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Abstract

Identification of action items in meeting
recordings can provide immediate access
to salient information in a medium noto-
riously difficult to search and summarize.
To this end, we use a maximum entropy
model to automatically detect action item-
related utterances from multi-party audio
meeting recordings. We compare the ef-
fect of lexical, temporal, syntactic, seman-
tic, and prosodic features on system per-
formance. We show that on a corpus of ac-
tion item annotations on the ICSI meeting
recordings, characterized by high imbal-
ance and low inter-annotator agreement,
the system performs at an F measure of
31.92%. While this is low compared to
better-studied tasks on more mature cor-
pora, the relative usefulness of the features
towards this task is indicative of their use-
fulness on more consistent annotations, as
well as to related tasks.

1 Introduction

Meetings are a ubiquitous feature of workplace
environments, and recordings of meetings pro-
vide obvious benefit in that they can be replayed
or searched through at a later date. As record-
ing technology becomes more easily available and
storage space becomes less costly, the feasibil-
ity of producing and storing these recordings in-
creases. This is particularly true for audio record-
ings, which are cheaper to produce and store than
full audio-video recordings.

However, audio recordings are notoriously diffi-
cult to search or to summarize. This is doubly true
of multi-party recordings, which, in addition to the

difficulties presented by single-party recordings,
typically contain backchannels, elaborations, and
side topics, all of which further confound search
and summarization processes. Making efficient
use of large meeting corpora thus requires intel-
ligent summary and review techniques.

One possible user goal given a corpus of meet-
ing recordings is to discover theaction items de-
cided within the meetings. Action items are deci-
sions made within the meeting that require post-
meeting attention or labor. Rapid identification
of action items can provide immediate access to
salient portions of the meetings. A review of ac-
tion items can also function as (part of) a summary
of the meeting content.

To this end, we explore the task of applying
maximum entropy classifiers to the task of auto-
matically detecting action item utterances in au-
dio recordings of multi-party meetings. Although
available corpora for action items are not ideal, it
is hoped that the feature analysis presented here
will be of use to later work on other corpora.

2 Related work

Multi-party meetings have attracted a significant
amount of recent research attention. The creation
of the ICSI corpus (Janin et al., 2003), comprised
of 72 hours of meeting recordings with an average
of 6 speakers per meeting, with associated tran-
scripts, has spurred further annotations for var-
ious types of information, including dialog acts
(Shriberg et al., 2004), topic hierarchies and action
items (Gruenstein et al., 2005), and “hot spots”
(Wrede and Shriberg, 2003).

The classification of individual utterances based
on their role in the dialog, i.e. as opposed to their
semantic payload, has a long history, especially
in the context ofdialog act (DA) classification.

96



Research on DA classification initially focused
on two-party conversational speech (Mast et al.,
1996; Stolcke et al., 1998; Shriberg et al., 1998)
and, more recently, has extended to multi-party
audio recordings like the ICSI corpus (Shriberg
et al., 2004). Machine learning techniques such
as graphical models (Ji and Bilmes, 2005), maxi-
mum entropy models (Ang et al., 2005), and hid-
den Markov models (Zimmermann et al., 2005)
have been used to classify utterances from multi-
party conversations.

It is only more recently that work focused
specifically on action items themselves has been
developed. SVMs have been successfully applied
to the task of extracting action items from email
messages (Bennett and Carbonell, 2005; Corston-
Oliver et al., 2004). Bennett and Carbonell, in par-
ticular, distinguish the task of action item detec-
tion in email from the more well-studied task of
text classification, noting the finer granularity of
the action item task and the difference of seman-
tics vs. intent. (Although recent work has begun to
blur this latter division, e.g. Cohen et al. (2004).)

In the audio domain, annotations for action item
utterances on several recorded meeting corpora,
including the ICSI corpus, have recently become
available (Gruenstein et al., 2005), enabling work
on this topic.

