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Abstract

Clustering is an optimization procedure that
partitions a set of elements to optimize some
criteria, based on a fixed distance metric de-
fined between the elements. Clustering ap-
proaches have been widely applied in natural
language processing and it has been shown re-
peatedly that their success depends on defin-
ing a good distance metric, one that is appro-
priate for the task and the clustering algorithm
used. This paper develops a framework in
which clustering is viewed as a learning task,
and proposes a way to train a distance metric
that is appropriate for the chosen clustering al-
gorithm in the context of the given task. Ex-
periments in the context of the entity identifi-
cation problem exhibit significant performance
improvements over state-of-the-art clustering
approaches developed for this problem.

1 Introduction

Clustering approaches have been widely applied to nat-
ural language processing (NLP) problems. Typically,
natural language elements (words, phrases, sentences,
etc.) are partitioned into non-overlapping classes, based
on some distance (or similarity) metric defined between
them, in order to provide some level of syntactic or se-
mantic abstraction. A key example is that of class-based
language models (Brown et al., 1992; Dagan et al., 1999)
where clustering approaches are used in order to parti-
tion words, determined to be similar, into sets. This
enables estimating more robust statistics since these are
computed over collections of “similar” words. A large
number of different metrics and algorithms have been ex-
perimented with these problems (Dagan et al., 1999; Lee,
1997; Weeds et al., 2004). Similarity between words was
also used as a metric in a distributional clustering algo-
rithm in (Pantel and Lin, 2002), and it shows that func-
tionally similar words can be grouped together and even
separated to smaller groups based on their senses. At a

higher level, (Mann and Yarowsky, 2003) disambiguated
personal names by clustering people’s home pages using
a TFIDF similarity, and several other researchers have ap-
plied clustering at the same level in the context of the
entity identification problem (Bilenko et al., 2003; Mc-
Callum and Wellner, 2003; Li et al., 2004). Similarly, ap-
proaches to coreference resolution (Cardie and Wagstaff,
1999) use clustering to identify groups of references to
the same entity.

Clustering is an optimization procedure that takes as
input (1) a collection of domain elements along with (2)
a distance metric between them and (3) an algorithm se-
lected to partition the data elements, with the goal of op-
timizing some form of clustering quality with respect to
the given distance metric. For example, the K-Means
clustering approach (Hartigan and Wong, 1979) seeks to
maximize a measure of tightness of the resulting clusters
based on the Euclidean distance. Clustering is typically
called an unsupervised method, since data elements are
used without labels during the clustering process and la-
bels are not used to provide feedback to the optimiza-
tion process. E.g., labels are not taken into account when
measuring the quality of the partition. However, in many
cases, supervision is used at the application level when
determining an appropriate distance metric (e.g., (Lee,
1997; Weeds et al., 2004; Bilenko et al., 2003) and more).

This scenario, however, has several setbacks. First, the
process of clustering, simply a function that partitions a
set of elements into different classes, involves no learn-
ing and thus lacks flexibility. Second, clustering quality is
typically defined with respect to a fixed distance metric,
without utilizing any direct supervision, so the practical
clustering outcome could be disparate from one’s inten-
tion. Third, when clustering with a given algorithm and
a fixed metric, one in fact makes some implicit assump-
tions on the data and the task (e.g., (Kamvar et al., 2002);
more on that below). For example, the optimal conditions
under which for K-means works are that the data is gen-
erated from a uniform mixture of Gaussian models; this
may not hold in reality.

This paper proposes a new clustering framework that
addresses all the problems discussed above. Specifically,
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we define clustering as a learning task: in the training
stage, a partition function, parameterized by a distance
metric, is trained with respect to a specific clustering al-
gorithm, with supervision. Some of the distinct proper-
ties of this framework are that: (1) The training stage is
formalized as an optimization problem in which a parti-
tion function is learned in a way that minimizes a clus-
tering error. (2) The clustering error is well-defined and
driven by feedback from labeled data. (3) Training a
distance metric with respect to any given clustering al-
gorithm seeks to minimize the clustering error on train-
ing data that, under standard learning theory assumptions,
can be shown to imply small error also in the application
stage. (4) We develop a general learning algorithm that
can be used to learn an expressive distance metric over
the feature space (e.g., it can make use of kernels).

