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Abstract

This paper describes the National Research Coun-
cil (NRC) Word Sense Disambiguation (WSD) sys-
tem, as applied to the English Lexical Sample (ELS)
task in Senseval-3. The NRC system approach-
es WSD as a classical supervised machine learn-
ing problem, using familiar tools such as the Weka
machine learning software and Brill’s rule-based
part-of-speech tagger. Head words are represent-
ed as feature vectors with several hundred features.
Approximately half of the features are syntactic and
the other half are semantic. The main novelty in the
system is the method for generating the semantic
features, based on word co-occurrence probabilities.
The probabilities are estimated using the Waterloo
MultiText System with a corpus of about one ter-
abyte of unlabeled text, collected by a web crawler.

1 Introduction

The Senseval-3 English Lexical Sample (ELS) task
requires disambiguating 57 words, with an average
of roughly 140 training examples and 70 testing
examples of each word. Each example is about a
paragraph of text, in which the word that is to be dis-
ambiguated is marked as theheadword. The aver-
age head word has around six senses. The training
examples are manually classified according to the
intended sense of the head word, inferred from the
surrounding context. The task is to use the training
data and any other relevant information to automat-
ically assign classes to the testing examples.

This paper presents the National Research Coun-
cil (NRC) Word Sense Disambiguation (WSD)
system, which generated our four entries for
the Senseval-3 ELS task (NRC-Fine, NRC-Fine2,
NRC-Coarse, and NRC-Coarse2). Our approach to
the ELS task is to treat it as a classical supervised
machine learning problem. Each example is repre-
sented as a feature vector with several hundred fea-
tures. Each of the 57 ambiguous words is represent-
ed with a different set of features. Typically, around
half of the features are syntactic and the other half

are semantic. After the raw examples are converted
to feature vectors, the Weka machine learning soft-
ware is used to induce a model of the training data
and predict the classes of the testing examples (Wit-
ten and Frank, 1999).

The syntactic features are based on part-of-
speech tags, assigned by a rule-based tagger (Brill,
1994). The main innovation of the NRC WSD sys-
tem is the method for generating the semantic fea-
tures, which are derived from word co-occurrence
probabilities. We estimated these probabilities
using the Waterloo MultiText System with a corpus
of about one terabyte of unlabeled text, collected by
a web crawler (Clarke et al., 1995; Clarke and Cor-
mack, 2000; Terra and Clarke, 2003).

In Section 2, we describe the NRC WSD system.
Our experimental results are presented in Section 3
and we conclude in Section 4.

2 System Description
This section presents various aspects of the system
in roughly the order in which they are executed. The
following definitions will simplify the description.
Head Word: One of the 57 words that are to be
disambiguated.
Example: One or more contiguous sentences, illus-
trating the usage of a head word.
Context: The non-head words in an example.
Feature: A property of a head word in a context.
For instance, the featuretag hp1 NNP is the prop-
erty of having (or not having) a proper noun (NNP
is the part-of-speech tag for a proper noun) immedi-
ately following the head word (hp1 represents the
locationhead plus one).
Feature Value: Features have values, which
depend on the specific example. For instance,
tag hp1 NNP is a binary feature that has the value
1 (true: the following wordis a proper noun) or 0
(false: the following word isnot a proper noun).
Feature Vector: Each example is represented by
a vector. Features are the dimensions of the vector
space and a vector of feature values specifies a point
in the feature space.
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2.1 Preprocessing

The NRC WSD system first assigns part-of-speech
tags to the words in a given example (Brill, 1994),
and then extracts a nine-word window of tagged
text, centered on the head word (i.e., four words
before and after the head word). Any remaining
words in the example are ignored (usually most of
the example is ignored). The window is not allowed
to cross sentence boundaries. If the head word
appears near the beginning or end of the sentence,
where the window may overlap with adjacent sen-
tences, specialnull characters fill the positions of
any missing words in the window.

In rare cases, a head word appears more than once
in an example. In such cases, the system selects
a single window, giving preference to the earliest
occurring window with the least nulls. Thus each
example is converted into one nine-word window of
tagged text. Windows from the training examples
for a given head word are then used to build the fea-
ture set for that head word.

2.2 Syntactic Features

Each head word has a unique set of feature names,
describing how the feature values are calculated.
Feature Names:Every syntactic feature has a name
of the form matchtypeposition model. There are
threematchtypes, ptag, tag, andword, in order
of increasingly strict matching. Aptag match is
a partial tag match, which counts similar part-of-
speech tags, such asNN (singular noun),NNS (plu-
ral noun),NNP (singular proper noun), andNNPS
(plural proper noun), as equivalent. Atag match
requires exact matching in the part-of-speech tags
for the word and the model. Awordmatch requires
that the word and the model are exactly the same,
letter-for-letter, including upper and lower case.

