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/II rhis paper we extend rhe work by Michaelis (1999) which slwws how ro encode an arbirra1}' 
Minimalisr Grammar in the sense of Stab/er ( 1997) illto a weakly equivalem mulriple context
free grammar (MCFG). By viewing MCFG rules as tenns in a free Lawvere the01y we can 
translate a give11 MCFG into a regular tree grammar. The latter is characteri:able by both a 
tree automaton and a correspondingfonnu/a in monadic second-order (MSO) logic. The trees 
of the res11/ti11g regular tree language are then unpacked into the intended "linguistic" trees 
witlz an MSO rra11sducrio11 based upon tree-walking automata. Tlzis rwo-step approacl1 gives an 
operarional as well as a Jogi ca/ descriprinn nf the tree sets involved. 

1. Introduction 
Over the last couple of years, a rich class of mildly context-sensitive grammar formalisms has 
been proven ro be weakly equivalent. Among others, the following families of (string) Jan
guages are eguivalent: ST R(H R) [languages generated by string generating hyperedge re
placement grammars], OUT(DTlVT) [output languages of deterministic tree-wallcing tree-to
string transducers], yDT1c(REGT) [yields of images of regular tree languages under deter
ministic finite-copying top-down tree transductions), MCF L [Janguages generated by multiple 
context-free grammars], .HCTA.L [languages generated by multi-component tree adjoining 
grammars), LCF RL [languages generated by linear context-free rewr.iting systems), LU SCL 
[languages generated by local unordered scattered context grammars) (more on these eguiva
Jences can be found, e.g., in Engelfriet 1997, Rambow & Satta 1999, Weir 1992). 
The work by Michaelis (1999) shows how to encode an arbitrary minimalist grammar (MG) 
in the sense of Stabler {1997) into a weakly equivalent linear context-free rewriting system 
(LCFRS). The core idea is that for the set of trees appcnring as intermediate steps in converg
ing derivations corresponding to a given MG one can define a finite partition. Thc eqtüv.alenc~ 

classes of this partition are formed by sets of trees where the features trigger.ing movement 
appear in identical structural positions. Each nonterminal in a corresponding LCFRS repre
sents such an eguivalence class, i.e„ an infinite set of trees. We take the resulting LCFRSs as 
our starting point and present in this paper a translation from multiple context-free grammars 
(MCFGs)-which are a weakly eguivalent extension of LCFRSs-into regular tree grammars 
(RTGs)/monadic second-order (MSO) logic/tree automata. This is done via lifting by viewing 
MCFG rules as terms in a free Lawvere theory. Since this coding makes projection, tupling 
and composition explicit, the resulting trees contain these operations as labeled nodes. There
fore we use an MSO transduction-where the regular tree language constitutes the domain-to 
transform the Jifted trees into the intended ones. 
We think that our approach has decisive advantages. First, the operations of the relevant sig
nature appear explicitly in the Jifted trees and are not hidden in node Jabels coding instances 
of rule application. Second, our path component is not dependent on the particular regular tree 
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family or the domain defined via the MSO fonnula. The instruction set of the tree-walking 
automaton and the corresponding definition of the MSO transduction are universal and only 
serve to reverse the lifting process. In that sense the instructions are nothing eise but a restate
ment of the unique homomorphism which exists between the free algebra and any other algebra 
of the same signature. Thus, the translation from MCFGs to RTGs constitutes a considerable 
simplification in comparison with other characterizations since it is not built upon derivation 
trees using productions of the original MCFG as node labels, but rather on the Operations of 
projection, tuple-fonnation and composition alone. 
In the following sections we Jimit ourselves to the special case of MCFG rules with only one 
nontenninal on the right hand side (RHS). This allows a significant simplification in the pre
sentation since it requires only one level of tupling. The extension to ehe general case of using 
tuples of tuples is considerably more involved and, for Jack of space, cannot be described here. 