While our approach makes explicit use of labeled data,
we argue that, in fact, many clustering applications in nat-
ural language also exploit this information off-line, when
exploring which metrics are appropriate for the task. Our
framework makes better use of this resource by incorpo-
rating it directly into the metric training process; training
is driven by true clustering error, computed via the spe-
cific algorithm chosen to partition the data.

We study this new framework empirically on the en-
tity identification problem – identifying whether differ-
ent mentions of real world entities, such as “JFK” and
“John Kennedy”, within and across text documents, ac-
tually represent the same concept (McCallum and Well-
ner, 2003; Li et al., 2004). Our experimental results ex-
hibit a significant performance improvement over exist-
ing approaches (20% − 30% F1 error reduction) on all
three types of entities we study, and indicate its promis-
ing prospective in other natural language tasks.

The rest of this paper discusses existing clustering ap-
proaches (Sec. 2) and then introduces our Supervised Dis-
criminative Clustering framework (SDC) (Sec. 3) and a
general learner for training in it (Sec. 4). Sec. 5 describes
the entity identification problem and Sec. 6 compares dif-
ferent clustering approaches on this task.

2 Clustering in Natural Language Tasks

Clustering is the task of partitioning a set of elements
S ⊆ X into a disjoint decomposition1 p(S) = {S1, S2,
· · · , SK} of S. We associate with it apartition function
p = pS : X → C = {1, 2, . . . K} that maps eachx ∈ S
to a class indexpS(x) = k iff x ∈ Sk. The subscriptS
in pS andpS(x) is omitted when clear from the context.
Notice that, unlike a classifier, the imagex ∈ S under a
partition function depends onS.

In practice, a clustering algorithmA (e.g. K-Means),
and a distance metricd (e.g., Euclidean distance), are typ-

1Overlapping partitions will not be discussed here.

ically used to generate a functionh to approximate the
true partition functionp. Denoteh(S) = Ad(S), the par-
tition of S by h. A distance (equivalently, a similarity)
functiond that measures the proximity between two ele-
ments is a pairwise functionX × X → R+, which can
be parameterized to represent a family of functions —
metric properties are not discussed in this paper. For ex-
ample, given any two elementx1 =< x

(1)
1 , · · · , x(m)

1 >

andx2 =< x
(1)
2 , · · · , x(m)

2 > in anm-dimensional space,
a linearly weighted Euclidean distance with parameters
θ = {wl}m

1 is defined as:

dθ(x1, x2) ≡
√√√√

m∑

l=1

wl · |x(l)
1 − x

(l)
2 |2 (1)

When supervision (e.g. class index of elements) is un-
available, the quality of a partition functionh operating
onS ⊆ X, is measured with respect to the distance met-
ric defined overX. Supposeh partitionsS into disjoint
setsh(S) = {S′k}K

1 , onequality functionused in the K-
Means algorithm is defined as:

qS(h) ≡
K∑

k=1

∑

x∈S′
k

d(x, µ′k)2, (2)

whereµ′k is the mean of elements in setS′k. However, this
measure can be computed irrespective of the algorithm.

2.1 What is a Good Metric?

A good metric is one in which close proximity correlates
well with the likelihood of being in the same class. When
applying clustering to some task, people typically decide
on the clustering quality measureqS(h) they want to op-
timize, and then chose a specific clustering algorithmA
and a distance metricd to generate a ‘good’ partition
function h. However, it is clear that without any super-
vision, the resulting function is not guaranteed to agree
with the target functionp (or one’s original intention).

