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Abstract 

Natural language interfaces designed for 
situationally embedded domains (e.g. 
cars, videogames) must incorporate 
knowledge about the users’ context to 
address the many ambiguities of situated 
language use. We introduce a model of 
situated language acquisition that operates 
in two phases.  First, intentional context is 
represented and inferred from user actions 
using probabilistic context free grammars.  
Then, utterances are mapped onto this 
representation in a noisy channel 
framework.  The acquisition model is 
trained on unconstrained speech collected 
from subjects playing an interactive game, 
and tested on an understanding task. 

1 Introduction 

As information technologies move off of our 
desktops and into the world, the need for Natural 
Language Processing (NLP) systems that exploit 
information about the environment becomes 
increasingly apparent.  Whether in physical 
environments (for cars and cell phones) or in 
virtual ones (for videogames and training 
simulators), applications are beginning to demand 
language interfaces that can understand 
unconstrained speech about constrained domains.  
Unlike most text-based NLP research, which 
focuses on open-domain problems, work we refer 
to as situated NLP focuses on improving language 
processing by exploiting domain-specific 
information about the non-linguistic situational 
context of users’ interactions.  For applications 
where agents interact in shared environments, such 
information is critical for successful 
communication. 

Previous work in situated NLP has focused on 
methods for grounding the meaning of words in 
physical and virtual environments.  The motivation 
for this work comes from the inability of text-
based NLP technologies to offer viable models of 
semantics for human computer interaction in 
shared environments.  For example, imagine a 
situation in which a human user is interacting with 
a robotic arm around a table of different colored 
objects.  If the human were to issue the command 
“give me the blue one,” both the manually-coded 
(Lenat, 1995; Fellbaum, 1998) and statistical 
models (Manning and Schutze, 2000) of meaning 
employed in text-based NLP are inadequate; for, in 
both models, the meaning of a word is based only 
on its relations to other words.  However, in order 
for the robot to successfully “give me the blue 
one,” it must be able to link the meaning of the 
words in the utterance to its perception of the 
environment (Roy, Hsiao, & Mavridis, 2004).  
Thus, recent work on grounding meaning has 
focused on how words and utterances map onto 
physical descriptions of the environment: either in 
the form of perceptual representations (Roy, in 
press, Siskind, 2001, Regier, 1996) or control 
schemas (Bailey, 1997 Narayanan, 1999).1 

While such physical descriptions are useful 
representations for some classes of words (e.g., 
colors, shapes, physical movements), they are 
insufficient for more abstract language, such as 
that which denotes intentional action.  This 
insufficiency stems from the fact that intentional 
actions (i.e. actions performed with the purpose of 
achieving a goal) are highly ambiguous when 
described only in terms of their physically 
observable characteristics.  For example, imagine a 
situation in which one person moves a cup towards 
another person and utters the unknown word 

                                                 
1 Note that Narayanan’s work moves away from purely 
physical to metaphorical levels of description.  
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“blicket.”  Now, based only on the physical 
description of this action, one might come to think 
of “blicket” as meaning anything from “give cup”, 
to “offer drink”, to “ask for change.”  This 
ambiguity stems from the lack of contextual 
information that strictly perceptual descriptions of 
action provide.  

This research presents a methodology for 
modeling the intentional context of utterances and 
describes how such representations can be used in 
a language learning task.  We decompose language 
learning into two phases: intention recognition and 
linguistic mapping.  In the first phase, we model 
intentional action using a probabilistic context free 
grammar.  We use this model to parse sequences of 
observed physical actions, thereby inferring a 
hierarchical tree representation of a user’s 
intentions.  In the second phase, we use a noisy 
channel model to learn a mapping between 
utterances and nodes in that tree representation.  
We present pilot situated language acquisition 
experiments using a dataset of paired spontaneous 
speech and action collected from human subjects 
interacting in a shared virtual environment.  We 
evaluate the acquired model on a situated language 
understanding task. 

2 Intention Recognition 

The ability to infer the purpose of others’ actions 
has been proposed in the psychological literature 
as essential for language learning in children 
(Tommasello, 2003, Regier, 2003).  In order to 
understand how such intention recognition might 
be modeled in a computational framework, it is 
useful to specify the types of ambiguities that make 
intentional actions difficult to model.  Using as an 
example the situation involving the cup described 
above, we propose that this interaction 
demonstrates two distinct types of ambiguity.  The 
first type, which we refer to as a vertical ambiguity 
describes the ambiguity between the “move cup” 
vs. “offer drink” meanings of “blicket.”  Here the 
ambiguity is based on the level of description that 
the speaker intended to convey.  Thus, while both 
meanings are correct (i.e., both meanings 
accurately describe the action), only one 
corresponds to the word “blicket.”   

