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Abstract

This paper addresses a very specific
problem that happens to be  common in
health science research. We present a
machine learning based method for
identifying patients diagnosed with
congestive heart failure and other related
conditions by automatically classifying
clinical notes. This method relies on a
Perceptron neural network classifier
trained on comparable amounts of
positive and negative samples of clinical
notes previously categorized by human
experts. The documents are represented as
feature vectors where features are a mix
of single words and concept mappings to
MeSH and HICDA ontologies. The
method is designed and implemented to
support a particular epidemiological study
but has broader implications for clinical
research. In this paper, we describe the
method and present experimental
classification results based on
classification accuracy and positive
predictive value.

1 Introduction

Epidemiological research frequently has to deal
with collecting a comprehensive set of human
subjects that are deemed relevant for a particular
study. For example, the research focused on
patients with congestive heart failure needs to
identify all possible candidates for the study so that
the candidates could be asked to participate. One
of the requirements of a study like that is the
completeness of the subject pool. In many cases,
such as disease incidence or prevalence studies, it

is not acceptable for the investigator to miss any of
the candidates. The identification of the candidates
relies on a large number of sources some of which
do not exist in an electronic format, but it may start
with the clinical notes dictated by the treating
physician.   

Another aspect of candidate identification is
prospective patient recruitment. Prospective
recruitment is based on inclusion or exclusion
criteria and is of great interest to physicians for
enabling just-in-time treatment, clinic trial
enrollment, or research study options for patients.
At Mayo Clinic most clinical documents are
transcribed within 24 hours of patient consultation.
This electronic narration serves as resource for
enabling prospective recruitment based on criteria
present in clinical document.

Probably the most basic approach to
identification of candidates for recruitment is to
develop a set of terms whose presence in the note
may be indicative of the diagnoses of interest.
This term set can be used as a filtering mechanism
by either searching on an indexed collection of
clinical notes or simply by doing term spotting if
the size of the collection would allow it. For
example, in case of congestive heart failure, one
could define the following set of search terms:
“CHF”, “heart failure”, “cardiomyopathy”,
“volume overload”, “fluid overload”, “pulmonary
edema”, etc. The number of possible variants is
virtually unlimited, which is the inherent problem
with this approach. It would be hard to guarantee
the completeness of this set to begin with, which is
further complicated by morphological and spelling
variants. This problem is serious because it affects
the recall, which is especially important in
epidemiological studies.

Another problem is that such term spotting or
indexing approach would have to be intelligent
enough to identify the search terms in negated and
other contexts that would render documents



containing these terms irrelevant. A note
containing “no evidence of heart failure” should
not be retrieved, for example. Identifying negation
reliably and, more importantly, its scope is far
from trivial and is in fact a notoriously difficult
problem in Linguistics [1]. This problem is slightly
less serious than the completeness problem since it
only affects precision which is less important in the
given context than recall.

In order to be able to correctly identify whether
a given patient note contains evidence that the
patient is relevant to a congestive heart failure
study, one has to “understand” the note. Currently,
there are no systems capable of human-like
“understanding” of natural language; however,
there are methods that allow at least partial
solutions to the language understanding problem
once the problem is constrained in very specific
ways.  One such constraint is to treat language
understanding as a classification problem and to
use available machine learning approaches to
automatic classification to solve the problem.
Clearly, this is a very limited view of language
understanding but we hypothesize that it is
sufficient for the purposes referred to in this paper.

2 Previous work

The classification problems that have been
investigated in the past are just as varied as the
machine learning algorithms that have been used to
solve these problems. Linear Least Squares Fit [2],
Support Vector Machines, Decision trees,
Bayesean learning [3], symbolic rule induction [4],
maximum entropy [5], expert networks [6] are just
a few that have been applied to classifying e-mail,
Web pages, newswire articles, medical reports
among other documents.

Aronow et al. [7] have investigated a problem
very similar to the one described in this papers.
They developed an ad hoc classifier based on a
variation of relevance feedback technique for
mammogram reports where the reports were
classified into three “bins”: relevant, irrelevant and
unsure. One of the features of the text processing
system they used had to do with the ability to
detect and take into account negated elements of
the reports.