Given this realization, there has been some work on
selectinga good distance metric for a family of related
problems and onlearninga metric for specific tasks. For
the former, the focus is on developing and selecting good
distance (similarity) metrics that reflect well pairwise
proximity between domain elements. The “goodness”
of a metric is empirically measured when combined with
different clustering algorithms on different problems. For
example (Lee, 1997; Weeds et al., 2004) compare similar-
ity metrics such as the Cosine, Manhattan and Euclidean
distances, Kullback-Leibler divergence, Jensen-Shannon
divergence, and Jaccard’s Coefficient, that could be ap-
plied in general clustering tasks, on the task of measur-
ing distributional similarity. (Cohen et al., 2003) com-
pares a number of string and token-based similarity met-
rics on the task of matching entity names and found that,
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overall, the best-performing method is a hybrid scheme
(SoftTFIDF) combining a TFIDF weighting scheme of
tokens with the Jaro-Winkler string-distance scheme that
is widely used for record linkage in databases.

d(x1,x2) = [(x1
(1) -x2

(1))2+(x1
(2) -x2

(2))2]1/2 d(x1,x2) = |(x1
(1) +x2

(1))-(x1
(2) +x2

(2))|

(a) Single-Linkage with 
Euclidean

(b) K-Means with 
Euclidean

(c) K-Means with a 
Linear Metric

Figure 1: Different combinations of clustering algorithms
with distance metrics. The 12 points, positioned in a two-
dimensional space< X(1), X(2) >, are clustered into two
groups containing solid and hollow points respectively.

Moreover, it is not clear whether there exists any
universal metric that is good for many different prob-
lems (or even different data sets for similar problems)
and is appropriate for any clustering algorithm. For the
word-based distributional similarity mentioned above,
this point was discussed in (Geffet and Dagan, 2004)
when it is shown that proximity metrics that are appro-
priate for class-based language models may not be ap-
propriate for other tasks. We illustrate this critical point in
Fig. 1. (a) and (b) show that even for the same data collec-
tion, different clustering algorithms with the same met-
ric could generate different outcomes. (b) and (c) show
that with the same clustering algorithm, different metrics
could also produce different outcomes.Therefore, a good
distance metric should be both domain-specific and asso-
ciated with a specific clustering algorithm.

2.2 Metric Learning via Pairwise Classification

Several works (Cohen et al., 2003; Cohen and Rich-
man, 2002; McCallum and Wellner, 2003; Li et al.,
2004) have tried to remedy the aforementioned problems
by attempting to learn a distance function in a domain-
specific way via pairwise classification. In the training
stage, given a set of labeled element pairs, a function
f : X × X → {0, 1} is trained to classify any two el-
ements as to whether they belong to the same class (1)
or not (0), independently of other elements. The dis-
tance between the two elements is defined by converting
the prediction confidence of the pairwise classifier, and
clustering is then performed based on this distance func-
tion. Particularly, (Li et al., 2004) applied this approach
to measuring name similarity in the entity identification
problem, where a pairwise classifier (LMR) is trained us-
ing the SNoW learning architecture (Roth, 1998) based
on variations of Perceptron and Winnow, and using a col-
lection of relational features between a pair of names.
The distance between two names is defined as a softmax

over the classifier’s output. As expected, experimental
evidence (Cohen et al., 2003; Cohen and Richman, 2002;
Li et al., 2004) shows that domain-specific distance func-
tions improve over a fixed metric. This can be explained
by the flexibility provided by adapting the metric to the
domain as well as the contribution of supervision that
guides the adaptation of the metric.

A few works (Xing et al., 2002; Bar-Hillel et al., 2003;
Schultz and Joachims, 2004; Mochihashi et al., 2004)
outside the NLP domain have also pursued this general
direction, and some have tried to learn the metric with
limited amount of supervision, no supervision or by in-
corporating other information sources such as constraints
on the class memberships of the data elements. In most of
these cases, the algorithm practically used in clustering,
(e.g. K-Means), is not considered in the learning proce-
dure, or only implicitly exploited by optimizing the same
objective function. (Bach and Jordan, 2003; Bilenko et
al., 2004) indeed suggest to learn a metric directly in a
clustering task but the learning procedure is specific for
one clustering algorithm.