There are fivepositions, hm2 (head minus two),
hm1 (head minus one),hd0 (head),hp1 (head plus
one), andhp2 (head plus two). Thus syntactic fea-
tures use only a five-word sub-window of the nine-
word window.

The syntactic feature names for a head word
are generated by all of the possible legal combina-
tions ofmatchtype, position, andmodel. Forptag
names, themodelcan be any partial tag. Fortag
names, themodelcan be any tag. Forword names,
the modelnames are not predetermined; they are
extracted from the training windows for the given
head word. For instance, if a training window con-
tains the head word followed by “of”, then one of
the features will beword hp1 of.

For word names, themodel names are not
allowed to be words that are tagged as nouns, verbs,

or adjectives. These words are reserved for use in
building the semantic features.
Feature Values: The syntactic features are all
binary-valued. Given a feature with a name of the
form matchtypeposition model, the feature value
for a given window depends on whether there is a
match ofmatchtypebetween the word in the posi-
tion position and the modelmodel. For instance,
the value oftag hp1 NNP depends on whether
the given window has a word in the positionhp1
(head plus one) with atag (part-of-speech tag) that
matchesNNP (proper noun). Similarly, the feature
word hp1 of has the value 1 (true) if the given
window contains the head word followed by “of”;
otherwise, it has the value 0 (false).

2.3 Semantic Features
Each head word has a unique set of feature names,
describing how the feature values are calculated.
Feature Names:Most of the semantic features have
names of the formposition model. The position
names can bepre (preceding) orfol (following).
They refer to the nearest noun, verb, or adjective
that precedes or follows the head word in the nine-
word window.

Themodelnames are extracted from the training
windows for the head word. For instance, if a train-
ing window contains the word “compelling”, and
this word is the nearest noun, verb, or adjective that
precedes the head word, then one of the features will
bepre compelling.

A few of the semantic features have a different
form of name,avg position sense. In names of this
form, positioncan bepre (preceding) orfol (fol-
lowing), andsensecan be any of the possible senses
(i.e., classes, labels) of the head word.
Feature Values: The semantic features are all
real-valued. For feature names of the formposi-
tion model, the feature value depends on the seman-
tic similarity between the word in positionposition
and the model wordmodel.

The semantic similarity between two words is
estimated by their Pointwise Mutual Information,�� � �� � � � � �, using Information Retrieval (Turney,
2001; Terra and Clarke, 2003):�� � �� � � � � � 	 
��� � �� � � �� �

� �� ��� �� � � � �
We estimate the probabilities in this equation by
issuing queries to the Waterloo MultiText System
(Clarke et al., 1995; Clarke and Cormack, 2000;
Terra and Clarke, 2003). Laplace smoothing is
applied to the PMI estimates, to avoid division by
zero.



weka.classifiers.meta.Bagging
-W weka.classifiers.meta.MultiClassClassifier

-W weka.classifiers.meta.Vote
-B weka.classifiers.functions.supportVector.SMO
-B weka.classifiers.meta.LogitBoost -W weka.classifiers.trees.DecisionStump
-B weka.classifiers.meta.LogitBoost -W weka.classifiers.functions.SimpleLinearRegression
-B weka.classifiers.trees.adtree.ADTree
-B weka.classifiers.rules.JRip

Table 1: Weka (version 3.4) commands for processing the feature vectors.��� �� � � � � � has a value of zero when the two
words are statistically independent. A high posi-
tive value indicates that the two words tend to co-
occur, and hence are likely to be semantically relat-
ed. A negative value indicates that the presence of
one of the words suggests the absence of the other.
Past work demonstrates that PMI is a good estima-
tor of semantic similarity (Turney, 2001; Terra and
Clarke, 2003) and that features based on PMI can be
useful for supervised learning (Turney, 2003).

The Waterloo MultiText System allows us to set
the neighbourhood size for co-occurrence (i.e., the
meaning of� � � ��). In preliminary experiments
with the ELS data from Senseval-2, we got good
results with a neighbourhood size of 20 words.

For instance, if� is the noun, verb, or adjec-
tive that precedes the head word and is nearest to
the head word in a given window, then the value
of pre compelling is

�� � �� � ����� 

����. If
there is no preceding noun, verb, or adjective within
the window, the value is set to zero.

