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Abstract: 

 
 The paper presents a rapid method of 
developing a shallow Arabic 
morphological analyzer.  The analyzer 
will only be concerned with generating 
the possible roots of any given Arabic 
word.  The analyzer is based on 
automatically derived rules and statistics.  
For evaluation, the analyzer is compared 
to a commercially available Arabic 
Morphological Analyzer. 

 
1 Introduction 
 
Due to the morphological complexity of the 
Arabic language, Arabic morphology has become 
an integral part of many Arabic Information 
Retrieval (IR) systems.  Some of the Arabic IR 
systems that use morphology include Swift [1] and 
Sakhr’s electronic publishing software [2].  Some 
Arabic IR studies have shown that the use of 
Arabic roots as indexing terms substantially 
improves the retrieval effectiveness over the use of 
stems, which in turn improve retrieval 
effectiveness over words [3] [4] [5]. 
Arabic words are divided into three types:  noun, 
verb, and particle [6].  Nouns and verbs are 
derived from a closed set of around 10,000 roots 
[7].  The roots are commonly three or four letters 
and are rarely five letters.  Arabic nouns and verbs 
are derived from roots by applying templates to 
the roots to generate stems and then introducing 
prefixes and suffixes.  Figure 1 shows some 
templates for 3 letter roots.  Figure 2 shows some 
of the possible prefixes and suffixes and their 
perspective meaning.  The number of unique 
Arabic words (or surface forms) is estimated to be 
6 x 1010 words [8].  Figure 3 shows some of the 
words that maybe generated from the root ��� �  
“ktb”.  (Refer to figure I in the Appendix for the 
mapping between the Arabic letters and their Latin 
representations). 

Further, a word may be derived from several 
different roots.  For example the word ��� �	�  
“AymAn” can be derived from five different 
roots.  Figure 4 shows possible roots for the word ��� �	�  “AymAn” and the meaning of the word based 
on each.  For the purposes of this paper, a word is 
any Arabic surface form, a stem is a word without 
any prefixes or suffixes, and a root is a linguistic 
unit of meaning, which has no prefix, suffix, or 
infix.  However, often irregular roots, which 
contain double or weak letters, lead to stems and 
words that have letters from the root that are 
deleted or replaced. 
 
���  
CCC 

�����   

“ktb” 
(wrote) 

��� ��  
CCAC 

� � ���  
“ktAb” 
(book) 


�� �   
CACC 

�����  
“kAtb” 
(writer) ��� ����  

mCCwC 

� � ��!   
“mktwb” 
(something 
written) 


�"�� � ��  
CCACyC 
(middle 
letter 
doubled) 

� "�# � ���  
“ktAtyb” 
(Qur’an 
schools)  

��� ��  
CCwC 

� � ���  
“ktwb” 
(skilled 
writer) 

Figure 1:  Some templates to generate stems from roots 
with an examples from the root ( $�% &  “ktb”) 

 
Examples of prefixes 
'  “w” 

and ( 
 “f” 

Then (*),+
 

“Al” 

the 

( �  

“k” 

like (-)
 “l” 

To (*),+ '  

“wAl” 

and 
the 

Examples of suffixes . (
 

“h” 

his /102(
 

“hm” 

Their � 0�(
 

“hA” 

her 

3
 “k” 

your 
(singular) 

/ �  

“km” 

your 
(plural) 4 (  

“y” 

my 

Figure 2:  some examples of prefixes and suffixes and 
their meanings 

 
Building a large-scale morphological analyzers is 
typically a laborious and time-consuming task.  
For example, MORPHO3 was developed by RDI 



in 3 man/years [8].  However, in this paper, we 
will present a quick method for performing 
shallow morphological analysis for use in 
information retrieval, which entails finding the 
roots of words, in one day.  The method is based 
on collecting statistics from word-root pairs:   
1. to build morphological rules for deriving roots 

from words,  
2. to construct a list of prefixes and suffixes, and  
3. to estimate the probability that a rule will be 

used or a prefix or suffix will be seen. 
This analyzer, called Sebawai, is possibly the first 
cross-platform freely-distributable analyzer for 
Arabic.   
Section 2 will provide background on some of the 
published research in Arabic Morphology.  Section 
3 will provide a description of the shallow 
morphological analyzer.  Section 4 evaluates the 
analyzer and will address some of the 
shortcomings of the system. 

