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Abstract 

We present a system that extracts knowledge 
from the textual content of documents.  

The acquired knowledge is represented through 
an associative network, that is dynamically 
updated by the integration of a contextualized 
structure representing the content of the new 
analysed document. 

Grounded on the basis of “long term working 
memory” theory by W. Kintsch and K.A. Ericsson, 
our system makes use of a scale free graph model 
to update the final knowledge representation. 

This knowledge acquisition system has been 
validated by first experimental results. 

1 Introduction 

From an historical perspective, four types of 
knowledge representation schemas are worth to be 
considered (W.Kintsch, 1998). 
“Feature systems” (J.J. Katz, J.A. Fodor, 1963) 
have been developed in philosophy and linguistics 
and became very popular especially in psychology. 
This representation aimed at finding a limited set 
of basic semantic characteristics that, combined by 
means of particular composition rules, could 
express complex concepts. It was a very simple 
representation system but conceptual relations 
were not considered. Furthermore the defined 
features did not change with the context and the 
goals that had to be achieved. 

“Associative networks” consider also semantic 
relations between concepts. Knowledge is 
represented by a network of concepts bounded by 
more or less strong associations. This formalism is 
bolstered by a lot of experimental data, for 
example by word priming experiments (D.E. 
Meyer, R.W. Schvaneveldt, 1971). But networks 

whose links are not labelled are not very 
expressive.  

“Semantic networks” (A.M. Collins, M.R. 
Quillian, 1969) are an evolution of associative 
networks. Concepts continue to be symbolized by 
nodes, but these are linked by labeled arcs (IS-A, 
PART-OF etc.). In this way well ordered concept 
hierarchies can be defined and the hereditariness of 
properties is allowed. 

“Schemas”, “frames” and “scripts” are structures 
for coordinating concepts that belong to the same 
event or superstructure. Classical examples of 
these formalisms are the “room frame” of Minsky 
(M. Minsky, 1975) and the restaurant script of 
Schank and Abelson (R.C. Schank, R.P. Abelson, 
1977). 

The problem with these representation forms is 
that they are static. In fact human mind generates 
contextualized structures, that are adapted to the 
particular context of use. 

“Networks of propositions” (or “knowledge 
nets”,  W.Kintsch, 1998) are an alternative 
formalism that combines and extends the 
advantages of the representation forms that have 
been introduced so far. 

The predicate-argument schema can be 
considered as the fundamental linguistic unit 
especially in the representation of textual content. 
Atomic propositions consist of a relational term 
(the predicate) and one or more arguments. 

Networks of propositions link these atomic 
propositions through weighted and not labeled 
arcs. According to this formalism the meaning of a 
node is given by its position in the net. 

From a psychologic point of view only the nodes 
that are active (i.e. that are maintained in the 
working memory) contribute to specify the sense 
of a node. Hence the meaning of a concept is not 
permanent and fixed but is built every time in the 
working memory by the activation of a certain 



subset of propositions in the neighbour of the node 
that represents the concept. The context of use 
(objectives, accumulated experiences, emotional 
and situational state etc.) determines which nodes 
have to be activated. 

For the definition of retrieval modalities 
Ericsson and Kintsch has introduced the concept of 
long term working memory (LTWM) (W.Kintsch, 
V.L. Patel, K.A.Ericsson, 1999). They noticed that 
some cognitive tasks, as textual comprehension, 
cannot be explained only using the concept of 
working memory. Given the strict limits of 
capacity of the short term memory (STM) and of 
the working memory (WM), tasks that require an 
enormous employment of resources cannot be 
carried out.  

The theory of long term working memory 
specifies under which conditions the capacity of 
WM can be extended. The LTWM is involved only 
in the execution of well known tasks and actions, 
that belong to a particular cognitive domain that 
has been well experienced. In these cases the 
working memory can be subdivided in a short term 
part (STWM) that has a limited capacity and a 
LTWM that is a part of the long term memory 
represented by the network of propositions. The 
content of STWM automatically generates the 
LTWM. In particular objects present in the STWM 
are linked to other objects in the LTM by fixed and 
stable memory structures (retrieval cues). 

