
A Note on the Complexity of Associative-Commutative Lam-
bek Calculus
Christophe Costa Florêncio
Utrecht University

1. Introduction

In this paper the NP-completeness of the system LP (associative-commutative Lambek calculus) will be
shown. The complexity of LP has been known for some time, it is a corollary of a result for multiplicative in-
tuitionistic linear logic (MILL)1 from (Kanovich, 1991) and (Kanovich, 1992).

We show that this result can be strengthened: LP remains NP-complete under certain restrictions. The proof
does not depend on results from the area of linear logic, it is based on a simple linear-time reduction from the
minimum node-cover problem to recognizing sentences in LP.

2. Definitions

First some definitions are in order:

Definition 1 The degree of a type is defined as�������������
	�� ��
if
	������

�������������
����	���������������������
	������������������
� �
�������������
	"!�� ��������������������
	������������������
� �

In other words, the degree of a type can be determined by counting the number of operators it contains.

Definition 2 The Order of a type is defined as# �$�����%�
	�� ��
if
	&�'���

�$�����%�
����	���)(+*�,-�.��� # �$�������
	���� # �$�����%�
� �/�
�$�����%�
	"!�� ��)(+*�,-�.��� # �$�������
	���� # �$�����%�
� �/�

Definition 3 A domain subtype is a subtype that is in domain position, i.e. for the type
�/�
	"!�� ��!102�

the domain
subtypes are

�
and

0
.

For the type
�304���
����	��/�

the domain subtypes are
0

and
�

.
A range subtype is a subtype that is in range position, i.e. for the type

�/�
	"!�� ��!102�
the range subtypes are�
	"!�� �

and
	

.
For the type

�304���
����	��/�
the range subtypes are

�
����	��
and

	
.

In an applicaton
	"!��65��879	

or
�65�����	:79	

the type
�

is an argument and
	"!��

and
����	

are known as
functors.

Definition 4 Let ; <�3=�5�>?� be an undirected graph, where
=

is a set of nodes and
>

is a set of edges, represented
as tuples of nodes. A node-cover of ; is a subset

= @BAC=
such that if

�EDF5/G��H�'>
, then

D9�9=?@
or
GI�9=4@

. That is,
each node ‘covers’ its incident edges, and a node cover for ; is a set of nodes that covers all the edges in

>
. The

size of a node-cover is the number of nodes in it.
The node-cover problem is the problem of finding a node-cover of minimum size (called an optimal node-

cover) in a given graph.
The node-cover problem can be restated as a decision problem: does a node-cover of given size J exist for

some given graph?

Proposition 5 The decision problem related to the node-cover problem is K � -complete, The node-cover problem
is K � -hard.

This problem has been called one of the ‘six basic NP-complete problems’ in (Garey and Johnson, 1979).

1. The systems LP and MILL are identical up to derivation from the empty sequent, i.e. the only difference is that L?MONPM is
not derivable in LP.
The system MILL is closely related to MILL1, another system that has interesting linguistic applications, see (Moot and
Piazza, 2001).

c
Q

2002 C. Costa Florêncio. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frame-
works (TAG+6), pp. 159–162. Universitá di Venezia.

160 Proceedings of TAG+6

3. Complexity of LP

Theorem 6 Deciding membership for the unidirectional product-free fragment of LP, with all types restricted to
a maximum degree of 2 and a maximum order of 1, is NP-complete in � ��� .

Proof: It is well known that LP is in NP.
What remains to be shown is existence of a p-time reduction from an NP-complete problem. Let ; <�
>+5$=?�

be an undirected graph, ��� � > � . Let
0 ���� ; � be a minimum node cover of ; , and

(�
F� ; � � ��� ; � � . The
graph ; can be reduced to a grammar ;�� ���$*1(�� ; � as follows:

1. Assign � to s.

2. Let be the function that maps node
=��

to type
G��

. For every edge
>��&� >

, where
>�� ��3=���5$=����

, letG��2 �3=���� 5/G��� �3=���� . Assign types
G���� G��

,
G������ � � � � and

G��1� G��
,
G��1��� � � � � to symbol v

�
.

3. For every node
=�� �'=

, assign �3=�� ��CG�� to node.

The intuition behind this reduction is that node stands for any node in ; , and e
�

for the connection of edge>��
to any of the two nodes it is incident on.
Note that this reduction always yields a unidirectional product-free grammar, with all types restricted to a

maximum degree of 2 and a maximum order of 1. Also note that this reduction sets � ��� to the number of edges
plus two.