Wilcox et al. [8] have experimented with a
number of classification algorithms for identifying
clinical conditions such as congestive heart failure,

chronic obstructive pulmonary disease, etc. in
raidograph reports. They found that using an NLP
system such as MedLEE (Medical Language
Extraction and Encoding System) and domain
knowledge sources such as UMLS [9] for feature
extraction can significantly improve classification
accuracy over the baseline where single words are
used to represent training samples.

Jain and Friedman [10] have demonstrated the
feasibility of using MedLEE for classifying
mammogram reports. Unlike Wilcox  [8], this
work does not use an automatic classifier, instead,
it uses the NLP system to identify findings that are
considered suspicious for breast cancer.

3 NaiveBayes vs. Perceptron

We experimented with two widely used
machine learning algorithms, Perceptron and Naïve
Bayes, in order to train models capable of
distinguishing between clinical notes that contain
sufficient evidence of the patient having the
diagnosis of congestive heart failure (positive
examples) from notes that do not contain such
evidence (negative examples). The choice of the
problem was dictated by a specific grant aimed at
studying patients with congestive heart failure.

The choice of the algorithms was largely
dictated by efficiency considerations. Both
Perceptron and Naïve Bayes belong to a family of
linear classifiers which tend to be computationally
more manageable on large feature sets like the one
we are addressing than other algorithms. Damerau
et al. [11] show on the Reuters corpus that sparse
feature implementations of linear algorithms are
capable of handling large feature sets. We used a
sparse feature implementation of these two
algorithms available in the SNoW (Sparse
Networks of Winnows) Version 2.1.2 package
[12]. Perceptron and Naïve Bayes classifiers.

Perceptron is a simple iterative learning
algorithm that represents in its simplest form a
two-layer (input/output) neural network where
each node in the input layer is connected to each
node in the output layer. A detailed description can
be found in [13] and [14]. There are several well
known limitations of this algorithm. The most
significant is that the simple Perceptron is unable
to learn non-linearly separable problems. In order
for this algorithm to work, one should be able to
draw a hyperplane in the training data feature



space that will linearly separate positive examples
from negative. With large multidimensional feature
spaces, it is hard to know a priori whether the
space is linearly separable; however, a good
indication of that can be gleaned from the
classification accuracy testing on several folds of
training/testing data. If the accuracy results show
large fluctuations between folds, then that would
be a good indication that the space is not linearly
separable. On the other hand if the standard
deviation on such a cross-validation task is
relatively small, then one could be reasonably
certain that Perceptron is a usable technique for the
problem.

The other less serious limitation is that there is
a chance that the algorithm will falsely conclude
convergence in a local minimum on the error
function curve without reaching the global
minimum, which could also account for low or
inconsistent accuracy results. This limitation is less
serious because it can be controlled to some extent
with the learning rate parameter, which sets the
amount by which the weights are adjusted each
time Perceptron makes a classification error during
training [14].

Naïve Bayes does not have the limitations of
Perceptron, but does have limitations of its own.
The Bayes decision rule chooses the class that
maximizes the conditional probability of the class
given the context in which it occurs:
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Here, C` is the chosen category, C is the set of
all categories and Vj is the context. Naïve Bayes
decision algorithm makes a simplifying
assumption that the words in Vj are independent of
each other. A particular implementation of the
Naïve Bayes decision rule based on the
independence assumption to text categorization
and word sense disambiguation problems is also
known as “bag of words” approach [13]. This
approach does not attempt to take into account any
sort of possible dependency between the individual
words in any given context, in fact it assumes that
the word “heart” and the word “failure”, for
example, occur completely independently of each
other. Theoretically, such assumption makes Naïve
Bayes classifiers very unappealing for text
categorization problems, but in practice it has been

shown to perform well on a much greater range of
domains than the theory would support.

The common feature between the two
techniques is that both are linear classifiers and are
relatively efficient which makes them attractive for
learning from large feature sets with lots of
training samples.

