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A new definition of Embedded Push-Down Automata is provided. We prove this new definition 
.·. resen1es the equivalence with tree adjoining languages and we provide a tabulationframework 
to execute any automaton in polynomial time with respect to the length of the input string. 

1. lntroduction 
Embedded Push-Down Automata (EPDA) were defined in (Vijay-Shanker, 1988) as an exten
sion of Push-Down Automata that accept exactly the dass of Tree Adjoining Languages. They 
can also be seen as a Ievel-2 automata in a progression of linear iterated pushdowns involving 
nested stacks (Weir, 1994). 
An EPDA consists of a finite state control, an input tape and a stack made up of non-empty 
stacks containing stack symbols. A transition can consult the state, the input string and the 
top element of the top stack and then change the state, read a character of the input string and 
replace the top element by a finite sequence of stack elements to give a new top stack, and new 
stacks can be placed above and below the top stack. 
EPDA can describe parsing strategies for tree adjoining grarnmars in which adjunctions are 
recognized top-down. The same kind of strategies can be described in strongly-driven 2-stack 
automata (de la Clergerie & Alonso Pardo, 1998) and linear indexed automata (Nederhof, 1999), 
which has associated tabulation frameworks allowing those automata tobe executed in polyno
mial time with respect to the size of the input string. In this paper we propose a redefinition of 
EPDA in otder to provide a tabulation framework for this dass of automata. 

2. EPDA without states 
Finite-state control is not a fundamental component of push-down automata, as the current state 
in a configuration can be stored in the top element of the stack of the automaton (Lang, 1991 ). 
Finite-state control can also be eliminated from EPDA, obtaining a new definition that considers 
a EPDA as a tuple (VT, Vs, e, $0, $ f) where VT is a finite Set of terminal symbols, Vs is a finite 
set of stack symbols, $0 E Vs is the initial stack symbol, $ / E Vs is the final stack symbol and 
e is a finite set of six types of transition: 

SWAP: Transitions of the form C 8 F that replace the top element of the top stack while 
scanning a. The application of such a transition on a stack Y[aB retums the stack Y[n:C. 
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PUSH: Transitions of the form C 8 C F that push F onto C. The application of such a 
transition on a stack Y [aC returns the stack Y [aCF. 

POP: Transitions of the form C F 8 G that replace C and F by G. Tue application of such 
a transition on Y [ aC F returns the stack Y [ a:G. 

WRAP-A: Transitions wrap-above of the form C 8 C, [F that push a new stack [Fon the 
top of the automaton stack. The application of such a transition on a stack Y [ aC returns 
the stack Y [a:C [F. 

WRAP-ß: Transitions wrap-below of the form C 8 [C, F that store a new stack [C just 
below the top stack, and change from C to F the top elemenl of the top stack. The 
application of such a transition on a stack Y[aC returns the stack Y[C[aF. 

UNWRAP: Transitions of the form C, [F 8 G that delete the top stack [F and replace the 
new top element by G. TI1e application of such a transition on a stack Y [ aC [ F returns 
the stack Y [ aG. 

where C, F,G E V„, Y E ([F,S)*, a E 118, a E Fr U {t} and [ (j. Vs is a new symbol used 
as stack Separator. lt can be proved that transitions of a EPDA with states can be emulated by 
transitions in e and vice versa. 
An instantaneous co11figuratio11 is a pair (Y, w ) , where Y represents the contents of the automa
ton stack and w is the part of the input string that is yet to be read. A configuration (Y, aw) 
derives a configuration (Y', w ), denoted (Y, aw) 1- (Y' , w ), if and only if there exists a transition 
that applied to Y gives Y' and scans a from the input string. We use 1- • to denote the reflexive 
and transitive closure of 1-. An input string is accepted by an EPDA if ([$0 , w) 1- • ( [$ 1, €). The 
Ianguage accepted by an EPDA is the set of w E Vf such that ( [ $0 , w) 1- * ( [ $ 1, t). 

