
19
Workshop TAG+S, Paris, 25-27 May 2000

A redefinition of Embedded PushMDown Automata*

Miguel A. Alonsot, Eric de la Clergeriel and Manuel Vilarest

Abstract

fDepartamento de Computaci6n, Universidad de La Corufia
Campus de Elvifia s/n, 15071 La Corufia (Spain)

{alonso,vilares}@dc.fi.udc.es
tJNRIA, Domaine de Voluceau

Rocquecourt, B.P. 105, 78153 Le Chesnay (France)
Eric . De_La_Clergerie@inria.fr

A new definition of Embedded Push-Down Automata is provided. We prove this new definition
.·. resen1es the equivalence with tree adjoining languages and we provide a tabulationframework
to execute any automaton in polynomial time with respect to the length of the input string.

1. lntroduction
Embedded Push-Down Automata (EPDA) were defined in (Vijay-Shanker, 1988) as an exten
sion of Push-Down Automata that accept exactly the dass of Tree Adjoining Languages. They
can also be seen as a Ievel-2 automata in a progression of linear iterated pushdowns involving
nested stacks (Weir, 1994).
An EPDA consists of a finite state control, an input tape and a stack made up of non-empty
stacks containing stack symbols. A transition can consult the state, the input string and the
top element of the top stack and then change the state, read a character of the input string and
replace the top element by a finite sequence of stack elements to give a new top stack, and new
stacks can be placed above and below the top stack.
EPDA can describe parsing strategies for tree adjoining grarnmars in which adjunctions are
recognized top-down. The same kind of strategies can be described in strongly-driven 2-stack
automata (de la Clergerie & Alonso Pardo, 1998) and linear indexed automata (Nederhof, 1999),
which has associated tabulation frameworks allowing those automata tobe executed in polyno
mial time with respect to the size of the input string. In this paper we propose a redefinition of
EPDA in otder to provide a tabulation framework for this dass of automata.

2. EPDA without states
Finite-state control is not a fundamental component of push-down automata, as the current state
in a configuration can be stored in the top element of the stack of the automaton (Lang, 1991).
Finite-state control can also be eliminated from EPDA, obtaining a new definition that considers
a EPDA as a tuple (VT, Vs, e, $0, $ f) where VT is a finite Set of terminal symbols, Vs is a finite
set of stack symbols, $0 E Vs is the initial stack symbol, $ / E Vs is the final stack symbol and
e is a finite set of six types of transition:

SWAP: Transitions of the form C 8 F that replace the top element of the top stack while
scanning a. The application of such a transition on a stack Y[aB retums the stack Y[n:C.

• This research was partially supported by the FEDER of EU (Grant lFD97-0047-C04-02) and Xunta de
Ga\icia (Grant PGIDT99Xll 0502B).

20
Miguel A. Alonso, Brie de Ja Clergerie & Manuel Vilares

PUSH: Transitions of the form C 8 C F that push F onto C. The application of such a
transition on a stack Y [aC returns the stack Y [aCF.

POP: Transitions of the form C F 8 G that replace C and F by G. Tue application of such
a transition on Y [aC F returns the stack Y [a:G.

WRAP-A: Transitions wrap-above of the form C 8 C, [F that push a new stack [Fon the
top of the automaton stack. The application of such a transition on a stack Y [aC returns
the stack Y [a:C [F.

WRAP-ß: Transitions wrap-below of the form C 8 [C, F that store a new stack [C just
below the top stack, and change from C to F the top elemenl of the top stack. The
application of such a transition on a stack Y[aC returns the stack Y[C[aF.

