
85

Modelling Atypical Syntax Processing 

Michael S. C. THOMAS 

School of Psychology  

Birkbeck College, Malet St., 

London WC1E 7HX 

m.thomas@bbk.ac.uk 

Martin REDINGTON 

School of Psychology  

Birkbeck College, Malet St., 

London WC1E 7HX 

m.redington@ucl.ac.uk 

Abstract 

We evaluate the inferences that can be drawn 

from dissociations in syntax processing 

identified in developmental disorders and 

acquired language deficits. We use an SRN to 

simulate empirical data from Dick et al. (2001) 

on the relative difficulty of comprehending 

different syntactic constructions under normal 

conditions and conditions of damage. We 

conclude that task constraints and internal 

computational constraints interact to predict 

patterns of difficulty. Difficulty is predicted by 

frequency of constructions, by the requirement 

of the task to focus on local vs. global 

sequence information, and by the ability of the 

system to maintain sequence information. We 

generate a testable prediction on the empirical 

pattern that should be observed under 

conditions of developmental damage. 

1 Dissociations in language function 

Behavioural dissociations in language, identified 

both in cases of acquired brain damage in adults 

and in developmental disorders, have often been 

used to infer the functional components of the 

underlying language system. Generally these 

attempted fractionations appeal to broad 

distinctions within language. However, fine-scaled 

dissociations have also been proposed, such as the 

loss of individual semantic categories or of 

particular linguistic features in inflecting verbs. 

Here, we consider the implications of 

developmental and acquired deficits for the nature 

of syntax processing.  

1.1 Developmental deficits 

A comparison of developmental disorders such 

as autism, Downs syndrome, Williams syndrome, 

Fragile-X syndrome, and Specific Language 

Impairment reveals that dissociations can occur 

between phonology, lexical semantics, morpho-

syntax, and pragmatics. The implications of such 

fractionations remain controversial but will be 

contingent on understanding the developmental 

origins of language structures (Karmiloff-Smith, 

1998). These processes remain to be clarified even 

for the normal course of development. 

In the area of syntax, Fowler (1998) concluded 

that a consistent picture emerges. Individuals with 

learning disabilities are systematic in their 

grammatical knowledge, follow the normal course 

of development, and show similar orders of 

difficulty in acquiring constructions. However, 

such individuals can often handle only limited 

levels of syntactic complexity and therefore 

development seems to terminate at a lower level. 

While there is great variability in linguistic 

function both across different disorders and within 

single disorders, this cannot be attributed solely to 

differences in �general cognitive functioning� (e.g., 

as assessed by problem solving ability). Syntax 

acquisition is therefore to some extent independent 

of IQ. However, adults with developmental 

disorders who have successfully acquired syntax 

typically have mental ages of at least 6 or 7, an age 

at which typically developing children also have 

well-structured language. The variability in 

outcome has been attributed to various factors 

specific to language, including verbal working 

memory and the quality of phonological 

representations (Fowler, 1998; McDonald, 1997). 

Most notably, disorders with different cognitive 

abilities show similarity in syntactic acquisition. 

The apparent lack of deviance across 

heterogeneous disorders has been used to argue for 

a model of language acquisition that is heavily 

constrained by the brain that is acquiring the 

language (Newport, 1990).  

1.2 Acquired deficits in adulthood 

One of the broadest distinctions in acquired 

language deficits is between Broca�s and 

Wernicke�s aphasia. Broca�s aphasics are 

sometimes described as having greater deficits in 

grammar processing, and Wernicke�s aphasics as 

having greater deficits in lexical processing. The 

dissociation is taken to support the idea that the 

division between grammar and the lexicon is one 

of the constraints that the brain brings to language 

acquisition. 