3 Supervised Discriminative Clustering

To solve the limitations of existing approaches, we de-
velop the Supervised Discriminative Clustering Frame-
work (SDC), that can train a distance function with re-
spect to any chosen clustering algorithm in the context of
a given task, guided by supervision.

A labeled data set S

A Supervised
Learner

Training Stage:

Goal: h*=argmin 
errS(h,p)

A distance
metric d

a clustering 
algorithm A+

A unlabeled 
data set S’

A partition 
h(S’)

Application 
Stage: h(S’ ) 

A partition function 
h(S) = A d(S)

Figure 2:Supervised Discriminative Clustering

Fig. 2 presents this framework, in which a cluster-
ing task is explicitly split into training and application
stages, and the chosen clustering algorithm involves in
both stages. In the training stage, supervision is directly
integrated into measuring the clustering errorerrS(h, p)
of a partition functionh by exploiting the feedback given
by the true partitionp. The goal of training is to find a par-
tition functionh∗ in a hypothesis spaceH that minimizes
the error. Consequently, given a new data setS′ in the ap-
plication stage, under some standard learning theory as-
sumptions, the hope is that the learned partition function
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can generalize well and achieve small error as well.

3.1 Supervised and Unsupervised Training

Let p be the target function overX, h be a function in the
hypothesis spaceH, andh(S) = {S′k}K

1 . In principle,
given data setS ⊆ X, if the true partitionp(S) = {Sk}K

1

of S is available, one can measure the deviation ofh from
p overS, using anerror functionerrS(h, p) → R+. We
distinguish an error function from a quality function (as
in Equ. 2) as follows: an error function measures the dis-
agreement between clustering and the target partition (or
one’s intention) when supervision is given, while a qual-
ity is defined without any supervision.

For clustering, there is generally no direct way to com-
pare the true class indexp(x) of each element with that
given by a hypothesish(x), so an alternative is to mea-
sure the disagreement betweenp andh over pairs of el-
ements. Given a labeled data setS andp(S), one error
function, namelyweighted clustering error, is defined as
a sum of the pairwise errors over any two elements inS,
weighted by the distance between them:

errS(h, p) ≡ 1

|S|2
∑

xi,xj∈S

[d(xi, xj)·Aij+(D−d(xi, xj))·Bij ]

(3)
whereD = maxxi,xj∈S d(xi, xj) is the maximum dis-
tance between any two elements inS andI is an indica-
tor function.Aij ≡ I[(p(xi) = p(xj) & h(xi) 6= h(xj)]
andBij ≡ I[(p(xi) 6= p(xj) & h(xi) = h(xj)] represent
two types of pairwise errors respectively.

Just like the quality defined in Equ. 2, this error is a
function of the metricd. Intuitively, the contribution of a
pair of elements that should belong to the same class but
are split byh, grows with their distance, and vice versa.
However, this measure is significantly different from the
quality, in that it does not just measure the tightness of the
partition given byh, but rather the difference between the
tightness of the partitions given byh and byp.

Given a set of observed data, the goal of training is to
learn a good partition function, parameterized by specific
clustering algorithms and distance functions. Depending
on whether training data is labeled or unlabeled, we can
further define supervised and unsupervised training.

Definition 3.1 Supervised Training: Given a labeled
data setS and p(S), a family of partition functionsH,
and the error functionerrS(h, p)(h ∈ H), the problem
is to find an optimal functionh∗ s.t.

h∗ = argminh∈H errS(h, p).

Definition 3.2 Unsupervised Training:Given an unla-
beled data setS (p(S) is unknown), a family of partition
functionsH, and a quality functionqS(h)(h ∈ H), the
problem is to find an optimal partition functionh∗ s.t.

h∗ = argmaxh∈H qS(h).