The second type of ambiguity, referred to as 
horizontal ambiguity describes the ambiguity 
between the “offer drink” vs. “ask for change” 

interpretations of “blicket.”  Here there is an 
ambiguity based on what actually is the intention 
behind the physical action.  Thus, it is the case that 
only one of these meaning corresponds to “blicket” 
and the other meaning is not an accurate 
description of the intended action. 

Figure 1 shows a graphical representation of 
these ambiguities.  Here the leaf nodes represent a 
basic physical description of the action, while the 
root nodes represent the highest-level actions for 
which the leaf actions were performed2.  Such a 
tree representation is useful in that it shows both 
the horizontal ambiguity that exists between the 
nodes labeled “ask for change” and “offer drink,” 
as well as the vertical ambiguity that exits between 
the nodes labeled “offer drink” and “move cup.” 

 

Figure 1:  Graphical representation of vertical and 
horizontal ambiguities for actions. 

 

In order to exploit the intuitive value of such a 
tree representation, we model intention recognition 
using probabilistic context free grammars 
(PCFG)3.  We develop a small set of production 
rules in which the left hand side represents a higher 
order intentional action (e.g., “offer drink”), and 
the right hand side represents a sequence of lower 
level actions that accomplish it (e.g. “grasp cup”, 
“move cup”, “release cup”).  Each individual 
action (i.e. letter in the alphabet of the PCFG) is 
further modeled as a simple semantic frame that 
contains roles for an agent, an object, an action, 
and multiple optional modifier roles (see inset 
figure 1).  While in this initial work productions 
are created by hand (a task made feasible by the 

                                                 
2 In other words, high-level actions (e.g. “be polite) are 
preformed by means of the performance of lower-level 
actions (e.g. “offer drink”). 
3 The idea of a “grammar of behavior” has a rich history 
in the cognitive sciences dating back at least to Miller et 
al., 1960 
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constrained nature of situated domains) learning 
such rules automatically is discussed in section 4.2. 

Just as in the plan recognition work of Pynadath, 
(1999), we cast the problem of intention 
recognition as a probabilistic parsing problem in 
which sequences of physical actions are used to 
infer an abstract tree representation.  Resolving 
horizontal ambiguities thus becomes equivalent to 
determining which parse tree is most likely given a 
sequence of events.  Further, resolving vertical 
ambiguities corresponds to determining which 
level node in the inferred tree is the correct level of 
description that the speaker had in mind.   

3 Linguistic Mapping 

Given a model of intention recognition, the 
problem for a language learner becomes one of 
mapping spoken utterances onto appropriate 
constituents of their inferred intentional 
representations.  Given the intention representation 
above, this is equivalent to mapping all of the 
words in an utterance to the role fillers of the 
appropriate semantic frame in the induced 
intention tree.  To model this mapping procedure, 
we employ a noisy channel model in which the 
probability of inferring the correct meaning given 
an utterance is approximated by the (channel) 
probability of generating that utterance given that 
meaning, times the (source) prior probability of the 
meaning itself (see Equation 1). 
 

≈)|( utterancemeaningp               (1) 
         )1()()|( αα −• meaningpmeaningutterancep  
 

Here utterance refers to some linguistic unit 
(usually a sentence) and meaning refers to some 
node in the tree (represented as a semantic frame) 
inferred during intention recognition4.  We can use 
the probability associated with the inferred tree (as 
given by the PCFG parser) as the source 
probability.  Further, we can learn the channel 
probabilities in an unsupervised manner using a 
variant of the EM algorithm similar to machine 
translation (Brown et al., 1993), and statistical 
language understanding (Epstein, 1996).   

4 Pilot Experiments 

4.1 Data Collection 
                                                 
4 α refers to a weighting coefficient. 