3 Data

We use action item annotations produced by Gru-
enstein et al. (2005). This corpus provides topic
hierarchy and action item annotations for the ICSI
meeting corpus as well as other corpora of meet-
ings; due to the ready availability of other types of
annotations for the ICSI corpus, we focus solely
on the annotations for these meetings. Figure 1
gives an example of the annotations.

The corpus covers 54 ICSI meetings annotated
by two human annotators, and several other meet-
ings annotated by one annotator. Of the 54 meet-
ings with dual annotations, 6 contain no action
items. For this study we consider only those meet-
ings which contain action items and which are an-
notated by both annotators.

As the annotations were produced by a small
number of untrained annotators, an immediate
question is the degree of consistency and reliabil-
ity. Inter-annotator agreement is typically mea-
sured by the kappa statistic (Carletta, 1996), de-
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Figure 2: Distribution ofκ (inter-annotator agree-
ment) across the 54 ICSI meetings tagged by two
annotators. Of the two meetings withκ = 1.0, one
has only two action items and the other only four.

fined as:

κ =
P (O) − P (E)

1 − P (E)

where P (O) is the probability of the observed
agreement, andP (E) the probability of the “ex-
pected agreement” (i.e., under the assumption the
two sets of annotations are independent). The
kappa statistic ranges from−1 to1, indicating per-
fect disagreement and perfect agreement, respec-
tively.

Overall inter-annotator agreement as measured
by κ on the action item corpus is poor, as noted in
Purver et al. (2006), with an overallκ of 0.364 and
values for individual meetings ranging from1.0 to
less than zero. Figure 2 shows the distribution of
κ across all 54 annotated ICSI meetings.

To reduce the effect of poor inter-annotator
agreement, we focus on the top 15 meetings as
ranked byκ; the minimumκ in this set is 0.435.
Although this reduces the total amount of data
available, our intention is that this subset of the
most consistent annotations will form a higher-
quality corpus.

While the corpus classifies related action item
utterances into action item “groups,” in this study
we wish to treat the annotations as simply binary
attributes. Visual analysis of annotations for sev-
eral meetings outside the set of chosen 15 suggests
that the union of the two sets of annotations yields
the most consistent resulting annotation; thus, for
this study, we consider an utterance to be an action
item if at least one of the annotators marked it as
such.

The 15-meeting subset contains 24,250 utter-
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A1 A2
X X So that will be sort of the assignment for next week, is to—
X X to—for slides and whatever net you picked and what it can doand—and how far

you’ve gotten. Pppt!
X - Well, I’d like to also,
X X though, uh, ha- have a first cut at what the
X X belief-net looks like.
- X Even if it’s really crude.
- - OK? So, you know,
- - here a- here are—
- X So we’re supposed to @@ about features and whatnot, and—

Figure 1: Example transcript and action item annotations (marked “X”) from annotators A1 and A2.
“@@” signifies an unintelligible word. This transcript is from an ICSI meeting recording and hasκ =

0.373, ranking it 16th out of 54 meetings in annotator agreement.

0 500 1000 1500 2000 2500

Figure 3: Number of total and action item utter-
ances across the 15 selected meetings. There are
24,250 utterances total, 590 of which (2.4%) are
action item utterances.

ances total; under the union strategy above, 590 of
these are action item utterances. Figure 3 shows
the number of action item utterances and the num-
ber of total utterances in the 15 selected meetings.

One noteworthy feature of the ICSI corpus un-
derlying the action item annotations is the “digit
reading task,” in which the participants of meet-
ings take turns reading aloud strings of digits.
This task was designed to provide a constrained-
vocabulary training set of speech recognition de-
velopers interested in multi-party speech. In this
study we did not remove these sections; the net
effect is that some portions of the data consist of
these fairly atypical utterances.

4 Experimental methodology

We formulate the action item detection task as one
of binary classification of utterances. We apply a

maximum entropy (maxent) model (Berger et al.,
1996) to this task.