Dick et al. (2001) recently argued that four types 

of evidence undermine this claim: (1) all aphasics 



86

have naming deficits to some extent; (2) apparently 

agrammatic patients retain knowledge of grammar 

that can be exhibited in grammaticality 

judgements; (3) grammar deficits are found in 

many populations both with and without damage to 

Broca�s area, the reputed seat of syntax in the 

brain; and (4) aphasic symptoms of language 

comprehension can be simulated in normal adults 

by placing them in stressed conditions (e.g., via 

manipulating the speech input or giving the subject 

a distracter task). Dick et al. pointed out that in 

syntax comprehension, the constructions most 

resilient in both aphasic patients and normal adults 

with simulated aphasia are those that are most 

regular or most frequent, and conversely those 

liable to errors are non-canonical and/or low 

frequency. Dick et al. (2001) illustrated these 

arguments in an experiment that compared 

comprehension of four complex syntactic 

structures:

Actives (e.g., The dog [subject] is biting the 

cow [object]) 

Subject Clefts (e.g., It is the dog [subject] that 

is biting the cow [object]) 

Passives (e.g., The cow [object] is bitten by 

the dog [subject]) 

Object Clefts (e.g., It is the cow [object] that 

the dog [subject] is biting)

The latter two constructions are lower frequency, 

and have non-canonical word orders in which the 

object precedes the subject. Dick et al. tested 56 

adults with different types of aphasia on a task that 

involved identifying the agent of spoken sentences. 

Patients with all types of aphasia demonstrated 

lower performance on Passives and Object Clefts 

than Actives and Subject Clefts. Moreover, normal 

adults given the same task but with a degraded 

speech signal (either speeded up, low-pass filtered, 

or with noise added) or in combination with a 

distracter task (such as remembering a set of digits) 

produced a similar profile of performance to the 

aphasics (see Figure 1). 

Dick et al. (2001) argued that the common 

pattern of deficits could be explained by the 

Competition Model (MacWhinney & Bates, 1989), 

which proposes that the difficulty of acquiring 

certain aspects of language and their retention after 

brain damage could be explained by considering 

cue validity (the reliability of a source of 

information in predicting the structure of a target 

language) and cue cost (the difficulty of processing 

each cue). Cues high in validity and low in cost, 

such as Subject-Verb-Object word order in 

English, should be acquired more easily and be 

relatively spared in adult breakdown. The proposal 

is that for a given language, any domain-general 

processing system placed under sub-optimal  

Figure 1. Aphasic and simulated (human) aphasic 

data from Dick et al. (2001) 

conditions should exhibit a similar pattern of 

developmental or acquired deficits. Thus Dick et 

al. predicted that a connectionist model trained on 

an appropriate frequency-weighted corpus would 

show equivalent vulnerability of non-canonical 

word orders and low frequency constructions under 

conditions of damage. In contrast to the inferences 

drawn from developmental deficits, the focus here 

is on attributing similarities in patterns of acquired 

deficits to features of the problem domain rather 

than constraints of the language system. 

2 Computational modelling 

Proposals that site the explanation of behavioural 

data in the frequency structure of the problem 

domain (here, the relative frequency of the 

construction types) are insufficient for three 

reasons: (1) language comprehension is not about 

passive reception. The language learner must do 

something with the words in order to derive the 

meanings of sentences. It is the nature of the 

transformations required that crucially determines 

task difficulty, which statistics of language input 

alone cannot reveal. (2) Whatever the statistics of 

the environment, such information must be 

accessed by an implemented learning system. This 

system may be differentially sensitive to certain 

features of the input, and it may find certain 

transformations more computationally expensive 

than others, further modulating task difficulty. (3) 

In the context of atypical syntax processing in 

developmental and acquired disorders, behavioural 
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deficits are caused by changes in internal 

computational constraints. Without an 

implemented, parameterised learning system, we 

can have no understanding of how sub-optimal 

processing conditions generate behavioural deficits 

in syntax processing. To date, this issue has been 

relatively under-explored. 

The choice of learning system is evidently of 

importance here. In this paper, we explore the 

behaviour of a connectionist network, since these 

systems have been widely applied to phenomena 

within cognitive and language development 

(Elman et al., 1996) and more recently to capturing 

both atypical development and acquired deficits in 

adults (Thomas & Karmiloff-Smith, 2002, 2003). 