In order to avoid the many physical and perceptual 
problems that complicate work with robots and 
sensor-grounded data, this work focuses on 
language learning in virtual environments.  We 
focus on multiplayer videogames , which support 
rich types of social interactions.  The complexities 
of these environments highlight the problems of 
ambiguous speech described above, and 
distinguish this work from projects characterized 
by more simplified worlds and linguistic 
interactions, such as SHRDLU (Winograd, 1972).  
Further, the proliferation of both commercial and 
military applications (e.g., Rickel et al., 2002) 
involving such virtual worlds suggests that they 
will continue to become an increasingly important 
area for natural language research in the future.   
 

 
Figure 2: Screen shot of Neverwinter Nights game used 
in experimentation. 

 

In order to test our model, we developed a virtual 
environment based on the multi-user videogame 
Neverwinter Nights.5  The game, shown in Figure 
2, provides useful tools for generating modules in 
which players can interact.  The game was 
instrumented such that all players’ speech/text 
language and actions are recorded during game 
play.  For data collection, a game was designed in 
which a single player must navigate their way 
through a cavernous world, collecting specific 
objects, in order to escape.  Subjects were paired 
such that one, the novice, would control the virtual 
character, while the other, the expert, guided her 
through the world.  While the expert could say 
anything in order to tell the novice where to go and 
what to do, the novice was instructed not to speak, 
but only to follow the commands of the expert.  

 

                                                 
5 http://nwn.bioware.com/ 
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RightClickDoor RightClickFloor RightClickFloor RightClickFloor LeftClickDoor

“ok go into the room” “go over to that door” “now open the door”

Expert’s utterances:

Novice’s actions:

RightClickDoor RightClickFloor RightClickFloor RightClickFloor LeftClickDoor

MoveThruRoomOpenDoor OpenDoor

FindAxe PickUpAxe

GetAxe

Intention Recognition

Action:  Get
Agent:   Player
Object:  Axe

GetAxe -> GoToAxe TakeAxe
FindAxe -> Open Move Open
OpenDoor -> ClickDoor

Behavior Grammar

Action:  Open
Agent:   Player
Object:  Door

RightClickDoor RightClickFloor RightClickFloor RightClickFloor LeftClickDoor

MoveThruRoomOpenDoor OpenDoor

FindAxe PickUpAxe

GetAxe

Linguistic Mapping

“now open the door”

P(words|roles)

Figure 3.  Experimental methodology: a) subjects’ speech and action sequences are recorded; b) an intentional tree is 
inferred over the sequence of observed actions using a PCFG parser; c) the linguistic mapping algorithm examines 
the mappings between the utterance and all possible nodes to learn the best mapping of words given semantic roles. 

 
The purpose behind these restrictions was to elicit 
free and spontaneous speech that is only 
constrained by the nature of the task.  This 
environment seeks to emulate the type of speech 
that a real situated language system might 
encounter: i.e., natural in its characteristics, but 
limited in its domain of discourse.  

The subjects in the data collection were 
university graduate and undergraduate students.  
Subjects (8 male, 4 female) were staggered such 
that the novice in one trial became the expert in the 
next.  Each pair played the game at least five times, 
and for each of those trials, all speech from the 
expert and all actions from the novice were 
recorded.  Table 1 shows examples of utterances 
recorded from game play, the observed actions 
associated with them, and the actions’ inferred 
semantic frame. 

 

Utterance Action Frame 
ok this time you are 
gonna get the axe first 

MOVE  
ROOM1 

act: GET  
obj: AXE 

through the red archway 
on your right 

MOVE  
ROOM2 

act: MOVE 
goal: ARCH 
manner: THRU 

now open that door CLICK_ON 
LEVER 

act: OPEN  
obj: DOOR 

ok now take the axe CLICK_ON 
CHEST 

act: TAKE 
obj: AXE 
source: CHEST 

Table 1: Representative test utterances collected from 
subjects with associated game actions and frames 

 

Data collection produces two parallel streams of 
information: the sequence of actions taken by the 
novice and the audio stream produced by the 
expert (figure 3a).  The audio streams are 
automatically segmented into utterances using a 
speech endpoint detector, which are then 
transcribed by a human annotator.  Each action in 

the sequence is then automatically parsed, and each 
node in the tree is replaced with a semantic frame 
(figure 3b).6  The data streams are then fed into the 
linguistic mapping algorithms as a parallel corpus 
of the expert’s transcribed utterances and the 
inferred semantic roles associated with the 
novice’s actions (figure 3c). 

