
ON THE COMPLEXITY OF SOME EXTENSIONS OF

RCG PARSING

Eberhard Bertsh

Ruhr University

Faulty of Mathematis

Universit�atsstra�e 150

D-44780 Bohum

Germany

eberhard.bertsh�ruhr-uni-bohum.de

Mark-Jan Nederhof

�

University of Groningen

Faulty of Arts

P.O. Box 716

NL-9700 AS Groningen

The Netherlands

markjan�let.rug.nl

Abstrat

We onsider the parsing problem for range onatenation grammars (RCGs). Two new appliations

of RCG parsing are studied. The �rst is the parsing of �nite automata, the seond is string-to-string

transdution, with an extension of RCGs. We show that these problems are undeidable in general, but

beome tratable for sublasses of the formalism.

1 Introdution

Range onatenation grammar is a formalism that has a number of attrative theoretial and pratial

properties. First, the lass of languages that an be desribed by RCGs (the range onatenation

languages, or RCLs) equals the lass PTIME of languages that an be reognized in polynomial time;

RCGs share this property with a number of other formalisms suh as ILFP [19℄.

1

This means that

the generative power of RCGs inludes that of e.g. ontext-free grammars, tree-adjoining grammars,

and linear ontext-free rewriting systems.

Seond, the ombination of its expressiveness and its simpliity makes it attrative as intermediate

representation in the onstrution of parsers for grammars in some other formalisms [4℄.

Third, it has been argued that it is suitable for desription of a number of natural language phe-

nomena [7℄.

Until now, studies of RCGs have onentrated on reognition of strings. However, most appliations

in NLP require more elaborate types of proessing. The objetive of this paper is to investigate two

extensions of RCG reognition of strings: intersetion with regular languages, and transdution both

for strings and regular languages as input.

The struture of this paper is as follows. In the next setion we reall the main de�nitions onneted

to RCGs, and we present a simple reognition algorithm for strings. In Setion 3 we generalize this to

the intersetion with regular languages and show that for arbitrary RCGs, the emptiness problem for

the intersetion is undeidable. It is, furthermore, NP-omplete if the regular language is �nite and is

represented by a �nite automaton. We also show that the intersetion an be omputed in polynomial

time provided we take an RCG satisfying a syntati restrition.

�

Supported by the Royal Netherlands Aademy of Arts and Sienes. Seondary aÆliation is the German Researh

Center for Arti�ial Intelligene (DFKI).

1

Also worth mentioning are the formalisms from [23, 16℄, whih desribe languages that are related through logspae

redutions to various other omplexity lasses besides PTIME.

The pratial interest of this lies e.g. in the realm of spoken-language systems, where grammatial

proessing is often not applied on simple strings, but on a ompat representation of many strings, in

the form of a (weighted) �nite automaton, whih is output by a speeh reognizer.

Another generalization of RCG parsing is range onatenation transdution, whih is investigated

in Setion 4. We show that this type of transdution leads to undeidable problems for unonstrained

RCGs. However, by imposing syntati restritions similar to the one in the setion before, we obtain

tratable algorithms.

Appliations of transdution lie in mahine translation, but transdution may also be used merely

to speify more aurately the desired output format of a parser.

In Appendix A we show that the lass of languages generated by RCGs indeed equals PTIME.

2 Range Conatenation Grammar

In this setion we de�ne positive range onatenation grammars. Sine we do not onsider negative

RCGs in this paper, we will omit the quali�ation `positive' before `RCG'. For more details we refer

to [9℄.

An RCG is a 5-tuple G = (N; T; V; P; S) where N is a �nite set of prediates, T and V are �nite,

disjoint sets of terminals and variables, respetively, S 2 N is the start prediate, and P is a �nite set

of lauses of the form:

0

!

1

� � �

m

where m � 0 and eah of

0

,

1

, . . . ,

m

is a prediate expression of the form:

A(�

1

; : : : ; �

p

)

where A 2 N , p � 1 is the arity of the prediate expression, and eah argument �

i

, 1 � i � p, is an

element of (T [V)

�

. We assume eah prediate ours with only one arity. The start prediate has

arity 1.

Lower-ase letters a; b; : : : will denote terminals, upper-ase letters A;B; : : : will denote prediates,

and upper-ase letters X;Y; : : : will denote variables. The empty string is denoted by �. A symbol

suh as ~� will refer to a list of arguments in a prediate expression.

We say an RCG is a simple RCG (sRCG) if the arguments in the RHS of a lause onsist of single

variables, and eah variable in a lause has exatly two ourrenes: one in the RHS and one in the

LHS.

An example of a (simple) RCG is given by the following lauses, whih we have labelled for ease of

referene:

1

: S(XY)! A(X;Y)

2

: A(Xa; Y a)! A(X;Y)

3

: A(Xb; Y b)! A(X;Y)

4

: A(�; �)! �

As we will explain, this grammar generates the language fww j w 2 fa; bg

�

g.

