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Abstract 

Learning taxonomy for technical terms is 
difficult and tedious task, especially 
when new terms should be included. The 
goal of this paper is to assign taxonomic 
relations among technical terms. We pro-
pose new approach to the problem that 
relies on term specificity and similarity 
measures. Term specificity and similarity 
are necessary conditions for taxonomy 
learning, because highly specific terms 
tend to locate in deep levels and semanti-
cally similar terms are close to each other 
in taxonomy. We analyzed various fea-
tures used in previous researches in view 
of term specificity and similarity, and ap-
plied optimal features for term specificity 
and similarity to our method.  

1 Introduction 

Taxonomy is a collection of controlled vocabu-
lary terms organized into a hierarchical structure. 
Each term in a taxonomy is one or more parent-
child relationships to other terms in the taxon-
omy. Taxonomies are useful artifacts for orga-
nizing many aspects of knowledge. As compo-
nents of ontologies, taxonomies can provide an 
organizational model for a domain (domain on-
tology), or a model suitable for specific tasks 
(task ontologies) (Burgun & Bodenreider, 2001). 
However their wide usage is still hindered by 
time-consuming, cost-ineffective building proc-
esses. 

The main paradigms of taxonomy learning are 
on the one hand pattern based approaches and on 
the other hand distributional hypothesis based 
approaches. The former is approaches based on 
matching lexico-syntactic patterns which convey 

taxonomic relations in a corpus (Hearst, 1992; 
Iwanska et al., 2000), and the latter is statistical 
approaches based on the distribution of context 
in corpus (Cimiano et al., 2005; Yamamoto et al., 
2005; Sanderson & Croft, 1999). The former fea-
tures a high precision and low recall compared to 
the latter. The quality of learned relations is 
higher than those of statistical approaches, while 
the patterns are rarely applied in real corpus. It is 
also difficult to improve performance of pattern 
based approaches because they are simple and 
clear. So, many researches have been focused on 
raising precision of statistical approaches. 

We introduce new distributional hypothesis 
based taxonomy learning method using term 
specificity and term similarity. Term specificity 
is a measure of information quantity of terms in 
given domain. When a term has much domain 
information, the term is highly specific to the 
domain, and vice versa (Ryu & Choi, 2005). Be-
cause highly specific terms tend to locate in low 
level in domain taxonomy, term specificity can 
be used as a necessary condition for taxonomy 
learning. Term similarity is degree of semantic 
overlap among terms. When two terms share 
many common characteristics, they are semanti-
cally similar to each other. Term similarity can 
be another necessary condition for taxonomy 
learning, because semantically similar terms lo-
cate near by in given domain taxonomy. The two 
conditions are generally valid for terms in a taxo-
nomic relation, while terms satisfying the condi-
tions do not always have taxonomic relation. So 
they are necessary conditions for taxonomy 
learning. 

Based on these conditions, it is highly prob-
able that term t1 is an ancestor of term t2 in do-
main taxonomy TD, when t1 and t2 are semanti-
cally similar enough and the specificity of t1 is 
lower than that of t2 in D as in Figure 1. However, 
t1 is not an ancestor of t3 even though the speci-
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ficity of t1 is lower than that of t3 because t1 is not 
similar to t3 on the semantic level. 

 

t1

t2 t3

Similarity Specificity 

high

low

Depth

high

low

 
Figure 1. Term specificity and term similarity in 
a domain taxonomy TD 

 
The strength of this method lies in its ability to 

adopt different optimal features for term specific-
ity and term similarity. Most of current re-
searches relied on single feature such as adjec-
tives of terms, verb-argument relation, or co-
occurrence ratio in documents according to their 
methods. Firstly, we analyze characteristics of 
features for taxonomy learning in view of term 
specificity and term similarity to show that the 
features embed characteristics of specificity and 
similarity, and finally apply optimal features to 
our method.  

Additionally we tested inside information of 
terms to measure term specificity and similarity. 
As multiword terms cover the larger part of tech-
nical terms, lexical components are featuring 
information representing semantics of terms 
(Cerbah, 2000). 