2 Implementation of the Kintsch-Ericsson 
model 

The approach of the network of propositions 
yielded two project problems. The creation of the 
LTWM and the activation of LTM nodes, i.e. the 
creation of the retrieval cues. 

Kintsch has developed two methods for the 
definition of the LTWM. 

The first, defined with Van Dijk (T.A. van Dijk, 
W. Kintsch, 1983), is a manual technique that 
starts from the propositions present in the text 
(micropropositions) and using some organizing 
rules arrives to the definition of macropropositions 
and macrostructures and even to the definition of 
LTWM. 
The second is based on the latent semantic analysis 
(LSA) (T.K. Landauer, P.W. Foltz, D. Laham, 
1998). This technique can infer, from the matrix of 
co-occurrence rates of the words, a semantic space 
that reflects the semantic relations between words 
and phrases. This space has typically 300-400 
dimensions and allows to represent words, phrases 
and entire texts in a vectorial form. In this way the 
semantic relation between two vectors can be 
estimated by their cosine (a measure that according 

to Kintsch can be interpreted as a correlation 
coefficient). 

This latter solution to the problem of the 
definition of LTWM puts a great and inevitable 
technical problem. How many objects must be 
retrieved from the semantic space for every word 
present in the text ? In some cases, when the 
textbase, i.e. the representation obtained directly 
from the text, is sufficiently expressed, the 
retrieval of knowledge from the LTM is not 
necessary. In other cases a correct comprehension 
of the text (or the relative situation model) requires 
the retrieval of knowledge from the LTM.  

After the creation of the LTWM the integration 
process begins i.e. the activation of the nodes 
correspondent to the meaning of the phrase. 
Kintsch uses a diffusion of activation pocedure that 
is a simplified version of the one developed by 
McClelland and Rumelhart (J.L. McClelland, D.E. 
Rumelhart, 1986). Firstly an activation vector is 
defined whose elements are indexed over the  
nodes of LTWM. Any element’s value is “1” or 
“0” depending on the presence or the absence of 
the corresponding node in the analyzed phrase (i.e. 
in the STWM). This vector is multiplied by the 
matrix of the correlation rates (the weights of the 
links of the LTWM) and the resulting vector is 
normalized. This becomes the new activation 
vector that must be multiplied again by the matrix 
of the correlation rates. This procedure goes on 
until the activation vector becomes stable. After 
the integration process, the irrelevant nodes are 
deactivated and only those that represent the 
situation model remain activated. 

2.1 An alternative representation of the 
Kintsch-Ericsson model 

The adoption of a network of propositions for the 
knowledge representation presents certainly great 
advantages in comparison with the classic 
formalisms. While semantic networks, frames and 
scripts organize knowledge in a more ordered and 
logical way, the networks of propositions are 
definitely more disorganized and chaotic, but 
present the not negligible advantage that are 
capable to vary dynamically not only in time, on 
the basis of the past experiences, but also on the 
basis of the perceived context. 

But the technique worked out by Kintsch and 
Ericsson for the definition of LTWM presents 
some limits. Retrieving knowledge from the 
semantic space is only the first. Another problem is 
the evolution of the LTWM. The position occupied 
by a word in the LTWM is determined by the 
experience, i.e. its past use and this should be a 
lifetime experience. But this kind of knowledge 
cannot be reached practically and Kintsch resorts 



to the use of a dictionary for the definition of the 
semantic space that represents the LTWM. 

Furthermore the construction-integration process 
does not always assure the semantic 
disambiguation of the analysed phrase (W.Kintsch, 
1998). 

The use of an external dictionary, as WordNet, 
(G. A. Miller, 1993) and of particular 
disambiguation procedures can overcome the last 
two limits. 

