
Parsing Akkadian Verbs with Prolog

Aaron Macks
Department of Computer Science

Brandeis University
Waltham, MA. 02454

aaronm@cs.brandeis.edu

Abstract

T h i s p a p e r d e s c r i b e s a
parsing/generation system for finite
verbal forms in Akkadian, with the
possible addition of suffixes,
implemented in Prolog. The work
described provides the framework and
engine to interpret the D, N, and G
stems along with accusative, dative
and ventive endings.

1 Introduction

The goal of this research is to create a parser
capable of taking a finite Akkadian verb, with
some subset of direct-object, indirect-object,
and ventive suffixes and returning the verb form,
suffix form if applicable, and the radical stem.
With the exception of the GUI, a Java wrapper
running through a web-server, the program is
written entirely in Prolog. The Definite Clause
Grammar (DCG) rules that are used are an
expansion of regular context-free grammars;
they define a set of one or more expansions from
a set of variables to a complete form. The
program also functions as a generator of finite
verbal forms, as the rules can both generate and
recognize forms.

2 Parser design

The form to be parsed is input into the Prolog1

interpreter as a character string of the finite verb
form, comma delineated, and with long
(macron) and elided (circumflex) vowels
represented by double and triple vowels,

1 The program is designed to work with the SWI-
Prolog interpreter, http://www.swi-prolog.org, and
compatability with other intperpreters, especially in
the nonstandardized interpretation of DCG rules, is
not anticipated.

respectively. This form, referred to as the
Prolog Normal Form (PlNF), can either be input
manually by the user or generated by the
software from a character string input by the
user. In the Prolog interpreter, backtracking is
used to test for any possible finite form, with
and without suffixes. When a matching form is
found, a text string describing the form and the
three radicals are returned, bound to variables to
allow other programs to use this parsing engine.
The parser is designed to handle any strong root
and almost any weak root, but quadriliteral and
doubly-weak roots are too irregular for a
program of this scope. The program uses the
ampersand (@)2 to represent a generic weak
radical, and simply the letters for W, Y, and N
roots. In this manner weak roots are indicated in
the form string as well as the three radicals, in
most cases.

2.1 Vowels

Although vowels are quite important in
Akkadian, in almost no cases are they needed to
uniquely identify the stem. Due to this and the
fact that knowing the vowel classes for each
verb stem would limit the parser to those verbs
which had been explicitly added to a dictionary,
the program was designed from the beginning to
ignore vowels when possible. Three main sets
of rules were build, the vs , vl, and vdl for
recognizing short, long, and doubly-long vowels
respectively. These are used in rules when the
verb, rather than the form, determines the vowel;
in the others the vowels are hard-coded into the
rules. As the program developed, needs were
found for some other minor vowel rules,
including the interchangeable ‘a/e’ for certain
weak verbs and the interchangeable ‘u/i’ for
some imperative forms. These allow only

2 The only other non-standard symbol needed was for
the Shin, which is represented as the dollar sign ($).

specified vowels, and not entire classes to be
recognized. There are 22 vowel rules in the
parser at the moment, but the chance that more
are needed is quite small.

The parser works on verbs that have been
normalized, but the normalization process
usually takes into account the form of the verb
when determining vowel length from an
inscription. This leads to a recursive problem
that the parser works with normalized verbs to
determine their forms; however the form must
frequently be know in order to normalize the
verb. This problem is partially ameliorated by
the addition of wildcards to the vowel structure.
Instead of forcing the user to know the vowel
length, they can input the value and an asterisk
and the program tests for all possible vowel
lengths. As the value of the vowel would be
known from an inscription, the decision was
made not to allow a free wildcard, only to parse
the three possible lengths of a given vowel. An
example would be parsing the string idda*k,
which gives responses from parsing iddak (G-
preterite or durative), iddäk (N-preterite) and
iddâk (N-durative).

2.2 Initial parsing functions

The central program is executed with a
command, within the Prolog interpreter of the
form:
?- verb(A, B, C, Type, [i,p,r,u,s]).
(Figure 1. Parsing a finite form, the A,B,C are bound to the
radicals and Type to the returned string describing the type.
The ‘?-‘ is the Prolog prompt.)