3 Simulation Design 

Our starting point is a set of models of syntax 

acquisition proposed by Christiansen and Dale 

(2001). These authors employed a simple recurrent 

network (SRN; Elman, 1990), an architecture that 

is the dominant connectionist model of sequence 

processing in language studies and in sequence 

learning more generally. As is typical of current 

connectionist models of syntax processing, the 

Christiansen and Dale (henceforth C&D) model 

focuses on small fragments of grammar and a 

small vocabulary. Nevertheless, it provides a 

useful platform to begin considering the effects of 

processing constraints on syntax processing.  

The following models performed a prediction 

task at the word level. At each time step, the 

network was presented with the current word and 

had to predict the next word in the sentence. This 

component of the task induces sensitivity to 

syntactic structures. A localist representation was 

used, with each input unit corresponding to a 

single word. The artificial corpus consisted of 54 

words and included 6 nouns, 10 verbs, 5 

adjectives, and 10 functions words. Nouns and 

verbs had inflected forms represented by separate 

word units (N: stem, pluralised; V: stem, past 

tense, progressive, 3rd person singular). 

C&D investigated the effect of several cues on 

syntax acquisition, such as prosody, stress, and 

word length. Prosody was represented as utterance 

boundary information that occurred at the end of 

an utterance with 92% probability. The utterance 

boundary cue was represented by an additional 

input and output unit. 

Distributional cues of where words appeared in 

various sentences, along with utterance boundary 

information, were available to all networks. We 

refer to the networks that received only these cues 

as the �basic� model. We also tested a second set 

of �multiple cue� networks that also received cues 

about word length and stress. Word length was 

encoded with thermometer encoding, with one to 

three units being activated according to the number 

of syllables in the input word. In English, longer 

words tend to be content words. This was reflected 

in the vocabulary items that were selected for the 

grammar. Stress was encoded as a single unit that 

was activated for content words, which are stressed 

more heavily. The word length and stress units 

were present both as inputs and outputs, so that 

multiple cue networks had 59 input and output 

units to represent the words and cues. 

3.1 The materials 

The input corpus was a stochastic phrase 

structure grammar, derived from the materials used 

by C&D (2001). The grammar featured a range of 

constructions (imperatives, interrogatives and 

declarative statements). Frequencies were based on 

those observed in child-directed language. We 

added passives, subject and object cleft 

constructions to the grammar, which is illustrated 

in Figure 2. 

Figure 2. Stochastic phrase structure grammar, 

including the probabilities of each construction 

The four sentence types appeared with the 

following frequency: (Declarative) Active: 16.8%, 

Subject Cleft: 0.84%, Object Cleft: 0.84%, 

Passives: 2.52%. This gave a Passive-to-Active 

ratio of roughly 1:7, and ratio of OVS to SVO 

sentences of 1:21. Dick and Elman (2001) found 

that for English, the Passive-to-Active ratio ranged 

from 1:2 to 1:9 across corpora and that subject and 

object clefts appear in less than 0.05% of English 

sentences. They found that the relative frequency 

of word orders depended on whether one compares 

the passive OVS against transitive (SVO) or 

intransitive (SV) sentences and reported ratios that 

varied from 1:5 to 1:63 depending on corpus 

(spoken or written). The simulation frequencies 

were therefore an approximate fit, with the Subject 

S -> Imperative [0.1] | Interrogative [0.3] | Declarative [0.6] 

Declarative -> NP V-int [0.35] | NP V-tran NP active [.28] | 
NP V-tran NP passive [0.042] |               
subject cleft [0.014] |                                 
object cleft [0.014] | NP-Adj [0.1] |                 
That-NP [0.075] | You-P [0.125] 

NP-ADJ -> NP is/are adjective 
That-NP -> that/those is/are NP  
You-P ->  you are NP 

Imperative -> VP 
Interrogative -> Wh-Question [0.65] | Aux-Question [0.35] 

Wh-Question -> where / who / what is/are NP 
[0.5] | where / who / what do / 
does NP VP [0.5] 

Aux-Question -> do / does NP VP [0.33] |  
 do / does NP wanna VP [0.33] | 
is / are NP adjective [0.34] 

NP -> a / the N-sing / N-plur 
VP -> V-int | V-trans NP 
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and Object Clefts slightly higher than in English 

due to the requirement to have at least a handful 

appear in our training corpus. 

