A Note on the Complexity of Associative-Commutative Lambek Calculus

Christophe Costa Florêncio
Utrecht University

1. Introduction

In this paper the NP-completeness of the system LP (associative-commutative Lambek calculus) will be shown. The complexity of $\mathbf{L P}$ has been known for some time, it is a corollary of a result for multiplicative intuitionistic linear logic (MILL) ${ }^{1}$ from (Kanovich, 1991) and (Kanovich, 1992).

We show that this result can be strengthened: LP remains NP-complete under certain restrictions. The proof does not depend on results from the area of linear logic, it is based on a simple linear-time reduction from the minimum node-cover problem to recognizing sentences in LP.

2. Definitions

First some definitions are in order:
Definition 1 The degree of a type is defined as

degree (A)	$=0$ if $A \in \operatorname{Pr}$
degree $(B \backslash A)$	$=1+\operatorname{degree}(A)+\operatorname{degree}(B)$
degree (A / B)	$=1+\operatorname{degree}(A)+\operatorname{degree}(B)$

In other words, the degree of a type can be determined by counting the number of operators it contains.
Definition 2 The Order of a type is defined as
$\begin{array}{ll}\operatorname{order}(A) & =0 \text { if } A \in \operatorname{Pr} \\ \operatorname{order}(B \backslash A) & =\max (1+\operatorname{order}(A)+\operatorname{order}(B)) \\ \operatorname{order}(A / B) & =\max (1+\operatorname{order}(A)+\operatorname{order}(B))\end{array}$
Definition $3 A$ domain subtype is a subtype that is in domain position, i.e. for the type $((A / B) / C)$ the domain subtypes are B and C.
For the type $(C \backslash(B \backslash A))$ the domain subtypes are C and B.
A range subtype is a subtype that is in range position, i.e. for the type $((A / B) / C)$ the range subtypes are (A / B) and A.
For the type $(C \backslash(B \backslash A)$) the range subtypes are $(B \backslash A)$ and A.
In an applicaton $A / B, B \vdash A$ or $B, B \backslash A \vdash A$ the type B is an argument and A / B and $B \backslash A$ are known as functors.
Definition 4 Let $G=(V, E)$ be an undirected graph, where V is a set of nodes and E is a set of edges, represented as tuples of nodes. A node-cover of G is a subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E$, then $u \in V^{\prime}$ or $v \in V^{\prime}$. That is, each node 'covers' its incident edges, and a node cover for G is a set of nodes that covers all the edges in E. The size of a node-cover is the number of nodes in it.

The node-cover problem is the problem of finding a node-cover of minimum size (called an optimal nodecover) in a given graph.

The node-cover problem can be restated as a decision problem: does a node-cover of given size k exist for some given graph?
Proposition 5 The decision problem related to the node-cover problem is NP-complete, The node-cover problem is NP-hard.

This problem has been called one of the 'six basic NP-complete problems' in (Garey and Johnson, 1979).

[^0]
3. Complexity of LP

Theorem 6 Deciding membership for the unidirectional product-free fragment of $\mathbf{L P}$, with all types restricted to a maximum degree of 2 and a maximum order of 1 , is NP-complete in $|\Sigma|$.

Proof: It is well known that $\mathbf{L P}$ is in NP.
What remains to be shown is existence of a p-time reduction from an NP-complete problem. Let $G=(E, V)$ be an undirected graph, $n e=|E|$. Let $C=\mathrm{C}(G)$ be a minimum node cover of G, and $\min (G)=|\mathrm{C}(G)|$. The graph G can be reduced to a grammar $G r=\operatorname{gram}(G)$ as follows:

1. Assign s to s.
2. Let f be the function that maps node V_{n} to type v_{n}. For every edge $E_{x} \in E$, where $E_{x}=\left\langle V_{y}, V_{z}\right\rangle$, let $v_{y}=f\left(V_{y}\right), v_{z}=f\left(V_{z}\right)$. Assign types $v_{y} \backslash v_{y}, v_{y} \backslash(s \backslash s)$ and $v_{z} \backslash v_{z}, v_{z} \backslash(s \backslash s)$ to symbol v_{x}.
3. For every node $V_{n} \in V$, assign $f\left(V_{n}\right)=v_{n}$ to node.

The intuition behind this reduction is that node stands for any node in G, and e_{x} for the connection of edge E_{x} to any of the two nodes it is incident on.