The remainder of this paper is organized fol-
lows. Characteristics of term specificity are de-
scribed in Section 2, while term similarity and its 
features are addressed in Section 3. Our taxon-
omy learning method is discussed in Section 4. 
Experiment and evaluation are discussed in Sec-
tion 5, and finally, conclusions are drawn in Sec-
tion 6. 

2 Term Specificity 

Specificity is degree of detailed information of 
an object about given target object. For example, 
if an encyclopedia contains detailed information 
about ‘IT domain’, then the encyclopedia is ‘IT 
specific encyclopedia’. In this context, specificity 
is a function of objects and target object to real 
number. Traditionally term specificity is widely 
used in information retrieval systems to weight 
index terms in documents (S. Jones, 1972; Ai-
zawa, 2003; Wong & Yao, 1992). In information 
retrieval context, term specificity is function of 
index terms and documents. On the other hand, 
term specificity is the function of terms and tar-
get domains in taxonomy learning context (Ryu 
& Choi 2005). Term specificity to a domain is 

quantified to a positive real number as shown in 
Eq. (1). 
 

( | )Spec t D R+∈                                              (1) 
 
where t is a term, and Spec(t|D) is the specificity 
of t in a given domain D. We simply use Spec(t) 
instead of Spec(t|D) assuming a particular do-
main D in this paper.  

Understanding the relation between domain 
concepts and their lexicalization methods is 
needed, before we describe term specificity 
measuring methods. Domain specific concepts 
can be distinguished by a set of what we call 
‘characteristics’. More specific concepts are cre-
ated by adding characteristics to the set of char-
acteristics of existing concepts. Let us consider 
two concepts: C1 and C2. C1 is an existing con-
cept and C2 is a newly created concept by com-
bining new characteristics to the characteristic 
set of C1. In this case, C1 is an ancestor of C2 
(ISO, 2000). When domain specific concepts are 
lexicalized as terms, the terms' word-formation is 
classified into two categories based on the com-
position of component words. In the first cate-
gory, new terms are created by adding modifiers 
to existing terms. Figure 2 shows a subtree of 
financial ontology. For example ‘current asset’ 
was created by adding the modifier ‘current’ to 
its hypernym ‘asset’. In this case, inside informa-
tion is a good evidence to represent the charac-
teristics. In the second category, new terms are 
created independently of existing terms. For ex-
ample, ‘cache’, ‘inventory’, and ‘receivable’ 
share no common words with their hypernyms 
‘current asset’ and ‘asset’. In this case, outside 
information is used to differentiate the character-
istics of the terms. 

 
asset

current asset fixed asset

cache inventory receivable intangible
asset  

Figure 2. Subtree of financial ontology 
 
There are many kinds of inside and outside in-

formation to be used in measuring term specific-
ity. Distribution of adjective-term relation and 
verb-argument dependency relation are colloca-
tion based statistics. Distribution of adjective-
term relation refers to the idea that specific nouns 
are rarely modified, while general nouns are fre-
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quently modified in text. This feature has been 
discussed to measure specificity of nouns in 
(Caraballo, 1999; Ryu & Choi, 2005) and to 
build taxonomy of Japanese nouns (Yamamoto et 
al., 2005). Inversed specificity of a term can be 
measured by entropy of adjectives as shown Eq. 
(2). 
 

1( ) ( | ) log ( | )adj
adj

Spec t P adj t P adj t− = −∑              (2) 

 
where P(adj|t), the probability that adj modifies t, 
is estimated as freq(adj,t)/freq(t). The entropy is 
the average information quantity of all (adj,t) 
pairs for term t. Specific terms have low entropy, 
because their adjective distributions are simple. 

For verb-argument distribution, we assume 
that domain specific terms co-occur with selected 
verbs which represent special characteristics of 
terms while general terms are associated with 
multiple verbs. Under this assumption, we make 
use of syntactic dependencies between verbs ap-
pearing in the corpus and their arguments such as 
subjects and objects. For example, ‘inventory’1, 
in Figure 2, shows a tendency to be objects of 
specific verbs like ‘increase’ and ‘reduce’. This 
feature was used in (Cimiano et al., 2005) to 
learn concept hierarchy. Inversed specificity of a 
term can be measured by entropy of verb-
argument relations as Eq. (3). 