Instead the first problem can be fully solved only 
by dropping the intermediate representation of the 
semantic space and by developing new methods 
for the direct formation of networks of concepts 
and propositions. 

Let us describe now the system for the automatic 
acquisition of the knowledge that we developed on 
the basis of the LTWM model of Kintsch-Ericsson.  

The lack of adequate textual parsers able to 
convert the paragraphs of a text in the 
correspondent atomic propositions has driven us to 
develop, at least in this initial phase of our project, 
simple dynamic models of associative networks. 

 

 
Figure 1: A possibile architecture of a system for 

the dynamical acquisition of knowledge from a 
repository of documents. 

 
The part of the document that is analysed (the 

content of the buffer) must be codified on the basis 
of the context before being elaborated by the 
working memory block. The context represents the 
theme, the subject of the processed text and for its 
correct characterization not only the information 
present in the document must be considered, but 
also the one that can be retrieved from the structure 
representing the knowledge accumulated during 
the analysis of the previous documents presented 
to the system (Long Term Memory). 

For the implementation of the working memory 
block, self organizing networks with suitable 
procedures for the labeling of their nodes could be 
used, but this solution requires a lot of 
computational time, especially for the analysis of 
entire repositories of documents. 

So we considered alternative models based on 
the theory of scale free graphs (R.Albert, 
A.L.Barabasi, 2001) for the implementation of an 
associative network.  

The graph theory dealed with regular graphs 
untill the 50s. Subsequently random graphs were 
introduced (P.Erdos, A.Renyi, 1959). They were 
the first simple forms of complex graphs that had 
ever been studied. 

Their model started with a network made by N 
isolated nodes. Successively each pair of nodes 
could be connected with a probability p, leading to 
a graph having approximately pN(N-1)/2 links. 

But this model was still far from real networks 
present in nature and artificial systems. So 
scientists defined other models characterized by an 
higher complexity level.  

The actual models have three main features. 
First their “small world” structure. That means 

there is a relatively short path between any two 
nodes (D.J.Watts, S.H.Strogatz, 1998). 

Second their inherent tendency to cluster that is 
quantified by a coefficient that was introduced by 
Watts and Strogatz. Given a node i of ki degree i.e. 
having ki edges which connect it to ki other nodes, 
if those make a cluster, they can establish ki(ki-1)/2 
edges at best. The ratio between the actual number 
of edges and the maximum number gives the 
cluster coefficient of node i. The clustering 
coefficient of the whole network is the average of 
the all individual clustering coefficients. In a 
random graph the clustering coefficient is C = p. In 
real networks the clustering coefficient is much 
larger than p. 

Actual graph models are also characterized by a 
particular degree distribution. While in a random 
graph the majority of the nodes have 
approximately the same degree close to the 
average degree, the degree distribution P(k) of a 
real network has a power-law tail P(k)~k-?. For this 
reason these networks are called “scale free” 
(R.Albert, A.L.Barabasi, 2000). 

Recently it has been found that human 
knowledge seems to be structured as a scale free 
graph (M.Steyvers, J.Tenenbaum, 2001). 
Representing words and concepts with nodes, 
some of these (hubs) establish much more links 
compared with the other ones. 

In table 2 are reported the average shortest path 
length, the clustering coefficient and the power law 
exponent of two different types of semantic 
networks. 

  



 Average 
path 
length 

Clustering 
coefficient 

Power 
law 
exponent 

WordNet 10.56 0.0265 3.11 
Roget 
Thesaurus 

5.60 0.875 3.19 

Table 1: General characteristics of some 
semantic networks. 

 
This particular conformation seems to optimize 

the communication between nodes. Thanks to the 
presence of the hubs, every pair of nodes can be 
connected by a low number of links in comparison 
with a random network with the same dimensions. 
The definition and the eventual updating of a scale 
free network does not require a lot of time and the 
execution of particular processes, as the diffusion 
of the activation signal, is very fast. 