2. Background and Basic Definitions 
We first present some basic definitions before we proceed with the actual translation. Let S be a 
set of sorts. A ma11y-sorted sig11ature E ( over S) is an indexed family (Eu,,s j u.; E S•, s E S) of 
disjoint sets. A symbol in Eu·,s is called an operator of type (tr, s), arity u:, sort s and rank jwj, 
where lwl denotes the Jength of w. Let X == { x 1, x2 , .r3 , . .. } be a countable set of variables, 
and for k EI'.\ define Xk as {x1, ...• „r.k} . Then, the set of k-ary trees T(E, Xk) over Eis built 
up from xk using the Operators in the. usual way: If a E Et,S u xk for some s E s and € E s· 
with !EI = 0 then a is a (trivial) k-ary tree of sort s. If, for some s E S and u: = s1 · · ·Sn with 
Si E S, a E Ew ,s and t1, ... , tn are k-ary trees with t; of sort S; then a(t1, ... , tn) is a k-ary 
tree of sort s. Note that T(E, X1.J s:;: T(E. X1) for k 5 l. Let T (E, X)= LJkEI.' T(E, Xk )· 
The operator symbols induce operations on an algebra with the appropriate structure. ,A E
algebra A consists of an S-indexed family of sets A = (.4 5 ) sES and for each Operator a E Ew.„ 
ap_: Aw -t A.5 is a function, where A.w = .4' 1 x · · · x A.'" :!~~ c'.' - '" ::„ ·.-.;;.;, 8; t= ::i. The 
set T(E, X) can be made into a E-algebra 'f by specifying the operations as follows. For every 
a E Eu.·,s• where s E Sand u.; = s1 ···Sn with Si E 5, and every f1, ... , tn E T(E, X) with t; 
of sort s; we identify a,(ti. . .. , tn) with a(ti, ... , tn)· 
Our main notion is that of an a/gebraic (Lawvere) theo1y. Given a set of sorts S, an algebraic 
theory, as an a!gebra, is an S*x S* -sorted algebra 'f, whose carriers (T( u, V) j u, V E 5 *) consist 
of the morphisms of the theory and whose operations are of the following types, where n E N, 
u = u.1 · · · Un with U; E S for 1 $ i $ n and v, W E $•, 

projection: r.f E T(u, u;) 

composition: C(u,v,w) E T (u, v) X T(v, w) -t T(u, w) 
targettupling: ( )(v,u.) E T(v,ui) x ···X T(v,un) -t T(v,u) 

The projections and the operations of target tupling are required to satisfy the obvious identities 
for products. The composition operations must satisfy associativity. 
For S being a singleton and E a (many-sorted) signature over s• xs•, the power set p(T(L',X)) 
of T(E, X) constitutes the central example of i nterest for formal Janguage theory. The carriers 
(p(T( k, m)) 1 k, m E IN) of the corresponding s·x s• -Lawvere algebra are constituted by the 
power sets of the sets T(k, m), where each T(k, m) is the set of all m-tuples of k-ary trees, 
i.e.T(k,m) = {(t1;.„ ,tm)l t; E T(E,Xk)} .. 1 Compositionisdefinedassubstitutionofthe 
projection constants and target tupling is just tupling. For reasons of space, we cannot go into 
more details here. More on Lawvere theories in this context and their connection to linguistics 
can be found in Mönnich (1998). 

1
Since S is a singleton, s• can be identified with IN, because up to length each w E S' is uniquely specified. 
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A multiple context-free grammar (MCFG) is defined as a five-tup1e Q = (N, T, F, P, S) with 
s. T, F and P being a finite set of ranked nontenninals, tennina1s, .linear basic morphisms 
and productions, respectively. S E N is the start symbol. Each p E P has the form A -t

f(.4a ... . , .411 _ 1) for A, .4a, ... , A11-1 E N and J E F a function from (T•)k to (T*)1 with 
ari ty k = Ef,;a1 k; (k; the rank of .4;) and l thnank of .4. (cf. Seki et al. 1991). Recallthat the 
basic rnorphisms are those which use only variables, constants, concatenation, composition and 
tupling. 
A regular tree grammar (RTG) is a 4-tuple 9 = (E, Fa, S, P), where E is a many-sorted signa
ture of i11operatives and Fa a set of operatives of rank 0. S E F0 is the starting symbol and Pis 
a set of productions. Each p E P has the form F -t t, with F E F0 , and t a tenn (tree) over 
Eu F0 . An application of a rule F -t t "rewrites" F as the tree t. Since RTG rules always 
just substitute some tree for a leaf-node, it is easy to see that they generate recognizable sets of 
trees, i.e., context-free string languages (Mezei & Wright 1967).2 