4 CHF pilot study

As part of preliminary grant work to investigate
and evaluate incidence, outcome, and etiology
trends of heart failure, a pilot study for prospective
recruitment using term spotting techniques was
tested.  Prospective recruitment was needed for
rapid case identification with 24 hours of newly
diagnosed heart failure patients.

Within Mayo Clinic approximately 75% of
clinical dictations are electronically transcribed on
the date of diagnosis allowing them to be
processed using natural language techniques.
Using the terms “cardiomyopathy, heart failure,
congestive heart failure, pulmonary edema,
decompensated heart failure, volume overload, and
fluid overload” all electronic outpatient,
emergency department, and hospital dismissal
notes were processed.  These results were reviewed
by trained nurse abstractors to determine if this
technique could provide identification of patients
with clinically active heart failure.  Using the term
spotting technique no cases were omitted as
compared to standard human diagnostic coding
methods of final diagnosis.  This pilot provided a
valid basis for using term spotting for prospective
recruitment; however, the nurse abstractors
reported filtering out a large number of documents
that were irrelevant to the query, thus indicating
that there was room for improvement especially in
precision. These were not quantified at the time.
The results derived from the test sets used for the
study described in this paper display similar
tendencies.

5 Human Expert Agreement

For testing a classifier, it is important to have a test
bed that contains positive as well as negative
examples that have been annotated by human
experts. It is also important to establish  some sort
of an agreement between annotators. For this study
we used a test bed created with a specific focus on



the diagnosis regarding the patient described
within the medical document for a separate pilot
study of agreement between annotators (de Groen
et al., p. c.).

One of the topics selected for this test bed
creation study included congestive heart failure.
For each topic, 90 documents were selected for
evaluation. Seventy of the 90 documents were
chosen from documents with a high likelihood of
containing diagnostic information regarding the
topic of inquiry. Specifically, thirty-five
documents were randomly selected from a pool of
documents based on a coded final diagnosis; thirty-
five documents were randomly selected from a
pool of documents based on a textual retrieval of
lexical surface forms (term spotting). The final
twenty documents were randomly selected from
the remaining documents, not originally included
in the coded or text identified collections. A group
of Emeritus physicians acted as the human experts
for this annotation task. The experts were
instructed to determine whether the information
contained in the clinical note could support
inclusion of the patient in a clinical/research
investigation, if such investigation was centered on
patients having - at the time the note was created -
the topic of inquiry.

Each document was judged by three physicians
on the following scale: (confirmed-probable-
indeterminate-probably not-definitely not). For the
purposes of our study we collapsed “confirmed”
and “probable” categories into one “positive”
category. We also collapsed “probably not” and
“definitely not” into a “negative” category. The
“indeterminate” category happened to include such
artifacts as differential diagnosis as well as
uncertain judgements and therefore was ignored
for our purposes. The agreement on this particular
topic happened to be low: only 31% of the
instances were agreed upon by all three experts;
therefore, we decided to use the agreed upon
subset of the notes only for testing our approach.
The low level of agreement was partly attributable
to the breadth of the topic and, partly, to how the
instructions were interpreted by the experts.
Despite the low level of agreement, we were able
to select a subset of 26 documents where all three
annotators agreed. These were the documents
where all three annotators assigned either the
“positive” or the “negative” category. 7 documents

were judged as “positive” and 19 were judged  as
“negative” by all three experts.