3. Compiling TAG into EPDA 
We consider each elementa.ry tree / of a TAG as forn1ed by a set of context-free produc
tions 'P('y): a node N'Y and its g child.ren Nl ... NJ are represented by a production N1 -4 

Nl ... NJ. The elements of the productions are the nodes of the tree, except for the case of 
e!ements belonging to Vr u { e} in the right-hand side of production. Those elements may have 
no children and can not be adjoined, so we identify such nodes labeled by a te1minal with that 
terminal. We use ß E adj(N'Y) to denote that a tree ß may be adjoined at node N1. lf ad
junction is not mandatory at N1, then nil E adj ( N1). We consider the additional productions 
T 0 -4 R 0

: Tß -4 R ß and Fß -4 l. for each initial tree a E I and each auxiliary tree ß E A, 
where R °' is the root node of a and R ß and F ß are the root node and foot node of ß, respec
tively. After disabling T 1 and ..Las adjunction nodes the generative capability of the grammar 
remains intact. 
Figure l show_s the generic compilation schema from TAG to EPDA, where symbols 'il'/.,, have 
been introduced to denote dotted productions. The meaning of each compilation rule is graph
icaIJy shown in figure 2. This schema is parameterized by ~, the infonnation propagated 
top-down w.r. t. the node N 1 , and by Jrr, the infonnation propa~ed bottom-up. When the 
schema is used to.implement a top-down strategy ~ = N1 and Ji.n = 0, where Dis a fresh 
stack symbol. A bottom-u,P _strategy requires ~ = O and Jrr = N'T. For a Earley-like parsing 
strategy, ~ = N'Y and Nt = N'Y, where N1 and N1 are used to distinguish the top-down 
prediction from the bottom-up propagation of a node. 
We can observe in figure l that each stack stores pending adjunctions with respect to the node 
placed on the top of the stack in a top-down treatment of adjunctions: when an adjunction node 
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[INIT] $0 f----t $0 [ 'Vg,o aEJ 

[CALL] \i'l,s f----t 'Vl,s [ N:..+~ N:.s+l ~ spine(r), nil E adj(N:,.+1) 

[SCALL] 'V~. f----t ['V~ .• , ~ Nr,s+l Nf,s+1 E spine(ß), nil E adj(Nf.0 +1) 

[SEL] -:-:::y+ 'V'r Nr,O f----t r,O 

[TAB] 'Vl,nr f----t ~ 
[RET] 'Vl,.„ [ J\T;.+ 1 f----t \7~,s+ 1 N:.s+l ~ spine(7), nil E adj(N;.+1 ) 

[SRET] 'V~., [ Nf..+1 f----t 'V~,s+1 N:,s+l E spine(ß), nil E adj (Nf..+1) 

[SCAN] -=7 a N!n Nr,D f----t r,O NJ,0 --+ a 

[ACALL-a] 'Vl,s f----t [ 'Vl,s' t:,:: .• adj(N:,.+1) # {nil} 

[ACALL-b] 6.l,s f----t f:>.l,s ~ ß E adj(N:,s+1) 

[ARET] [~ 'r 'Vl,s> T f----t \7 r ,s+l ß E adj(N:,s+i) 

[FCALL-a] 'Vj,o f----t [ 'Vj,o' ..l Nß -Fß f,O -

[FCALL-b] l:>.l,. ..l f----t N:,.+i 
[FRET] 'Vj,o, [ l\T;s+l f----t 'Yj,1 Nß -Fß f,O - ' ß E adj (NJ.,+1) 

[FINAL] $0 [ 'Vg,l f----t [ $ f aEI 

Figure 1: Genelic compilation schema from TAG to EPDA 

'Y 

Figure 2: Meaning of compilation rules 
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Transition EPDA L-LIA 

SWAP C HF C[oo] H F[oo] 

PUSH C H CF C[oo] H F [ooCJ 

POP CFHG F[ooCJ H G(oo] 

WRA.P-A CHC,[F C(oo] H C [oo] F [] 

WRA.P-B C H [C, F C [oo] H C( J F[oo] 

UNWRA.P c,[FH G C[oo] F [ J H G[oo] 

WRA.P-B+PUSH CH [c, x F C[oo] H C[ ] F[ooX] 