 
1( ) ( | ) log ( | )

arg

arg

v arg arg
v

Spec t P t v P t v− = −∑             (3) 

 
where P(t|varg), the probability that t is argument 
of varg, is estimated as freq(t,varg)/freq(varg). The 
entropy is the average information quantity of all 
(t,varg) pairs for term t. 

Conditional probability of term co-occurrence 
in documents was used in (Sanderson & Croft, 
1999) to build term taxonomy. This statistics is 
based on the assumption that, for two terms, ti 
and tj, ti is said to subsume tj if the following two 
conditions hold, 

 
P(ti|tj) = 1 and P(tj|ti)<1                                     (4) 

 
In other words, ti subsumes tj if the documents 

which tj occurs in are a subset of the documents 
which ti occurs in, therefore ti can be parent of tj 
in taxonomy. Although a good number of term 
pairs are found that adhere to the two subsump-
                                                 
1 ‘Inventory’ consists of a list of goods and materials held 
available in stock (http://en.wikipedia.org/wiki/Inventory). 

tion conditions, it is noticed that many are just 
failing to be included because a few occurrences 
of the subsumed term, tj, does not co-occur with 
ti. Subsequently, the conditions are relaxed and 
subsume function is defined as Eq. (5). In case of 
P(ti|tj)>P(tj|ti), subsume(ti,tj) returns 1, otherwise 
returns 0. 

 
1  if ( | ) ( | )

( , )
0  otherwise                  

i j j i
i j

P t t P t t
subsume t t

>⎧
= ⎨
⎩

           (5) 

 
We apply this function to calculate term speci-

ficity as shown Eq. (6) where a term is specific 
when it is subsumed by most of other terms. 
Specificity of t is determined by the ratio of 
terms that subsume t over all co-occurring terms. 

 
1

( , )
( )

jj n
coldoc

subsume t t
Spec t

n
≤ ≤=

∑                      (6) 

 
where n is number of terms co-occurring terms 
with t. 

Finally, inside-word information is important 
to compute specificity for multiword terms. Con-
sider a term t that consists of two words like t = 
w1w2. Two words, w1 and w2, have their unique 
characteristics and the characteristics are 
summed up to the characteristic of t. Mutual in-
formation is used to estimate the association be-
tween a term and its component words. Let 
T={t1,…,tN} be a set of terms found in a corpus, 
and W={w1,…,wM} be a set of component words 
composing the terms in T. Assume a joint prob-
ability distribution P(ti,wj), probability of wj is a 
component of ti, is given for ti and wj. Mutual 
information between ti and wj compares the prob-
ability of observing ti and wj together and the 
probability of observing ti and wj independently. 
The mutual information represents the reduction 
of uncertainty about ti when wj is observed. The 
summed mutual information between ti and W, as 
in Eq. (7), is total reduction of uncertainty about 
ti when all component words are observed. 

 
( , )

( ) log
( ) ( )

j

i j
in i

w W i j

P t w
Spec t

P t P w∈

= ∑                            (7) 

 
This equation indicates that wj which is highly 

associated to ti contributes specificity of ti. For 
example, ‘debenture bond’ is more specific con-
cept than ‘financial product’. Intuitively, ‘deben-
ture’ is highly associated to ‘debenture bond’ 
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compared with ‘bond’ to ‘debenture bond’ or 
‘financial’, ‘product’ to ‘financial product’. 

3 Term Similarity 

We evaluate four statistical and lexical features, 
related to taxonomy learning, in view of term 
similarity. Three statistical features have been 
used in existing taxonomy learning researches. 

(Sanderson & Croft, 1999) used conditional 
probability of co-occurring terms in same docu-
ment in taxonomy learning process as shown in 
Eq. (4). This feature can be used to measure 
similarity of terms. If two terms co-occur in 
common documents, they are semantically simi-
lar to each other. Based on this assumption, we 
can calculate term similarity by comparing the 
frequency of co-occurring ti and tj together and 
the frequency of occurring ti and tj independently, 
as Eq. (8). 