Afterthese algebraic notions, we briefly present those related to monadic second-order (MSO) 
logic. MSO Jogic is the extension of first-order predicate logic with monadic second-order 
variables and quantification over them. In particular, we are using MSO logic on trees such that 
individual variables x, y, ... stand for nodes in trees and monadic second-order ones X, Y, ... 
for sets of nodes (for more details see, e.g., Rogers 1998). 
Before we turn to purely logical notions, we introduce a concept which combines both automata 
theory and logic. We need a pa1ticular type of finite-state automaton: tree-walking automata 
witli MSO tests (Bloem & Engelfriet 1997). Intuitively, those automata make transitions from 
nodes in a tree to other nodes along its branches. 
A tree-walking automaton (with tests) over ·some ranked alphabet E is a finite automaton 
Q! = (Q, .J, ö, I, F) with states Q, directives .:.1, transitions o : Q x .:.J -t Q and the initial 
and final states J s;: Q and F s;: Q which traverses a tree along connected edges using three 
kinds of directives: i;-"move up to the mother of the current node (if it has one and it is its i-th 
daughter)", ,J,;-"move to the i-th daughter of the current node (if it exists)" , and <,0(x)-"ve1ify 
that ip holds at the current node". For any tree t E T(E), such a tree-walking autornaton 2! com
putes a node relation Rt(2!) = {(x, y) j(x, q;) ,,;. (y, q1) for some q; E I and some q1 E F}, 
where for all states qk, q1 E Q and nodes x, y in t (x, qk) ==? (y, q1) iff 3d E .J : (qk, d, q1) E ö 
and y is reachable from x in t via d. Note that x is reachable from itself if the directive was a 
(successful) test. It is irnportant not to confuse this relation with the walking language recog
nized by the automaton, i.e„ the string of directives needed to move from the initial to the final 
node in a walk. Bloem and Engelfriet show that these automata characterize the MSO definable 
node relations, i.e„ every tree-walking autornaton we specify can be inductively transfonned 
into an equivalent MSO fonnula and vice versa. 
The following paragraphs go directly back to Courcelle (1997). Recall that the representation 
of objects within relational structures makes them available for the use of logical description 
languages. Let R be a finite set of relation symbols with the corresponding arity for each r E R 
given by p(r). A relational structure n = (Dn, (rn)ren.) consists of the domain Dn and the 
p(r)-ary relations rn. ~ D~r>, There does not seem tobe a convenient machine model for tree 
transfonnations. Fortunately, one can use logic directly to define the desired transduction. The 
classical technique of interpreting a relational structures within another one fonns the basis for 
MSO transductions. Intuitively, the output tree is interpreted on the input tree. E.g., suppose 
that we want to transduce the input tree t 1 into the output tree t 2 . The nodes of the output tree t2 

will be a subset ofthe nodes from t 1 specified with a unary MSO relation ranging over the nodes 
of t1. The daughter relation will be specified with a binary MSO relation with free variables x 

2Appropriate definitions for derivations and the tree languages generated can be found in Kalb et al. (2000). 
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Figure 1: The translated example grammar Q' 

and y ranging over the nodes from t 1. We will use this concept to transform the lifted trees into 
the intended ones. 
A (non-copying) MSO transduction of a relational structure n (with set of relation symbols R) 
into another one Q (with set of relation symbols Q) is defined to be a tuple ( rp, ~" (Bq )qeQ). 
lt consists of the formulas :p defining the domain of the transduction in n and 1/1 defining the 
resulting domain of Q and a family of formulas B9 defining the new relations Q (using only 
definable formulas from the "old" structure R). 
In this sense, our description of non-contextfree phenomena with two devices with only regular 
power is an instance of the theorem that the image of an MSO-definable class of structures 
under a definable transduction is not MSO definable in general (Courcelle 1997). 