We generated a corpus of 10,000 sentences from 

this grammar as our training materials for the 

network, and a set of 100 test sentences for each of 

the active, passive, subject cleft and object cleft 

constructions.  

3.2 Simulation One 

The Dick et al. (2001) task consisted of 

presenting participants with a spoken sentence, and 

two pictures corresponding to the agent and patient 

of the sentence. The participant�s task was to 

indicate with a binary choice which of the pictures 

was the agent of the sentence. For example, for 

sentences such as �the dog is biting the cow�, 

participants were asked to �press the button for the 

side of the animal that is doing the bad action�. 

Our next step was to implement this task in the 

model. One approach would be to train the 

network to output at each processing step not only 

the next predicted word in the sentence but also the 

thematic role of the current input. If the current 

input is a noun, this would be agent or patient. 

Joanisse (2000) proposed just such a solution to 

parsing in a connectionist model of anaphor 

resolution. We will refer to the implementation of 

activating units for agent or patient (solely) on the 

same cycle as the relevant noun as the �Discrete� 

mapping problem of relating nouns to roles. 

The mapping problem adds to the difficulty of 

the prediction task. We can assess the extent of this 

difficulty by measuring performance on the 

prediction component alone, against the metrics of 

two statistical models. The bigram and trigram 

models are statistical descriptions of the sentence 

set that predict the next word given the previous 

two or three words of context, respectively, and 

these were derived from the observed frequencies 

in the training set. 

Lastly, for the purposes of this simulation, we do 

not distinguish between the syntactic roles of 

subject and object, and semantic roles of agent and 

patient, even though a more complex model may 

separate these levels and include a process that 

maps between them. Although these simulations 

conflate the syntactic and semantic categories, we 

use the terms agent / patient for clarity in linking to 

the Dick et al. empirical data. 

3.2.1 Method 

For Simulation 1, we added two output units to 

the C&D network. The network was trained to 

activate the first extra unit when the current input 

element was the subject / agent of the sentence, 

and to activate the second extra unit when the 

object / patient of the sentence was presented. For 

all other inputs, the target activation of both units 

was zero. Thus, the number of input and output 

units was 55 and 57 respectively for the basic 

model, and 59 units and 61 units for the multiple-

cue model. 

The network�s ability to correctly predict the 

next word was measured over the 55 word output 

units using the cosine between the target and actual 

output vectors. On novel sentences, a perfect 

network will only be able to predict the next item 

probabilistically. However, over many test items, 

this measure gives a fair view of the network�s 

performance and we followed C&D (2001) in 

using this measure. 

We initially chose our parameters based on those 

used by C&D (2001). Our learning rate was 0.1, 

and we trained the network for ten epochs. We 

performed a simple search of the parameter space 

for the number of hidden units to establish a 

�normal� condition (see Thomas & Karmiloff-

Smith, 2003, for discussion of parameters defining 

normality). Eighty hidden units, the number used 

by C&D, gave adequate results for both models. 

This value was used to define the normal model. 

We first evaluate normal performance at the end 

of training, then under the developmental deficit of 

a reduction in hidden units in the start state, and 

finally under the acquired deficit of a random 

lesion to a proportion of connection weights from 

the trained network. 

3.2.2 Results 

On the prediction component of the task, both 

models demonstrated better prediction ability than 

the bigram model, and marginally less prediction 

ability than the trigram model. This is in contrast to 

C&D�s original prediction-only SRN model, which 

exceeded trigram model performance. It shows that 

the requirement to derive agent and patient roles 

increased the complexity of the learning problem, 

interfering with prediction ability. 

The role-assignment component of the task was 

indexed by the activation of the agent and patient 

units when presented with the second noun of the 

sentence. At presentation of the first noun, there 

was no information available in the test sentences 

that would allow the network to distinguish 

between the possible interpretations of the 

sentence. At the second noun, the most active of 

the two units was assumed to drive the 

interpretation of the sentence and subsequent 

picture identification in the Dick et al. task. 