As for example in [3, 24℄, we onsider the parsing problem as the ombination of two steps. First,

we onstrut a ontext-free grammar out of an RCG and an input string, in suh a way that the CFG

an be seen as a ompat representation of all parses of the string. The seond, optional step redues

the CFG, removing produtions that annot be part of any derivation.

The nonterminals of the ontext-free grammar have the form A((r

1

; r

0

1

); (r

2

; r

0

2

); : : : ; (r

p

; r

0

p

)), for

a prediate expression A(�

1

; : : : ; �

p

) from some lause of the RCG, and a ombination of numbers

r

1

; r

0

1

; r

2

; r

0

2

; : : : ; r

p

; r

0

p

, satisfying 0 � r

i

� r

0

i

� n (1 � i � p). In e�et, we replae the arguments by

pairs of numbers indiating ranges ; ranges represent ourrenes of substrings in the input. The start

symbol is S((0; n)), where S is the start prediate from the RCG.

The produtions of the CFG are formed as follows. For eah lause:

0

!

1

� � �

m

we onsider all possible mappings from ourrenes of terminals and from variables in the lause to

pairs of positions (ranges), satisfying:

� if an ourrene of terminal a is mapped to a pair (r; r

0

), then a

r+1

� � � a

r

0

must be a, and

� if onseutive variables and ourrenes of terminals in an argument are mapped to

(r

1

; r

0

1

); (r

2

; r

0

2

); : : : ; (r

q

; r

0

q

), some q, then r

0

1

= r

2

; r

0

2

= r

3

; : : : ; r

0

q�1

= r

q

. By de�nition, we then

state that the above-mentioned mapping maps the argument as a whole to range (r

1

; r

0

q

).

For eah suh mapping, we now add to the ontext-free grammar the prodution:

0

0

!

0

1

� � �

0

m

where eah

0

i

(0 � i � m) is obtained from

i

by replaing eah argument by the range it is mapped

to.

For the RCG from the running example and the input abab, we obtain produtions suh as

S((0; 4)) ! A((0; 2); (2; 4)) from lause

1

, A((0; 2); (2; 4)) ! A((0; 1); (2; 3)) from lause

3

,

A((0; 1); (2; 3)) ! A((0; 0); (2; 2)) from lause

2

, and A((0; 0); (2; 2)) ! � from lause

4

. We also

obtain for example A((3; 3); (4; 4)) ! � from lause

4

but this prodution will never be used. No

prodution A((0; 1); (3; 4)) ! A((0; 0); (3; 3)) will be produed, sine the �rst and fourth symbols of

the input abab are distint, so neither

2

nor

3

an give rise to suh a prodution.

If we now redue the CFG, then we obtain a non-empty grammar if and only if some derivation of

the empty string from S((0; n)) exists, and this de�nes whether the input string is in the language

generated by the RCG.

In the running example, the redution would remove e.g. A((3; 3); (4; 4)) ! �, and in the re-

sulting grammar, the existene of the derivation S((0; 4)) ! A((0; 2); (2; 4)) ! A((0; 1); (2; 3)) !

A((0; 0); (2; 2))! � indiates that the input abab is indeed in the language generated by the grammar.

At the same time, this derivation assigns a struture to the input. In this example, there is only one

derivation. If there are several, the CFG serves to represent all of them in a ompat way.

Sine a ontext-free grammar an be redued in linear time, the reognition and parsing problems

for an RCG an be no more expensive than the onstrution of the (unredued) ontext-free grammar

from the RCG and an input string. This time omplexity is (deterministi) polynomial in the length

of the string, and linear in the size of the RCG. See [9℄ for more information on RCG parsing.

2

It has been shown by [6℄ that the lass of languages generated by simple RCGs equals the lass of

languages that an be desribed by the linear ontext-free rewriting systems, whih is equal to the

2

However, the algorithm as formulated in Table 1 of [9℄ treats yles of lauses inorretly. The author on�rmed

this in private ommuniation, further laiming to have developed a orret version after publiation. The published

algorithm fails e.g. for the RCG with the lauses: s(X) ! p(X) r(X), p(X) ! q(X), q(X) ! r(X), q(a) ! �,

r(X)! p(X); the reognizer will erroneously rejet input a.

lasses of languages generated by the multiple ontext-free grammars [21℄ and the �nite-opying LFGs

[20℄.

3 Intersetion with Regular Languages

It has been shown that the problem whether an RCG generates an empty language is undeidable [8℄.

Sine L = L \ T

�

for eah RCL L, it is obvious that in general we annot onstrut some desription

G

0

of a language L

0

= L \ R, where L is generated by an RCG and R is a regular language, in suh

a way that the emptiness of L

0

an be deided on the basis of G

0

. In other words, the algorithm for

parsing strings in polynomial time that we investigated in the previous setion annot be generalized

to parsing sets of strings, if those sets are arbitrary regular languages.