4.2 Algorithms 

Intention Recognition 
 

As described in section 2, we represent the task 
model associated with the game as a set of 
production rules in which the right hand side 
consists of an intended action (e.g. “find key”) and 
the left hand side consists of a sequence of sub-
actions that are sufficient to complete that action 
(e.g. “go through door, open chest, pick_up key”).  
By applying probabilities to the rules, intention 
recognition can be treated as a probabilistic context 
free parsing problem, following Pynadath, 1999.  
For these initial experiments we have hand-
annotated the training data in order to generate the 
grammar used for intention recognition, estimating 
their maximum likelihood probabilities over the 
training set.  In future work, we intend to examine 
how such grammars can be learned in conjunction 
with the language itself; extending research on 
learning task models (Nicolescu and Mataric, 
2003) and work on learning PCFGs (Klein and 
Manning, 2004) with our own work on 
unsupervised language learning. 

Given the PCFG, we use a probabilistic Earley 
parser (Stolcke, 1994), modified slightly to output 

                                                 
6 We use 65 different frames, comprised of 35 unique 
role fillers. 
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partial trees (with probabilities) as each action is 
observed.  Figure 4 shows a time slice of an 
inferred intention tree after a player mouse clicked 
on a lever in the game.  Note that both the vertical 
and horizontal ambiguities that exist for this action 
in the game parallel the ambiguities shown in 
Figure 1.  As described above, each node in the 
tree is represented as a semantic frame (see figure 
4 insets), whose roles are aligned to the words in 
the utterances during the linguistic mapping phase. 
 

Linguistic Mapping 
 

The problem of learning a mapping between 
linguistic labels and nodes in an inferred 
intentional tree is recast as one of learning the 
channel probabilities in Equation 1.  Each node in 
a tree is treated as a simple semantic frame and the 
role fillers in these frames, along with the words in 
the utterances, are treated as a parallel corpus.  
This corpus is used as input to a standard 
Expectation Maximization algorithm that estimates 
the probabilities of generating a word given the 
occurrence of a role filler.  We follow IBM Model 
1 (Brown et al., 1993) and assume that each word 
in an utterance is generated by exactly one role in 
the parallel frame  

Using standard EM to learn the role to word 
mapping is only sufficient if one knows to which 
level in the tree the utterance should be mapped.  
However, because of the vertical ambiguity 
inherent in intentional actions, we do not know in 
advance which is the correct utterance-to-level 
mapping.  To account for this, we extend the 
standard EM algorithm as follows (see figure 3c): 

1) set uniform likelihoods for all utterance-to-
level mappings  

2) for each mapping, run standard EM 
3) merge output distributions of EM (weighting 

each by its mapping likelihood) 
4) use merged distribution to recalculate 

likelihoods of all utterance-to-level mappings 
5) goto step 2 

4.3 Experiments  

Methodologies for evaluating language acquisition 
tasks are not standardized.  Given our model, there 
exists the possibility of employing intrinsic 
measures of success, such as word alignment 
accuracy.  However, we choose to measure the 
success of learning by examining the related (and 
more natural) task of language understanding.   

For each subject pair, the linguistic mapping 
algorithms are trained on the first four trials of 
game play and tested on the final trial.  (This gives 
on average 130 utterances of training data and 30 
utterances of testing data per pair.)  For each 
utterance in the test data, we calculate the 
likelihood that it was generated by each frame seen 
in testing.  We select the maximum likelihood 
frame as the system’s hypothesized meaning for 
the test utterance, and examine both how often the 
maximum likelihood estimate exactly matches the 
true frame (frame accuracy), and how many of the 
role fillers within the estimated frame match the 
role fillers of the true frame (role accuracy).7   

 

Figure 4: Inferred intention tree (with semantic 
frames) from human subject game play. 
 

For each subject, the algorithm’s parameters are 
optimized using data from all other subjects. We 
assume correct knowledge of the temporal 
alignment between utterances and actions.  In 
future work, we will relax this assumption to 
explore the effects of not knowing which actions 
correspond to which utterances in time. 

To examine the performance of the model, three 
experiments are presented.  Experiment 1 
examines the basic performance of the algorithms 
on the language understanding task described 
above given uniform priors.  The system is tested 
under two conditions: 1) using the extended EM 
algorithm given an unknown utterance-to-level 
alignment, and 2) using the standard EM algorithm 
given the correct utterance-to-level alignment.   