Maxent models seek to maximize the condi-
tional probability of a classc given the observa-
tionsX using the exponential form

P (c|X) =
1

Z(X)
exp

[

∑

i

λi,c fi,c(X)

]

where fi,c(X) is the ith feature of the dataX
in classc, λi,c is the corresponding weight, and
Z(X) is a normalization term. Maxent models
choose the weightsλi,c so as to maximize the en-
tropy of the induced distribution while remaining
consistent with the data and labels; the intuition is
that such a distribution makes the fewest assump-
tions about the underlying data.

Our maxent model is regularized by a quadratic
prior and uses quasi-Newton parameter optimiza-
tion. Due to the limited amount of training data
(see Section 3) and to avoid overfitting, we em-
ploy 10-fold cross validation in each experiment.

To evaluate system performance, we calculate
the F measure (F ) of precision (P ) and recall (R),
defined as:

P =
|A ∩ C|

|A|

R =
|A ∩ C|

|C|

F =
2PR

P + R

whereA is the set of utterances marked as action
items by the system, andC is the set of (all) cor-
rect action item utterances.
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The use of precision and recall is motivated by
the fact that the large imbalance between posi-
tive and negative examples in the corpus (Sec-
tion 3) means that simpler metrics like accuracy
are insufficient—a system that simply classifies
every utterance as negative will achieve an accu-
racy of 97.5%, which clearly is not a good reflec-
tion of desired behavior. Recall and F measure for
such a system, however, will be zero.

Likewise, a system that flips a coin weighted in
proportion to the number of positive examples in
the entire corpus will have an accuracy of 95.25%,
but will only achieveP = R = F = 2.4%.

5 Features

As noted in Section 3, we treat the task of produc-
ing action item annotations as a binary classifica-
tion task. To this end, we consider the following
sets of features. (Note that all real-valued features
were range-normalized so as to lie in[0, 1] and that
no binning was employed.)

5.1 Immediate lexical features

We extract word unigram and bigram features
from the transcript for each utterance. We nor-
malize for case and for certain contractions; for
example, “I’ll” is transformed into “I will”.

Note that these are oracle features, as the tran-
scripts are human-produced and not the product
of automatic speech recognizer (ASR) system out-
put.

5.2 Contextual lexical features

We extract word unigram and bigram features
from the transcript for the previous and next ut-
terances across all speakers in the meeting.

5.3 Syntactic features

Under the hypothesis that action item utterances
will exhibit particular syntactic patterns, we use
a conditional Markov model part-of-speech (POS)
tagger (Toutanova and Manning, 2000) trained on
the Switchboard corpus (Godfrey et al., 1992) to
tag utterance words for part of speech. We use the
following binary POS features:

• Presence ofUH tag, denoting the presence of
an “interjection” (including filled pauses, un-
filled pauses, and discourse markers).

• Presence ofMD tag, denoting presence of a
modal verb.

• Number ofNN* tags, denoting the number of
nouns.

• Number ofVB* tags, denoting the number of
verbs.

• Presence ofVBD tag, denoting the presence
of a past-tense verb.

5.4 Prosodic features

Under the hypothesis that action item utterances
will exhibit particular prosodic behavior—for ex-
ample, that they are emphasized, or are pitched a
certain way—we performed pitch extraction using
an auto-correlation method within the sound anal-
ysis package Praat (Boersma and Weenink, 2005).
From the meeting audio files we extract the fol-
lowing prosodic features, on a per-utterance basis:
(pitch measures are in Hz; intensity in energy; nor-
malization in all cases isz-normalization)

• Pitch and intensity range, minimum, and
maximum.

• Pitch and intensity mean.

• Pitch and intensity median (0.5 quantile).

• Pitch and intensity standard deviation.

• Pitch slope, processed to eliminate halv-
ing/doubling.

• Number of voiced frames.

• Duration-normalized pitch and intensity
ranges and voiced frame count.

• Speaker-normalized pitch and intensity
means.