The textual analysis is performed through the 
following steps. 

The new text is analysed paragraph by 
paragraph. The buffer contains not only the words 
of the paragraph analysed, but also words retrieved 
from the long term memory using the diffusion of 
the activation procedure (the activation signal 
starts from the nodes in the LTM that represents 
the words in the paragraph). Theoretically, the 
buffer should contain also the words activated 
during the analysis of the previous paragraph, but 
this aspect has not been considered for its 
computational complexity. The buffer, the working 
memory and the activated part of the LTM block 
can be compared (but they are not the same 
structure) to the LTWM defined by Kintsch and 
Ericsson. 

During the acquisition of the content of the 
paragraph a stoplist of words that must not be 
considered (as articles, pronouns etc.) is used. 

For any word in the text, the paragraphs where it 
has appeared (or where it has been inserted after 
the retrieval procedure) are stored. When the entire 
text has been parsed and the data of all the N not 
filtered words have been memorized, the formation 
of the network of concepts in the working memory 
begins. The model adopted is similar to the one 
defined by Bianconi and Barabasi (G.Bianconi, 
A.Barabasi, 2001). The process starts with a net 
consisting of N disconnected nodes. 

At every step t=1..N each node (associated to 
one of the N words) establishes a link with other M 
units (M=5). If j is the selected unit, the probability 
that this node establishes a link with the unit i is: 
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where ki is the degree of the unit i 1, i.e. the 

number of links established by it, while Ui is the 
fitness value associated to the node, and it can be 
computed as the ratio between the number of 
paragraphs that contain both i and j and the number 
of paragraphs that contain either i or j. 

LTM is an associative network that is updated 
with the content of the WM. Whenever a link of 
the WM corresponds to a link present in the LTM, 
the weight of this one is increased by “1”.  

Example : 
 
The WM links “Hemingway” to “writer”. 
In the LTM “Hemingway” is linked to “writer” 

with weight “7” and to “story” with weight “4”. 
In the updated LTM “Hemingway” is linked to 

“writer” with weight “8” and to “story” with 
weight “4” (unchanged). 
   To perform the diffusion of the activation signal 
all the weights must be normalized. In this case 
“Hemingway” must be linked to “writer” with 
weight 8/(8+4) and to “story” with weight 4/(8+4). 
 

Since the scale free network that represents the 
content of the WM is used to update the content of 
LTM, this associative networks should take the 
form of a scale free graph. Unfortunately the 
modalities of evolution of the LTM does not allow 
the definition of a simple equivalent mathematic 
model, that is necessary to make useful previsions 
about its evolution. 

In the scale free graph models proposed by 
literature at each temporal step M new nodes are 
added to the graph, with M defined beforehand. 
These M nodes generally establish M links with M 
old units of the network. In the system that we 
have developed, after the analysis of a new 
document the links related to an unknown number 
of nodes of the LTM network are updated on the 
basis of the content of the WM. This number 
depends on the analysed document because it is the 
number of the words that have not been filtered by 
the stoplist. 

Another important difference with other scale 
free models presented in literature (S.N. 
Dorogovtsev, J.F.F. Mendes, 2001) is the 
particular fitness function that is used. This 
function does not depend on a single node but on 
the considered pair of nodes. If this value is 
choosen as proportional to the weights of the LTM 
associative network, the fitness value of a word is 
not constant but depends on the other word that 
could be linked to it. For example the noun 
“house” should present for the link with “door” a 

                                                 
1 Each node is connected to itself by a loop. 



fitness value greater than the ones presented for the 
links with “person” and “industry”. 

3 Evaluation of the WM block 

To test the validity of the scale free graph model 
adopted for the WM, we gave 100 files of the 
Reuters Corpus2 as input to the system disabling 
the retrieval of information from the LTM. 