We will now show that accepting a sentence � of the form snode ����� node� "! #$
times

v %&����� v
��'

as being in

(�E���$*1(� ; �/� while rejecting snode ����� node� "! #$*) % times

v %&����� v
��'

will indicate that there is a node cover of size + for ; .

Simply iterating from + &� to + ��� will lead to acceptance when + (�
F� ; � .
Parsing such a sentence will yield a solution: one can collect the assignments to the symbol node used in the

derivation to obtain a minimum node cover.
Let , be some set of types (taken from the assignments to node in

���$*1(� ; �) assigned to the substring
node ����� node� "! #$

times

of � . Let - be some set of types assigned to the substring v %&����� v ��' under the same restrictions.

1. Assume that +/. (�
F� ; � . Since by the form of �0� ,1�324+ , � ,1�3. (�
�� ; � , so for every minimum node cover
0

,
there is a

=����90
such that �3=�� �65� , . Since for every edge

�3=�� 5$=��7�H�9>
, there is some v

�
in � that has been

assigned either the type
G�� � G��

or
G�� ��� � � � � , G��? �3=��1� or

G��? �3=�� � .
Since for every edge

�3=���5$=���� �C>
, �3=��1� �C0 or �3=�� ���C0 , there is some

G�8
in � that has been assignedG�� � G��

or
G�� ��� � � � � , G��95� , .

Since : 5<; , 5 : @=57 LP : 5 : @ (where
; , is a primitive type), in order to derive (just) � , all the types in , have to

occur as argument to an application in the derivation. Given the form of
���$*1(�� ; � this is possible just if the

functor is a type assigned to v %?> � > ��' . Thus � %?> $*@�ACB D�E FHG 5� (�E���$*1(�� ; �/� .
2. Assume + �(�
�� ; � . Then there is a , such that � ,1� + . Let ,�I be J7 �3=�� � � =�� ��0LK , for some

0
. Given �

and assignments of types such that for each
� 2 ; .4��� , G7M ��� � � � � occurs at most once . . .

Since LP is associative and commutative any rearrangment is allowed during a derivation. This property can
be used to ‘sort’ the assignments to the symbols node and v

�
in the following way: each occurrence of node

(assigned type
G��+� ,�I) is followed by all v

�
’s that are assigned type

G�� � G��
, followed by a single v

�
assignedG�� ��� � � � � . The substring thus obtained is associated with a sequent that derives

� � � � � . The whole of � minus s,
can be arranged into a number of these substrings, and since

	"��	45�	"��	<7
LP
	"��	

, the associated sequent will
derive � � � . Since s is only assigned � in

���$*1(�� ; � , we finally get the derivation � 5 � � � 7 � .
This shows that the reduction given is indeed a reduction from an NP-complete problem. N
Example: Reducing ; �� J �.��5?O�� 5%�.��5QP � 5%�<P 5SR � 5%�TO�5SR �?K 5 J ��5?O�5QP 5SRUK�� will yield

C. Costa Florêncio 161

���$*1(�� ; ���
s �� �
v %��� G % � G % 5/G % ��� � � � � 5/G�� � G��15/G������ � � � �
v
� �� G % � G % 5/G % ��� � � � � 5/G�� � G��15/G������ � � � �

v
� �� G�� � G��15/G�� ��� � � � � 5/G	��� G	��5/G	�1��� � � � �

v
� �� G�� � G��15/G�� ��� � � � � 5/G	��� G	��5/G	�1��� � � � �

node �� G % 5/G��15/G���5/G	�
The corresponding minimal node cover is J ��5SRUK or J O�5QP K .
As a final remark, note that there exists an alternative reduction

���$*1(6@3� ; � :
1. Assign � to s.

2. For every edge
>��I� >

, where
>��+ �3=���5$=����

, let
G�� �3=���� 5/G��4 �3=���� . Assign types

G���� G��
and

G���� G��
to

symbol e
�
.

3. For every node
=�� �'=

, assign
G�� ��� � � � � to c and �3=�� � G�� to node.