6 Feature extraction

Arguably, the most important part of training any
text document classifier is extracting relevant
features from the training data. The resulting data
set looks like a set of feature vectors where each
vector should represent all the relevant information
encoded in the document and as little as possible of
the irrelevant information. To capture the relevant
information and give it more weight, we used two
classification schemes: MeSH (Medical Subjects
Headings) [15]and HICDA (Hospital International
Classification of Diseases Adaptation) [16]. The
MeSH classification is available as part of the
UMLS (Unified Medical Language System)
compiled and distributed by the National Library
of Medicine (NLM) [9]. HICDA is a hierarchical
classification with 19 root nodes and 4,334 leaf
nodes. Since 1975, it has been loosely expanded  to
comprise 35,676 rubrics or leaf nodes. It is an
adaptations of ICD-8, which is the 8th edition of the
International Classification of Diseases. HICDA
contains primarily diagnostic statements, whereas
MeSH is not limited to diagnostic statements and
therefore the two complement each other. It should
also be noted that, for mapping the text of clinical
notes to these two ontologies, in addition to the
text phrases present in HICDA and MeSH, some
lexical and syntactic variants found empirically in
medical texts were also added. For MeSH, these
variants were derived from MEDLINE articles by
UMLS developers and for HICDA, the variants
came from coded diagnoses. Having these lexical
and syntactic variants in conjunction with text
lemmatization made the job of mapping relatively
easy. Text lemmatization was done using the
Lexical Variant Generator’s (lvg1) ‘norm’ function
also developed at NLM.

For the purposes of this experiment, we
represented each document as a mixed set of
features of the following types: (MeSH code
mappings, HICDA code mapping, Single word
tokens, Demographic data). First, MeSH and
HICDA mappings were identified by stemming
and lowercasing all words in the notes and finding

                                                          
1 umlslex.nlm.nih.gov



their matches in the two ontologies. Next, stop
words were deleted from the text that remained
unmapped. The remaining words were treated as
single word token features. In addition to these
lexical features, we used a set of demographic
features such as age, gender, service code (the type
of specialty provider where the patient was seen (e.
g. ‘cardiology’)) and death indicator (whether the
patient was alive at the time the note was created).
Since age is a continuous feature, we had to
discretize it by introducing ranges A-N arbitrarily
distributed across 5 year intervals from 0 to over
70 years old. For this experiment, features that
occurred less than 2 times were ignored. The
extracted feature “vocabulary” consists of 11,118
unique features. Table 1 shows the breakdown of
the feature vocabulary by type.

Feature type N features Proportion
MeSH headings 6631 60 %
HICDA categories 2721 24 %
Single words 1635 15 %
Demographic features 131 01 %

Totals 11,118 100 %
Table 1 Breakdown of training features by type.

7 Experimental Setup

Both Naïve Bayes and Perceptron were trained on
the same data and tested using a 10-fold cross-
validation technique as well as a held-out test set
of 26 notes mentioned in section 4.

7.1 Data
Two types of annotated testing/training data were
used in this study. The first type (Type I) is the
data generated by medical coders for the purpose
of conceptual indexing of the clinical notes. The
second type (Type II) is the data annotated by
Emeritus physicians (experts).

For Type I data, a set of clinical notes for 6
months of year 2001 was collected resulting in a
corpus of 1,117,284 notes. Most of these notes
contain a set of final diagnoses established by the
physician and coded using the HICDA
classification by specially trained staff. The coding
makes it easy to extract a set of notes whose final
diagnoses suggests that the patient has congestive
heart failure or a closely related condition or

symptom like pulmonary edema. Once this
positive set was extracted (2945 notes), the
remainder was randomized and a similar set of
negative samples was extracted (4675 notes). The
total size of the corpus is 7620 notes. Each note
was then run through feature extraction and the
resulting set was split into 10 train/test folds by
randomly selecting 20% of the 7620 notes to set
aside for testing for each fold.

Type II data set was split into two subsets: a
complete agreement (TypeII-CA) set and a partial
agreement set (TypeII-PA). The complete
agreement set was created by taking 26 notes that
were reliably categorized by the experts with
respect to congestive heart failure specifically.
These 26 notes represent a set where all three
annotators agreed at least to a large extent on the
categorization. “A large extent” here means that all
three annotators labeled the positive samples as
either “confirmed” or “probable” and the negative
samples as either “probably not” or “definitely
not”. The set contains 7 positive and 19 negative
samples. The partial agreement set was created by
labeling all samples for which at least one expert
made a positive judgement and no experts made a
“negative” judgement as “positive” and then
labeling all samples for which at least one expert
made a negative judgement and no experts made a
positive judgements as “negative”. This procedure
resulted in reducing the initial set of 90 samples to
74 of which 21 were positive and 53 were negative
for congestive heart failure. This partial agreement
set is obviously weaker in its reliability but it does
provide substantially more data to test on and
would enable us to judge, at the very least, the
consistency of the automatic classifiers being
tested.   