UNWRAP: Transitions of the form C, [F 8 G that delete the top stack [F and replace the
new top element by G. TI1e application of such a transition on a stack Y [aC [F returns
the stack Y [aG.

where C, F,G E V„, Y E ([F,S)*, a E 118, a E Fr U {t} and [(j. Vs is a new symbol used
as stack Separator. lt can be proved that transitions of a EPDA with states can be emulated by
transitions in e and vice versa.
An instantaneous co11figuratio11 is a pair (Y, w) , where Y represents the contents of the automa
ton stack and w is the part of the input string that is yet to be read. A configuration (Y, aw)
derives a configuration (Y', w), denoted (Y, aw) 1- (Y' , w), if and only if there exists a transition
that applied to Y gives Y' and scans a from the input string. We use 1- • to denote the reflexive
and transitive closure of 1-. An input string is accepted by an EPDA if ([$0 , w) 1- • ([$ 1, €). The
Ianguage accepted by an EPDA is the set of w E Vf such that ([$0 , w) 1- * ([$ 1, t).

3. Compiling TAG into EPDA
We consider each elementa.ry tree / of a TAG as forn1ed by a set of context-free produc
tions 'P('y): a node N'Y and its g child.ren Nl ... NJ are represented by a production N1 -4

Nl ... NJ. The elements of the productions are the nodes of the tree, except for the case of
e!ements belonging to Vr u { e} in the right-hand side of production. Those elements may have
no children and can not be adjoined, so we identify such nodes labeled by a te1minal with that
terminal. We use ß E adj(N'Y) to denote that a tree ß may be adjoined at node N1. lf ad
junction is not mandatory at N1, then nil E adj (N1). We consider the additional productions
T 0 -4 R 0

: Tß -4 R ß and Fß -4 l. for each initial tree a E I and each auxiliary tree ß E A,
where R °' is the root node of a and R ß and F ß are the root node and foot node of ß, respec
tively. After disabling T 1 and ..Las adjunction nodes the generative capability of the grammar
remains intact.
Figure l show_s the generic compilation schema from TAG to EPDA, where symbols 'il'/.,, have
been introduced to denote dotted productions. The meaning of each compilation rule is graph
icaIJy shown in figure 2. This schema is parameterized by ~, the infonnation propagated
top-down w.r. t. the node N 1 , and by Jrr, the infonnation propa~ed bottom-up. When the
schema is used to.implement a top-down strategy ~ = N1 and Ji.n = 0, where Dis a fresh
stack symbol. A bottom-u,P _strategy requires ~ = O and Jrr = N'T. For a Earley-like parsing
strategy, ~ = N'Y and Nt = N'Y, where N1 and N1 are used to distinguish the top-down
prediction from the bottom-up propagation of a node.
We can observe in figure l that each stack stores pending adjunctions with respect to the node
placed on the top of the stack in a top-down treatment of adjunctions: when an adjunction node

21
A redefinition of Embedded Push-Down Automata

[INIT] $0 f----t $0 ['Vg,o aEJ

[CALL] \i'l,s f----t 'Vl,s [N:..+~ N:.s+l ~ spine(r), nil E adj(N:,.+1)

[SCALL] 'V~. f----t ['V~ .• , ~ Nr,s+l Nf,s+1 E spine(ß), nil E adj(Nf.0 +1)

[SEL] -:-:::y+ 'V'r Nr,O f----t r,O

[TAB] 'Vl,nr f----t ~
[RET] 'Vl,.„ [J\T;.+ 1 f----t \7~,s+ 1 N:.s+l ~ spine(7), nil E adj(N;.+1)

[SRET] 'V~., [Nf..+1 f----t 'V~,s+1 N:,s+l E spine(ß), nil E adj (Nf..+1)

[SCAN] -=7 a N!n Nr,D f----t r,O NJ,0 --+ a

[ACALL-a] 'Vl,s f----t ['Vl,s' t:,:: .• adj(N:,.+1) # {nil}

[ACALL-b] 6.l,s f----t f:>.l,s ~ ß E adj(N:,s+1)

[ARET] [~ 'r 'Vl,s> T f----t \7 r ,s+l ß E adj(N:,s+i)