With this formalization, SDC along with supervised
training, can be distinguished clearly from (1) unsuper-
vised clustering approaches, (2) clustering over pairwise
classification; and (3) related works that exploit partial
supervision in metric learning as constraints.

3.2 Clustering via Metric Learning

By fixing the clustering algorithm in the training stage,
we can further define supervised metric learning, a spe-
cial case of supervised training.

Definition 3.3 Supervised Metric Learning:Given a la-
beled data setS andp(S), and a family of partition func-
tionsH = {h} that are parameterized by a chosen clus-
tering algorithmA and a family of distance metricsdθ

(θ ∈ Ω), the problem is to seek an optimal metricdθ∗

with respect toA, s.t. forh(S) = A dθ
(S)

θ∗ = argminθ errS(h, p). (4)

Learning the metric parametersθ requires parameteriz-
ing h as a function ofθ, when the algorithmA is chosen
and fixed inh. In the later experiments of Sec. 5, we
try to learn weighted Manhattan distances for the single-
link algorithm and other algorithms, in the task of en-
tity identification. In this case, when pairwise features
are extracted for any elementsx1, x2 ∈ X, (x1, x2) =<
φ1, φ2, · · · , φm >, the linearly weighted Manhattan dis-
tance, parameterized by (θ = {wl}m

1 ) is defined as:

d(x1, x2) ≡
m∑

l=1

wl · φl(x1, x2) (5)

wherewl is the weight over featureφl(x1, x2). Since
measurement of the error is dependent on the metric,
as shown in Equ. 3, one needs to enforce some con-
straints on the parameters. One constraint is

∑m
l=1 |wl| =

1, which prevents the error from being scale-dependent
(e.g., metrics giving smaller distance are always better).

4 A General Learner for SDC

In addition to the theoretical SDC framework, we also de-
velop a practical learning algorithm based on gradient de-
scent (in Fig. 3), that can train a distance function for any
chosen clustering algorithm (such as Single-Linkage and
K-Means), as in the setting of supervised metric learning.
The training procedure incorporates the clustering algo-
rithm (step 2.a) so that the metric is trained with respect
to the specific algorithm that will be applied in evalua-
tion. The convergence of this general training procedure
depends on the convexity of the error as a function ofθ.
For example, since the error function we use islinear in θ,
the algorithm is guaranteed to converge to a global mini-
mum. In this case, for rate of convergence, one can appeal
to general results that typically imply, when there exists
a parameter vector with zero error, that convergence rate
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depends on the ‘separation” of the training data, which
roughly means the minimal error archived with this pa-
rameter vector. Results such as (Freund and Schapire,
1998) can be used to extend the rate of convergence re-
sult a bit beyond the separable case, when a small number
of the pairs are not separable.

Algorithm: SDC-Learner
Input: S andp(S): the labeled data set.A: the clustering
algorithm.errS(h, p): the clustering error function.α > 0
: the learning rate.T (typically T is large) : the number of
iterations allowed.
Output: θ∗ : the parameters in the distance functiond.

1. In the initial (I-) step, we randomly chooseθ0 for d.
After this step we have the initiald0 andh0.

2. Then we iterate overt (t = 1, 2, · · ·),
(a) PartitionS usinght−1(S) ≡ A dt−1(S);
(b) ComputeerrS(ht−1, p) and updateθ using the

formula:θt = θt−1 − α · ∂errS(ht−1,p)

∂θt−1 .

(c) Normalization:θt = 1
Z
· θt, whereZ = ||θt||.