 
�����  
“ktb” 

He 
wrote 

����!�5  
“yktb” 

He is 
writin
g 

�6���87  
“Aktb” 

I write 

� � ���  
“kAtb” 

Writer � � ���  
“ktAb” 

Book .:9 � ���  
“ktAbh
” 

His 
book 

.:9 � ���8'  
“wktAb
h” 

And 
his 
book 

/1; � ���  
“ktAbhm” 

Their 
book 

�����  
“ktb” 

books 

Figure 3:  some of the words that can derived from the 
root form <>= ?  “ktb” 

 
Root Meaning pronunciation 
@  7  “Amn” 

peace A�AB ��CDFEG
Eman 

H 7  “Aym” 
two poor people A�AB ��CIKJ5ML7 Ayyiman 

BON  
 “mAn” 

will he give 
support 

A�APB LNMQI C5:L7 Ayama’nu 

@ D  “ymn” 
covenant A�AB ��CI Q5ML7 Ayman 

N D
 “ymA” 

will they 
(feminine) point to 

A�AR B LNMQI C5:L7 Ayama’na 

Figure 4: the possible roots for the word SUT VXW “AymAn” 
along with the meaning and pronunciation of the word 

based on the different roots. 
 
2 Background 
 
Significant work has been done in the area of the 
Arabic morphological analysis.  The three main 
approaches to the problem are: 

1. The Symbolic Approach:  In this approach, 
morphotactic (rules governing the combination of 
morphemes, which are meaning bearing units in 
the language) and orthographic (spelling rules) 
rules are programmed into a finite state transducer 
(FST).   Koskenniemi proposed a two-level 
system for language morphology, which led to 
Antworth’s two-level morphology system PC-
KIMMO [9] [19].  Later, Beesley and Buckwalter 
developed an Arabic morphology system, 
ALPNET, that uses a slightly enhanced 
implementation of PC-KIMMO [10].  Currently, 
ALPNET is owned by Xerox and uses Xerox 
Finite-State Morphology tools [11].  However, 
this approach was criticized by Ahmed [8] for 
requiring excessive manual processing to state 
rules in an FST and for the ability only to analyze 
words that appear in Arabic dictionaries.  Kiraz 
summarized many variations of the FST approach 
[12].  Much information on two-level morphology 
and PC-Kimmo is available in the PC-KIMMO 
user’s guide [20]. 
2. The Statistical Approach:  Goldsmith 
proposed an unsupervised learning automatic 
morphology tool called AutoMorphology [14].  
This system is advantageous because it learns 
prefixes, suffixes, and patterns from a corpus or 
word-list in the target language without any need 
for human intervention.  However, such a system 
would not be effective in Arabic morphology, 
because it does not address the issues of 
infixation, and would not detect uncommon 
prefixes and suffixes. 
3. The Hybrid Approach:  This approach 
uses rules in conjunction with statistics.  This 
approach employs a list of prefixes, a list of 
suffixes, and templates to transform from a 
stem to a root.  Possible prefix-suffix-
template combinations are constructed for a 
word to derive the possible roots.  RDI’s 
system called MORPHO3 utilizes such this 
model [8].  Although such systems achieve 
broader morphological coverage of the Arabic 
language, manual derivation of rules is 
laborious, time-consuming and requires a 
good knowledge of Arabic orthographic and 
morphotactic rules.  In fact, MORPHO3 was 
built in 3 man/years [8].  Large-scale 
morphological analyzers provide more 
information than just the root of a word.  
They may provide information such as the 
meaning of prefixes and suffixes and may 
perform root disambiguation [8] [10] [11].  
However, this paper is concerned with 



morphological analysis for the purpose of IR.  
Arabic IR is enhanced when the roots are used 
in indexing and searching [3] [4] [5]. 
 
3 System Description 
 
Sebawai, the system discussed here, is similar to 
the hybrid approach used by RDI’s MORPHO3 
[8].  However, this system does not require 
manually constructed lists of rules and affixes.  
Instead, the system replaces the manual processing 
with automatic processing.   
The system has two main modules.  The first 
utilizes a list of Arabic word-root pairs (1) to 
derive a list of prefixes and suffixes, (2) to 
construct stem templates, and (3) to compute the 
likelihood that a prefix, a suffix, or a template 
would appear.  The second accepts Arabic words 
as input, attempts to construct possible prefix-
suffix-temple combinations, and outputs a ranked 
list of possible roots. 
 