In names of the formavg position sense, the
feature value is the average of the feature values of
the corresponding features. For instance, the val-
ue of avg pre argument 1 10 02 is the aver-
age of the values of all of thepre modelfeatures,
such thatmodelwas extracted from a training win-
dow in which the head word was labeled with the
senseargument 1 10 02.

The idea here is that, if a testing example should
be labeled, say,argument 1 10 02, and� � is a
noun, verb, or adjective that is close to the head
word in the testing example, then

��� �� � � � � �
should be relatively high when�� is extract-
ed from a training window with the same sense,
argument 1 10 02, but relatively low when��
is extracted from a training window with a different
sense. Thusavg positionargument 1 10 02
is likely to be relatively high, compared to other
avg position sensefeatures.

All semantic features with names of the form
position modelare normalized by converting them
to percentiles. The percentiles are calculated sepa-
rately for each feature vector; that is, each feature
vector is normalized internally, with respect to its

own values, not externally, with respect to the oth-
er feature vectors. Thepre features are normalized
independently from thefol features. The semantic
features with names of the formavg position sense
are calculated after the other features are normal-
ized, so they do not need any further normalization.
Preliminary experiments with the ELS data from
Senseval-2 supported the merit of percentile nor-
malization, which was also found useful in another
application where features based on PMI were used
for supervised learning (Turney, 2003).

2.4 Weka Configuration

Table 1 shows the commands that were used to exe-
cute Weka (Witten and Frank, 1999). The default
parameters were used for all of the classifiers. Five
base classifiers (-B) were combined by voting. Mul-
tiple classes were handled by treating them as mul-
tiple two-class problems, using a 1-against-all strat-
egy. Finally, the variance of the system was reduced
with bagging.

We designed the Weka configuration by evalu-
ating many different Weka base classifiers on the
Senseval-2 ELS data, until we had identified five
good base classifiers. We then experimented with
combining the base classifiers, using a variety of
meta-learning algorithms. The resulting system is
somewhat similar to the JHU system, which had
the best ELS scores in Senseval-2 (Yarowsky et al.,
2001). The JHU system combined four base clas-
sifiers using a form of voting, called Thresholded
Model Voting (Yarowsky et al., 2001).

2.5 Postprocessing

The output of Weka includes an estimate of the
probability for each prediction. When the head
word is frequently labeled U (unassignable) in the
training examples, we ignore U examples during
training, and then, after running Weka, relabel the
lowest probability testing examples as U.

3 Results
A total of 26 teams entered 47 systems (both
supervised and unsupervised) in the Senseval-3
ELS task. Table 2 compares the fine-grained and



System Fine-Grained Recall Coarse-Grained Recall
Best Senseval-3 System 72.9% 79.5%
NRC-Fine 69.4% 75.9%
NRC-Fine2 69.1% 75.6%
NRC-Coarse NA 75.8%
NRC-Coarse2 NA 75.7%
Median Senseval-3 System 65.1% 73.7%
Most Frequent Sense 55.2% 64.5%

Table 2: Comparison of NRC-Fine with other Senseval-3 ELS systems.

coarse-grained scores of our four entries with other
Senseval-3 systems.

With NRC-Fine and NRC-Coarse, each seman-
tic feature was scored by calculating its PMI with
the head word, and then low scoring semantic fea-
tures were dropped. With NRC-Fine2 and NRC-
Coarse2, the threshold for dropping features was
changed, so that many more features were retained.
The Senseval-3 results suggest that it is better to
drop more features.

NRC-Coarse and NRC-Coarse2 were designed to
maximize the coarse score, by training them with
data in which the senses were relabeled by their
coarse sense equivalence classes. The fine scores
for these two systems are meaningless and should be
ignored. The Senseval-3 results indicate that there
is no advantage to relabeling.

The NRC systems scored roughly midway
between the best and median systems. This per-
formance supports the hypothesis that corpus-based
semantic features can be useful for WSD. In future
work, we plan to design a system that combines
corpus-based semantic features with the most effec-
tive elements of the other Senseval-3 systems.

For reasons of computational efficiency, we chose
a relatively narrow window of nine-words around
the head word. We intend to investigate whether a
larger window would bring the system performance
up to the level of the best Senseval-3 system.

4 Conclusion
This paper has sketched the NRC WSD system for
the ELS task in Senseval-3. Due to space limita-
tions, many details were omitted, but it is likely that
their impact on the performance is relatively small.

The system design is relatively straightforward
and classical. The most innovative aspect of the sys-
tem is the set of semantic features, which are purely
corpus-based; no lexicon was used.
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