WRA.P-B+POP XC H [C, F C[ooXJ H C[] F[oo] 

Figure 3: Equivalence between EPDA and L-LIA 

is reached, the adjunction node is stored on the top of the stack ([ACALL-a]) and the traversal 
of the auxiliary tree is started ([ACALL-b]); the adjunction stack is propagated through the 
spine ([SCALL]) down to the foot node, where the traversal of the auxiliary tree is suspended 
to resume the traversal of the subtree rooted by the adjunction node ([FCALL-a]), which is 
eliminated of the stack ([FCALL-b]). To avoid confusion, we store D.7,s instead of \ll,s to 
indicate that an adjunction was started at node N:,s+i · A symbol D. can be seen as a symbol \l 
waiting an adjunction tobe completed. 

4. EPDA and Left~oriented Linear Indexed Automata 
Left-oriented Linear Indexed Automata (L-LIA) is a class of automata defined by Neder
hof (1999) that can be used to implement parsing strategies for TAG in which adjunctions are 
recognized in a top-down way. Given a EPDA, the equivalent L-LIA is obtained by means of a 
simple change in the notations: if we consider the top element of a stack as a stack symbol, and 
the rest of the stack as the indices !ist associated to them, we obtain the correspondence shown 
in figure 3. 
This change in notation is also useful to show that EPDA accept exactly the class of tree adjoin
ing languages. That tree adjoining languages are accepted by EPDA is shown by the compila
tion schema defined previously. To prove that the languages accepted by EPDA are tree adjoined 
languages, we exhibit a procedure that, given an EPDA A = (VT, Vs, 8, $0, $1) , builds a linear 
indexed gramrnar (Gazdar, 1987) Q = (VT, VN, Vi , S, P) that recognizes the language accepted 
by A. Non-terminals in VN are pairs (A, B), where A, B E Vs, and Vi = Vs. Productions in P 
are obtained from transitions in e as follows: 

• For each transition C H F and for each E E Vs, a production (C, E)[oo) -t 
a (F, E)[oo] is created. 

• For each transition C H CF and for each E E Vs, a production (C, E)[oo) -t 
a (F, E)[ooC) is created. 

• For each transition C F H G and for each E E Vs, a production (F, E) [ooC) -t 
a (G, E) [ooJ is created. 
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• For each pair of transitions C ~ C, [F' and C, [F ~ G, and for each E E Vs. a 
production (C, E)[oo] ~ b (F 1

, F)[ ) a (G, E) [oo) is created. 

' 
• For each pair of transitions C ~ [C, F' and C, [F ~ G, and for each E E V5 , a 

production (C, E )[oo] ~ b (F',F)[oo] a (G,E)(] iscreated. 

• For each E E 1's, a production (E, E)[ J ~ Eis created. 

The axiom of the grammar is S = ($0, $ 1 ). Applying induction in the length of derivations, we 
can prove that (C, E)[a] =* w if and only if ( [aC, w) f-- *( [E, c). 

S. Tabulation 
The direct execution of EPDA may be exponential with respect to the length of the input string 
and may even loop. To get polynomial complexity, we must avoid duplicating computations by 
tabulating traces of coniigurations called items. The amount of information to keep in an item 
is the crucial point to determine to get efficient executions. 
Tue tabulation of EPDA using PUSH and POP transitions without restrictions seems to be 
difficult. By studying the compilation schema of iigure l, we observe that the compilation 
rules [ACALL-a] and [ACALL-b] can be combined to forma single rnle [ACALL] generating 
transitions WRAP-B+PUSH ofthe form C ~ [C,X F: 

[ACALL] \Jl,s ~ [ VJ,., D.},s T ß 

such that ß E adj ( N;,.+ 1) . The [FCALL-a] and [FCALL-b] can be combined to form a single 
rule generating transitions WRAP-B+POP of the form X C ~ [ C, F: 

[FCALL] D.7,s Vj,0 ~ [Vj,o, N7.s+1 

such that Nf,0 = Fß and ß E adj (N7,.+1). 