3.1 Getting a list of Word-Root Pairs 
 
The list of word-root pairs may be constructed 
either manually, using a dictionary, or by using a 
pre-existing morphological analyzer such as 
ALPNET or MORPHO3 [8] [10].  
1. Manual construction of word-root pair list:  
Building the list of several thousand pairs 
manually is time consuming, but feasible.  
Assuming that a person who knows Arabic can 
generate a root for a word every 5 seconds, the 
manual process would require about 14 hours of 
work to produce 10,000 word-root pairs.   
2. Automatic construction of a list using 
dictionary parsing:  Extracting word-root pairs 
from an electronic dictionary is a feasible process.  
Since Arabic words are looked up in a dictionary 
using their root form, an electronic dictionary such 
as Lisan Al-Arab may be parsed to generate the 
desired list.  However, some care should be given 
to throw away dictionary examples and words 
unrelated to the root. 
3. Automatic construction using a pre-existing 
morphological analyzer:  This process is simple, 
but requires the availability of an analyzer. 
For the purposes of this paper, the third method 
was used to construct the list.  Two lists of Arabic 
words were fed to ALPNET (which was the only 
Arabic morphological analyzer available to the 
author) and then the output was parsed to generate 
the word-root pairs.  One list was extracted from a 

corpus of traditional Arabic text, called Zad, 
owned by Al-Areeb Electronic Publishers [15].  
The list contains 9,606 words that ALPNET was 
able to analyze successfully.  The original list was 
larger, but the words that ALPNET was unable to 
analyze were excluded.  The other list was 
extracted from the LDC Arabic collection 
(LDC2001T55) containing AFP news-wire stories 
[16].  This list contains 560,000 words.  Of the 
560,000 words, ALPNET was able to analyze 
270,000 words successfully.  The rest of the 
words (about 290,000) were used for evaluating 
Sebawai. 

 
3.2 Training 
 
As stated above, this module takes a word-root 
pair as input.  By comparing the word to the root, 
the system determines the prefix, suffix, and stem 
template.  For example, given the pair ( � �1YZ�[ �  
“wktAbhm”, ��� �  “ktb”), the system generates Y  
“w” as the prefix, Z]\  “hm” as the suffix, and ^2� _:`  
“CCAC” as the stem template (C’s represent the 
letters in the root).  The system increases the 
number of occurrences of the prefix Y  “w”, the 
suffix Z�\  “hm”, and the template “CCAC” by one.  
The system takes into account the cases where 
there are no prefixes or suffixes and denotes either 
of them with the symbol “#”. 

 
Word w k t A b hm 
Root  k t  b  
Parts Prefix  

( ' ) 

Stem template  

(
�>� ��

 --CCAC) 

Suffix  

(
/1a

) 

Figure 5:  The decomposition of the word bdcfe % &hg  
“wktAbhm” with root ije % &  “ktAb” 

 
After that, the lists of prefixes, suffixes, and 
templates are read through to assign probabilities 
to items on the lists by dividing the occurrence of 
each item in each list by the total number of 
words.  The probabilities being calculated are 
given for character strings S1 and S2 and template 
T as: 

P(S1 begins a word, S1 is a prefix) 
P(S2 ends a word, S2 is a suffix) 
P(T is a template) 

Another potential way of calculating the 
probabilities of prefixes and suffixes is to use the 
conditional probabilities that the item appears in 
the word and is actually a prefix or suffix.  For 
example, if Y  “w” appeared as the first letter in the 
word 100 times, 70 times of which it was actually 



a prefix, then the probability would be .70.  In 
other words, the probabilities being calculated are 
given for character strings S1 and S2 as: 

P(S1 is a prefix | S1 begins a word) 
P(S2 is a suffix | S2 ends a word) 

Notice that Sebawai’s stems are slightly different 
from standard stems.  Standard stem templates 
may have letters added in the middle and in the 
beginning.  For example the template ^lkm_:nMo  
“mCCwC” has p  “m” placed before the root and Y  
“w” placed in the middle.  Both p  “m” and Y  “w” 
are a part of the stem template.  However, the 
training module has no prior knowledge of 
standard stem templates.  Therefore, for the 
template ^lkm_:nMo  “mCCwC”, p  “m” is simply treated 
as a part of the prefix list and the extracted 
template is ^Uk]_M`  “CCwC”. 
 