5.5 Temporal features

Under the hypothesis that the length of an utter-
ance or its location within the meeting as a whole
will determine its likelihood of being an action
item—for example, shorter statements near the
end of the meeting might be more likely to be ac-
tion items—we extract the duration of each utter-
ance and the time from its occurrence until the end
of the meeting. (Note that the use of this feature
precludes operating in an online setting, where the
end of the meeting may not be known in advance.)

5.6 General semantic features

Under the hypothesis that action item utterances
will frequently involve temporal expressions—e.g.
“Let’s have the paper written bynext Tuesday”—
we use Identifinder (Bikel et al., 1997) to mark
temporal expressions (“TIMEX” tags) in utterance
transcripts, and create a binary feature denoting

99



the existence of a temporal expression in each ut-
terance.

Note that as Identifinder was trained on broad-
cast news corpora, applying it to the very different
domain of multi-party meeting transcripts may not
result in optimal behavior.

5.7 Dialog-specific semantic features

Under the hypothesis that action item utterances
may be closely correlated with specific dialog
act tags, we use the dialog act annotations from
the ICSI Meeting Recorder Dialog Act Corpus.
(Shriberg et al., 2004) As these DA annotations
do not correspond one-to-one with utterances in
the ICSI corpus, we align them in the most liberal
way possible, i.e., if at least one word in an utter-
ance is annotated for a particular DA, we mark the
entirety of that utterance as exhibiting that DA.

We consider both fine-grained and coarse-
grained dialog acts.1 The former yields 56 fea-
tures, indicating occurrence of DA tags such
as “appreciation,” “rhetorical question,” and
“task management”; the latter consists of only
7 classes—“disruption,” “backchannel,” “filler,”
“statement,” “question,” “unlabeled,” and “un-
known.”

6 Results

The final performance for the maxent model
across different feature sets is given in Table 1.
F measures scores range from 13.81 to 31.92.
Figure 4 shows the interpolated precision-recall
curves for several of these feature sets; these
graphs display the level of precision that can be
achieved if one is willing to sacrifice some recall,
and vice versa.

Although ideally, all combinations of features
should be evaluated separately, the large number
of features in this precludes this strategy. The
combination of features explored here was cho-
sen so as to start from simpler features and suc-
cessively add more complex ones. We start with
transcript features that are immediate and context-
independent (“unigram”, “bigram”, “TIMEX”);
then add transcript features that require context
(“temporal”, “context”), then non-transcript (i.e.
audio signal) features (“prosodic”), and finally add
features that require both the transcript and the au-
dio signal (“DA”).

1We use themap 01 grouping defined in the MRDA cor-
pus to collapse the tags.
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Figure 4: Interpolated precision-recall curve for
several (cumulative) feature sets. This graph sug-
gests the level of precision that can be achieved
if one is willing to sacrifice some recall, and vice
versa.

In total, nine combinations of features were
considered. In every case except that of syn-
tactic and coarse-grained dialog act features, the
additional features improved system performance
and these features were used in succeeding exper-
iments. Syntactic and coarse-grained DA features
resulted in a drop in performance and were dis-
carded from succeeding systems.

7 Analysis

The unigram and bigram features provide signif-
icant discriminative power. Tables 2 and 3 give
the top features, as determined by weight, for the
models trained only on these features. It is clear
from Table 3 that the detailed end-of-utterance
punctuation in the human-generated transcripts
provide valuable discriminative power.

The performance gain from adding TIMEX tag-
ging features is small and likely not statistically
significant. Post-hoc analysis of the TIMEX tag-
ging (Section 5.6) suggests that Identifinder tag-
ging accuracy is quite plausible in general, but ex-
hibits an unfortunate tendency to mark the digit-
reading (see Section 3) portion of the meetings as
temporal expressions. It is plausible that remov-
ing these utterances from the meetings would al-
low this feature a higher accuracy.