7.2 Training
The following parameters were used for training
the classifiers. Naïve Bayes was used with the
default smoothing parameter of 15. For Perceptron,
the most optimal combination of parameters was to
have the learning rate set at 0.0001 (very small
increments in weights), the error threshold was set
at 15. The algorithm with these settings was run for
1000 iterations.



7.3 Results

Standard classifier accuracy computation [13] for
binary classifiers was used.

(2)
FNFPTNTP

TNTPAcc
+++

+∗=100

Where TP represents the number of times the
classifier guessed a correct positive value (true
positives), TN is the number of times the classifier
correctly guessed a negative value (true negatives),

FP is the number of times the classifier predicted a
positive value but the correct value was negative
(false positives) and the FN (false negatives) is the
inverse of FP.

In addition to standard accuracy, positive
predictive value was also used. It is defined as:

(3) 
FPTP

TPPPV
+

= *100

Where TP+FP constitute all positive samples in
the test data set. We are interested in positive
predictive value because of the strong preference
towards perfect recall in document retrieval for
epidemiological studies, even if it comes at the

expense of precision. The rule is that it is better to
identify irrelevant data that can be discarded upon
review than to miss any of the relevant patients.

First, we established a baseline by running a a
very simple term spotter that looked for the CHF-
related terms mentioned in Section 2 (and their
normalized variants) in the collection of
normalized2 documents from the Type II data set.
The accuracy of the term spotter is 56% on Type
II-CA set and 54% on Type II-PA set. Positive
predictive value on Type II-CA set is 85% and on
Type II-PA set – 71%. The positive predictive

value on Type II-CA set reflects the spotter
missing only 1 document out of 7 identified as
positive by the experts. The results are summarized
in Tables 3 and 4.

The results of testing the two classifiers are
presented in Table 2. Naïve Bayes algorithm
achieves 82.2% accuracy, whereas Perceptron gets
86.5%. The standard deviation on the Perceptron
classifier results appears to be relatively small,
which leads us to believe that this particular
classification problem is linearly separable. The
difference of 4.3% happens to be statistically
significant as evidenced by a t-test at 0.01
                                                          
2 normalization was done with the lvg stemmer
(umlslex.nlm.nih.gov)

Fold Naïve Bayes Perceptron Delta
PPV (%) Acc (%) PPV (%) Acc (%) PPV (%) Acc (%)

1 89.21 84.06 78.42 88.39 -10.79 4.33
2 88.16 82.41 74.88 85.30 -13.28 2.89
3 89.34 82.74 75.74 86.09 -13.61 3.35
4 90.77 82.02 79.62 87.07 -11.15 5.05
5 90.54 82.07 76.51 86.54 -14.03 4.47
6 89.55 82.74 80.27 87.40 -9.29 4.66
7 88.16 82.41 74.88 85.30 -13.28 2.89
8 88.10 81.16 78.62 86.28 -9.48 5.12
9 89.26 81.69 79.36 86.68 -9.90 4.99
10 88.12 80.45 76.59 85.89 -11.53 5.44

Mean 89.12 82.18 77.49 86.49 -11.63 4.32
Stdev 0.99 0.009 2.01 0.02

Table 2. Classification test results illustrating the differences between Perceptron and Naïve Bayes.



confidence level. The difference in the positive
predictive value is also significant, however, is it
inversely related to the difference in accuracy.
Perceptron models perform on average 11 absolute
percentage points worse than Naïve Bayes models.

Table 1 shows results that represent the
accuracy of the classifiers on classifying the Type I
test data that has been generated by medical
coders. Clearly, Type I data is not generated in
exactly the same way as Type II. Although Type I
data is captured reliably and is highly accurate,
Type II data is classified specifically with respect
to congestive heart failure only, by expert
physicians and, we believe, reflects the nature of
the task at hand a little better.