3.3 Root Detection 
 
The detect-root module accepts an Arabic word 
and attempts to generate prefix-suffix-template 
combinations.  The combinations are produced by 
progressively removing prefixes and suffixes and 
then trying matching all the produced stems to a 
template.  For example, for the Arabic word ��� �m�  
“AymAn” the possible prefixes are “#”, �  “A”, and q �  “Ay”, and the possible suffixes are  “#”, �  “n”, 
and �h�  “An”.   
The resulting feasible stems are: 
Stem Prefix Template Suffix Root 
S�T VdW  
“AymAn” 

“#” r T sut v
“CyCAC” 

“#” wUx W  
“Amn” 

S�T V  
“ymAn” 

W  “A” r T s,v
“CCAC” 

“#” w V  
“ymn” 

SfT x  “mAn” y�W  
“Ay” 

z suv “CCC” “#” SUT x  
“mAn” { W  “Aym” “#” z suv “CCC” SUW

“An” 

{ W  
“Aym” 

T V  “ymA” W  “A” z suv “CCC” S “n” T V  
“ymA” 

 
The ones that the system deemed as not feasible 
are � �	�  “AymA” and |  “ym”.  Although � �	�  “AymA” 
is not feasible, |  “ym” is actually feasible (comes 
from the root Z �  “ymm”), but the system did not 
know how to deal with it.  The paper will address 
this problem in the next sub-section.  The possible 
roots are ordered according to the product of the 
probability that a prefix S1 would be observed, the 
probability that a suffix S2 would be observed, and 
the probability that a template T would be used. 

P(root) =  
P(S1 begins a word, S1 is a prefix)  
* P(S2 ends a word, S2 is a suffix)  
* P(T is a template) 

The probabilities of stems, suffixes, and templates 
are assumed to be independent.  The 
independence assumption is made to simplify the 
ranking, but is not necessarily a correct 
assumption because certain prefix-suffix 
combinations are not allowed.  Using the system 
requires some smoothing which will be discussed 
in the next subsection.  The generated roots are 
compared to a list of 10,000 roots extracted 
automatically from an electronic copy of Lisan al-
Arab to verify their existence in the language [7]. 
 
3.4 Missed or Erroneous Roots 

 
As seen above, the system deemed the stem |  
“ym” not feasible, while in actuality the stem 
maps to the root Z � “ymm”.  Other cases where the 
system failed were when the root had weak 
letters.  Weak letters are �  “A”, q  “y”, and Y  “w”.  
The weak letters are frequently substituted for 
each other in stem form or dropped all together.  
For example, the word ^�� }  “qAl” has the root ^Ukm}
“qwl” or ~h� }  “qyl” which would make the word 
mean ‘he said’ or ‘he napped’ respectively.  Also, 
the word � �  “f” has the root � Y  “wfy” where the 
letters Y  “w” and q  “y” are missing.  To 
compensate for these problems, two letter stems 
were corrected by introducing new stems that are 
generated by doubling the last letter (to produce Z �  
“ymm” from |  “ym”) and by adding weak letters 
before or after the stem.  As for stems with a weak 
middle letter, new stems are introduced by 
substituting the middle letter with the other weak 
letters.  For example, for ^�� }  “qAl”, the system 
would introduce the stems ^hkm}  “qwl” and ~h� }  “qyl”.  
This process over-generates potential roots.  For 
example, from the three potential roots ^2� }  “qAl”, ^Fkm}  “qwl”, and ~h� }  “qyl”, ^�� } “qAl” is not a valid 
root and is thus removed (by comparing to the list 
of valid roots).  To account for the changes, the 
following probabilities were calculated: (a) the 
probability that a weak letter w1 would be 
transformed to another weak letter w2, (b) the 
probability that a two letter word would have a 
root with the second letter doubled (such as Z �  
“ymm”), and (c) the probability that a two letter 
word was derived from a root by dropping an 
initial or trailing weak letter.  The new probability 
of the root becomes: 



P(root) =  
P(S1 begins a word, S1 is a prefix) 
* P(S2 ends a word, S2 is a suffix)  
* P(T is a template)  
* P(letter substitution or letter addition) 

As for smoothing the prefix and suffix 
probabilities, Witten-Bell discounting was used 
[17].  The smoothing is necessary because many 
prefixes and suffixes were erroneously produced.  
This is a result of word-root pair errors.  Using this 
smoothing strategy, if a prefix or a suffix is 
observed only once, then it is removed from the 
respective list.  As for the list of templates, it was 
reviewed by an Arabic speaker (the author of the 
paper) to insure the correctness of the templates.  
The Arabic examiner was aided by example words 
the system provided for each template.  If a 
template was deemed not correct, it was removed 
from the list.  
 