 
2* ( , )

( , )
( ) ( )

i j
coldoc i j

i j

df t t
Sim t t

df t df t
=

+
                           (8) 

 
where df(ti,tj) is number of documents in which 
both ti and tj co-occur, df(ti) is number of docu-
ments in which ti occurs.  

(Yamamoto et al., 2005) used adjective pat-
terns to make characteristics vectors for terms in 
Complementary Similarity Measure (CSM). Al-
though CSM was initially designed to extract 
superordinate-subordinate relations, it is a simi-
larity measure by itself. They proposed two CSM 
measures; one is for binary images in which val-
ues in feature vectors are 0 or 1, and the other is 
for gray-scale images in which values in feature 
vectors are 0 through 1. We adapt gray-scale 
measure in similarity calculation, because it 
showed better performance in their research. 

(Cimiano et al., 2005) applied Formal Concept 
Analysis (FCA) to extract taxonomies from a 
text corpus. They modeled the context of a term 
as a vector representing syntactic dependencies. 
Similarity based on verb-argument dependencies 
is calculated using cosine measure as Eq. (9). 

 

2 2

( | ) ( | )
( , )

( | ) ( | )
arg

arg

arg arg

i arg j argv V
v i j

i arg j arg
v V v V

P t v P t v
Sim t t

P t v P t v
∈

∈ ∈

=
∑
∑ ∑

 (9) 

 
where P(t|varg), the probability that t is argument 
of varg, is estimated as freq(t,varg)/freq(varg). 
Above three similarity measures are valid when 

terms, ti and tj, appear in corpus one or more 
times. 

The last similarity measure is based on inside 
information of terms. Because many domain 
terms are multiword terms, component words are 
clues for term similarity. If two terms share 
many common words, they share common char-
acteristics in given domain. For example, four 
words ‘asset’, ‘current asset’, ‘fixed asset’ and 
‘intangible asset’ share characteristics related to 
‘asset’ as in Figure 2. This similarity measure is 
shown in Eq. (10). 

 
2* ( , )

( , )
| | | |

i j
in i j

i j

cwc t t
Sim t t

t t
=

+
                                (10) 

 
where |t| is word count of t, and cwc(ti,tj) is 
common word count in ti and tj. Simin(ti,tj) is 
valid when cwc(ti,tj)>0. Because cwc(ti,tj)=0 for 
most of term pairs, it is difficult to catch reliable 
results for all possible term pairs. 

4 Taxonomy Learning Process 

We model taxonomy learning process as a se-
quential insertion of new terms to current taxon-
omy. New taxonomy starts with empty state, and 
changes to rich taxonomic structure with the re-
peated insertion of terms as depicted in Figure 3. 
Terms to be inserted are sorted by term specific-
ity values. Term insertion based on the increas-
ing order of term specificity is natural, because 
the taxonomy grows from top to down with term 
insertion process in increasing specificity se-
quence. 

 

…

SpecificityHigh Low

Specificity

High

Low
Term sequence

Taxonomy

tnew

tnew

 
Figure 3. Terms are inserted to taxonomy in the 
sequence of specificity 

 
According to above assumption, our system 

selects possible hypernyms of a new term, tnew in 
current taxonomy as following steps: 

 
• Step 1: Select n-most similar terms to tnew 

from current taxonomy 

• Step 2: Select candidate hypernyms of tnew 
from n-most similar terms. Specificity of 
candidate hypernyms is less than that of tnew. 
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• Step 3: Insert tnew as hyponyms of candidate 
hypernyms 

For example, suppose t2, t4, t5 and t6, are four 
most similar terms to tnew in Figure 4. Two terms 
t2 and t4 are selected as candidate hypernyms of 
tnew, because specificity of the terms is less than 
specificity of tnew. 
 