In order to test the classifiers on Type II data,
we re-trained them on the full set of 7620 notes of
Type I data using the same parameters as were
used for the 10-fold cross-validation test. The
results of testing the classifiers on Type II-CA data
(complete agreement) are presented in Table 3.

Classifier PPV (%) Acc (%)
NaiveBayes 100 69.2
Perceptron 85 76.92
TermSpotter 85 56
 Table 3. Test results for Type II-CA data
(annotated by retired physicians with complete
agreement).

These results are consistent with the ones
displayed in Table 2 in that Perceptron tends to be
more accurate overall but less so in predicting
positive samples. Table 4 summarizes the same
results for Type II-PA test set and the results
appear to be oriented in the same general direction
as the ones reported in Table 2 and 3.

Classifier PPV (%) Acc (%)
NaiveBayes 95 57
Perceptron 86 65
TermSpotter 71 54

 Table 4. Test results for Type II-PA data
(annotated by retired physicians with partial
agreement).

From a practical standpoint, the results
presented here are interesting in that they suggest
that the most accurate classifier may not be the
most useful for a given task. In our case, if we

were to use these classifiers for routing a stream of
electronic clinical notes, the gains in precision that
would be attained with the more accurate classifier
would most likely be wiped out by the losses in
recall since recall is more important for our
particular task than precision. However, for a
different task that may be more focused on
precision, obviously, Perceptron would be a better
choice.

Finally, both Perceptron and Naïve Bayes
performance appears to be superior to the baseline
performance of the term spotter. Clearly such
comparison is only an indicator because the term
spotter is very simple. It is possible that a more
sophisticated term spotting algorithm may be able
to infer semantic relations between various terms
and be able to compensate for misspellings and
carry out other functions resulting possibly in
better performance. However, even the most
sophisticated term spotter will only be as good as
the initial list of terms supplied to it. The
advantage of automatic classification lies in the
fact that classifiers encode the terminological
information implicitly which alleviates the need to
rely on managing lists of terms and the risk of such
lists being incomplete. The disadvantage of
automatic classification is that the classifier’s
performance is heavily data dependent, which
raises the need for sufficient amounts of annotated
training data and limits this methodology to
environments where such data is available.

The error analysis of the misclassified notes
shows that a more intelligent feature selection
process that takes into account discourse
characteristics and semantics of negation in the
clinical notes is required. For example, one of the
misclassified notes contained “no evidence of
CHF” as part of the History of Present Illness
(HPI) section. Clearly, the presence of a particular
concept in a clinical note is not always relevant.
For example, various terms and concepts may
appear in the Review of Systems (ROS) section of
the note; however, the ROS section is often used as
a preset template and may have little to do with the
present condition. Same is true for other sections
such as Family History, Surgical History, etc. It is
not clear at this point which sections are to be
included in the feature selection process. The
choice will most likely be task specific.

The current study did not use any negation
identification, which we think accounted for some



of the errors. As one of the future steps, we are
planning to implement a negation detector such as
the NegExpander used by Aronow et al.[7].

8 Conclusion

In this paper, we have presented a methodology for
generating on-demand binary classifiers for
filtering clinical patient notes with respect to a
particular condition of interest to a clinical
investigator. Implementation of this approach is
feasible in environments where some quantity of
coded clinical notes can be used as training data.
We have experimented with HICDA codes;
however, other coding schemes may be usable or
even more usable as well.

We do not claim that either Naïve Bayes or the
Perceptron are the best possible classifiers that
could be used for the task of identifying patients
with certain conditions. All we show is that either
one of these two classifiers is reasonably suitable
for the task and has the benefits of computational
efficiency and simplicity. The results of the
experiments with the classifiers suggest that
although Perceptron has higher accuracy than the
Naïve Bayes classifier overall, its positive
predictive value is significantly lower.  The latter
result makes it less usable for a practical binary
classification task focused on identifying patient
records that have evidence of congestive heart
failure. It may be worth while pursuing an
approach that would use the two classifiers in
tandem. The classifier with the highest PPV would
be used to make the first cut to maximize recall
and the more accurate classifier would be used to
rank the output for subsequent review.
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