3.5 Particles 
 
To account for particles, a list of Arabic particles 
was constructed with aid of An-Nahw Ash-Shamil 
(an Arabic grammar book) [6].  If the system 
matched a potential stem to one of the words on 
the particle list, the system would indicate that the 
word is a particle.  Note that particles are allowed 
to have suffixes and prefixes.  A complete list of 
the particles used by Sebawai is available upon 
request. 
 
3.6 Letter Normalizations 
 
The system employs a letter normalization strategy 
in order to account for spelling variations and to 
ease in the deduction of roots from words.  The 
first normalization deals with the letters q   “y” and �  “Y” (alef maqsoura).  Both are normalized to q  
“y”.  The reason behind this normalization is that 
there is no one convention for spelling q  “y” or �  
“Y” when either appears at the end of a word 
(Note that �  “Y” only appears at the end of a 
word).  In the Othmani script of the Holy Qur’an 
for example, any q  “y” is written as �  “Y” when it 
appears at the end of a word [18].  The second 
normalization is that of “ � ” (hamza), “� ” (alef 
maad), “ �” (alef with hamza on top), “ � ” (hamza on 
w), “� ” (alef with hamza on the bottom), and “ � ” 
(hamza on ya).  The reason for this normalization 
is that all forms of hamza are represented in 
dictionaries as one in root form namely “ � ” or “ � ”, 
depending on the dictionary, and people often 

misspell different forms of alef.  All are 
normalized to the symbol �  “A”. 
 
4 Evaluation and Discussion 
 
To evaluate Sebawai, it was compared to 
ALPNET.  A random set of a 100 word-root pairs 
produced by ALPNET was manually examined to 
verify their correctness and consequently verify 
the correctness of ALPNET.  ALPNET produces 
some possible roots for each given word in 
unranked order, but all pairs were correct.  
Three experiments were preformed.  In the first 
and second experiments, Sebawai is trained on a 
large list and a small list of word-root pairs 
respectively.  After the training, a list of words is 
fed into Sebawai and ALPNET for analysis.  The 
correctness of analysis and coverage of both 
systems are compared.  In the third experiment, a 
document collection is indexed using roots 
produced by both systems.  Retrieval 
effectiveness of indexing using roots produced 
from each system is examined. 
 
4.1 Using a Large Training Set 
 
A list of 270K words was used for training the 
system and a list of 9,606 Arabic words was used 
for evaluation.  Of the small test set, ALPNET 
analyzed all the words, while Sebawai analyzed 
9,497 and failed on 112.  For the generated roots, 
three different automatic evaluations were done: 
First (Auto-Eval-1):  The top generated root is 
compared to the roots generated by ALPNET.  If 
the root is on the list, it is considered correct.  
Using this method, 8,206 roots were considered 
correct. 
Second (Auto-Eval-2):  The top two generated 
roots from Sebawai were compared to the list of 
roots that were generated by ALPNET.  If either 
root appeared in the list then the morphological 
analysis was considered correct.  Using this 
evaluation method, 8,861 roots were considered 
correct. 
Third (Auto-Eval-n):  All the generated roots are 
compared to the ones generated by ALPNET.  If 
any match is found, the analysis is considered 
correct.  Using this method, 9,136 roots were 
considered correct. 
However, this automatic evaluation has two 
flaws: 
1. The number of Arabic roots in ALPNET’s 
inventory are only 4,600 roots while the number 



of roots used by Sebawai are more than 10,000.  
This could result in a correct roots being missed by 
ALPNET. 
2. ALPNET often under-analyzes.  For example 
the word �  “fy” could be the particle �  “fy” or 
could be a stem with the root ��� `  “fyy”.  ALPNET 
only generates the particle �  “fy”, but not the other 
root ��� `  “fyy”.  This could lead to false negatives. 
Therefore manual examination of reject roots was 
necessary.  However, due to the large number of 
rejected roots, 100 rejected roots from the 
evaluation Auto-Eval-1 and Auto-Eval-2 were 
selected at random for examination to estimate the 
shortfall of the automatic evaluation.  Of the 100 
rejected roots: 