Note that this reduction always yields a unidirectional product-free grammar, with all types restricted to a maximum degree of 2 and a maximum order of 1 . Also note that this reduction sets $|\Sigma|$ to the number of edges plus two.

We will now show that accepting a sentence s of the form $\mathrm{s} \underbrace{\text { node } \ldots \text { node }}_{i \text { times }} \mathrm{v}_{1} \ldots \mathrm{v}_{n e}$ as being in $\mathrm{L}(\operatorname{gram}(G))$ while rejecting s $\underbrace{\text { node } \ldots \text { node }}_{i-1 \text { times }} \mathrm{v}_{1} \ldots \mathrm{v}_{n e}$ will indicate that there is a node cover of size i for G. Simply iterating from $i=1$ to $i=n e$ will lead to acceptance when $i=\min (G)$.

Parsing such a sentence will yield a solution: one can collect the assignments to the symbol node used in the derivation to obtain a minimum node cover.

Let T be some set of types (taken from the assignments to node in $\operatorname{gram}(G)$) assigned to the substring $\underbrace{\text { node...node }}$ of s. Let U be some set of types assigned to the substring $\mathrm{v}_{1} \ldots \mathrm{v}_{n e}$ under the same restrictions.
i times

1. Assume that $i<\min (G)$. Since by the form of $s|T| \leq i,|T|<\min (G)$, so for every minimum node cover C, there is a $V_{n} \in C$ such that $f\left(V_{n}\right) \notin T$. Since for every edge $\left\langle V_{y}, V_{z}\right\rangle \in E$, there is some v_{n} in s that has been assigned either the type $v_{x} \backslash v_{x}$ or $v_{x} \backslash(s \backslash s), v_{x}=f\left(V_{y}\right)$ or $v_{x}=f\left(V_{z}\right)$.
Since for every edge $\left\langle V_{y}, V_{z}\right\rangle \in E, f\left(V_{y}\right) \in C$ or $f\left(V_{z}\right) \in C$, there is some v_{m} in s that has been assigned $v_{n} \backslash v_{n}$ or $v_{n} \backslash(s \backslash s), v_{n} \notin T$.
Since $\Gamma, p T, \Gamma^{\prime} 甘_{\mathbf{L P}} \Gamma, \Gamma^{\prime}$ (where $p T$ is a primitive type), in order to derive (just) s, all the types in T have to occur as argument to an application in the derivation. Given the form of gram (G) this is possible just if the functor is a type assigned to $\mathrm{v}_{1 \leq n \leq n e}$. Thus $s_{1 \leq i<\min (G)} \notin \mathrm{L}(\operatorname{gram}(G))$.
2. Assume $i=\min (G)$. Then there is a T such that $|T|=i$. Let $T c$ be $\left\{f\left(V_{n}\right) \mid V_{n} \in C\right\}$, for some C. Given s and assignments of types such that for each $1 \leq p<n e, v_{p} \backslash(s \backslash s)$ occurs at most once \ldots
Since $\mathbf{L P}$ is associative and commutative any rearrangment is allowed during a derivation. This property can be used to 'sort' the assignments to the symbols node and v_{n} in the following way: each occurrence of node (assigned type $v_{x} \in T c$) is followed by all v_{n} 's that are assigned type $v_{x} \backslash v_{x}$, followed by a single v_{n} assigned $v_{n} \backslash(s \backslash s)$. The substring thus obtained is associated with a sequent that derives $(s \backslash s)$. The whole of s minus s , can be arranged into a number of these substrings, and since $A \backslash A, A \backslash A \vdash_{\mathbf{L P}} A \backslash A$, the associated sequent will derive $s \backslash s$. Since s is only assigned s in $\operatorname{gram}(G)$, we finally get the derivation $s, s \backslash s \vdash s$.

This shows that the reduction given is indeed a reduction from an NP-complete problem.
Example: Reducing $G=(\{(1,2),(1,3),(3,4),(2,4)\},\{1,2,3,4\})$ will yield

$$
\begin{aligned}
& \mathrm{s} \mapsto s \\
& \mathrm{v}_{1} \mapsto \\
& v_{1} \backslash v_{1}, v_{1} \backslash(s \backslash s), v_{2} \backslash v_{2}, v_{2} \backslash(s \backslash s) \\
& \mathrm{v}_{2} \mapsto v_{1} \backslash v_{1}, v_{1} \backslash(s \backslash s), v_{3} \backslash v_{3}, v_{3} \backslash(s \backslash s) \\
& \mathrm{v}_{3} \mapsto v_{3} \backslash v_{3}, v_{3} \backslash(s \backslash s), v_{4} \backslash v_{4}, v_{4} \backslash(s \backslash s) \\
& \mathrm{v}_{4} \mapsto v_{2} \backslash v_{2}, v_{2} \backslash(s \backslash s), v_{4} \backslash v_{4}, v_{4} \backslash(s \backslash s) \\
& \text { node } \mapsto v_{1}, v_{2}, v_{3}, v_{4}
\end{aligned}
$$