t1

t2
t3

t4 t5 t6

t7 t8 t9

tnew

t10

Spec(t1) = 1.0

Spec(t3) = 1.5Spec(t2) = 1.5

Spec(t4) = 2.0 Spec(t5) = 3.0

Spec(t7) = 4.0 Spec(t8) = 3.5

Spec(t6) = 2.4

Spec(t9) = 2.5

Spec(tnew) = 2.3

Spec(t10) = 3.0

S
pecificity

High

Low

 
Figure 4. Selection of candidate hypernyms of 
tnew from taxonomy using term specificity and 
similarity 

5 Experiment and Evaluation 

We applied our taxonomy learning method to set 
of terms in existing taxonomy. We removed all 
relations from the taxonomy, and made new 
taxonomic relations among the terms. The 
learned taxonomy was then compared to original 
taxonomy. Our experiment is composed of four 
steps. Firstly, we calculated term specificity us-
ing specificity measures discussed in chapter 2, 
secondly, we calculated term similarity using 
similarity measures described in chapter 3, 
thirdly, we applied the best specificity and simi-
larity features to our taxonomy building process, 
and finally, we evaluated our method and com-
pared with other taxonomy learning methods. 

Finance ontology 2  which was developed 
within the GETESS project (Staab et al., 1999) 
was used in our experiment. We slightly modi-
fied original ontology. We unified different ex-
pressions of same concept to identical expression. 
For example, 'cd-rom drive' and 'cdrom drive' are 
unified as 'cd-rom drive' because the former is 
more usual expression than the latter. We also 
removed terms that are not descendents of 'root' 
node to make the taxonomy have single root 
node. The taxonomy consists of total 1,819 
nodes and 1,130 distinct nodes. Maximum and 
average depths are 15 and 5.5 respectively, and 

                                                 
2 The ontology can be downloaded at http://www.aifb.uni-
karlsruhe.de/WBS/pci/FinanceGoldStandard.isa. P. Cimiano 
and his colleagues added English labels for the originally 
German labeled nodes (Cimiano et al., 2005) 

maximum and average children nodes are 32 and 
3.5 respectively. 

We considered Reuters215783 corpus, over 3.1 
million words in title and body fields. We parsed 
the corpus using Connexor functional depend-
ency parser4 and extracted various statistics: term 
frequency, distribution of adjectives, distribution 
of co-occurring frequency in documents, and 
verb-argument distribution. 

5.1 Term Specificity 

Term specificity was evaluated based on three 
criteria: recall, precision and F-measure. Recall 
is the fraction of the terms that have specificity 
values by the given measuring method. Precision 
is the fraction of relations with correct specificity 
values. F-measure is a harmonic mean of preci-
sion and recall into a single measure of overall 
performance. Precision (Pspec), recall (Rspec), F-
measure (Fspec) is defined as follows: 
 

#     
#    

#   ( , )   
#   ( , )

spec

valid
spec

valid

of terms with specificityR
of all terms

of R p c with correct specificityP
of R p c

=

=

  (11) 

 
where Rvalid(p,c) is a valid parent-child relation in 
original taxonomy, and a relation is valid when 
the specificity of two terms are measured by the 
given method. If the specificity of child term, c, 
is larger than that of parent term, p, then the rela-
tion is correct. 

We tested four specificity measuring methods 
discussed in section 2 and the result is shown in 
Table 1. Specadj showed the highest precision as 
we anticipated. Because domain specific terms 
have sufficient information in themselves; they 
are rarely modified by other words in real text. 
However, Specadj showed the lowest recall for 
data sparseness problem. As mentioned above, it 
is hard to collect sufficient adjectives for domain 
specific terms from text. Specvarg showed the 
lowest precision. This result indicates that distri-
bution of verb-argument relation is less corre-
lated to term specificity. Specin showed the high-
est recall because it measures term specificity 
using component words contrary to other meth-
ods. Speccoldoc showed comparable precision and 
recall. 

                                                 
3 
http://www.daviddlewis.com/resources/testcollections/reute
rs21578/ 
4 http://www.connexor.com/ 
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We harmonized Specin and Specadj to Specin/adj 
as described in (Ryu & Choi, 2005) to take ad-
vantages of both inside and outside information. 
Harmonic mean of two specificity values was 
used in Specin/adj method. Specin/adj showed the 
highest F-measure because precision was higher 
than that of Specin and recall was equal to that of 
Specin. 