This calls the main ‘verb’ function, which
then calls a parser for each stem twice, once
with and once without the suffix interpreter.
Each call begins by loading and compiling the
appropriate source file, although in operation the
compiled code is cached, thus not requiring
multiple recompilation per session. This allows
any new stem, as currently the parser only
understands the G, D and N stems, to be added
as a separate file with only two lines of code
added to the main program. Each call to a stem
parser then further breaks down the form, trying
to parse it using one of the different tense
parsers, i.e., D-durative or G-imperative, which
then calls the various DCG rules to interpret
strong and weak verb stems. All of the higher
functions are standard Prolog declarations, all
designed to call the proper DCG rules, which do
the actual parsing/generation. These
declarations, as they are called incrementally

from verb can add, by concatenation,
information to the type-string which is returned
by the main program.

The verb function is then wrapped with a
function, akkadian which takes as input the
finite verb as a string and returns it parsed and
normalized for each successful parse, taking
care of the vowel wildcards and correctly
separating the string into the PlNF for the verb
function.

The nature of the DCG interpreter in Prolog
allows it to parse a string to the end, or parse a
prefix of that string and return the suffix. Each
of the paradigm parsers is called twice, with the
first pass forcing it to return no suffix and the
second binding the suffix to a new variable.
This bound variable is then passed to the suffix
parser which can try combinations of
Accusative, Dative and Ventive endings. If a
suffix is successfully parsed, a string describing
its type is returned and concatenated onto the
verb type string. The parser is designed to
ignore the conjunctive suffix –ma, but this
currently is under development and does not
always work.

As the program currently stands, the
wrapper declarations are represented by 137
declarations and the suffix parser by 45 DCG
rules.

2.3 Finite verb rules

The bulk of the work in the verb parsing, and
programming, consists of the DCG rules which
recognize the verb and bind the radicals to the
variables (the A, B, and C in Fig. 1). It takes
approximately 200 rules to parse a stem, which
provides recognition of the preterite, durative,
perfect, imperative, precative, and vetitive, in
the first N, first W, active and stative, and first,
second and third Aleph. As they are currently
implemented, the forms are reduced to a base
type, ei ther explici t ly, as in the
strnbasepret rule for the N preterite, or
implicitly by using other, previously declared
forms. The modified forms are described using
the rules for the base forms. An example is the
plural G strong durative, where only one new
rule was needed:

strgdur(Ca, Cb, Cc, [3,m,p]) -->
strgdur(Ca, Cb, Cc, [3,c,s]), [uu].

strgdur(Ca, Cb, Cc, [3,f,p]) -->
strgdur(Ca, Cb, Cc, [3,c,s]), [aa].

strgdur(Ca, Cb, Cc, [2,c,p]) -->
strgdur(Ca, Cb, Cc, [2,m,s]), [aa].

strgdur(Ca, Cb, Cc, [1,c,p]) --> [n],
[i], Ca, [a], Cb, Cb, vs, Cc.

(Figure 2. Plural G Durative rules. They represent, in
normalized form: iparrusü3, iparrusä, taparrusä and
niparrus.)

In the DCG, a bracketed letter is a literal, a
capitol letter is a variable and a lowercase
another DCG, usually another form of the
current verb or a vowel rule. The rule itself
takes the form of: name(argument[s])--
>rule[s], where the arguments can be either
defined in the rule(such as [2,c,p]) or variables
to be bound by the rule itself; the rule is some
string of bracketed literals, variables or another
rule.

2.4 Generation

Within the Prolog interpretation of DCG rules,
there is no defined sense of direction, so that the
same rule-base, which can recognize a finite
verb form, can also generate that form. Some of
the more bizarre functions which handle string-
to-PlNF conversion had to be rewritten, but
fewer than five in the entire program. Due to
the manner in which the vowels are handled (§
2.1), multiple forms are usually generated, with
different theme vowels. Although somewhat
inconvenient, the correct form can easily be
found with the help of a dictionary. To generate
a finite form using the low-level function, one
calls the program with variables bound to the
three radicals and the type, leaving the verb
string unbound.
?- verb(p,r,s,['G', 'Preterite', 3, c,
s],Plnf).
(Figure 3. Generating a finite form, returned by the variable
Plnf).