Two versions of the model have been tested, one 
with bidirectional links and the other with directed 
links (in this case we considered ki = ki(IN) + ki(OUT)). 

 In  fig. 2 (http://www.deit.univpm.it/~dragoni 
/downloads/scale_free.jpg) an example of a 
network with bidirectional links is represented. 

 Please notice that the economic bias of the 
articles justifies the presence of hubs as “interest 
rate”, “economy”, etc., while other frequent words 
as “child”, “restaurant”, etc. establish less link with 
the others. 

 
 

 
Figure 2: A network with bidirectional links 

obtained with the analysis of 100 files of the 
Reuters Corpus. 

 
Fig.3 reports the average path length between 

each pair of nodes, the clustering coefficient and 
the degrees distribution of the nodes of the 
obtained networks. 

 

                                                 
2 Reuters Corpus, Volume 1, English language, 1996-

08-20 to 1997-08-19, http://about.reuters.com/ 
researchandstandards/corpus. 

 
Figure 3: Comparison of average path lengths of 

different types of networks. 
 
The tendency of the average path length is clear. 

The trend related to the random graphs, having the 
same dimensions of the considered scale free 
graphs, has an higher slope. This result confirms 
the one obtained by Bianconi and Barabasi 
reported in fig.4. 

 

 
 
Figure 4: Comparison of average path lengths of 

different types of networks (Bianconi-Barabasi 
model). 
 

Fig.5 shows that the clustering coefficient of the 
scale free graph model has an higher order of 
magnitude in comparison with the one computed 
for the random networks. Even this result is 
confirmed by the one obtained by Bianconi and 
Barabasi (fig.6). 

 



 
 
Figure 5: Comparison of clustering coefficients 

of different types of networks. 
 

 
 
Figure 6: Comparison of clustering coefficients 

of different types of networks (Bianconi-Barabasi 
model). 

 
Fig. 7 reports the degrees distribution of the 

graph with bidirectional links. 
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Figure 7: Degree distribution of a graph with 

M=5 and bidirectional links. 
 

Fig. 8 highlights the trend by redrawing the 
graphic using the logarithmic coordinates. 
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    Figure 8: Previous graphic in logaritmic 
coordinates. 
 

The degree distribution decays as P(k) ˜  k-G with 
G = 3.2657. 

The degree distribution of a graph with directed 
links is reported below. 
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    Figure 9: Degree distribution of a graph with 
M=5 and directed links. 

 
Fig. 10 redraws the previous graphic using the 

logarithmic coordinates. The power law trend has a 
coefficient  G = 2.3897. 
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   Figure 10: Degree distribution of a graph with 
M=5 and directed links. 

4 Evaluation of the LTM block 

In order to evaluate the learning capabilities of 
the system, we applied it on a medical article. The 
sections of the paper have been presented 
separately as independent texts regarding the same 
topic. This choice has been imposed by the 
necessity to enable also the retrieval of information 
from LTM. 

As expected, the resulting LTM network was a 
typical scale-free graph (tab. 2). 

 
M Average 

path length 
Average 
degree 

Clustering 
coefficient 

1 2.559 5.95 0.32290 
2 2.499 6.50 0.33758 
3 2.267 8.30 0.45428 
4 2.255 9.50 0.43099 
5 2.232 9.85 0.43151 
Table 2: LTM with 40 nodes 
 
The analysis has been repeated 30 times 

examining the coherence rate of each resulting 
LTM representation. 

The coherence measure is based on a kind of 
transitivity assumption, i.e. if two concepts have 
similar relationships with other concepts, then the 
two concepts should be similar. 

The coherence rate is obtained by correlating the 
LTM ratings given for each item in a pair with all 
of the other concepts3. Its value can be correctly 
computed only producing symmetric versions of 
the LTM data. 

The average coherence rate was 0.45, indicating 
that the system has conceptualized the terms 
according to a precise inner schema. 