 
Table 1. Precision, recall and F-measure for term 
specificity 

Method Precision Recall F-measure

Specadj 0.795 0.609  0.689 
Specvarg 0.663 0.702  0.682 

Speccoldoc 0.717 0.702  0.709 
Specin 0.728 0.907  0.808 

Specin/adj 0.731 0.907  0.810 

5.2 Term Similarity 

We evaluated similarity measures by comparing 
with taxonomy based similarity measure. (Bu-
danitsky & Hirst, 2006) calculated correlation 
coefficients (CC) between human similarity rat-
ings and the five WordNet based similarity 
measures. Among the five computational meas-
ures, (Leacock & Chodorow, 1998)’s method 
showed the highest correlation coefficients, even 
though all of the measures showed similar rang-
ing from 0.74 to 0.85. This result means that tax-
onomy based similarity is highly correlated to 
human similarity ratings. We can indirectly 
evaluate our similarity measures by comparing to 
taxonomy based similarity measure, instead of 
direct comparison to human rating. If applied 
similarity measure is qualified, the calculated 
similarity will be highly correlated to taxonomy 
based similarity. Leacock and Chodorow pro-
posed following formula for computing the 
scaled semantic similarity between terms t1 and t2 
in taxonomy. 
 

1 2
1 2

( , )( , ) log
2 max ( )LC

t Taxonomy

len t tSim t t
depth t

∈

= −
×

             (12) 

 
where the denominator includes the maximum 
depth of given taxonomy, and len(t1, t2) is num-
ber of edges in the shortest path between word t1 
and t2 in the taxonomy.  

Besides CC with ontology based similarity 
measures, recall of a similarity measures is also 
important evaluation factor. We defined recall of 
similarity measure, RSim, as the fraction of the 

term pairs that have similarity values by the 
given measuring method as Eq. (13). 

 
#     

#     Sim
similarity measured term pairsR

all possible term pairs
=           (13) 

 
We also defined F-measure for a similarity 

measure, Fsim, as harmonic means of CC and Rsim. 
Because CC is a kind of precision, Fsim is overall 
measure of precision and recall. 

We calculated term similarity between all pos-
sible term pairs in finance ontology using the 
measures described in section 3. Additionally we 
introduced new similarity measure Simin/varg 
which is combined similarity of Simvarg and Simin. 
Simvarg and Simin between two terms are harmo-
nized to Simin/varg. We also calculated SimLC 
based on finance ontology, and calculated CC 
between SimLC and results of other measures. 
Figure 5 shows variation of CC and recall as 
threshold of similarity changes from 0.0 to 1.0 
for five similarity measures. Threshold is directly 
proportional to CC and inversely proportional to 
recall in ideal case. We normalized all similarity 
values to [0.0, 1.0] in each measure. CC grows as 
threshold increases in Simcoldoc and Simvarg as we 
expected. CC of CSM measure, Simcsm, increased 
as threshold increased and decreased when 
threshold is over 0.6. For example two terms ‘as-
set’ and ‘current asset’ are very similar to each 
other based on SimLC measure, because edge 
count between two terms is one in finance ontol-
ogy. The former can be modified many adjec-
tives such as ‘intangible’, ‘tangible’, ‘new’ and 
‘estimated’, while the latter is rarely modified by 
other adjectives in corpus because it was already 
extended from ‘asset’ by adding adjective ‘cur-
rent’. Therefore, semantically similar terms do 
not always have similar adjective distributions. 
CC between Simin and SimLC showed high curve 
in low threshold, but downed as threshold in-
creased. Similarity value above 0.6 is insignifi-
cant, because it is hard to be over 0.6 using Eq. 
(10). For example, similarity between ‘executive 
board meeting’ and ‘board meeting’ is 0.8, the 
maximum similarity in our test set. The average 
of inside-word similarity is 0.41. 

Simvarg showed higher recall than other meas-
ures. This means that verb-argument relation is 
more abundant than other features in corpus. 
SimIn showed the lowest recall because we could 
get valid similarity using Eq. (10). Simvarg 
showed higher F-measure when threshold is over 
0.2. This result illustrate that verb-argument rela-
tion is adequate feature to similarity calculation. 