3. Translating MCFGs to RTGs 
Each rule of a given MCFG is recursively transf01med into a RTG rule by coding the implicit 
Operations of projection, tupling and compositirin :is nonterminals or terminals. This becomes 
possible simply by viewing the terms appearing in the rules of the MCFG as elements of a free 
JN x N-sorted Lawvere algebra. Tue resulting RTG then "operates on" this Lawvere algebra. 
As an example we consider the foll owing MCFG Q = (N, T, F, P, S) with .i\T = { S, A}; 
T = {a1,a2, a3}, F = {g,h, l} and P = {S ~ g(A),A -t h(-4),A -t !()}, where the 
functions g: (T*)3 -t T*, h: (T*)3 -t (Y-)3 and l: (T*) 0 -t (T*) 3 are given by 

g(x1, x2, xa) = X1X2X3 h(x1, x2, X3) = (x1 ai, X2a2, X3a3) l() = (all a2, aa) 

The language generated by Q is {aJ'a~a~ J n > O}. 
Now, for 1 :::; i :::; 3 Jet 7rt denote the i-th projection which maps a 3-tuple of strings from T• to 
its i-th component, i.e. a 1-tuple, and Jet• denote the usual binary operation of concatenation 
defined for strings from T*, i.e., • maps a 2-tuple to a 1-tuple. The corresponding (Lawvere) 
arity of S, a 1, a2 and a 3 is (0, 1), of A (0, 3), of • (2,1), and the one of 7r~, 7r~ and 7r~ is (3, 1). 
Applying the translation T given below to the MCFG Q results in the RTG 9' = ( L', Fa, S(d,l), P) 
with inoperatives E = (Ew,s J w E (INxJN)•, s E lNxIN), operatives Fa of rank 0, and produc
tions P which (in tree notation) look as given in Fig. l. We have L't,(3,a) = { ( )(a,a) }, Ec,(2,1) = 
{•(2,1)}. L't,(0,1) = {al(o,1),a2(0,J) ,aa(o,1i}. L'c,(3,1) = {7rrc3 ,1 ),7r~(3,1)•7r~<3,l)}, 

Eco,3)(3,3),(o,3) = { cca,3,3J} 

L'co,3)(3,1),(a,1} = { cco,3,1)} 

E c3,2)(2,1) ,(3,1) = { C(3,2,1)} 

L'(3,1)(3,1),(3,2) = {( )(3,2)} 

Eco,1)(0,1)(0,1),(a,3) = { ( )ca,3)} 

L'(3,l)(3,J)(3,1),(3,3) = { ( )(3,3) } 
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and Fo = { 5(0,1): .4co.3)}·
3 

As one can see in Fig. 1, the basic functions have been realized as tenns with 
tive implicit operations as nonterminal (composition and tupling) or terminal 
empty tupling) nodes. In the following paragraphs, we sketch the translation T from 
terminal mies of the example MCFG to RTG rule~. T takes each rule X ~ f (Y), where 
X , y E .\" and j E F, of the MCFG including the corresponding definition of the mapping 
j(x1, •••• xk) with k ;::: 0 and transforms it into a RTG rule as follows. We create a mother 
node labeled with the appropriate binary composition C(j,k,I) such that the left daughter con
tains the "lifted" version of j(x1 , . .• , xk) under T and the right daughter the translation of the 
nonterminal} ·. Both nonterminals X and 1' are used ·~unchanged", but annotated with the cor
responding Lawvere arity resulting in the following schematic presentation of the translation: 
X (j,IJ ~ C(j,k,IJ(T(J(x 1, ... ,xk)), 1:(i,k)), where f is a mapping from k-tuples to 1-tuples of 
terminal strings. 
The easiest case of translating a mapping j E F from our example via T is the terminal A
rule. We simply view the mapping as a Lawvere tenn. The function l just retums a triple of 
a.1 , a2 and a.3 • The corresponding tree has a mother node Jabeled with a ternary tupling symbol 
and the three unary arguments of the mapping as daughters.4 The 5-rule is more complicated 
with the function g concatenating three (input) strings. The definition of the function can be 
written explicitly as the Lawvere term C(3,2,l)(• , ( \,,,1(;:-i, :.:1„;,:;(• ( ),_,,2i(r.~ , ;;~))) ) . Note 
that the implicit binary concatenation • in g now becomes the constant •c2,i)· The variables 
are simply replaced by the projections and concatenated. The resulting term is then applied 
to the operative A(o,3) such that we get the RHS displayed in the S(o.wrule in Fig. 1. The 
recursive case of the A-rule is the most complicated. The mapping returns a trip!e, so we 
need a tupling "operator" of appropriate arity (3, 3) as the mother node with 3 daughters. The 
i-th of its daughters (Jabeled with cc3,2,1i) is built by composing the concatenat1on constant 
• (2,1) with the "tupling"-result ( )(a,2) of the corresponding projection constant r.~(3 , 1 ) (which is 
substituted for the variable xi) and a particular constant tree. Namely the one which (in tenns 
of the underlying Lawvere algebra) simply "lifts" the constant ai to the Lawvere-arity of 1i[ just 
in order to allow for an appropriate tupling. So, the teITTJ (x1 a1 , x 2a 2 , x 3a3 ) is interpreted as 
the Lawvere term ( )c3,3i ( c( • , ( ) (3,2) ( n~, c( a1, ( )c3,oi)))), c( ... ), c( ... ) ) which appears as the 
RHS of the corresponding tree grammar rule. 