[FCALL-a] 'Vj,o f----t ['Vj,o' ..l Nß -Fß f,O -

[FCALL-b] l:>.l,. ..l f----t N:,.+i
[FRET] 'Vj,o, [l\T;s+l f----t 'Yj,1 Nß -Fß f,O - ' ß E adj (NJ.,+1)

[FINAL] $0 ['Vg,l f----t [$ f aEI

Figure 1: Genelic compilation schema from TAG to EPDA

'Y

Figure 2: Meaning of compilation rules

22
Miguel A. Alonso, Brie de Ja CJergerie & Manuel Vilares

Transition EPDA L-LIA

SWAP C HF C[oo] H F[oo]

PUSH C H CF C[oo] H F [ooCJ

POP CFHG F[ooCJ H G(oo]

WRA.P-A CHC,[F C(oo] H C [oo] F []

WRA.P-B C H [C, F C [oo] H C(J F[oo]

UNWRA.P c,[FH G C[oo] F [J H G[oo]

WRA.P-B+PUSH CH [c, x F C[oo] H C[] F[ooX]

WRA.P-B+POP XC H [C, F C[ooXJ H C[] F[oo]

Figure 3: Equivalence between EPDA and L-LIA

is reached, the adjunction node is stored on the top of the stack ([ACALL-a]) and the traversal
of the auxiliary tree is started ([ACALL-b]); the adjunction stack is propagated through the
spine ([SCALL]) down to the foot node, where the traversal of the auxiliary tree is suspended
to resume the traversal of the subtree rooted by the adjunction node ([FCALL-a]), which is
eliminated of the stack ([FCALL-b]). To avoid confusion, we store D.7,s instead of \ll,s to
indicate that an adjunction was started at node N:,s+i · A symbol D. can be seen as a symbol \l
waiting an adjunction tobe completed.

4. EPDA and Left~oriented Linear Indexed Automata
Left-oriented Linear Indexed Automata (L-LIA) is a class of automata defined by Neder
hof (1999) that can be used to implement parsing strategies for TAG in which adjunctions are
recognized in a top-down way. Given a EPDA, the equivalent L-LIA is obtained by means of a
simple change in the notations: if we consider the top element of a stack as a stack symbol, and
the rest of the stack as the indices !ist associated to them, we obtain the correspondence shown
in figure 3.
This change in notation is also useful to show that EPDA accept exactly the class of tree adjoin
ing languages. That tree adjoining languages are accepted by EPDA is shown by the compila
tion schema defined previously. To prove that the languages accepted by EPDA are tree adjoined
languages, we exhibit a procedure that, given an EPDA A = (VT, Vs, 8, $0, $1) , builds a linear
indexed gramrnar (Gazdar, 1987) Q = (VT, VN, Vi , S, P) that recognizes the language accepted
by A. Non-terminals in VN are pairs (A, B), where A, B E Vs, and Vi = Vs. Productions in P
are obtained from transitions in e as follows:

• For each transition C H F and for each E E Vs, a production (C, E)[oo) -t
a (F, E)[oo] is created.

• For each transition C H CF and for each E E Vs, a production (C, E)[oo) -t
a (F, E)[ooC) is created.

• For each transition C F H G and for each E E Vs, a production (F, E) [ooC) -t
a (G, E) [ooJ is created.

23
A redetinition of Embedded Push-Down Automata

• For each pair of transitions C ~ C, [F' and C, [F ~ G, and for each E E Vs. a
production (C, E)[oo] ~ b (F 1

, F)[) a (G, E) [oo) is created.

'
• For each pair of transitions C ~ [C, F' and C, [F ~ G, and for each E E V5 , a

production (C, E)[oo] ~ b (F',F)[oo] a (G,E)(] iscreated.

• For each E E 1's, a production (E, E)[J ~ Eis created.

The axiom of the grammar is S = ($0, $ 1). Applying induction in the length of derivations, we
can prove that (C, E)[a] =* w if and only if ([aC, w) f-- *([E, c).