46



The combined similarity measure, Simin/varg, 
complement shortcomings of SimIn and Simvarg. 
SimIn showed high CC but low recall. Contrarily 
Simvarg showed low CC but high recall. Simin/varg 
showed the highest F-measure. 

5.3 Taxonomy learning 

In order to evaluate our approach we need to as-
sess how good the automatically learned tax-
onomies reflect a given domain. The goodness is 
evaluated by the similarity of automatically 
learned taxonomy to reference taxonomy. We 
used (Cimiano et al., 2005)’s ontology evaluation 
method in which lexical recall (LRTax), precision 
(PTax) and F-measure (FTax) of learned taxonomy 
are defined based on the notion of taxonomy 
overlap. LRTax is defined as the ratio of number 
of common terms in learned taxonomy and refer-
ence taxonomy over number of terms in refer-
ence taxonomy. PTax is defined as ratio of taxon-
omy overlap of learned taxonomy to reference 
taxonomy. FTax is harmonic mean of LRTax and 
PTax. 
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Figure 5 Correlation coefficient between SimLC 
and other similarity measures. Recall and F-
measure of similarity measures 

We generated four taxonomies, Tcoldoc, Tcsm, 
Tfca, Tspec/sim, using four taxonomy learning meth-
ods: term co-occurring method, CSM method, 
FCA method and our method. We applied Spe-
cin/adj in specificity measuring and Simin/varg in 
similarity calculation because they showed the 
highest F-measure. In our method, the most 
probable one term was selected as hypernym of 
newly inserted term in each learning step.  

Figure 6 shows variations of lexical recall, 
precision and F-measure of four methods as 
threshold changes. Threshold in each method 
represent different information to each other. 
Threshold in Tcsm is variation of CSM values. 
Threshold in Tcoldoc is variation of probability of 
two terms co-occur in a document. Threshold in 
Tfca is normalized frequency of contexts. Thresh-
old in Tspec/sim, is variation of similarity. 

Tspec/sim showed the highest lexical recall. 
Lexical recall is tightly related to recall in simi-
larity measures. Simin/varg showed the highest re-
call in similarity measures. Tfca and Tcsm showed 
higher precision than other taxonomies. It is as-
sumed that  precision  of  taxonomy  depends  on 
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Figure 6. Lexical recall, precision and F-measure 
of taxonomy learning methods 
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the precision of specificity measures and the CC 
of similarity measures. In actual case, Simvarg 
showed the most plausible curve in CC and Spe-
cadj showed the highest precision in specificity. 
Verb-argument relation and adjective-term rela-
tion are used in FCA and CSM methods respec-
tively. Tspec/sim and Tcoldoc showed higher F-
measure curve than other two taxonomies due to 
high lexical recall. Although our method showed 
plausible F-measure, it showed the lowest preci-
sion. So other combination of similarity and 
specificity measures are needed to improve pre-
cision of learned taxonomy. 

6 Conclusion 

We have presented new taxonomy learning 
method with term similarity and specificity taken 
from domain-specific corpus. It can be applied to 
different domains as it is; and, if we have a syn-
tactic parser available, to different languages. We 
analyzed the features used in previous researches 
in view of term specificity and similarity. In this 
analysis, we found that the features embed the 
characteristics of both conditions. 

Compared to previous approaches, our method 
has advantages in that we can use different fea-
tures for term specificity and similarity. It makes 
easy to analyze errors in taxonomy learning step, 
whether the wrong relations are caused by speci-
ficity errors or by similarity errors. The main 
drawback of our method, as it is now, is that the 
effect of wrong located terms in upper level 
propagates to lower levels.  

Until now, researches on automatic ontology 
learning especially taxonomic relation showed 
very low precision. Human experts’ intervention 
is inevitable in automatic learning process to 
make applicable taxonomy. Future work is to 
make new model where human experts and sys-
tem work interactively in ontology learning 
process in order to balance cost and precision. 
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