifier for a certain prediction is a suffi-
ciently reliable indication of the quality of that pre-
diction for fixing the over-prediction of dependency
relations. Only when the number of negative train-
ing instances is reduced to equal the number of pos-
itive instances, the performance of the parser is neg-
atively affected. Based on a quick evaluation of var-
ious down-sampling ratios on a 90%-10% train-test
split of the Dutch training data, we decided to down-
sample the training data for all languages with a ratio
of two negative instances for each positive one.

Table 2 lists the unlabeled and labeled attachment
scores of the resulting system for all thirteen lan-
guages.

4 Cascaded dependency parsing

One of the alternative strategies explored by us was
modeling the parsing process as a cascaded pair of

 0

 20

 40

 60

 80

 100

 2 4 6 8 10

Sampling ratio

Precision
Recall

System LAS

Figure 5: The effect of down-sampling on precision
and recall of the base classifier, and on labeled ac-
curacy of the dependency parser. The x-axis refers
to the number of negative instances for each posi-
tive instance in the training data. Training and test-
ing was performed on a 90%-10% split of the Dutch
training data.

basic learners. This approach is similar to Yamada
and Matsumoto (2003) but we only use their Left
and Right reduction operators, not Shift. In the first
phase, each learner predicted dependencies between
neighboring words. Dependent words were removed
and the remaining words were sent to the learners for
further rounds of processing until all words but one
had been assigned a head. Whenever crossing links
prevented further assignments of heads to words, the
learner removed the remaining word requiring the
longest dependency link. When the first phase was
finished another learner assigned labels to pairs of
words present in dependency links.

Unlike in related earlier work (Tjong Kim Sang,
2002), we were unable to compare many different
learner configurations. We used two different train-
ing files for the first phase: one for predicting the
dependency links between adjacent words and one
for predicting all other links. As a learner, we used
TiMBL with its default parameters. We evaluated
different feature sets and ended up with using words,
lemmas, POS tags and an extra pair of features with
the POS tags of the children of the focus word. With
this configuration, this cascaded approach achieved
a labeled score of 62.99 on the Dutch test data com-
pared to 74.59 achieved by our main approach.

179



language unlabeled labeled
Arabic 74.59 57.64
Bulgarian 82.51 78.74
Chinese 82.86 78.37
Czech 72.88 60.92
Danish 82.93 77.90
Dutch 77.79 74.59
German 80.01 77.56
Japanese 89.67 87.41
Portuguese 85.61 77.42
Slovene 74.02 59.19
Spanish 71.33 68.32
Swedish 85.08 79.15
Turkish 64.19 51.07

Table 2: The labeled and unlabeled scores for the
submitted system for each of the thirteen languages.

5 Error analysis

We examined the system output for two languages
in more detail: Dutch and Spanish.

5.1 Dutch
With a labeled attachment score of 74.59 and an
unlabeled attachment score of 77.79, our submitted
Dutch system performs somewhat above the average
over all submitted systems (labeled 70.73, unlabeled
75.07). We review the most notable errors made by
our system.

From a part-of-speech (CPOSTAG) perspective,
a remarkable relative amount of head and depen-
dency errors are made on conjunctions. A likely
explanation is that the tag “Conj” applies to both co-
ordinating and subordinating conjunctions; we did
not use the FEATS information that made this dis-
tinction, which would have likely solved some of
these errors.

Left- and right-directed attachment to heads is
roughly equally successful. Many errors are made
on relations attaching to ROOT; the system appears
to be overgenerating attachments to ROOT, mostly
in cases when it should have generated rightward
attachments. Unsurprisingly, the more distant the
head is, the less accurate the attachment; especially
recall suffers at distances of three and more tokens.

The most frequent attachment error is generat-
ing a ROOT attachment instead of a “mod” (mod-
ifier) relation, often occurring at the start of a sen-

tence. Many errors relate to ambiguous adverbs such
as bovendien (moreover), tenslotte (after all), and
zo (thus), which tend to occur rather frequently at
the beginning of sentences in the test set, but less
so in the training set. The test set appears to con-
sist largely of formal journalistic texts which typi-
cally tend to use these marked rhetorical words in
sentence-initial position, while the training set is a
more mixed set of texts from different genres plus
a significant set of individual sentences, often man-
ually constructed to provide particular examples of
syntactic constructions.

5.2 Spanish
The Spanish test data set was the only data set on
which the alternative cascaded approach (72.15) out-
performed our main approach (68.32). A detailed
comparison of the output files of the two systems
has revealed two differences. First, the amount of
circular links, a pair of words which have each other
as head, was larger in the analysis of the submitted
system (7%) than in the cascaded analysis (3%) and
the gold data (also 3%). Second, the number of root
words per sentence (always 1 in the gold data) was
more likely to be correct in the cascaded analysis
(70% correct; other sentences had no root) than in
the submitted approach (40% with 20% of the sen-
tences being assigned no roots and 40% more than
one root). Some of these problems might be solvable
with post-processing

Acknowledgements
This research is funded by NWO, the Netherlands
Organization for Scientific Research under the IMIX
programme, and the Dutch Ministry for Economic
Affairs’ IOP-MMI programme.

References
S. Buchholz, E. Marsi, A. Dubey, and Y. Krymolowski. 2006.

CoNLL-X shared task on multilingual dependency parsing.
In Proc. of the Tenth Conf. on Computational Natural Lan-
guage Learning (CoNLL-X). SIGNLL.

W. Daelemans, J. Zavrel, K. Van der Sloot, and A. Van den
Bosch. 2004. TiMBL: Tilburg memory based learner, ver-
sion 5.1, reference guide. Technical Report ILK 04-02, ILK
Research Group, Tilburg University.

Erik Tjong Kim Sang. 2002. Memory-based shallow parsing.
Journal of Machine Learning Research, 2(Mar):559–594.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical de-
pendency analysis with support vector machines. In 8th In-
ternational Workshop of Parsing Technologies (IWPT2003).
Nancy, France.

180