Therefore, the network�s response was �correct� 

for Active and Subject Cleft sentences if the 

�patient� unit had the highest activation, and for 

Passive and Object Cleft sentences if the �agent� 
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unit had the highest activation. The scores, 

measured in terms of the proportion of correct 

interpretations for the test sentences for each 

construction are shown in Figure 3. 

Somewhat surprisingly, both the basic and 

multiple-cue models exhibited better performance 

on the Passive and Object Cleft sentences than on 

Active and Subject Cleft sentences. (These 

differences were statistically reliable.) The main 

difference between the two models was lower 

performance on Subject Cleft in the basic model, 

implying that cues to content-word status help to 

disambiguate the two cleft constructions. 

Examining the profiles of performance for each 

sentence type gives some insight into the dynamics 

of the networks. Figures 4 to 7 show the activation 

of the agent and patient units for the multiple-cue 

model during the processing of examples of each 

construction, selected at random. The Subject Cleft 

sentence shown in Figure 5 is typical of the pattern 

for both Active and Subject Cleft sentences. That 

is, agent unit activation is close to 1.0 at the first 

noun, while patient unit activation is close to zero. 

At the second noun, the network is usually able to 

correctly distinguish the patient, but some agent 

unit activation also occurs. Therefore, using our 

decision criteria, the network is not always able to 

correctly identify the patient, and scores on Active 

and Subject Cleft sentences are not perfect. 

In contrast, in the example Passive and Object 

Cleft sentences, the network incorrectly activates 

the agent unit at presentation of the first noun. At 

this point, the network has no information that 

could possibly allow it to distinguish between the 

two different kinds of sentence, and so its response 

is driven by the relative frequency of the 

constructions. However, for the second noun (the 

agent), although the patient unit does show some 

activation, the agent unit is clearly favoured. 

Generally, the advantage of the agent unit for the 

Passive and Object Cleft sentences is greater than 

the advantage of the patient unit for the Active and 

Subject Cleft sentences. This can be explained by a 

general bias in the network in favour of the agent 

unit. In the training set, agents (subjects) occur 

much more frequently than patients (objects). All 

of the interrogatives and imperatives only have 

agents, and these comprise 30% of the training 

sentences. Thus, paradoxically, the network suffers 

when attempting to produce activation on the 

patient unit, and this impacts on the Active and 

Subject Cleft performance, despite the much 

greater frequency of these constructions. 

Figures 8 and 9 illustrate the affects of initially 

reducing the numbers of hidden units in the 

network and of lesioning connections in the 
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endstate. In both cases, non-optimal processing 

conditions exaggerated the pattern of task 

difficulty, with Actives and Subject Clefts failing 

to be learned or showing greater impairment after 

lesioning. Object Clefts are the most easily learnt 

and most robust to damage, despite their non-

canonical word order and low frequency. With the 

task definition of responding �agent� to the second 

noun, this construction gains most from the 

prevalence of the agent status of nouns in the 

corpus.  

This interpretation of the Dick et al. agent-

identification task does not provide an adequate fit 

to the human data, either for normal or atypical 

performance. Why not? This implementation of the 

task requires that the network keep track of two 

roles at the same time and assign those roles at the 

correct moment. It is therefore driven by the 

independent probability of a noun being an agent 

or a patient at multiple time points through the 

sentence. The result is a de-emphasis of global 

sequence information and an emphasis on local 

lexical information, leading to a relative advantage 

of responding �agent� to any noun. 

