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Abstrat

This paper presents some new results on relaxations and restritions of word-order within dependeny

grammar (DG). The notions of dependeny and word-order are separated in order to obtain an in�nite

sale of lasses of gradually relaxed languages, starting with the ontext-free lass. A linguistially

motivated type of grammars, the proper DGs, is de�ned. At the end, the paper disusses the relevane

of degree of word-order relaxation for parsing omplexity.

1 Introdution and basi notions

This paper is a substantially shortened version of the tehnial report [3℄, where all the details (inl.

motivations, formal bakground, proofs, et.) are to be found. This tehnial report is a ontinuation

of papers [1℄, [2℄ (linguisti issues) and [4℄ (formal onsiderations).

The notion of word-order relaxation within a dependeny grammar (DG) means that besides the

usual (projetive) interpretations of a dependeny grammar other (non-projetive) interpretations are

also onsidered. A possible approah is put forward in the following de�nitions.

De�nitions. A dependeny grammar (DG) is a tuple G = (T;N; S

t

; P ), where T is the set of

terminals, N is the set of nonterminals, V = N [ T , S

t

� N is the set of starting symbols, and P is

the set of rewriting rules in the following forms:

a) A!

X

BC, where A 2 N , B;C 2 V , X 2 fL;Rg b) A! B, where A 2 N , B 2 V .

The letter L (R) in the subsripts of the rules of the type a) means that the �rst (seond) symbol

on the right-hand side of the rule is onsidered dominant, and the other dependent.

If a rule has only one symbol on its right-hand side, we onsider this symbol to be dominant.

For a redution, a rule is applied as follows: the dependent symbol (if any) is deleted and the

dominant one is rewritten by the symbol ourring on the left-hand side. The rules A !

L

BC,

A !

R

BC an be applied for a redution of a string z for any of the ourrenes of symbols B;C in

z, where B preedes C in z (not neessarily immediately).

The redution history is reorded in a DR-tree (delete-rewrite-tree). For a grammar G and a string

w, this tree is obtained by interpreting the rules of the grammar as loal trees (trees of depth one)

from whih the DR-tree is then ombined, f. Fig. 1. The diretion of the edge onneting the node

with its mother reets the nature of the daughter: if the daughter is dominant, the edge is vertial,

if it is dependent, the edge is oblique.

The notion of DR-tree Tr over a string an be understood also as a derivation of a dependeny

tree (D-tree) dT (Tr). Suh a D-tree is ahieved by ollapsing eah stritly vertial path (sequene



of vertial edges) into a single node marked by the terminal symbol from the bottom of this path,

and by keeping the oblique edges intat (this means that all edges in any D-tree are oblique) For a

larifying example, f. Fig.1. Note that both kinds of trees an ontain rossing edges. Note also

that the number of rossings in a D-tree must be less than or equal to the number of rossings in the

respetive DR-tree; in fat, it is even possible to have a DR-tree with rossing branhes induing a

D-tree without any rossing.
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The left part of Fig.1. displays a DR-tree Tr parsed by G for the input sentene a
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Figure 1: DR-, D-tree on a
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The right part of Fig. 1. displays the D-tree dTr ontrated from Tr.

De�nitions. For the purpose of de�nition of overage, let us �rst assoiate eah terminal symbol

within a string with a number marking its position ounted from left, and all this number the

horizontal index of the terminal symbol.

For any node u of a tree Tr, we shall de�ne its overage Cov(u,Tr) as the set of horizontal indies

of all terminal nodes from whih a bottom-up path leads to u.

Let there be a node u of a DR-tree (D-tree) Tr suh that Cov(u; T r) = fi

1

; i

2

; : : : ; i

n

g, i

1

<

i

2

: : : i

n�1

< i

n

, 1 � j < n and i

j+1

� i

j

> 1. We say that the pair (i

j

; i

j+1

) forms a gap in the

Cov(u; T r) (or that the Cov(u; T r) ontains the gap (i

j

; i

j+1

)).

Let Tr be a DR-tree (D-tree), u be a node of Tr, and Cov(u; T r) its overage. The symbol DR-

Ng(u; T r) (D-Ng(u; T r)) represents the number of gaps in Cov(u; T r).

DR-Ng(Tr) (D-Ng(Tr)) denotes the maximum from fDR-Ng(u,Tr); u 2 Trg (fD-Ng(u,Tr); u 2 Trg).

We say that DR-Ng(Tr) (D-Ng(Tr)) is the node-gaps omplexity of Tr.

A tree is projetive if the number of gaps of any its node is equal to 0 (zero). If this is not so, the

tree is non-projetive. In order to measure non-projetivity we use the measures DR-Ng or D-Ng.

Example 2. We stik to the DR-tree Tr from the previous example. The overages of non-terminal

nodes are (in the top-down order) as follows: f1; 2; 3; 4; 5; 6; 7; 8g, f2; 3; 4; 5; 6; 7; 8g,f2; 3; 4; 6; 7; 8g

f2; 4; 6; 7; 8g, f2; 4; 7; 8g, f4; 7; 8g, f4; 8g, f8g. Hene DR-Ng(Tr) = 2, beause the number of gaps in

the overages does not exeed 2, and, e.g., f2; 4; 6; 7; 8g ontains the gaps (2; 4); (4; 6).



Observation. It holds that any D-tree whih is ontrated from a projetive DR-tree is a projetive

D-tree, but there are ertain types of non-projetive DR-trees whih are ontrated into projetive

D-trees. Some of them are linguistialy inadequate. This observation leads to the following de�nition.