In this case, the four values, ipras, ipris,
iprus, ipres, are returned, but the correct iprus is
easily identified by the user. Generation is most
commonly not called at this low level, but
through the makeverb wrapper function. This
takes the three radicals for the verb and a list
representing the type, and creates both a PlNF
representation of the verb and a normalized
string version. As this function was tuned to
work with the Web interface, characters such as

3 Due to the difficulty of typesetting the macron
usually used in representing the long vowel, the
umlaut, (¨), will be used instead.

long vowels and the letter ‘shin’ are output as
HTML codes.

The low-level generation, however, is quite
useful for its ability to take wildcard commands,
which currently cannot be input using the Web
interface.
?- verb(p,r,s,['G', _, 3, c,
s],String).
(Figure 4. Generate any G-stem in the third, common
singular form. The _ represents a non-binding variable.)

3 Interface

The user interface is a HTML form which then
passes its input to a cgi-bin script which formats
them properly for a Java wrapper to the Prolog
interpreter.

3.1 HTML User Interface

The user interface consists of two HTML forms,
one for parsing and one for generation, which
are on the same page4. Both are quite simple,
with the parser presenting the user with a text
input area for the finite verb. The generator
presents the user with a text area for inputting
the stem, and selectors for the stem, tense and
person.

The forms submit their data to a small
UNIX shell script which formats them as
arguments and passes them to the java parsing
engine on the back-end processor. Due to the
fact that parsing, especially with wildcard
expansion, is computationally intensive, and
Prolog is an interpreted language and therefore
somewhat slow, the web-server, a PII-266
system, passes the actual work off to a backend,
a dual Athlon 1900+ system. Computation time
is indicated at the bottom of the page returned
by the parser; it can process approximately ten
forms per second.

3.2 Java Wrappers

The actual execution of the parsing from the
web forms is done by a pair of java classes
which interface between the shell script and the
Prolog parser. Some code was needed to
interpret the variables returned by the forms, and
although Prolog code exists for this purpose, it
was complex, and Java code to both interface

4 The parser/generator, at its present state is at
http://wiglaf.cs-i.brandeis.edu/akkadian .

with the script and the Prolog was readily
available, making its selection easy. There are
two Java classes, parseAkk and akkadian.
The akkadian class does all of the work of
interfacing with the Prolog, using the JPL5

system and returning the HTML formatted
answers or error messages, while the
parseAkk class does the reformatting of the
cgi-bin variables into useful Java types6. The
akkadian class can be used as a command-line
program for testing and quick parsing, but as it
returnes partial HTML, this use is no longer
supported.

4 State of the program

The program is a work in progress, but this is
the state as of April, 2002.

4.1 State and flow diagram

In the state diagram, the background color
represents the code which is in the main
program file (akk.pl) while the lighter blocks
are the subordinate stem files (dstam.pl,
nstem.pl and gstem.pl). Areas which are dashed
are incomplete work in progress, and those with
notes are incomplete pending more research to
derive the forms.

The arrows in the flow diagram seem
misleading, but every one of the verb rule-sets
can have a suffix, so the joining of paths from
the two different files is not incorrect.

The code can currently parse and generate
based on all of the strong and singly-weak tri-
radical G, D and N stems, with and without
suffixes. Due to disagreements among
grammarians, the second-weak D stem is parsed
and generated correctly, but does not accept all
of the grammatical variations given in the
various grammars. When there is disagreement,
the weight is given to Huehnergard’s Grammar.

5 http://sourceforge.net/projects/jpl/, A Java interface
to Prolog, it currently only supports the SWI prolog
as the imbedded interpreter.
6 Code adapted from Hall’s Guide to CGI
Programming in Java.

(Figure 5. The current flow of the program. Arrows
represent the paths that the parser can take, in some cases
indicating how rules are reused.)

4.2 Examples

Brief examples of the program parsing and
generating finite verb forms. The is taken
verbatim from the web interface. The examples
for the G stem (Figures 6 and 7) are from the
third weak infinitive Qabû (to speak), and are as
conjugated in the Codex Hammurabi
[Richardson, 2000]:

Stem q-b-@
Parse G Precative Third

Weak 3 c s
Normalized form liqbi

 (Figure 6. Parsing liqbi: Third common singular G
Precative[RICH, 126])

Stem q-b-@
Parse G Durative Third

Weak 3 m p
Normalized form iqabbuuuma

(Figure 7. Parsing iqabbû-ma: Third masculine plural G
Durative[RICH, 44], showing successful avoidance of the
–ma suffix)

Stem n-d-@
Parse G Durative Third Weak

3 m p Accusative 3fs
Normalized form inadduuu$i

(Figure 8. Parsing innaddû$i: third weak G-durative, third
masculine plural with a third feminine singular accusative
ending [RICH, 74].)