In the Dick et al. task, the participant is asked to 

make a single decision based on the entire 

sentence, rather than continously monitor word-by-

word probabilities. Responses occurred between 2 

and 4 seconds after sentence onset, with words 

presented at around 3 words-per-second. In the 

next section, we therefore provide an alternate 

implementation of the task based on a single 

categorisation decision for the whole sentence. But 

Simulation 1 serves as a demonstration that the 

statistics of the input set alone do not generate the 

task difficulty. It is the mappings required of the 

network. Moreover, we might predict that a 

modification of the Dick et al. study to encourage 

on-line monitoring of roles would alter the pattern 

of task difficulty. Thus, the four options might be 

presented as pictures (each noun twice, once as 

agent, once as patient), and the participants� eye-

gaze direction recorded as the sentence unfolds. 

3.3 Simulation Two 

An alternate implementation of the Dick et al. 

task is that the network should be required to make 

a single categorisation on the whole sentence as to 

whether the agent precedes the patient, or the 

patient precedes the agent. This implementation 

follows the assumption that task performance is 

driven by higher-level sentence-based information 

rather than lexically-based information. A single 

unit can serve to categorise the input sentence as 

agent-then-patient or patient-then-agent. During 

training, the target activation for the unit is applied 

continuously throughout the entire utterance. We 

therefore call this the Continuous Mapping 

problem for sentence comprehension. Like the 

Discrete Mapping problem, the Continuous version 

has also been employed in previous connectionist 

models of parsing (Miikkulainen & Mayberry, 

1999). (Note that Morris, Cottrell & Elman, 2000, 

used an implementation that combines Discrete 

and Continuous methods, providing a training 

signal that is activated when a word appears and is 

then maintained until the end of the sentence). The 

Continous method generates a training signal for 

comprehension. It does not constrain on-line 

comprehension, which may be subject to garden-

pathing and dynamic revision.  

3.3.1 Method 

A single output unit was trained to produce an 

activation of 1 for sentences with Subject-Object 

word order (active and subject cleft constructions), 

and 0 for Object-Subject word order (passives and 

object cleft constructions). Apart from this 

difference, the basic and multiple-cue models were 

identical in all other respects, with 55 input and 

output units in the basic model, and 59 units in the 

multiple cue model. As before, we trained the 

network on 10,000 sentences generated by the 

stochastic phrase structure grammar, and tested the 

trained network on sets of 100 Active, Passive, 

Subject Cleft and Object Cleft sentences. One 

hundred and twenty hidden units were required to 

define the �normal condition� for these simulations. 

3.3.2 Results 

As with Simulation 1, the prediction ability of 

both basic and multiple-cue models suffered due to 

the burden imposed by the mapping task. Although 

the networks� performance reliably exceeded a 

bigram prediction model, the trigram statistical 

model was slightly superior. 

The network�s ability to correctly �interpret� the 

test sentences was measured as follows. If the 

semantic output unit�s activation at the time of 

second noun presentation was greater than 0.5, 

then the response was assumed to indicate that the 

sentence had Subject-Object word order and the 

agent was the first noun. If the activation was less 

than or equal to 0.5, then the response was 

assumed to indicate that the sentence had Object-

Subject word order and the agent was the second 

noun. Although the target output for the network 

was consistent throughout each sentence, we 

selected the presentation of the second noun as our 

point of measurement, as this was where the 

network�s discrimination ability was greatest. 

Figure 10 depicts performance on the four 

constructions. 

On Active, Subject Cleft, and Passive sentences 

the basic model showed appropriate performance, 
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but it failed to correctly distinguish the Object 

Cleft sentences. Doubling the hidden units did not 

markedly alter this pattern. The multiple-cue 

model showed a much better fit to the human data, 

performing at close to ceiling for the Active, 

Passive and Subject Cleft constructions, and 

scoring in excess of 85% correct on Object Cleft 

constructions. The content-word cues provided in 

the multiple-cue model again appeared important 

in disambiguating the cleft constructions. 

Focusing on the multiple-cue model, Figures 11- 

14 show the activation of the network�s semantic 

output unit over a random sentence from each of 

the four test constructions. For the Active sentence, 

the network maintains a fairly constant high level 

of activation throughout the sentence. That is, it 

starts with the �assumption� that sentences will 

have a Subject-Object word order, and becomes 

more certain of this result (as shown by rising 

output activation) as the sentence proceeds. 