3. Stopping Criterion: Ift > T , the algorithm exits and
outputs the metric in the iteration with the least error.

Figure 3:A general training algorithm for SDC

For the weighted clustering error in Equ. 3, and linearly
weighted Manhattan distances as in Equ. 5, the update
rule in Step2(b) becomes

wt
l = wt−1

l − α · [ψt−1
l (p, S)− ψt−1

l (h, S)]. (6)

whereψl(p, S) ≡ 1
|S|2

∑
xi,xj∈S φl(xi, xj) · I[p(xi) =

p(xj)] and ψl(h, S) ≡ 1
|S|2

∑
xi,xj∈S φl(xi, xj) ·

I[h(xi) = h(xj)], andα > 0 is the learning rate.

5 Entity Identification in Text

We conduct experimental study on the task of entity iden-
tification in text (Bilenko et al., 2003; McCallum and
Wellner, 2003; Li et al., 2004). A given entity – rep-
resenting a person, a location or an organization – may
be mentioned in text in multiple, ambiguous ways. Con-
sider, for example, an open domain question answering
system (Voorhees, 2002) that attempts, given a question
like: “When was President Kennedy born?” to search a
large collection of articles in order to pinpoint the con-
cise answer: “on May 29, 1917.” The sentence, and even
the document that contains the answer, may not contain
the name “President Kennedy”; it may refer to this en-
tity as “Kennedy”, “JFK” or “John Fitzgerald Kennedy”.
Other documents may state that “John F. Kennedy, Jr.
was born on November 25, 1960”, but this fact refers to
our target entity’s son. Other mentions, such as “Senator
Kennedy” or “Mrs. Kennedy” are even “closer” to the
writing of the target entity, but clearly refer to different

entities. Understanding natural language requires identi-
fying whether different mentions of a name, within and
across documents, represent the same entity.

We study this problem for three entity types – People,
Location and Organization. Although deciding the coref-
erence of names within the same document might be rela-
tively easy, since within a single document identical men-
tions typically refer to the same entity, identifying coref-
erence across-document is much harder. With no stan-
dard corpora for studying the problem in a general setting
– both within and across documents, we created our own
corpus. This is done by collecting about8, 600 names
from 300 randomly sampled 1998-2000 New York Times
articles in the TREC corpus (Voorhees, 2002). These
names are first annotated by a named entity tagger, then
manually verified and given as input to an entity identi-
fier.

Since the number of classes (entities) for names is very
large, standard multi-class classification is not feasible.
Instead, we compare SDC with several pairwise classifi-
cation and clustering approaches. Some of them (for ex-
ample, those based on SoftTFIDF similarity) do not make
use of any domain knowledge, while others do exploit su-
pervision, such as LMR and SDC. Other works (Bilenko
et al., 2003) also exploited supervision in this problem by
discriminative training of a pairwise classifier but were
shown to be inferior.

1. SoftTFIDF Classifier– a pairwise classifier deciding
whether any two names refer to the same entity, imple-
mented by thresholding a state-of-art SoftTFIDF similar-
ity metric for string comparison (Cohen et al., 2003). Dif-
ferent thresholds have been experimented but only the best
results are reported.

2. LMR Classifier (P|W) – a SNoW-based pairwise classi-
fier (Li et al., 2004) (described in Sec. 2.2) that learns a
linear function for each class over a collection of relational
features between two names: including string and token-
level features and structural features (listed in Table 1).

For pairwise classifiers like LMR and SoftTFIDF, predic-
tion is made over pairs of names so transitivity of predic-
tions is not guaranteed as in clustering.

3. Clustering over SoftTFIDF– a clustering approach based
on the SoftTFIDF similarity metric.

4. Clustering over LMR (P|W)– a clustering approach (Li et
al., 2004) by converting the LMR classifier into a similar-
ity metric (see Sec. 2.2).

5. SDC– our new supervised clustering approach. The dis-
tance metric is represented as a linear function over a set
of pairwise features as defined in Equ. 5.