Experiment 2 tests the benefit of incorporating 
intentional context directly into language 
understanding.  This is done by using the parse 
probability of each hypothesized intention as the 

                                                 
7 See Fleischman and Roy (2005) for experiments 
detailing performance on specific word categories. 
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source probability in Equation 1.  Thus, given an 
utterance to understand, we cycle through all 
possible actions in the grammar, parse each one as 
if it were observed, and use the probability 
generated by the parser as its prior probability.  By 
changing the weighting coefficient (α) between the 
source and channel probabilities, we show the 
range of performances of the system from using no 
context at all (α=1) to using only context itself 
(α=0) in understanding.   

 
 
 
 
 
 
 
 

 
 
 
 
Figure 5: Comparison of models trained with utterance-
to-level alignment both known and unknown.  
Performance is on a language understanding task 
(baseline equivalent to choosing most frequent frame) 

 

Experiment 3 studies to what extent inferred tree 
structures are necessary when modeling language 
acquisition.  Although, in section 1, we have 
presented intuitive reasons why such structures are 
required, one might argue that inferring trees over 
sequences of observed actions might not actually 
improve understanding performance when 
compared to a model trained only on the observed 
actions themselves.  This hypothesis is tested by 
comparing a model trained given the correct 
utterance-to-level alignment (described in 
experiment 1) with a model in which each 
utterance is aligned to the leaf node (i.e. observed 
action) below the correct level of alignment.  For 
example, in figure 4, this would correspond to 
mapping the utterance “go through the door”, not 
to “GO THROUGH DOOR”, but rather to 
“CLICK_ON LEVER.”   

4.4 Results 

Experiment 1: We present the average performance 
over all subject pairs, trained with the correct 
utterance-to-level alignment both known and 
unknown, and compare it to a baseline of choosing 
the most frequent frame from the training data.  
Figure 5 shows the percentage of maximum 

likelihood frames chosen by the system that 
exactly match the intended frame (frame 
accuracy), as well as, the percentage of roles from 
the maximum likelihood frame that overlap with 
roles in the intended frame (role accuracy). 

As expected, the understanding performance 
goes down for both frames and roles when the 
correct utterance-to-level alignment is unknown.  
Interestingly, while the frame performance 
declines by 14.3%, the performance on roles only 
declines 6.4%.  This difference is due primarily to 
the fact that, while the mapping from words to 
action role fillers is hindered by the need to 
examine all alignments, the mapping from words 
to object role fillers remains relatively robust.  This 
is due to the fact that while each level of intention 
carries a different action term, often the objects 
described at different levels remain the same.  For 
example, in figure 4, the action fillers “TAKE”, 
“MOVE”, “OPEN”, and “PULL” occur only once 
along the path.  However, the object filler 
“DOOR” occurs multiple times.  Thus, the chance 
that the role filler “DOOR” correctly maps to the 
word “door” is relatively high compared to the role 
filler “OPEN” mapping to the word “open.”8  
 

 
 
 
 
 
 
 
 
 

Figure 6: Frame accuracy as a function of α value (Eq. 
1) trained on unknown utterance-to-level alignments. 

 

Experiment 2: Figure 6 shows the average frame 
accuracy of the system trained without knowing 
the correct utterance-to-level alignment, as a 
function of varying the α values from Equation 1.  
The graph shows that including intentional context 
does improve system performance when it is not 
given too much weight (i.e., at relatively high 
alpha values).  This suggests that the benefit of 
intentional context is somewhat outweighed by the 
power of the learned role to word mappings.  

                                                 
8 This asymmetry for learning words about actions vs. 
objects is well known in psychology (Gleitman, 1990) 
and is addressed directly in Fleischman and Roy, 2005. 
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Looking closer, we find a strong negative 
correlation (r=-0.81) between the understanding 
performance using only channel probabilities (α=1) 
and the improvement obtained by including the 
intentional context.  In other words, the better one 
does without context, the less context improves 
performance.  Thus, we expect that in noisier 
environments (such as when speech recognition is 
employed) where channel probabilities are less 
reliable, employing intentional context will be 
even more advantageous. 