Evaluation 
Method 

Correct Incorrect 

Auto-Eval-1 46 54 
Auto-Eval-2 38 62 

 
Results summary: 

Eval. 
method 

No. of 
words 

Failures No. or roots 
deemed  
(correct 

/incorrect) 

No. of roots 
estimated to 
be correct 
(manual 

evaluation) 
Auto-
Eval-1 

9,606 112 
(1.17%) 

8,206 / 1,291  
(86.4 / 13.6%) 

8,800 
(92.7%) 

Auto-
Eval-2 

9,606 112 
(1.17%) 

8,861 / 636 
(93.3 / 6.7%) 

9,136 
(96.1%) 

Auto-
Eval-n 

9,606 112 
(1.17%) 

9,136 / 360 
(96.2 / 3.8%) 

- 

 
Another list of 292,216 words that ALPNET was 
unable to recognize were fed to Sebawai.  Sebawai 
analyzed 128,169 words (43.9%), and failed 
otherwise.  To verify the correctness of the system, 
100 words were taken at random from the list for 
manual examination.  Of the 100, 47 were actually 
analyzed correctly.  Many of the failures were 
named-Entities.  Extrapolating from the results of 
the manual examination, Sebawai would 
successfully recognize an estimated 60,000 words 
(20% of the original list). 

 
Results summary: 

Number 
of words 

Number of roots 
detected 

An estimate of the 
correctly detected 

roots 
292,216 128,169 (43.9%) 60,000 (20%) 

 
The failure of ALPNET and the low accuracy of 
Sebawai warrant further investigation.  A quick 
review of the list shows a high frequency of named 
entities, misspelled words, and obscure words. 
 

4.2 Using a Small Training Set 
 
The 9,606 words list was used for training and the 
270K words list was used for evaluation.  The 
same automatic evaluation method mentioned 
above was used.  Of the 270,468 words, the 
system was unable to analyze 84,421, and 
analyzed 186,047.  Similar to the experiment with 
the large training set, three automatic evaluations 
were used:  Auto-Eval-1, Auto-Eval-2, and Auto-
Eval-n.  For Auto-Eval-1 and Auto-Eval-2, 100 of 
the rejected roots were manually examined to 
verify correctness.  Of the 100 roots examined: 
Eval. Method Correct Incorrect 
Auto-Eval-1 30 70 
Auto-Eval-2 45 55 

 
Results summary: 

Eval. 
Method 

No. of 
roots 

Words 
not 

analyzed 

No. or roots 
deemed  
(correct 

/incorrect) 

No. of roots 
estimated to 
be correct 
(manual 

evaluation) 
Auto-
Eval-1 

270,468 84,421 
(31.21%) 

130,990 / 
55,057  

(70.4 / 29.6%) 
  

147,507 
(79.3%) 

Auto-
Eval-2 

270,468 84,421 
(31.21%) 

149,906 / 
36,141  

(80.6 / 19.4%) 

166,169 
(89.3%) 

Auto-
Eval-n 

270,468 84,421 
(31.21%) 

159, 02 / 27,020 
(85.5 / 14.5%) 

- 

 
Also, the 292,216 words that ALPNET was 
unable to recognize were fed to Sebawai.  
Sebawai analyzed 92,929 words (31.8%).  To 
verify the correctness of the system, 100 words 
were taken at random from the list for manual 
examination.  Of the 100, 55 were actually 
analyzed correctly.  Extrapolating from the results 
of the manual examination, Sebawai would 
successfully recognize an estimated 60,000 words 
(20% of the original list). 
Results summary: 

Number 
of words 

Number of roots 
detected 

An estimate of the 
correctly detected 

roots 
292,216 92,929 (31.8%) 51,000 (17%) 

 
4.3 Retrieval Effectiveness 
 
In the third part of the evaluation, the Zad 
document collection, which contains 4,000 
documents, was used for retrieval evaluation.  
Associated with the collection was a set of 25 
queries and their relevance judgments.  Sebawai 



was trained using the list of 270K words.  InQuery 
was the retrieval engine used.   
In the evaluation, 4 different runs were performed.  
In the first two, the collection was indexed using 
one root and two roots produced by ALPNET.  In 
the later two, the collection was indexed using the 
top root and the top two roots generated by 
Sebawai.  Mean average precision was used as the 
figure of merit in comparing the runs.  For 
statistical significance, a paired two-tailed t-test 
was used.  Statistical significance was concluded if 
the p-value of t-test was lower than .05. 
Results summary: 

Using Sebawai’s guess of the most likely root 
resulted in a higher mean average precision than 
when using one root produced by ALPNET (Note 
that ALPNET randomly ordered the possible 
roots).  Further, using two roots from ALPNET 
slightly improved mean average precision, but the 
improvement was not statistically significant.  
Using the top two roots from Sebawai significantly 
harmed retrieval.  A likely reason for the fall in 
mean average precision when the second root was 
introduced is that the second root amounted to 
noise.   
 