Since RTGs can only generate recognizable (tree) Janguages, we can characterize them with 
both MSO logic on trees and tree automata.5 The tree automaton 2(0 , is constructed by trans
fonning the grammar into a normal form such that each RHS is of depth one by introducing 
auxiliary operatives. Then we can easily construct appropriate transitions by basically reversing 
the arrow: the nonteITTJinals become state names and the mother node will be read as alphabet 
symbol. lt is know from Thomas (1990) how to transform this tree automaton into an MSO 
fonnula <p~0• by encoding its behaviour. Details for our special case can be found in Kolb et al. 
(2000). 

4. Reconstructing the Intended Trees 
Rogers (1998) has shown the suitability of an MSO description language for linguistics which is 
based upon the primitive relations of immediate (<l), proper (<l+) and reflexive (<J*) dominance 

3For simplicity and readability we will sometimes drop the subscript notion (k, m) from the inoperatives and 
operatives of rank 0, and sometimes evcn from the composition symbol C(k,t,m). 

'Note that we do not need to use a further composition symbol dominating T(f) in case there is no nonterminal 
on the RHS of the rule of the MCFG. 

5 An introduction 10 tree automata can be found in Gecseg & Steinby ( 1984). 
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and proper precedence (-<). We will show how to define these relations with an MSO trans
duction thereby implementing the unigue homomorphism mapping the tenns into elements of 
the corresponding regular tree language„ At the core of the transduction is a tree-walking au
tomaton defining the binary relation of immediate dominance ( <l) on the nodes belonging to the 
intended structures. lt is based on some simple observations.6 

l. Our trees feature three fämilies of labels: the "linguistic" symbols l, i.e., the lifted symbols 
of the underlying MCFG; the "composition" symbols C = { C(u,v,u·)}; the "tupling" symbols 
( ) (v,u) and the "projection" symbols n := { 7if}. 

2. All nonterminal nodes in T' are Jabeled by some c E C or a "tupling" symbol. Note that no 
terminal node is labeled by some c. 

3. The terminal nodes in T' are either labeled by some " linguistic" symbol, a "tupling" symbol 
of the form ( )(k,OJ• i.e. the "empty" tuple, or by some "projection" symbol rrf. 

4. Any "linguistic" node dominating anything in the intended tree is on some left branch in T', 
i.e., it is the left daughter of some c E C and the sister of a tupling symbol whose daughters 
evaluate to the intended daughters. 

5. For any node v labeled with some "projection" symbol 7rf E ll in T1 there is a unigue node 
µ (labeled with some c E C) which properly dominates v and which immediately dominates 
a node Jabeled with a "tupling" symbol whose i-th daughter will eventually evaluate to the 
value of r.f. Moreover, µ will be the first node properly dominating v which is on a left 
branch and bears a composition symbol. This crucial fact is arrived at by induction on the 
construction of Q' from Q. 

By 4. it is not hard to find possible dominees in any T'. lt is the problem of determining the 
actual "filler" of a candidate-dominee which makes up the complexity of the definition of <l. 

There are three cases to account for: 

6. If the node considered carries a "linguistic" labe!, it evaluates to itself; 

7. if it has a "composition" labe! c, it evaluates to whatever its leftmost daughter evaluates to; 

8. if it canies a "projection" label rrf·, it evaluates to whatever the node it "points to"-by (5.) 
the ith daughter of a "tupling" node which is dominated by the first C-node on a left branch 
dominating it~valuates to. 