S. Tabulation
The direct execution of EPDA may be exponential with respect to the length of the input string
and may even loop. To get polynomial complexity, we must avoid duplicating computations by
tabulating traces of coniigurations called items. The amount of information to keep in an item
is the crucial point to determine to get efficient executions.
Tue tabulation of EPDA using PUSH and POP transitions without restrictions seems to be
difficult. By studying the compilation schema of iigure l, we observe that the compilation
rules [ACALL-a] and [ACALL-b] can be combined to forma single rnle [ACALL] generating
transitions WRAP-B+PUSH ofthe form C ~ [C,X F:

[ACALL] \Jl,s ~ [VJ,., D.},s T ß

such that ß E adj (N;,.+ 1) . The [FCALL-a] and [FCALL-b] can be combined to form a single
rule generating transitions WRAP-B+POP of the form X C ~ [C, F:

[FCALL] D.7,s Vj,0 ~ [Vj,o, N7.s+1

such that Nf,0 = Fß and ß E adj (N7,.+1).

In this section, we consider the tabulation of a subset of EPDA consisting of transitions SWAP,
WRAP-A, WRAP-B, UNWRAP, WRAP-B+PUSH and WRAP-B+POP.
In order to define items and attending to the form of the transitions, we classify derivations of
EPDA into the following types:

Call derivations. Correspond to the propagation of a stack by means of WRAP-B,
WRAP-B+PUSH and WRAP-B+POP transitions:

(Y [aA, ah+1 . .. a„)

f-- • (Y [A Y l [aXB, ai+I ... an)

1- • (Y [A Y1 [aXC,a;+1 · .. an)

where A , B, C, X E Vs, a E Vs and Y, Y1 E ([VS)*. The two occurrences of a denote
the same stack in the sense that o: is neither consulted nor modified through the derivation.
These derivations are independent of Y and a , so they can be represented by items

[A,h 1B,i,X,C, j,X 1- ,-,-,-]

24
Miguel A. Alonso, Eäc de Ja Clergerie & ManueJ Vilares

Return derivations. Correspond to the bottom-up propagation of unitary stack by means of
UNWRAP transitions:

(T [a:A, ah+1 ... a.,,)

1- • (1[A 1 1 [a:XB, ai+l· ··G.n)

1-• (1[A11 [B T2 [aD,ap+i · ·· an)

1- • (T [A 1 1 [B 1 2 [E, aq+i · .. an)

1- • (1 [A 1 1 [C, aj+1 . .. an)

where A, B , C, D, E , X E Vs, o: E v;, 1 , Ti, 1 2 E ([11,5)* and o: is passed unaffected
through derivation. These derivations are independent of 1 but not with respect to the
subderivation ([aD , aP+1 . .. an) 1- *([E, aq+l . .. an), so they are be represented in com
pact form by items

[A,h / B,i, X ,C,j, - / D ,p,E,q]

Special point derivations. When a:X = t we have a particular case of previous derivations:

where B, C E Vs. and 1 E ([VS')*. These derivations can be represented by ilems

[- , - / B ,i, - , C,j, - / - , - , - , -]

To combine items, we use the set of inference rules shown in figures 4 and 5. Each
rule is of the form m .~/11· 1rans, meaning that if all antecedents 1Ji are tabulated items and
there exist the transitions trans , then the consequent item 171 should be created. In order to
simplify the inference rules, but without loss of generality, we have considered that scan
ning is only performed by SWAP transitions. The computation starts with the initial item
[- , - 1 $0 , O, - , $0 , 0, - / -, - , -, -]. An input string a1 • •• an has been recognized if the final
item [·- , - / $0 , 0, - , $ f, n, - / - , - , - , -] is present. lt can be proved that handling items with
the inference rules is equivalent to applying the transitions on the whole stacks.
To illustrate the relation between EPDA and L-LIA, figures 4 and 5 show the transitions of
both models of automata that must be considered to apply a given inference rule. Therefore,
the propos~d tabulated technique can be also applied to L-LIA working with transitions SWA P,
WRAP-A, WRAP-B, UNWRAP, WRAP-B+PUSH and WRAP-B+POP.