We an simplify the task by onstraining a regular language to be �nite, whih means that it is the

language aepted by a yle-free �nite automaton, where we measure the time omplexity in terms

of the size of the automaton (number of transitions). Now the problem beomes deidable, but it is

still NP-omplete, whih is proved by the following.

We an nondeterministially hoose a string of length smaller than the size of the automaton. We

an then hek in polynomial time whether the string is aepted by the automaton and whether it

is in the language generated by the RCG, using the algorithm from the previous setion. This test

sueeds for some string if and only if the intersetion of the two languages is non-empty. Hene, our

problem is in NP.

To �nish our proof of NP-ompleteness, onsider the NP-omplete problem 3SAT. An instane of

this problem onsists of a olletion U = fu

1

; : : : ; u

n

g of variables and a olletion C = f

1

; : : : ;

m

g

of lauses. If u 2 U then u and u are literals. A lause

j

(1 � j � m) is a set fl

1

; l

2

; l

3

g of literals. A

truth assignment is a funtion t : U ! fT; Fg. For more explanation we refer to [11℄.

We will now de�ne a polynomial algorithm to onstrut an RCG from an instane of the 3SAT

problem, in suh a way that the RCG aepts the set of truth assignments satisfying this instane.

A truth assignment t will be enoded as a string l

1

� � � l

n

, where l

i

= u

i

if t(u

i

) = T and l

i

= u

i

if

t(u

i

) = F , for 1 � i � n.

The RCG will have 2n terminals, viz. u and u, for eah u 2 U . For eah variable u

i

2 U (1 � i � n)

we onstrut two RCG lauses A

i

(u

i

) ! � and A

i

(u

i

) ! � and for eah lause

j

= fl

1

; l

2

; l

3

g

(1 � j � m) we onstrut three RCG lauses B

j

(l

1

) ! �, B

j

(l

2

) ! � and B

j

(l

3

) ! � and the RCG

furthermore ontains the lause:

S(Y

1

� � �Y

n

) ! A

1

(Y

1

) � � � A

n

(Y

n

) B

1

(X

1

) � � � B

m

(X

m

)

Next, we onstrut a �nite automaton that aepts the language fu

1

; u

1

g � : : : � fu

n

; u

n

g of all

possible truth assignments. This an trivially also be done in polynomial time in the size of the

instane of the problem. It follows that the intersetion of the languages desribed by the RCG and

the automaton is non-empty if and only if the instane of the problem has a solution. Thereby we have

shown that deiding the emptiness problem for the intersetion of RCLs and languages aepted by

yle-free �nite automata is at least as diÆult as deiding the 3SAT problem, and hene the former

problem is NP-omplete.

To allow emptiness of the intersetion with regular languages to be deidable in polynomial time,

we simplify the problem by onstraining the RCG to be a simple RCG, and we apply an idea originally

due to [3℄. Let us assume a regular language is given by a �nite automaton with initial state q

0

and a

set F of �nal states, and let us assume without loss of generality that there are no epsilon transitions.

For eah lause in the sRCG we onsider mappings from ourrenes of terminals and from variables

to ranges as before, but now the ranges are pairs of states of the automaton, and the �rst ondition

on suh mappings is that if an ourrene of terminal a is mapped to a pair (r; r

0

), then there must

be a transition labelled a from state r to state r

0

. The seond ondition remains as in Setion 2.

As before, eah suh mapping gives rise to a prodution of a CFG. In addition, this CFG ontains

one prodution S

y

! S(q

0

; q) for eah �nal state q 2 F , and the new symbol S

y

beomes the start

symbol. The resulting CFG an then be redued, as before. Thereby the emptiness problem an be

deided in polynomial time in the size of the �nite automaton.

4 Transdution

A transdution is a subset of T

�

1

�T

�

2

, where T

1

is an input alphabet and T

2

is an output alphabet. A

desription of a transdution will be alled a transduer. A transduer is a formal model of translation

between two languages, whih an be expliitly based on syntati strutures of varying omplexity

depending on the kind of mahinery that is involved in the desription.

Two �nite automata that share some strutural properties may be ombined to form a �nite trans-

duer [5℄, and two similarly strutured CFGs may be ombined to form a syntax-direted translation

shema [1℄.

3

By the same priniple, we may ombine two RCGs, and have them speify a transdution.

We all suh a ombination of two RCGs a range onatenation transduer (RCT). The di�erene

from an RCG is that prediate expressions in lauses have the form:

A(�

1

; : : : ; �

p

)(�

1

; : : : ; �

p

0

)

where A 2 N , p � 1 and p

0

� 1 are the input and output arities, and eah input argument �

i

(1 � i � p) and eah output argument �

i

(1 � i � p

0

) is an element of (T [V)

�

. We will assume that

eah variable ours either in input arguments or in output arguments, but not in both.