Based on the low feature weight assigned, utter-
ance length appears to provide no significant value
to the model. However, the time until the meet-
ing is over ranks as the highest-weighted feature
in the unigram+bigram+TIMEX+temporal feature
set. This feature is thus responsible for the 39.25%
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features number F % imp.
unigram 6844 13.81
unigram+bigram 61281 16.72 21.07
unigram+bigram+TIMEX 61284 16.84 0.72
unigram+bigram+TIMEX+temporal 61286 23.45 39.25
unigram+bigram+TIMEX+temporal+syntactic 61291 21.94 -6.44
unigram+bigram+TIMEX+temporal+context 183833 25.62 9.25
unigram+bigram+TIMEX+temporal+context+prosodic 183871 27.44 7.10
unigram+bigram+TIMEX+temporal+context+prosodic+coarse DAs 183878 26.47 -3.53
unigram+bigram+TIMEX+temporal+context+prosodic+fine DAs 183927 31.92 16.33

Table 1: Performance of the maxent classifier as measured by Fmeasure, the relative improvement from
the preceding feature set, and the number of features, across all feature sets tried. Italicized lines denote
the addition of features which do not improve performance; these are omitted from succeeding systems.

feature +/- λ

“pull” + 2.2100
“email” + 1.7883
“needs” + 1.7212
“added” + 1.6613
“mm-hmm” - 1.5937
“present” + 1.5740
“nine” - 1.5019
“!” - 1.5001
“five” - 1.4944
“together” + 1.4882

Table 2: Features, evidence type (positive denotes
action item), and weight for the top ten features
in the unigram-only model. “Nine” and “five” are
common words in the digit-reading task (see Sec-
tion 3).

feature +/- λ

“- $” - 1.4308
“i will” + 1.4128
“, $” - 1.3115
“uh $” - 1.2752
“w- $” - 1.2419
“. $” - 1.2247
“email” + 1.2062
“six $” - 1.1874
“* in” - 1.1833
“so $” - 1.1819

Table 3: Features, evidence type and weight for
the top ten features in the unigram+bigram model.
The symbol * denotes the beginning of an utter-
ance and $ the end. All of the top ten features are
bigrams except for the unigrams “email”.

feature +/- λ

mean intensity (norm.) - 1.4288
mean pitch (norm.) - 1.0661
intensity range + 1.0510
“i will” + 0.8657
“email” + 0.8113
reformulate/summarize (DA) + 0.7946
“just go” (next) + 0.7190
“i will” (prev.) + 0.7074
“the paper” + 0.6788
understanding check (DA) + 0.6547

Table 4: Features, evidence type and weight for
the top ten features on the best-performing model.
Bigrams labeled “prev.” and “next” correspond to
the lexemes from previous and next utterances, re-
spectively. Prosodic features labeled as “norm.”
have been normalized on a per-speaker basis.

boost in F measure in row 3 of Table 1.

The addition of part-of-speech tags actually de-
creases system performance. It is unclear why this
is the case. It may be that the unigram and bi-
gram features already adequately capture any dis-
tinctions these features make, or simply that these
features are generally not useful for distinguishing
action items.

Contextual features, on the other hand, im-
prove system performance significantly. A post-
hoc analysis of the action item annotations makes
clear why: action items are often split across mul-
tiple utterances (e.g. as in Figure 1), only a portion
of which contain lexical cues sufficient to distin-
guish them as such. Contextual features thus allow
utterances immediately surrounding these “obvi-
ous” action items to be tagged as well.

101



Prosodic features yield a 7.10% increase in
F measure, and analysis shows that speaker-
normalized intensity and pitch, and the range in
intensity of an utterance, are valuable discrimina-
tive features. The subsequent addition of coarse-
grained dialog act tags does not further improve
system performance. It is likely this is due to rea-
sons similar to those for POS tags—either the cat-
egories are insufficient to distinguish action item
utterances, or whatever usefulness they provide is
subsumed by other features.