De�nition. A DG G is alled a properDG if for any projetive D-tree dTr generated by G there

exists a projetive DR-tree Tr generated by G suh that dTr = dT (Tr).

Example 3. Let us hoose a DG G

Ll

in the following way: G

Ll

= (T;N; fCg; P ), where T =

fa; b; ; dg, N = fA;B;Cg, P = fA!

L

Bb;B !

L

C;C !

L

Aa;C ! dg.

We have shown in [4℄ that G

Ll

is not a proper grammar. Namely it generates only projetive (very

simple) D-trees of depth 1, and on the other hand it generates a language, whih is not ontext-free,

thus it generates an in�nite set of words orresponding to nonprojetive DR-trees.

The previous de�nition embodies a substantial empirial laim, namely that all DGs of a natural

language have to fall into the lass proper grammars - i.e. the laim that grammars whih lie outside

this lass are not linguistially adequate.

Seond, as said above, we need mehanisms for expressing language-partiular onstraints on word-

order, in partiular onstraints on number of gaps within a subtree (or loal subtree) headed by word

of a ertain ategory. These onstraints an be expressed easily as follows:

De�nitions. Let G = (T;N; P; S) be a DG, and Cs be a set of gap restritors, i.e. pairs of the

shape [A; i℄, where A 2 N and i 2 Nat[f0g. Then we say that the pair G

Cs

= (G;Cs) is a restrited

DG (RsD-grammar, RsDG ), and if G is a proper grammar we say that G

Cs

= (G;Cs) is a restrited

proper DG (prop-RsDG). Any pair [A; i℄ 2 Cs expresses the onstraint that only suh DR-trees are

well-formed aording to the RsD-grammar G

Cs

in whih the value of the measure DR-Ng of any of

their overing subtrees with the root-symbol A is less or equal to i.

Let i 2 (Nat [ f0g [ f�g) and let us assume that � is greater than any natural number. Then, for

a (�xed) Cs and for a (�xed) string w we de�ne the following:

DR-T (w;G

Cs

; i) is the set of DR-trees generated by G over w suh that the value of the measure

DR-Ng does not exeed i for them, and at the same time the onstraints from Cs are met for them

(in the above sense). For i = � only the onstraints Cs are imposed on the set of DR-trees generated

by G over w.

DR-L(G

Cs

; i) = fwj DR-T (w;G

Cs

; i) 6= ;g.

DR-L(i) denotes the lass of languages DR-L(G

Cs

; i), for all RsDG's G

Cs

.

DR-prop-L(i) denotes the lass of languages DR-L(G

Cs

; i), for all proper RsDG's G

Cs

.

For D-trees, the lasses D-L(i) and D-prop-L(i) an be de�ned in a similar way.

Mind here the important di�erene in the nature of the two kinds of onstraints. The �rst kind

is a onstraint whih has to hold for the a tree globally (i.e. for all nodes of the tree). The gap

restritors are onstraints whih hold only for any (overing, indued) subtree of a node whih is of

ertain ategory. We need to use both types of onstrains in order to ahieve the results on hierarhy.

De�nition. Let CF

+

be the set of ontext free languages without empty string. Let us take

L 2 CF

+

and k 2 f0g[Nat. We shall say that L has the degree of DR-relax-ability k (DRL(L) = k)

if there exists a RsDG GS suh that

a) DR-L(GS; 0) = L, and

b) DR-L(GS; i) 62 DR-L(i � 1), for i 2 f1; 2; :::; kg, and DR-L(GS; k) = DR-L(GS; k + j) for any

j 2 Nat.

We shall also say that the grammar GS has the degree of DR-relax-ability k (DRS(GS) = k).



2 Results

Propositions. The following holds:

a) CF

+

= DR-L(0) = DR-prop-L(0)

b) For any j 2 Nat there exists a prop-RsDG Gp

j

suh that j = DRS(Gp

j

).

) DR-L(0) � DR-L(1) � ::: � DR-L(n)::: � DR-L(�)

d) DR-prop-L(0) � DR-prop-L(1) � ... � DR-prop-L(n)... � DR-prop-L(�).

The proposition b) was shown in [3℄. The propositions ) and d) are onsidered as its onsequenes

there. The proposition ) was shown independently already in [4℄ by using a sequene of improper

grammmars similar to the grammar from Example 3.

The previous onsiderations are onneted with parsing omplexity through the onept of overage.

Some results onerning this topi are given in the following:

Proposition. Let us denote Nat

+

= f0g [ Nat. To any RsDG GS there exists a (sequential)

algorithm Am omputing for any string w an i 2 Nat

+

, suh that i is the smallest element of Nat

+

for whih w 2 DR-L(GS; i), or, if suh an i does not exist, returning a message about the fat that

w 62 L(GS; �). Moreover, for a given i 2 Nat

+

Am reognizes the membership w 2 L(GS; i) in a

polynomial time, where the degree of the polynomial inreases with i.

Consequenes. There exists a sequential algorithm suh that for any i 2 Nat

+

and any L 2 DR-

L(i), the algorithm reognizes L in a polynomial time, where the degree of the polynomial inreases

with i. There exists a sequential algorithm reognizing any L 2D-prop-L(0) in a polynomial time.

Remark. We believe that there exists an i 2 Nat

+

for whih there does not exist an algorithm

reognizing every language from D-L(i) in a polynomial time. We have even the suspiion, due to the

results from [4℄, that this i an be equal to 0. Further we onjeture that there exists a sequential

algorithm reognizing any L 2D-prop-L(i) for any natural i in a polynomial time. We will try to

prove this in the future.
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