An example of an RCT is given by the following lauses:

S(X

1

Y

1

)(X

2

Y

2

)! A(X

1

; Y

1

)(X

2

; Y

2

)

A(aX

1

; Y

1

a)(aX

2

; aY

2

)! A(X

1

; Y

1

)(X

2

; Y

2

)

A(bX

1

; Y

1

b)(bX

2

; bY

2

)! A(X

1

; Y

1

)(X

2

; Y

2

)

A(�; �)(�; �)! �

The transdution it desribes is f(ww

R

; ww) j w 2 fa; bg

�

g. (The operator R in w

R

reverses its

argument string.) In other words, input palindromes are hanged into output strings by reversing

their seond halves to produe two onseutive opies of the same string.

The meaning of an RCT is spei�ed as follows. Given an input string a

1

� � � a

n

we form a grammar

by onsistently replaing the input arguments by ranges, just as in the ase of reognition as explained

in Setion 2, but now, beause the output arguments remain una�eted by this proess, the resulting

grammar is an RCG. The prediate expressions in this RCG have the form

A((r

1

; r

0

1

); (r

2

; r

0

2

); : : : ; (r

p

; r

0

p

))(�

1

; : : : ; �

p

0

)

3

Consider also the ombination of two tree-adjoining grammars to form a synhronous TAG [22℄. The approah from

[2℄ �ts less well into this ontext, sine it is based on tree transformations that are inherently asymmetri with respet

to the relation between input and output.

where eah (r

i

; r

0

i

) indiates a range in the input string, as before, and A((r

1

; r

0

1

); (r

2

; r

0

2

); : : : ; (r

p

; r

0

p

))

in its entirety represents a prediate in the resulting RCG. The set of strings that this RCG generates

now represents the output of the transduer for input a

1

� � � a

n

.

The order of omplexity of the above onstrution is idential to that of RCG reognition, viz.

polynomial in the length of the input. However, the above onstrution merely produes an RCG that

generates the set of output strings, but it does not inlude the proess of atually �nding any of those

output strings. In fat, it is undeidable whether, for a given input string and a given RCT, the set

of output strings is empty. We will prove an even stronger statement: there is a �xed RCT suh that

it is undeidable whether, for a given input string, the set of output strings is empty.

The idea of this proof is to let the input string represent an instane of Post's orrespondene

problem (PCP) [18℄. For suh an instane f(s

1;1

; s

1;2

); (s

2;1

; s

2;2

); : : : ; (s

m;1

; s

m;2

)g, where s

i;1

; s

i;2

2

fa; bg

�

(1 � i � m), the representation as input string is $s

1;1

#s

1;2

$s

2;1

#s

2;2

$:::$s

m;1

#s

m;2

$.

The RCT is suh that the set of output strings is non-empty if and only if the instane of PCP

represented by the input has a solution. This RCT is given by the following set of lauses:

S(Z)(Y)! Post(Z)(Y; Y)

Post(Z)(Y

1

; Y

2

)! Substrings(Z)(Y

1

; Y

2

)

Post(Z)(X

1

Y

1

; X

2

Y

2

)! Post(Z)(X

1

; X

2

) Substrings(Z)(Y

1

; Y

2

)

Substrings(Z

1

$X

1

#X

2

$Z

2

)(Y

1

; Y

2

)! Substring(X

1

)(Y

1

) Substring(X

2

)(Y

2

)

Substring(aX)(aY)! Substring(X)(Y)

Substring(bX)(bY)! Substring(X)(Y)

Substring(�)(�)! �

Please note that the argument Z in S(Z)(Y) represents the input, whih enodes a spei� instane of

PCP, and Y represents a math for the problem instane (if one exists). Through the use of prediate

Substring we ensure that pairs of strings ontained in the instane of PCP are mathed appropriately

with subranges in the output Y .

Let us de�ne the left and right projetions of a transdution T to be the sets fw j (w; v) 2 T g

and fv j (w; v) 2 T g, respetively. In the ase of the RCT for PCP above, the left projetion is an

undeidable language, and hene not in PTIME and not in the lass of RCLs. This shows that the left

projetion of a range onatenation transdution need not be a range onatenation language, and by

symmetry, the right projetion need not be an RCL either.

We will now onsider two simpli�ed forms of RCT that allow tratable transdution. We �rst de�ne

a simple RCT (sRCT) as an RCT whih is suh that both the input and output arguments in the

RHS of a lause onsist of single variables, and eah variable in a lause has exatly two ourrenes:

one in the RHS and one in the LHS. We de�ne a right-simple RCT (rsRCT) as an RCT whih is suh

that the above restrition holds only on the output arguments and the variables ourring therein.

Note that the left and right projetions of a simple RCT are simple RCLs. The sRCGs generating

these sRCLs are obtained by removing the output or input arguments, respetively, of the sRCT.

Similarly, the left projetion of a right-simple RCT is an RCL.

Using the transdution algorithm from the beginning of this setion, we an produe an RCG from

a right-simple RCT and an input string, in polynomial time, and this RCG is obviously also simple.