The above approaches (2), (4) and (5) learn a classifier
or a distance metric using the same feature set as in Ta-
ble 1. Different clustering algorithms2, such as Single-
Linkage, Complete-Linkage, Graph clustering (George,

2The clustering packageClusterby Michael Eisen at Stan-
ford University is adopted for K-medoids andCLUTO by
(George, 2003) is used for other algorithms. Details of these
algorithms can be found there.
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Honorific Equal active if both tokens are honorifics and identical.
Honorific Equivalence active if both tokens are honorifics, not identical, but equivalent.
Honorific Mismatch active for different honorifics.

Equality active if both tokens are identical.
Case-Insensitive Equal active if the tokens are case-insensitive equal.

Nickname active if tokens have a “nickname” relation.
Prefix Equality active if the prefixes of both tokens are equal.

Substring active if one of the tokens is a substring of the other.
Abbreviation active if one of the tokens is an abbreviation of the other.

Prefix Edit Distance active if the prefixes of both tokens have an edit-distance of 1.
Edit Distance active if the tokens have an edit-distance of1.

Initial active if one of the tokens is an initial of another.
Symbol Map active if one token is a symbolic representative of the other.

Structural recording the location of the tokens that generate other features in two names.

Table 1:Features employed by LMR and SDC.

2003) – seeking a minimum cut of a nearest neighbor
graph, Repeated Bisections and K-medoids (Chu et al.,
2001) (a variation of K-means) are experimented in (5).
The number of entities in a data set is always given.

6 Experimental Study

Our experimental study focuses on (1) evaluating the
supervised discriminative clustering approach on entity
identification; (2) comparing it with existing pairwise
classification and clustering approaches widely used in
similar tasks; and (3) further analyzing the characteris-
tics of this new framework.

We use the TREC corpus to evaluate different ap-
proaches in identifying three types of entities: People,
Locations and Organization. For each type, we generate
three pairs of training and test sets, each containing about
300 names. We note that the three entity types yield very
different data sets, exhibited by some statistical proper-
ties3. Results on each entity type will be averaged over
the three sets and ten runs of two-fold cross-validation for
each of them. For SDC, given a training set with anno-
tated name pairs, a distance function is first trained using
the algorithm in Fig. 3 (in20 iterations) with respect to
a clustering algorithm and then be used to partition the
corresponding test set with the same algorithm.

For a comparative evaluation, the outcomes of each ap-
proach on a test set of names are converted to a classifi-
cation over all possible pairs of names (including non-
matching pairs). Only examples in the setMp, those
that are predicated to belong to the same entity (posi-
tive predictions) are used in the evaluation, and are com-
pared with the setMa of examples annotated as positive.
The performance of an approach is then evaluated byF1

value, defined as:F1 =
2|Mp

⋂
Ma|

|Mp|+|Ma| .

3The average SoftTFIDF similarity between names of the
same entity is 0.81, 0.89 and 0.95 for people, locations and or-
ganizations respectively.

6.1 Comparison of Different Approaches

Fig. 4 presents the performance of different approaches
(described in Sec. 5) on identifying the three entity types.
We experimented with different clustering algorithms but
only the results by Single-Linkage are reported forClus-
ter over LMR (P|W)and SDC, since they are the best.

SDC works well for all three entity types in spite of
their different characteristics. The bestF1 values of SDC
are92.7%, 92.4% and95.7% for people, locations and
organizations respectively, about20% − 30% error re-
duction compared with the best performance of the other
approaches. This is an indication that this new approach
which integrates metric learning and supervision in a uni-
fied framework, has significant advantages4.

6.2 Further Analysis of SDC

In the next experiments, we will further analyze the char-
acteristics of SDC by evaluating it in different settings.

Different Training Sizes Fig. 5 reports the relationship
between the performance of SDC and different training
sizes. The learning curves for other learning-based ap-
proaches are also shown. We find that SDC exhibits good
learning ability with limited supervision. When training
examples are very limited, for example, only10% of all
300 names, pairwise classifiers based on Perceptron and
Winnow exhibit advantages over SDC. However, when
supervision become reasonable (30%+ examples), SDC
starts to outperform all other approaches.