The corresponding minimal node cover is $\{1,4\}$ or $\{2,3\}$.
As a final remark, note that there exists an alternative reduction $\operatorname{gram}^{\prime}(G)$:

1. Assign s to s.
2. For every edge $E_{x} \in E$, where $E_{x}=\left\langle V_{y}, V_{z}\right\rangle$, let $v_{y}=f\left(V_{y}\right), v_{z}=f\left(V_{z}\right)$. Assign types $v_{y} \backslash v_{y}$ and $v_{z} \backslash v_{z}$ to symbol e_{x}.
3. For every node $V_{n} \in V$, assign $v_{x} \backslash(s \backslash s)$ to c and $f\left(V_{n}\right)=v_{n}$ to node.

Example: Applying this procedure to the same graph yields:

$$
\begin{aligned}
& \mathrm{s} \mapsto s \\
& \mathrm{v}_{1} \mapsto v_{1} \backslash v_{1}, v_{2} \backslash v_{2} \\
& \mathrm{v}_{2} \mapsto v_{1} \backslash v_{1}, v_{3} \backslash v_{3} \\
& \operatorname{gram}^{\prime}(G) \text { : } \\
& \mathrm{v}_{3} \mapsto v_{3} \backslash v_{3}, v_{4} \backslash v_{4} \\
& \mathrm{v}_{4} \mapsto v_{2} \backslash v_{2}, v_{4} \backslash v_{4} \\
& \text { node } \mapsto v_{1}, v_{2}, v_{3}, v_{4} \\
& \text { C } \mapsto v_{1} \backslash(s \backslash s), v_{2} \backslash(s \backslash s), v_{3} \backslash(s \backslash s), v_{4} \backslash(s \backslash s)
\end{aligned}
$$

Accepting a sentence of the form $\mathrm{s} \underbrace{\text { node } \ldots \text { node }}_{i \text { times }} \mathrm{v}_{1} \ldots \mathrm{v}_{n e} \underbrace{\mathrm{c} \ldots \mathrm{c}}_{i \text { times }}$ as being in $\mathrm{L}(\operatorname{gram}(G))$ will indicate that there is a node cover of size i for G. Again, iterating from $i=1$ to $i=n e$ will lead to acceptance when $i=\min (G)$.

4. Example Derivations

Given graph $G=(\{(1,2),(1,3),(3,4),(2,4)\},\{1,2,3,4\})$, the grammar $\operatorname{gram}(G)(G)$ and sentence 's node node v1 v2 v3 v4' $(i=4)$ we get the solutions shown in Figures 1 and 2.

Figure 1: A derivation for 's node node v1 v2 v3 v4' corresponding to the minimum node cover $\left\{v_{1}, v_{4}\right\}$.

Figure 2: A derivation for 's node node v1 v2 v3 v4' corresponding to the minimum node cover $\left\{v_{2}, v_{3}\right\}$.

References

Garey, Michael R. and David S. Johnson, editors. 1979. Computers and Intractability. A Guide to the Theory of NPcompleteness. Freeman, New York.
Kanovich, Max I. 1991. The multiplicative fragment of linear logic is NP-complete. ITLI Prepublication Series X-91-13, University of Amsterdam.
Kanovich, Max I. 1992. Horn programming in linear logic is NP-complete. In Proceedings, Seventh Annual IEEE Symposium on Logic in Computer Science, pages 200-210. IEEE Computer Society Press, 22-25 June.
Moot, Richard and Mario Piazza. 2001. Linguistic applications of fi rst order multiplicative linear logic. Journal of Logic, Language and Information, 10(2):211-232.

[^0]: 1. The systems LP and MILL are identical up to derivation from the empty sequent, i.e. the only difference is that $\vdash n / n$ is not derivable in LP.
 The system MILL is closely related to MILL1, another system that has interesting linguistic applications, see (Moot and Piazza, 2001).