Example: Applying this procedure to the same graph yields:

���$*1(�@3� ; ���

s �� �
v %
�� G % � G % 5/G���� G��
v
� �� G % � G % 5/G���� G��

v
� �� G�� � G��15/G	�1� G	�

v
� �� G�� � G��15/G	�1� G	�

node �� G % 5/G���5/G��15/G	�
c �� G % ��� � � � � 5/G�� ��� � � � � 5/G�� ��� � � � � 5/G	����� � � � �

Accepting a sentence of the form snode ����� node� "! #$
times

v %&����� v
��'
c ����� c� "! #$

times

as being in
(�E���$*1(�� ; �/� will indicate

that there is a node cover of size + for ; . Again, iterating from + � to + ��� will lead to acceptance when
+ C(�
�� ; � .
4. Example Derivations

Given graph ; � J �.��5?O�� 5%�.��5QP � 5%�<P 5SR � 5%�TO�5SR �?K 5 J ��5?O�5QP 5SRUK�� , the grammar
���$*1(�� ; �P� ; � and sentence

‘s node node v1 v2 v3 v4’ (+ R
) we get the solutions shown in Figures 1 and 2.

s ��

node ����� v1 �������	���
node � v1 �����

� �����
v2 �����������������

� node � v1 ��� v2 � �����
� �����

s �!�"� node � v1 �#� v2 �$��
� ���%�

node ���'& v3 �(��&'����&
node � v3 ����&

� �����
v4 ���'&'�)�����*���

� node � v3 �#� v4 ����*�
� ���%�

� s �!�"� node � v1 �#� v2 �"���!�"� node � v3 �#� v4 �$��
� �����

� s �!�"� node � v1 �#� v2 �"���!� node �+� v3 � v4 �"�$��
� , ���-�

� s �!� node �!� v1 � v2 �.�"���!� node �+� v3 � v4 �"�$��
� , ���-�

�.� s � node �/�!� v1 � v2 �"���!� node �+� v3 � v4 �"�$��
� , ���-�

� s � node �#�!�"� v1 � v2 �#�!� node �!� v3 � v4 �"�.�$��
� , ���-�

� s � node �#�!�"�.� v1 � v2 �#� node ���+� v3 � v4 �"�$��
� , ���-�

� s � node �#�!�"� node �!� v1 � v2 �"���+� v3 � v4 �"�$��
� 0-1�2 2 �

Figure 1: A derivation for ‘s node node v1 v2 v3 v4’ corresponding to the minimum node cover J G % 5/G	��K .

162 Proceedings of TAG+6

s ��

node ����� v1 �����'�	���
node � v1 ��� �

� �����
v4 ��� � �����������

� node � v1 ��� v4 � �����
� �����

s �!�"� node � v1 �#� v4 �$��
� ���%�

node ����� v2 �(���������
node � v2 ��� �

� �����
v3 ��� � �)�����*���

� node � v2 �#� v3 ����*�
� ���%�

� s �!�"� node � v1 �#� v4 �"���!�"� node � v2 �#� v3 �$��
� �����

� s �!�"� node � v1 �#� v4 �"���!� node �+� v2 � v3 �"�$��
� , ���-�

� s �!� node �!� v1 � v4 �.�"���!� node �+� v2 � v3 �"�$��
� , ���-�

�.� s � node �/�!� v1 � v4 �"���!� node �+� v2 � v3 �"�$��
� , ���-�

� s � node �#�!�"� v1 � v4 �#�!� node �!� v2 � v3 �"�.�$��
� , ���-�

� s � node �#�!�"�.� v1 � v4 �#� node ���+� v2 � v3 �"�$��
� , ���-�

� s � node �#�!�"� node �!� v1 � v4 �"���+� v2 � v3 �"�$��
� 0-1�2 2 �

� s � node �#�!� node �!�"� v1 � v4 �/�!� v2 � v3 �"�.�$��
� , ���-�

� s � node �#�!� node �!� v1 �!� v4 �!� v2 � v3 �.�"�.�$��
� , ���-�

� s � node �#�!� node �!� v1 �!�"� v2 � v3 �#� v4 �"�.�$��
� 0-1�2 2 �

Figure 2: A derivation for ‘s node node v1 v2 v3 v4’ corresponding to the minimum node cover J G �15/G���K .

References

Garey, Michael R. and David S. Johnson, editors. 1979. Computers and Intractability. A Guide to the Theory of NP-
completeness. Freeman, New York.

Kanovich, Max I. 1991. The multiplicative fragment of linear logic is NP-complete. ITLI Prepublication Series X-91-13,
University of Amsterdam.

Kanovich, Max I. 1992. Horn programming in linear logic is NP-complete. In Proceedings, Seventh Annual IEEE Symposium
on Logic in Computer Science, pages 200–210. IEEE Computer Society Press, 22-25 June.

Moot, Richard and Mario Piazza. 2001. Linguistic applications of first order multiplicative linear logic. Journal of Logic,
Language and Information, 10(2):211–232.