4.4 Success and Limitations 
 
The evaluation method clearly shows the 
effectiveness of Sebawai.  In fact, Sebawai 
significantly outperformed ALPNET in retrieval 
experiments.  The analyzer is often able to detect 
roots that were missed by a commercially 
available system.  Also, due to the fact that rule 
are derived automatically, Sebawai was developed 
very rapidly.  It was built in less than 12 hours 
using about 200 lines of Perl code [21].  Further, 
the analyzer is able to derive the roots of 40,000 
words per minute on a Pentium class machine with 
256 MB of RAM running Linux.  Also, Sebawai is 
twice as fast as ALPNET on the same machine.  
Rewriting Sebawai in a compiled language such as 
C is likely to improve the analysis speed. 
Furthermore, the method used to develop this 
Arabic morphological analyzer can potentially be 
used to rapidly develop morphological analyzers 
for other languages.  Some languages exhibit 

morphological properties similar to those of 
Arabic such as Hebrew [12].   
However, the system is restricted in the following 
aspects: 
1. Since it limits the choice of roots to a fixed 
set, it does not stem words transliterated from 
other languages such as transliterated named 
entities.  For example, the English word Britain is 
transliterated as � � ��� ��� �:�  “bryTAnyA”.  From � � ��� ��� �M�  
“bryTAnyA”, some the words that maybe 
generated are: � �:�� � � “bryTAny” (British), � � ��� ��� �
“AlbryTAny” (the British), and ��� ��� ��� ��� �  
“AlbryTAnyyn” (Englishmen). 
2. Some words in Arabic are 1 letter long, but 
have 3 letter roots.  For example, the word � �  “q” 
means “protect (in the form of command)”.  Since 
they are very rare, they may not appear in the 
training set. 
3. Some individual words in Arabic constitute 
complete sentences.  For example, the word � \ km�f�1o:�M� � �  “AnlzmkmwhA” means “will we 
forcefully bind you to it?”  These also are rare and 
may not appear in a training set. 
4. The analyzer lacks the ability to decipher 
which prefix-suffix combinations are legal.  
Although deciphering the legal combinations is 
feasible using statistics, the process would 
potentially require a huge number of examples to 
insure that the system would not disallow legal 
combinations. 
 
5 Conclusion and Future Work 
 
The paper presented a way to rapidly develop a 
shallow Arabic morphological analyzer.  The 
analyzer is based on automatically derived rules 
and statistics.  The analyzer is cross-platform and 
freely-distributable.  Although some knowledge 
of the Arabic language was required to verify the 
correctness of derived rules for example, the 
amount of time required to build the rules is 
reduced to hours rather than days or weeks.  Some 
the possible future work includes:   
1. Integrating stemming with the analyzer to 
handle words the analyzer failed on.  
2. Attempting to develop morphological 
analyzers for other language using the same 
method describe in the paper. 
3. Collecting statistics on legal prefix-suffix 
combinations to further improve the analyzer.  
4. Comparing the retrieval effectiveness when 
indexing is done using this analyzer compared to 

Index term Mean Avg. Precision 
ALPNET – 1 root 0.34 
ALPNET – 2 root 0.36 
Sebawai – 1 root 0.45 
Sebawai – 1 root 0.29 



another commercially available analyzer such as 
ALPNET or MORPHO3. 
5. Examining the words for which ALPNET was 
unable to produce roots.  This would give insight 
into the strength and weakness of ALPNET. 
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Appendix: 
 

figure 1:  Letter mappings 
 

A � A �  A � A �  A    
A ¡  A ¢  b £  t ¤  p ¥  
v ¦  j §  H ¨  x ©  d ª  
O «  r ¬  z   S ®  P ¯  
S °  D ±  T ²  Z ³  E ´  
j µ  f ¶  Q ·  k ¸  l ¹  

M º  n »  h ¼  W ½  y ¾  
 

 

 