The same holds for a simple RCT and a �nite automaton as input, generalizing the onstrution from

Setion 3. Let us refer to the simple RCG that results in either of these ases as G.

The seond step is the redution of the grammar G, of whih the time ost is linear in the size of

G, whih is polynomial in the size of the input string or input automaton.

The next step is an analysis of G, whih will be used to avoid that the derivations we are going

to ompute ontain yles. We say an sRCG is yli if for some �xed string it allows derivations of

unbounded length. This is a generalization of the de�nition of yliity for CFGs [1℄. Our analysis is

similar to that for the variant of Earley's algorithm from [12℄.

For the analysis of yles, we �rst need to investigate whih prediates of the sRCG are nullable.

Nullable prediates are de�ned indutively as follows:

� If there is a lause A(~�

0

)! B

1

(~�

1

) � � �B

m

(~�

m

), with m � 0, suh that B

1

, . . . , B

m

are all nullable,

and the arguments in ~�

0

do not ontain any terminals, then A is also nullable.

4

Similarly, non-empty prediates are de�ned indutively as follows:

� If there is a lause A(~�

0

)! B

1

(~�

1

) � � �B

m

(~�

m

), with m � 0, suh that at least one of B

1

, . . . , B

m

is non-empty, or if ~�

0

ontains a terminal, then A is non-empty.

We now add new lauses by merging pairs of existing lauses. The motivation is that with these

new lauses, we an avoid use of existing lauses in suh a way that they might lead to yles. The

following is to be repeated until no more new lauses an be added.

� Consider two lauses A

0

(~�

0

) ! A

1

(~�

1

) � � �A

m

(~�

m

) and B

0

(~�

0

) ! B

1

(~�

1

) � � �B

m

0

(~�

m

0

) suh that

A

i

= B

0

, for some i (1 � i � m), and A

1

, . . . , A

i�1

, A

i+1

, . . . , A

m

are all nullable, and ~�

0

does

not ontain any terminals.

� Assume the sets of variables in these two lauses are disjoint. (If not, rename the variables in the

�rst lause.)

� Construt ~�

0

from ~�

0

, by replaing eah variable that ours in ~�

i

by the orresponding argument

in ~�

0

, and by replaing eah variable that ours in ~�

1

, . . . , ~�

i�1

, ~�

i+1

, . . . , ~�

m

by �.

� Add the lause A(~�

0

)! B

1

(~�

1

) � � �B

m

0

(~�

m

0

).

Note that eah RHS of a new lause is the RHS of an existing lause from G, and suh a RHS ontains

exatly as many variables as the output arguments of the RHS of some lause from the original

(r)sRCT. The prediate of the LHS of a new lause is an existing prediate from G. The terminals

in suh a LHS our together in the output arguments of the LHS of some lause from the original

(r)sRCT, but they may be distributed in a di�erent way over the respetive arguments. Likewise,

for a �xed RHS, eah new lause for that RHS may have its LHS variables (whih are the same as

the variables in the RHS) distributed in a di�erent way over the respetive arguments. But sine

we onsider the sRCT as �xed, the number of di�erent distributions of variables and terminals over

the arguments does not play any role in the omplexity analysis of the growth of the grammar by

the above transformation. Therefore, we only need to onsider the RHSs and the LHS prediates.

We onlude that the grammar after the above transformation has a size quadrati in the size it had

before.

The �nal step is to show that we may e�etively extrat eah output string from the resulting sRCG

by a nondeterministi proess, indiated in Figure 1. This proess operates by reursive-desent. From

4

Note that if m = 0 and ~�

0

does not ontain any terminals, then A(~�

0

) is of the form A(�; : : : ; �), sine the grammar

is a simple RCG.

Proedure generate:

1. Nondeterministially hoose from steps 2 and 3 as far as they are appliable.

2. Appliable if the start prediate is non-empty: Let the return value be the string in the result of

alling routine generate-from with argument S.

3. Appliable if the start prediate is nullible: Let the return value be �.

Proedure generate-from with argument A

0

:

1. Choose:

� a lause A

0

(~�

0

)! A

1

(~�

1

) � � �A

m

(~�

m

), and

� two disjoint, omplementing subsequenes B

1

(

~

�

0

1

) � � �B

m

0

(

~

�

0

m

0

) and C

1

(

~

�

00

1

) � � �C

m

00

(

~

�

00

m

00

) of

A

1

(~�

1

) � � �A

m

(~�

m

) (i.e. m

0

+m

00

= m), where B

1

, . . . , B

m

0

are all non-empty and C

1

, . . . , C

m

00

are all nullible,

suh that ~�

0

ontains one or more terminals or m

0

� 2.

2. Call the proedure generate-from reursively with argument B

1

, . . . , B

m

0

, respetively, and let

the returned tuples of strings be ~�

1

, . . . , ~�

m

0

.