For the Passive sentence, again, the network 

starts out assuming that the sentence will have the 

more frequent Subject-Object word order. But on 

seeing �eaten by�, the network reverses its original 

diagnosis. However, the influence of this cue 

noticeably fades as the sentence proceeds. It 

persists enough that by the second noun, the 

network (just) manages to indicate correctly that 

the sentence has Object-Subject word order. 

The Cleft constructions show a very different 

pattern. For the Subject Clefts, the network begins 

with a low output value from the semantic unit. 

This increases slightly as the first determiner and 

noun are presented, but the most valuable cue 

arrives with the words �that is kissing�. These 

provide a perfect indicator (in this context) that the 

sentence has Subject-Object word order, and the 

activation of the semantic unit jumps dramatically, 

staying near ceiling for the rest of the sentence. 

Finally, examining the Object Cleft sentence, 

output activation again starts low and rises only 

modestly during presentation of the first noun. 

However, the presence of a second noun following 

immediately after the first pulls the activation back 

down, to correctly indicate that the sentence has 

Object-Subject word order. Notice that, as with the 

Passive sentence, as the distance increases from the 

cue that marks the (less common) status of the 

Object Cleft sentence, so the activation level of the 

semantic unit tends to drift back to the default of 

the more frequent constructions. 

Figures 15 and 16 illustrate, respectively, the 

effects of reducing the initial numbers of hidden 

units in the network and of lesioning connections 

in the endstate. In the case of acquired damage, 

non-optimal processing conditions exaggerate the 
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pattern of task difficulty, with Passives and Object 

Cleft�s showing greater impairment after lesioning 

in line with the empirical data in Figure 1. 

Interestingly, in the case of the developmental 

deficit, the pattern is subtly different. While Object 

Clefts show increased vulnerability, Passives are 

far more resilient to developmental damage. 

We carried out further analysis of this difference. 

Using the examples in Figs. 13 and 14, the cues 

predicting Object-Subject order for Passives turned 

out to be the inflected verb �eaten� followed by 

�by�, i.e., two lexical cues (the second redundant). 

For Object Clefts, the cue for Object-Subject order 

was sequence-based information: in this 

construction, two nouns are not separated by a 

verb. This is marked by the arrival of a second 

noun prior to a verb, that is, the words �a� and 

�dog�. While both lexical and sequence cues are 

low frequency by virtue of their constructions, they 

differ in that the Passive cue comprises lexical 

items unique to this construction, while the Object 

Cleft cue involves a particular sequence of lexical 

items that also appear in other other constructions. 

Examination of activation dynamics reveals that 

both low frequency cues are lost after acquired 

damage. However, the network with the 

developmental deficit retains the ability to learn 

the lexically-based cue that marks the Passive, but 

has insufficient resources to learn the sequence-

based cue that marks the Object Cleft construction. 

Three points are evident here. First, the model 

makes a strong empirical prediction that when 

developmental deficits are compared to acquired 

deficits, passive constructions will be relatively 

less vulnerable. This renders the model testable 

and therefore falsifiable. Second, the model 

demonstrates the differential computational 

requirements of tasks driven by local (lexically-

based) and global (sequence-based) information in 

a parsing task. Third, the model reveals the 

distinction between acquired and developmental 

deficits, with compensation possible in the latter 

case for cues with low processing cost (see 

Thomas & Karmiloff-Smith, 2002, for discussion). 

4 Discussion 

Implemented learning models are an essential 

requirement to begin an exploration of the internal 

constraints that influence successful and atypical 

syntax processing. Our model necessarily makes 

simplifications to begin this exploration (e.g., the 

distribution and frequency of lexical items across 

constructions is not in reality uniform; cleft 

constructions may have different stress / prosodic 

cues). A precise quantitative fit to the empirical 

data must await models that include those factors. 

However, the current model is sufficient to 

demonstrate the importance of the mapping task in 

specifying difficulty (over and above the statistics 

of the input); how internal processing constraints 

influence performance; and how local and global 

information show a differential contribution to and 

vulnerability in sequence processing in a recurrent 

connectionist network. 
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