6. Conclusion
Embedded Push-Down Automata have been redefined: finite-state control has been eliminated
and several kinds of transition have been defined. We have also shown that the new defini
tion preserves the equivalence with tree adjoining languages and that tabulation techniques are
possible to execute these automata in polynomial time with respect to the length of the input
string.

References
DE LA CLERGERIE E. & ALONSO PARDO M. (1998). A tabular interpretation of a class of2-StackAu
tomata. In COU NG-ACL '98, 36th Annual Meeting of the Association for Computational Linguistics and
17tlt International Conference on Computational Linguistics, Proceedings of the Conference, volume II,
p. 1333- 1339, Montreal, Quebec, Canada: ACL.

A redefinition ofEmbedded Push-Down Automata

Rule

[A,h 1B,i,X,C,j,X1 -, -,-,-]
[A,h 1B,i,X,F,k,X1 -, - ,-,-}

where k = j if a = € and k = j + 1 if a E Vr

[A,h 1 B ,i,X,C, j, -1 D,p,E,q]
[A,h 1 B ,i,X,F,k,- 1 D ,p,E,q]

where k = j if a = e and k = j + 1 if a E Vr

[A,h 1B,i,X,C,j,X 1-,-, -,-)
[-, - 1 F,j, - , F,j,- 1-,- , - , -]

[A, h j B,i,X,C,j,- I D,p,E, q]
(-,-1 F,j,-,F,j, - l -,-,-, - J
[A,hl B,i,X,C,j, X 1-, - , -,-J
[A,h 1F,j,X,F, j,X1 - ,-, - ,-]

[A,h 1 B,i,X,C,j,- I D, p,E,q]
[-, - 1 F, j , - , F, j, - 1 - , -, - , - J

[A,h 1B,i,X,C,j,X 1-,-, -,-J
[C,.i 1F,j,X',F,j,X'1-,-,-,-)

[A,h 1 B,i,X,C,j, -1 D ,p,E,q]
[C,j 1F,j,X1,F,j,X1 1-, - , - ,-]

[A,h 1B,i,X,C,j,X 1-, -,-,-J
[M,m 1N,t,X',A,h,X'1-,-, -,-]
[M,m 1F, j,X',F,j,X' 1-, -,-,-]

[A,h 1B,i,X,C,j, X 1-,-·,-, -)
[kf,m 1 N,t,X',A,h,- 1 D,p,E,q]
[-, - 1 F,j, -,F,j, - 1- ,-, -,-]

EPDA transition

C~F

C8 F

C 1----t C, [F

C 1----t C, [F

C 1----t [C, F

C 1----t [C, F

C 1----t [C, X' F

C 1----t [C, X ' F

XC i-----t [C, F

XC i-----t [C, F

Figure 4: Tabulation rules

25

L-LIA transition

C[oo] H F[oo)

C[oo] H F[oo]

C(oo] f----t C[oo] F[]

C[oo] f----t C(oo] F[J

C[oo) f----t C[] F[oo]

C[ooJ f----t C[J F[oo]

C[oo) f----t C[] F(ooX')

C[oo] 1-----t C[J F[ooX']

C[ooX] f----t C[] F[oo)

C(ooX) 1-----t C[] F (oo}

GAZDAR G. (1987). Applicability of indexed grammars to natural Janguages. In U. REYLE & C.
ROHRER, Eds., Natural Language Parsing and Linguistic Theories, p. 69- 94. D. Reidel Publishing Com
pany.

LANG B. (1991). Towards a uniform formal framework for parsing. ln M. T oMITA, Ed., Current lssues
in Parsing Technology, p. 153-171. Norwell, MA, USA: Kluwer Academic Publishers.