 

Experiment 3: Figure 7 shows the average 
performance on both frame and role accuracy for 
systems trained without using the inferred tree 
structure (on leaf nodes only) and on the full tree 
structure (given the correct utterance-to-level 
alignment).  Baselines are calculated by choosing 
the most frequent frame from training.9 
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40%
50%
60%
70%
80%
90%

frame accuracy role accuracy

baseline (observed) observed baseline (inferred) inferred

 

Figure 7: Comparison of models trained on inferred 
intentional tree vs. directly on observed actions  
 

It is clear from the figure that understanding 
performance is higher when the intentional tree is 
used in training.  This is a direct result of the fact 
that speakers often speak about high-level 
intentions with words that do not directly refer to 
the observed actions.  For example, after opening a 
door, experts often say: “go through the door,” for 
which the observed action is a simple movement 
(e.g., “MOVE ROOMx”).  Also, by referring to 
high-level intentions, experts can describe 
sequences of actions that are not immediately 
referred to.  For example, an expert might say: “get 
the key” to describe a sequence of actions that 
begins with “CLICK_ON CHEST.”  Thus, the 
result of not learning over a parsed hierarchical 

                                                 
9 Note that baselines are different for the two conditions, 
because there are a differing number of frames used in 
the leaf node only condition.   

representation of intentions is increased noise, and 
subsequently, poorer understanding performance.  

5 Discussion 

The results from these experiments, although 
preliminary, indicate that this model of language 
acquisition performs well above baseline on a 
language understanding task.  This is particularly 
encouraging given the unconstrained nature of the 
speech on which it was trained.  Thus, even free 
and spontaneous speech can be handled when 
modeling a constrained domain of discourse.10   

In addition to performing well given difficult 
data, the experiments demonstrate the advantages 
of using an inferred intentional representation both 
as a contextual aid to understanding and as a 
representational scaffolding for language learning.  
More important than these preliminary results, 
however, is the general lesson that this work 
suggests about the importance of knowledge 
representations for situated language acquisition.   

As discussed in section 2, learning language 
about intentional action requires dealing with two 
distinct types of ambiguity.  These difficulties 
cannot be handled by merely increasing the 
amount of data used, or switching to a more 
sophisticated learning algorithm.  Rather, dealing 
with language use for situated applications requires 
building appropriate knowledge representations 
that are powerful enough for unconstrained 
language, yet scalable enough for practical 
applications.  The work presented here is an initial 
demonstration of how the semantics of 
unconstrained speech can be modeled by focusing 
on constrained domains.   

As for scalability, it is our contention that for 
situated NLP, it is not a question of being able to 
scale up a single model to handle open-domain 
speech. The complexity of situated communication 
requires the use of domain-specific knowledge for 
modeling language use in different contexts.  Thus, 
with situated NLP systems, it is less productive to 
focus on how to scale up single models to operate 
beyond their original domains.  Rather, as more 
individual applications are tackled (e.g. cars, 

                                                 
10 Notably, situated applications for which natural 
language interfaces are required typically have limited 
domains (e.g., talking to one’s car doesn’t require open-
domain language processing). 
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phones, videogames, etc.) the interesting question 
becomes one of how agents can learn to switch 
between different models of language as they 
interact in different domains of discourse. 

6 Conclusion 

We have introduced a model of language 
acquisition that explicitly incorporates intentional 
contexts in both learning and understanding.  We 
have described pilot experiments on paired 
language and action data in order to demonstrate 
both the model’s feasibility as well as the efficacy 
of using intentional context in understanding.  
Although we have demonstrated a first step toward 
an advanced model of language acquisition, there 
is a great deal that has not been addressed.  First, 
what is perhaps most obviously missing is any 
mention of syntax in the language learning process 
and its role in bootstrapping for language 
acquisition.  Future work will focus on moving 
beyond the IBM Model 1 assumptions, to develop 
more syntactically-structured models.   

Further, although the virtual environment used in 
this research bears similarity to situated 
applications that demand NL interfaces, it is not 
known exactly how well the model will perform 
“in the real world.”  Future work will examine 
installing models in real world applications. In 
parallel investigations, we will explore our method 
as a cognitive model of human language learning. 

Finally, as was mentioned previously, the task 
model for this domain was hand annotated and, 
while the constrained nature of the domain 
simplified this process, further work is required to 
learn such models jointly with language.   

In summary, we have presented first steps 
toward tackling problems of ambiguity inherent in 
grounding the semantics of situated language. We 
believe this work will lead to practical applications 
for situated NLP, and provide new tools for 
modeling human cognitive structures and 
processes underlying situated language use 
(Fleischman and Roy, 2005). 
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