Stem m-l-@
Parse D Preterite Third

Weak 2 m s Ventive 2
f s

Normalized form tumallinikkim
Stem m-l-@
Pare D Preterite Third

Weak 2 f s Ventive 2
f s

Normalized form tumalliiinikkim

Stem m-l-@
Parse D Durative Third Weak

2 f s Ventive 2 f s
Normalized form tumalliiinikkim

(Figure 9. Parsing tumalli*nikkim, showing vowel
wildcards. It parses into a third weak D-preterite, second
masculine singular with a short ’i’ Third Weak D-durative
or D-preterite second feminine singular, with a double-long
‘î’, all with second feminine singular ventive ending. The
system took 0.473 seconds to parse all the forms.)

An important note to figure 9, a form in
Akkadian can arise from two convergent streams
of conjugation, and in this case the verb form
tumallînimakkim can be either preterite or
durative.

5 Conclusion and future work

The idea behind this research was not to
simulate the evolution of Akkadian, either
historically as is done in comparative Semitic
studies, or to use some sort of theoretical, two-
stage morphological rules as in [Kataja, 1988].
Rather the goal was to create a system which
could be used by researchers and students to
help in understanding Akkadian texts. The
complexities and many weak variants of the
verb stems prevent the two-stage rules from ever
yielding a useful parser, and there are many
unneeded complexities in the historical
evolution. This system as it evolved is, perhaps,
needlessly intricate, but it works quickly and
well and adding new verb stems can be done in
about 8 hours of work.

Work continues on the parser, in teaching
Assyriologists to use it in their daily work, in
checking for errors in the rules, and in adding
more verbal forms. Currently the effort is
directed to add the $-stem, the last of the simple
stems, to the parser and teach members of the
Department of Near Eastern and Judaic Studies
at Brandeis University to allow them to make
use of the program. Future plans begin with
work to add wildcards to the generation part of
the web interface, to allow the generation of, for
instance, all G preterite forms. This would,
among other thing, aid in testing the accuracy of
the generated forms, and by extension, the
parser itself. They also include adding some of
the more common derived stems, from each of
the four simple stems there are three derived
stems, a ‘t’, an ‘n’ and a ‘tn’, for example, the G
yields the Gt, Gn and Gtn. Suffix generation
needs to be added to the Web interface and
along with that some assimilation rules should
be added. In the language, if a finite form ending
with a semi-weak is followed by a suffix
beginning with a Shin, the weak assimilates, for
example ‘m$’ becomes ‘$$’.

6 Acknowledgements

The author would like to thank Professor James
Pustejovsky for his assistance and guidance,
Professor Jacques Cohen for his advice on
Prolog and Professors David Wright, Tzvi
Abusch and Dr. Kathryn Kravitz of the
Department of Near Eastern and Judaic Studies

at Brandeis University for their assistance with
Akkadian grammar.

References

Buccellati, Giorgio. A Structural Grammar of
Babylonian. Weisbaden: Harrassowitz Verlag.
1996.

Hall, Marty Guide to CGI Programming in
Java. http://www.apl.jhu.edu/~hall/java/CGI-
with-Java.html. 1998

Huehnergard, John. A Grammar of Akkadian.
Atlanta, Georgia: Scholars Press. 1997.

Kataja , Laura and K. Koskenniemi. 1988).
“Finite-state description of Semitic morphology:
a case study in Ancient Akkadian.” Proceedings
of the International Conference on
Computational Linguistics (COLING88), pages
313--315.

Miller, Douglas B An Akkadian Handbook.
Winona Lake, Ind. Eisenbrauns, 1996.

Richardson, M. E. J. H a m m u r a b i ’ s
Laws:Text, Translation and Glossary. Sheffield,
England: Sheffield Academic Press. 2000.

Von Soden, Wolfram and Werner R. Meyer.
Grundriss der Akkadischen Grammatik. Rome :
Editrice Pontificio Istituto Biblico. 1995.