Table 4 shows the feature weights for the top-
ranked features on the best-scoring system. The
addition of the fine-grained DA tags results in a
significant increase in performance.The F measure
of this best feature set is 31.92%.

8 Conclusions

We have shown that several classes of features are
useful for the task of action item annotation from
multi-party meeting corpora. Simple lexical fea-
tures, their contextual versions, the time until the
end of the meeting, prosodic features, and fine-
grained dialog acts each contribute significant in-
creases in system performance.

While the raw system performance numbers of
Table 1 are low relative to other, better-studied
tasks on other, more mature corpora, we believe
the relative usefulness of the features towards this
task is indicative of their usefulness on more con-
sistent annotations, as well as to related tasks.

The Gruenstein et al. (2005) corpus provides
a valuable and necessary resource for research in
this area, but several factors raise the question of
annotation quality. The lowκ scores in Section 3
are indicative of annotation problems. Post-hoc
error analysis yields many examples of utterances
which are somewhat difficult to imagine as pos-
sible, never mind desirable, to tag. The fact that
the extremely useful oracular information present
in the fine-grained DA annotation doesnot raise
performance to the high levels that one might ex-
pect further suggests that the annotations are not
ideal—or, at the least, that they are inconsistent
with the DA annotations.2

This analysis is consistent with the findings of
Purver et al. (2006), who achieve an F measure of

2Which is not to say they are devoid of significant value—
training and testing our best system on the corpus with the
590 positive classifications randomly shuffled across all ut-
terances yields an F measure of only 4.82.

less than 25% when applying SVMs to the classi-
fication task to the same corpus, and motivate the
development of a new corpus of action item anno-
tations.

9 Future work

In Section 6 we showed that contextual lexical
features are useful for the task of action item de-
tection, at least in the fairly limited manner em-
ployed in our implementation, which simply looks
at immediate previous and immediate next utter-
ances. It seems likely that applying a sequence
model such as an HMM or conditional random
field (CRFs) will act as a generalization of this fea-
ture and may further improve performance.

Addition of features such as speaker change and
“hot spots” (Wrede and Shriberg, 2003) may also
aid classification. Conversely, it is possible that
feature selection techniques may improve perfor-
mance by helping to eliminate poor-quality fea-
tures. In this work we have followed an “ev-
erything but the kitchen sink” approach, in part
because we were curious about which features
would prove useful. The effect of adding POS and
coarse-grained DA features illustrates that this is
not necessarily the ideal strategy in terms of ulti-
mate system performance.

In general, the features evaluated in this
work are an indiscriminate mix of human- and
automatically-generated features; of the human-
generated features, some are plausible to generate
automatically, at some loss of quality (e.g. tran-
scripts) while others are unlikely to be automati-
cally generated in the foreseeable future (e.g. fine-
grained dialog acts). Future work may focus on
the effects that automatic generation of the former
has on overall system performance (although this
may require higher-quality annotations to be use-
ful.) For example, the detailed end-of-utterance
punctuation present in the human transcripts pro-
vides valuable discriminative power (Table 3), but
current ASR systems are not likely to be able to
provide this level of detail. Switching to ASR out-
put will have a negative effect on performance.

One final issue is that of utterance segmenta-
tion. The scheme used in the ICSI meeting corpus
does not necessarily correspond to the ideal seg-
mentation for other tasks. The action item annota-
tions were performed on these segmentations, and
in this study we did not attempt resegmentation,
but in the future it may prove valuable to collapse,
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for example, successive un-interrupted utterances
from the same speaker into a single utterance.

In conclusion, while overall system perfor-
mance does not approach levels typical of better-
studied classification tasks such as named-entity
recognition, we believe that this is a largely a prod-
uct of the current action item annotation quality.
We believe that the feature analysis presented here
is useful, for this task and for other related tasks,
and that, provided with a set of more consistent
action item annotations, the current system can be
used as is to achieve better performance.
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