According to the observations made above, the automaton given in Fig. 2 Starts on any node 
with a "linguistic" labe] (denoted here by l) which means for the given example • , a 1, a 2 , a3 . 

Then it has to go up the first branch, read a composition symbol and descend to its sister. If it 
reads a "linguistic" node, the automaton stops. lf it reads a composition symbol, the automaton 
goes to the left daughter and tries again. If it reads a tupling symbol, the automaton proceeds 
with its daughters. On finding a projection symbol, it searches for the appropriate "filler" by 
going upwards until it is on a leftmost branch which is labeled with a composition symbol. 
Then it walks to the second sister or further down the Jeftmost branch until it hits a tupling node 
to whose appropriate daughter it descends to find the filler. 
However, there is another interpretation of such an automaton. Viewed as an ordinary finite
state automaton over the alphabet L1, 2(., recognizes a regular (string-) Janguage, the walking 
language W which can be translated recursively into an MSO fonnula transw. defining the 
relation <l (see Bloem & Engelfriet 1997). We leave the rather tedious process of converting 
the walking Janguage for the automaton given in Fig. 2 to the reader (a füll example of such a 
conversion can be found in Kolb et a1. (2000)). 

6
The reader is encouraged 10 check them against trees T' genernted by 91 given in Fig. 1. 
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L(:i:)ot1 oC(:t )oJ.2 

Figure 2: The tree-walking automaton for immediate dominance: 21,, 

To present the actual MSO transduction, we need one further auxiliary definition. It is a well
known fact (e.g. Bloem & Engelfriet 1997) that the reflexive transitive closure R• of a binary 
relation R on nodes is (weakly) MSO-definable, if R it::l! :::. Th• 0 !-: '.!c:-i.:. ·via a „ ... ..,01H..i-u11.lc:., 
property which holds of the sets of nodes which are closed under R: R-closed (X) ~def 
(\lx, y)[x E X /\ R(x, y) -+ y EX). 
Finally, the MSO transduction ( ;p, lf;, (Oq)qeQ) with Q = { <i, <l., <J+, -<, ... } we need to trans
fonn the lifted structures into the intended ones is given as follows: 

cp = 'P21c' 

'I/; = (3y)[transw0 (x,y) Vtransw0 (y, x)] 

0„(x, y) := tranS11•0 (x, y) 
e„.(x, y) := (V'X)[<i -closed(X) /\x EX-+ y EX] 

B,,+(x,y) = x<i•yv x -;/:- y 

e-<(x, y) = another tree-walking automaton 

B1abels = taken over from R 

As desired, the domain of the transduction is characterized by the MSO formula <p21
0

, for the 
lifted trees. The domain, i.e„ the set of nodes, of the intended tree is characterized by the 
formula 1jJ which identifies the nodes with a "linguistic" labe! which stand indeed in ~he new 
dominance relation to some other node. Building on it, we define the other primitives of a 
tree description Janguage suited to Jinguistic needs. For reasons of space, we have to Jeave the 
specification of the precedence relation open. It is more complicated than dominance, but can 
be achieved with another tree-walking automaton. 

5. Conclusion · 
Taking the result of Michaelis' translation of MGs as the input we have shown how to define 
a RTG by lifting the corresponding MCFG-rules by viewing them as tenns of a free Lawvere 
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theory. This gives us both a regular (via tree and tree-walking automata) and a Jogical charac
terization (via MSO Iogic and an MSO definable transduction) of the intended syntactic trees. 
Equivalently, we provide both an operational and a denotational account of Stabler's version of 
Minimalism without having to go via derivation trees. 
lt remains to be seen whether one can find a machine model for the entire MSO transduction. 
A likely candidate are the macro tree transducers (MIT) introduced in Engelfriet & Maneth 
(1999). Since they characterize the class of MSO definable tree translations if extended with 
regular look-ahead and restricted to finite-copying, we are quite optimistic that we will be able 
to use them to efficiently implement the transduction. This would also characterize the class of 
languages we can handle. Engelfriet and Maneth show that the result of applying an MIT to a 
regular tree family yields the tree languages generated by context-free graph grammars. 
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