3. Construt ~�

0

from ~�

0

by onsistently replaing eah variable that ours in some

~

�

0

i

by the orre-

sponding string in ~�

i

(1 � i � m

0

), and by replaing eah variable that ours in

~

�

00

1

, . . . ,

~

�

00

m

00

by

�.

4. Let the return value be ~�

0

.

Figure 1: Computing an output string from sRCG G.

the start prediate, we desend the grammar, �nding tuples of strings for RHS prediate expressions

that we onatenate into tuples of larger strings for LHS prediate expressions.

It an be easily seen that the number of inarnations of proedure generate-from is linear in

the length of the output string, sine eah inarnation is responsible either for the generation of a

terminal, if the LHS of the lause ontains a terminal, or it is responsible for the joining of tuples

obtained reursively for members in the RHS of the lause, suh that at least two of these tuples eah

ontain at least one non-empty substring. The number of inarnations an thereby not exeed twie

the length of the output string.

Apart from the use of G for nondeterministi generation of output strings, it may also be used

to deide the emptiness and membership problems for the output language, as follows. The output

language is empty if and only if G beomes the empty grammar after redution. Membership of a

partiular string in the output language an be deided by applying the general reognition algorithm

for RCGs from Setion 2.

Complexity theory provides us with many language lasses that are haraterized through automa-

ton models and their restritions by time and spae bounds. One suh important lass is PTIME, and

we know that this lass is exatly the lass of languages generated by RCGs.

Less seems to be known about haraterizations of lasses of transdutions through omplexity

measures. Although simple RCTs and right-simple RCTs have apparently favourable omplexity

properties, it seems diÆult to apture these properties in formal terms. The algorithm in Figure 1

an for example be desribed in terms of some appropriate nondeterministi RAM model with linear

time bounds [13℄, but sine suh models allow NP-omplete languages, it seems they are too ourse

for our purposes.

From an algorithmi point of view, the most obvious implementation of a transdution is as a test

of membership for pairs, eah onsisting of an input and an output string. In this setion we have

hosen another approah whereby an input string is onsidered in isolation and proessed to produe

the grammar G, to be used in a later phase for identifying mathing output strings. This amounts

to a form of preproessing for the above-mentioned membership test, and thereby the algorithms in

this setion an be seen in the light of some theory of ompilability [10℄. Further researh is needed

to deide whether appliation of suh theory may lead to more aurate haraterizations of types of

range onatenation transdution in terms of automaton models and omplexity measures.

5 Conlusions

The lass of range onatenation grammars introdued by Pierre Boullier was previously shown to

provide ease of expression in desriptions of linguisti phenomena and to allow, by means of natural

sublasses, omparison with other formalisms known from the omputational linguistis literature.

Furthermore, the omplexity lass PTIME known from theoretial omputer siene is idential with

the lass of RCLs, as demonstrated in the appendix to this paper. The main ontribution of the present

artile onsists in extending the RCG onept in two diretions that seem natural from the point of

view of phrase-struture grammars, but have not been studied in an RC ontext before: parsing of

representations of regular languages, and grammar-based transdution. The essential results an be

summarized by stating that both problems beome tratable by onstraining grammars to be `simple'.

Aknowledgements

Giorgio Satta ontributed to the proof in Appendix A, and made several helpful remarks on the ore

ideas of the paper. Pierre Boullier kindly provided referenes to publiations.

Referenes

[1℄ A.V. Aho and J.D. Ullman. Parsing, The Theory of Parsing, Translation and Compiling, vol-

ume 1. Prentie-Hall, 1972.

[2℄ B.S. Baker. Generalized syntax direted translation, tree transduers, and linear spae. SIAM

Journal on Computing, 7(3):376{391, 1978.

[3℄ Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple phrase struture gram-

mars. In Y. Bar-Hillel, editor, Language and Information: Seleted Essays on their Theory and

Appliation, hapter 9, pages 116{150. Addison-Wesley, 1964.

[4℄ F. Barth�elemy et al. Guided parsing of range onatenation languages. In 39th Annual Meeting

and 10th Conferene of the European Chapter of the ACL, pages 42{49, 2001.

[5℄ J. Berstel. Transdutions and Context-Free Languages. B.G. Teubner, Stuttgart, 1979.

[6℄ P. Boullier. Proposal for a natural language proessing syntati bakbone. Rapport de reherhe

3342, INRIA, Roquenourt, Frane, January 1998.

[7℄ P. Boullier. Chinese numbers, MIX, srambling, and Range Conatenation Grammars. In Ninth

Conferene of the European Chapter of the ACL, pages 53{60, 1999.

[8℄ P. Boullier. A ubi time extension of ontext-free grammars. In Sixth Meeting on Mathematis

of Language, pages 37{50, Orlando, Florida USA, July 1999. University of Central Florida. Also

appeared in Grammars, 3:111-131, 2000.