Different Clustering Algorithms Fig. 6 shows the
performance of applying different clustering algorithms
(see Sec. 5) in the SDC approach. Single-Linkage and
Complete-Linkage outperform all other algorithms. One
possible reason is that this task has a great number of

4We note that in this experiment, the relative comparison
between the pairwise classifiers and the clustering approaches
over them is not consistent for all entity types. This can be
partially explained by the theoretical analysis in (Li et al., 2004)
and the difference between entity types.
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Figure 4:Performance of different approaches.The results are reported for SDC with a learning rateα = 100.0.
The Single-Linkage algorithm is applied whenever clustering is performed. Results are reported inF1 and averaged
over the three data sets for each entity type and10 runs of two-fold cross-validation. Each training set typically
contains300 annotated names.

10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

(a) People

F
1 (

%
)

LMR (P)
LMR (W)
Cluster over LMR (P)
Cluster over LMR (W)
SDC

10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

(b) Locations

F
1 (

%
)

10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

(c) Organizations

F
1 (

%
)

Figure 5:Performance for different training sizes. Five learning-based approaches are compared. Single-Linkage is
applied whenever clustering is performed. X-axis denotes different percentages of300 names used in training. Results
are reported inF1 and averaged over the three data sets for each entity type.
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Figure 6:Different clustering algorithms. Five cluster-
ing algorithms are compared in SDC (α = 100.0). Re-
sults are averaged over the three data sets for each entity
type and10 runs of two-fold cross-validations.

classes (100 − 200 entities) for300 names in each sin-
gle data set. The results indicate that the metric learn-
ing process relies on properties of the data set, as well as
the clustering algorithm. Even if a good distance metric
could be learned in SDC, choosing an appropriate algo-
rithm for the specific task is still important.

Different Learning Rates We also experimented with
different learning rates in the SDC approach as shown in
Fig. 7. It seems that SDC is not very sensitive to different
learning rates as long as it is in a reasonable range.
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Figure 7: Performance for different learning rates.
SDC with different learning rates (α = 1.0, 10.0, 100.0,
1000.0) compared in this setting. Single-Linkage cluster-
ing algorithm is applied.

6.3 Discussion

The reason that SDC can outperform existing clustering
approaches can be explained by the advantages of SDC –
training the distance function with respect to the chosen
clustering algorithm, guided by supervision, but they do
not explain why it can also outperform the pairwise clas-
sifiers. One intuitive explanation is that supervision in the
entity identification task or similar tasks is typically given
on whether two names correspond to the same entity –
entity-level annotation. Therefore it does not necessarily
mean whether they are similar in appearance. For exam-
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ple, “Brian” and “Wilson” could both refer to a person
“Brian Wilson” in different contexts, and thus this name
pair is a positive example in training a pairwise classi-
fier. However, with features that only capture the appear-
ance similarity between names, such apparently different
names become training noise. This is what exactly hap-
pened when we train the LMR classifier with such name
pairs. SDC, however, can employ this entity-level anno-
tation and avoid the problem through transitivity in clus-
tering. In the above example, if there is “Brian Wilson”
in the data set, then “Brian” and “Wilson” can be both
clustered into the same group with “Brian Wilson”. Such
cases do not frequently occur for locations and organiza-
tion but still exist .

7 Conclusion

In this paper, we explicitly formalize clustering as a learn-
ing task, and propose a unified framework for training
a metric for any chosen clustering algorithm, guided by
domain-specific supervision. Our experiments exhibit the
advantage of this approach over existing approaches on
Entity Identification. Further research in this direction
will focus on (1) applying it to more NLP tasks, e.g.
coreference resolution; (2) analyzing the related theoret-
ical issues, e.g. the convergence of the algorithm; and
(3) comparing it experimentally with related approaches,
such as (Xing et al., 2002) and (McCallum and Wellner,
2003).
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