                                                 
3 All the operations described in this section are 

performed by the software PCKNOT 4.3, a product of 
Interlink Inc. 

To evaluate the correctness of this schema we 
are going to compare the obtained LTM 
representations with experimental data obtained 
from a group of human subjects. The subjects will 
be asked to read the same medical article examined 
by the system, assigning a rate of similarity to each 
pair of words that has been considered by the 
system. A Pathfinder analysis (R.W. Schvaneveldt, 
F.T. Durso, D.W. Dearholt, 1985.) will be 
performed on the relatedness matrices provided by 
human subjects and the LTM matrices in order to 
extract the so called “latent semantic”, i.e. other 
implicit relations between words. The obtained 
matrices will be compared using a similarity rate 
determined by the correspondence of links in the 
two types of networks. 

5 Future work 

Some important considerations can be made on 
the overall structure of the system. 

The absence of an external feedback does not 
guarantee the correspondence between the LTM 
and the form of representation that must be 
modelled ( the knowledge of an organization, the 
knowledge of a working group, the knowledge of a 
single user ). A possible external feedback could 
be based on the evaluation of the performances of 
the system in the execution of particular tasks as 
the retrieval or the filtering of documents. For 
example the acceptance or the rejection of the 
documents selected by the system could be 
reflected in the updating modality of the LTM. In 
the first case the content of the WM could be used 
to strenghten the links in the LTM or to create new 
ones (as explained previously), in the second case 
the content of the WM could be used to weaken or 
delete the links in the LTM. 

During the formation of the network in the WM 
the information about the weights of the links in 
LTM is not considered explicitly. Even if the 
weights can condition the retrieval of the 
information from the LTM, they could also modify 
the value of the fitness function used for the 
computation of the probability of the creation of 
new links in the WM. 

Furthermore, the association of an age to the 
links of the LTM could guarantee more plasticity 
to its structure. Also the ages could be used in the 
computation of the fitness values, for example in 
accordance with the modalities suggested by 
Dorogovtsev (S.N. Dorogovtsev, J.F.F. Mendes, 
2000). 

We think that our knowledge acquisition system 
can be effectively used for the semantic 
disambiguation, that is the first phase of the 
analysis in the most recent systems for the 



extraction of ontologies from texts (R. Navigli, P. 
Velardi, A. Gangemi, 2003). 

As a further development, we are thinking of 
extracting from our representation form a simple 
taxonomy of concepts using techniques for the 
extraction of subsumption and equivalence 
relations. These techniques are based on the 
elaboration of the correlations between concepts 
expressed as fuzzy relations. A taxonomical 
representation can be considered as an important 
step towards the creation of an ontological 
representation. In this way our system could be 
used to model the user knowledge representing it 
in an ontological form. 

6 Conclusions 

A new system for the automatic acquisition of 
the knowledge has been presented. It is based on 
the concept of long term working memory 
developed by Kintsch and Ericsson. 

The system updates an associative network 
(LTM) whose structure varies dynamically in time 
on the basis of the textual content of the analyzed 
documents. During the analysis of each new 
document the LTM can be queried by the simple 
procedure of the diffusion of the activation signal 
developed by Kintsch and Ericsson. In this way the 
context of the document can be easily and exactly 
identified. 

To reduce the computational time we have 
implemented the WM block with a scale free graph 
model. The obtained network is used to update the 
content of the LTM. 

Some analyses have been performed over the 
WM model developed. The results have confirmed 
that the network evolves as a scale free graph. 

Also the LTM graphs seems to keep the scale 
free features, and their coherence rate indicates that 
the system conceptualizes the terms according to a 
precise inner schema. 

Now we are considering alternative models for 
the WM that use much more information present in 
the LTM and that guarantee more plasticity to its 
structure. We are also going to compare the LTM 
graphs with the knowledge structures obtained by 
the Pathfinder analysis computed over the 
associations provided by a group of human 
subjects. 
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