[9℄ P. Boullier. Range Conatenation Grammars. In Proeedings of the Sixth International Workshop

on Parsing Tehnologies, pages 53{64, Trento, Italy, February 2000.

[10℄ M. Cadoli et al. Preproessing of intratable problems. DIS 24-97, Dipartimento di Informatia e

Sistemistia, Universit�a di Roma \La Sapienza", November 1997. To appear in Information and

Computation, 2001(?).

[11℄ M.R. Garey and D.S. Johnson. Computers and Intratability | A Guide to the Theory of NP-

Completeness. Freeman and Company, 1979.

[12℄ S.L. Graham, M.A. Harrison, and W.L. Ruzzo. An improved ontext-free reognizer. ACM

Transations on Programming Languages and Systems, 2(3):415{462, July 1980.

[13℄ E. Grandjean. Linear time algorithms and NP-omplete problems. SIAM Journal on Computing,

23(3):573{597, 1994.

[14℄ A. Groenink. Surfae without Struture { Word order and tratability issues in natural language

analysis. PhD thesis, University of Utreht, 1997.

[15℄ A.V. Groenink. Mild ontext-sensitivity and tuple-based generalizations of ontext-grammar

(si). Linguistis and Philosophy, 20:607{636, 1997.

[16℄ N. Immerman. Relational queries omputable in polynomial time. In Proeedings of the Fourteenth

Annual ACM Symposium on Theory of Computing, pages 147{152, 1982.

[17℄ K.N. King. Alternating multihead �nite automata. Theoretial Computer Siene, 61:149{174,

1988.

[18℄ H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation. Prentie-Hall,

1981.

[19℄ W.C. Rounds. LFP: A logi for linguisti desriptions and an analysis of its omplexity. Compu-

tational Linguistis, 14(4):1{9, 1988.

[20℄ H. Seki et al. Parallel multiple ontext-free grammars, �nite-state translation systems, and

polynomial-time reognizable sublasses of lexial-funtional grammars. In 31st Annual Meeting

of the ACL, pages 130{139, 1993.

[21℄ H. Seki et al. On multiple ontext-free grammars. Theoretial Computer Siene, 88:191{229,

1991.

[22℄ S.M. Shieber. Restriting the weak-generative apaity of synhronous tree-adjoining grammars.

Computational Intelligene, 10(4):371{385, 1994.

[23℄ M.Y. Vardi. The omplexity of relational query languages. In Proeedings of the Fourteenth

Annual ACM Symposium on Theory of Computing, pages 137{146, 1982.

[24℄ K. Vijay-Shanker and D.J. Weir. The use of shared forests in tree adjoining grammar parsing.

In Sixth Conferene of the European Chapter of the ACL, pages 384{393, 1993.

A The Class of RCLs Equals PTIME

In Setion 2 we saw that the RCLs are inluded in PTIME. For the onverse result, that eah language

in PTIME is generated by an RCG, no omplete proof has yet appeared in print. RCG and ILFP

di�er substantially so that the proof from [19℄ annot be easily adapted to RCG, and a proof in [14,

Chapter 5℄ for simple LMG, whih is losely related to RCG, is inomplete and also the proof in [15℄

is far from expliit; furthermore, the proof of equivalene of simple LMG and iLFP via iLMG in [14,

pp. 102 and 106℄ does not suÆe either sine Groenink's iLFP di�ers from Rounds' ILFP in a number

of respets. Instead of revising any of the above proofs, we give a new proof that does not onsider

any other grammatial formalism than RCG.

Our proof onsists of two steps. First, in [17℄ it is shown that PTIME equals the lass of languages

aepted by two-way alternating �nite automata with k heads.

5

Seond, we show that for any two-

way alternating �nite automaton with k heads, we an onstrut an equivalent RCG. In this RCG,

existential states are modelled by having several lauses for a prediate and universal states are

modelled by having a onjuntion of prediate expressions in the RHS of a single lause. The RCG

has 2

k

prediates per state, and in addition there is a start prediate S, a prediate symbol de�ned by

one lause symbol(a)! � for eah symbol a 2 T , and a prediate equal de�ned by equal(X;X)! �.

A prediate for a state q will have arity k + 1 and will have the form q

~

b

, where

~

b 2 f0; 1g

k

. The

use of suh a prediate in a prediate expression represents a on�guration of the automaton. Eah

of the k symbols of

~

b is 1 if and only if the orresponding tape head would be positioned on the

start-of-sentene marker . Eah of the �rst k arguments will represent a suÆx of the input, i.e. a

range (i; n), indiating the following properties of the orresponding tape head:

� If the orresponding symbol from

~

b is 0, then the tape head would be on position i+2. This means

the tape head would be positioned on the end-of-sentene marker $ if i = n.

� If the orresponding symbol from

~

b is 1, then the tape head would be positioned on the �rst symbol

of the tape, i.e. the start-of-sentene marker . (This will only our if i = 0.)