NEDERHOF M.-J. (1999). Models of tabulation for TAG parsing. In Proc. of the SU:th Meeting on
Mathematics of Language (MOL 6), p. 143-158, Orlando, Florida, USA.

VIJAY-SHANKER K. (1988). A Study ofTree Adjoining Grammars. PhD thesis, University of Pennsyl
vania. Available as Technical Report MS-CIS-88-03 LINC LAB 95 of the Department of Computer and
Information Science, University of Pennsylvania.

WEIR D. J. (1994). Linear iterated pushdowns. Computational lntelligence, 10 (4), p. 422-430.

26
Miguel A. Alonso, Brie de Ja CJerge1ie & ManueJ Vilares

Rule EPDA transition L-LIA transition

[- ,-1 F 1,j,-,F,k, - l -,-,-,-J
[.4,h 1 B,i,X,C,j,X J - , -,-,-] C f--t C, [F' C[ooJ f--t C[oo) F'[)
[A,h 1B,i,X,G, k,X1 - ,-,-, -J C, [F f--t G C(oo] F [J f--t G[oo]

[- , -1 F',j,-,F,k,- I - ,-,-,-]
[A,h 1 B,i,X,C,j,- I D,p,E,q] C f--t C, [F 1 C[oo] f--t C(ooj F'[]
[A ,h 1 B ,·i,X,G,k, - 1 D,p,E,q] C, [F f--t G C[oo] F [] f--t G[oo)

[A,h 1 F',j,X, F,k, -1 D,p,E,qj
[A,h 1B, ·i, X ,C, j,X 1-,-,-,-J C f--t [C, F' C[oo] H C[) F'[oo]
[A,h 1 B,i,X,G,k,- 1 D ,p,E,qj C, [F f--t G C[ooJ F[) f--t G[oo]

[-,-1 F',j,-,F,k,-1-,-,-,-]
[A, h 1B,·i ,X,C,j,-1 D,p,E,q] C f--t [C,F' C[oo] f--t C[J F'[oo]
[A, h 1 B,i,X,G,k,-1 D,p,E,q] C, [F f--t G C(oo) F [J f--t G[oo)

[C,j 1 F 1,j, X 1,F,k,- ! D,p,E,q]
[A,h I B,i,X,C,j,X 1- ,- , - ,-J
[A,h 1 D,p,X,E,q,-1 O,u.,P,v] C f--t [C, X'F1 C[oo] f--t C[) F'[ooX']
(A,h 1 B,i,X,G,k,-1 O,·u,P,v] C, [F f--t G C[oo) F[J f--t G[oo)

[C,j 1 F 1,j,X1,F,k, - I O,u,P,v]
[A,h 1 B,i,X,C,j,- I D,p,E,q]
[-,-10,u,-, P,v, -1-,-,-, -] C~ [C,X'F' C[oo] f--t C[J F'[ooX']
[A,h 1 B ,i, X ,G, k,-1 D,p,E,q] C, [F f--t G C[oo] F[) f--t G[oo)

[M,m I F',j,X',F,k,-1 D ,p,E,q]
[A ,h 1B, i,X,C,j,X1-,-, -,-]
[M,m 1N,t,X',A,h,X'1-,-,-,-) XC f--t [C,F' C[ooX] f--t C[J F'[oo)

[A,h j B,i,X,G,k, -1 F',j,F,k] C, [F f--t G C[oo) F[J f--t G[oo)

[-, - 1 F',j,-,F,k,-1-,-,-,-]
[A,h 1 B,i,X,C,j,X j -, - , -, -)
[M,m 1 N,t,X',A,h,-1 D ,p, E,q] XC f--t [C,F' C[ooX] ~ C[) F'loo]
[A,h 1 B,i,X,G,k, -1 F',j,F, k] C, [F f--t G C[oo) F[J f--t G[oo]

Figure 5: Tabulation rules