The last argument will be the omplete input string (i.e. the range (0; n)) throughout.

There is one lause de�ning the start prediate:

S(X)! q

1

k

0

(

k

z }| {

X; : : : ;X;X)

where q

0

is the initial state of the automaton. This indiates that all tape heads are initially on the

start-of-sentene marker .

5

In an alternating automaton, a given state an be either \existential" or \universal". The former notion expresses

the neessity of ontinued omputation via one of the available suessor on�gurations, whih amounts to traditional

nondeterminism, while the latter requires suessful omputation via all suh on�gurations. The type of alternating

�nite automaton onsidered here has aess to a read-only tape through k heads that an eah move independently in

both diretions. The tape ontains the start-of-sentene marker , followed by the input, followed by the end-of-sentene

marker $.

We reall that a two-way alternating �nite automaton with k heads has a head seletor funtion

� that maps the urrent state p to a tape number j. The j-th tape head reads a symbol a and the

transition funtion Æ is applied on the pair (p; a) to yield a set of pairs (q; d), where q is a next state

and d 2 f�1; 0; 1g enodes a movement of the j-th tape head.

For eah existential state p, eah a 2 T , and eah

~

b = b

1

� � � b

k

2 f0; 1g

k

suh that �(p) = j and

b

j

= 0, and for eah pair (q; d) 2 Æ(p; a) suh that d = 0, the grammar has one lause of the form:

p

~

b

(X

1

; : : : ; X

j�1

; aX

j

; X

j+1

; : : : ; X

k

; X)! q

~

b

(X

1

; : : : ; X

j�1

; aX

j

; X

j+1

; : : : ; X

k

; X)

For eah pair (q; d) 2 Æ(p; a) suh that d = 1, we have an idential lause exept that the RHS

argument expression ontains X

j

instead of aX

j

, to indiate the tape head has shifted one position

to the right. If d = �1, then the grammar ontains the lauses:

p

~

b

(X

1

; : : : ; X

j�1

; aX

j

; X

j+1

; : : : ; X

k

; X)! symbol(Y) q

~

b

(X

1

; : : : ; X

j�1

; Y aX

j

; X

j+1

; : : : ; X

k

; X)

p

~

b

(X

1

; : : : ; X

j�1

; aX

j

; X

j+1

; : : : ; X

k

; X)! equal(aX

j

; X) q

~

(X

1

; : : : ; X

j�1

; aX

j

; X

j+1

; : : : ; X

k

; X)

where ~ is onstruted from

~

b by hanging the j-th symbol to 1, whih indiates the j-th tape head is

now positioned on the start-of-sentene marker. Note that if aX

j

is equal to X, whih represents the

entire input string, then this means that the tape head would be on the seond position just before

applying the transition.

For eah existential state p, a = $, and eah

~

b = b

1

� � � b

k

2 f0; 1g

k

suh that �(p) = j and b

j

= 0,

and for eah pair (q; d) 2 Æ(p; a) suh that d = 0, the grammar has one lause of the form:

p

~

b

(X

1

; : : : ; X

j�1

; X

j

; X

j+1

; : : : ; X

k

; X)! equal(X

j

; �) q

~

b

(X

1

; : : : ; X

j�1

; X

j

; X

j+1

; : : : ; X

k

; X)

The ase a = $, b

j

= 0 and d = �1 is left to the imagination of the reader. For the ase a = and

b

j

= 1, we have the lause:

p

~

b

(X

1

; : : : ; X

j�1

; X

j

; X

j+1

; : : : ; X

k

; X)! q

~

(X

1

; : : : ; X

j�1

; X

j

; X

j+1

; : : : ; X

k

; X)

where ~ =

~

b if d = 0, and if d = 1 then ~ is onstruted from

~

b by hanging the j-th symbol to 0.

For eah universal state p, eah a 2 T , and eah

~

b = b

1

� � � b

k

2 f0; 1g

k

suh that �(p) = j and

b

j

= 0, the grammar has two lauses, one lause to model the ase that the j-th tape head is at

least two positions away from the start-of-sentene marker , and one for the ase that the head

is immediately next to . Both lauses have the same LHS, whih is as in the ase of existential

states. The RHS of the �rst lause starts with symbol(Y) and the seond with equal(aX

j

; X). For

eah (q; d) 2 Æ(p; a), eah of the two RHSs has one further prediate expression. For d = �1, this

is q

~

b

(X

1

; : : : ; X

j�1

; Y aX

j

; X

j+1

; : : : ; X

k

; X) for the �rst, and q

~

(X

1

; : : : ; X

j�1

; aX

j

; X

j+1

; : : : ; X

k

; X)

for the seond lause, where ~ is as for existential states. Other ases are left to the imagination of

the reader.

If a state p is �nal, then for all

~

b 2 f0; 1g

k

, the grammar also ontains the lause:

p

~

b

(X

1

; : : : ; X

k

; X)! �

This onludes the proof.