In this section, we consider the tabulation of a subset of EPDA consisting of transitions SWAP, 
WRAP-A, WRAP-B, UNWRAP, WRAP-B+PUSH and WRAP-B+POP. 
In order to define items and attending to the form of the transitions, we classify derivations of 
EPDA into the following types: 

Call derivations. Correspond to the propagation of a stack by means of WRAP-B, 
WRAP-B+PUSH and WRAP-B+POP transitions: 

(Y [aA, ah+1 . .. a„) 

f-- • (Y [A Y l [aXB, ai+I ... an) 

1- • (Y [A Y1 [aXC,a;+1 · .. an) 

where A , B, C, X E Vs, a E Vs and Y, Y1 E ( [VS)*. The two occurrences of a denote 
the same stack in the sense that o: is neither consulted nor modified through the derivation. 
These derivations are independent of Y and a , so they can be represented by items 

[A,h 1B,i,X,C, j,X 1- ,-,-,-] 
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Return derivations. Correspond to the bottom-up propagation of unitary stack by means of 
UNWRAP transitions: 

(T [a:A, ah+1 ... a.,,) 

1- • (1[A 1 1 [a:XB, ai+l· ··G.n) 

1-• (1[A11 [B T2 [aD,ap+i · ·· an) 

1- • (T [A 1 1 [B 1 2 [E, aq+i · .. an) 

1- • (1 [A 1 1 [C, aj+1 . .. an) 

where A, B , C, D, E , X E Vs, o: E v;, 1 , Ti, 1 2 E ([11,5)* and o: is passed unaffected 
through derivation. These derivations are independent of 1 but not with respect to the 
subderivation ([aD , aP+1 . .. an) 1- *([E, aq+l . .. an), so they are be represented in com
pact form by items 

[A,h / B,i, X ,C,j, - / D ,p,E,q] 

Special point derivations. When a:X = t we have a particular case of previous derivations: 

where B, C E Vs. and 1 E ( [VS')*. These derivations can be represented by ilems 

[- , - / B ,i, - , C,j, - / - , - , - , - ] 

To combine items, we use the set of inference rules shown in figures 4 and 5. Each 
rule is of the form m .~/11· 1rans, meaning that if all antecedents 1Ji are tabulated items and 
there exist the transitions trans , then the consequent item 171 should be created. In order to 
simplify the inference rules, but without loss of generality, we have considered that scan
ning is only performed by SWAP transitions. The computation starts with the initial item 
[- , - 1 $0 , O, - , $0 , 0, - / -, - , -, - ]. An input string a1 • •• an has been recognized if the final 
item [·- , - / $0 , 0, - , $ f, n, - / - , - , - , - ] is present. lt can be proved that handling items with 
the inference rules is equivalent to applying the transitions on the whole stacks. 
To illustrate the relation between EPDA and L-LIA, figures 4 and 5 show the transitions of 
both models of automata that must be considered to apply a given inference rule. Therefore, 
the propos~d tabulated technique can be also applied to L-LIA working with transitions SWA P, 
WRAP-A, WRAP-B, UNWRAP, WRAP-B+PUSH and WRAP-B+POP. 

6. Conclusion 
Embedded Push-Down Automata have been redefined: finite-state control has been eliminated 
and several kinds of transition have been defined. We have also shown that the new defini
tion preserves the equivalence with tree adjoining languages and that tabulation techniques are 
possible to execute these automata in polynomial time with respect to the length of the input 
string. 
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Rule 

[A,h 1B,i,X,C,j,X1 -, -,-,-] 
[A,h 1B,i,X,F,k,X1 -, - ,-,-} 

where k = j if a = € and k = j + 1 if a E Vr 

[A,h 1 B ,i,X,C, j, -1 D,p,E,q] 
[A,h 1 B ,i,X,F,k,- 1 D ,p,E,q] 

where k = j if a = e and k = j + 1 if a E Vr 

[A,h 1B,i,X,C,j,X 1-,-, -,-) 
[-, - 1 F,j, - , F,j,- 1-,- , - , - ] 

[A, h j B,i,X,C,j,- I D,p,E, q] 
(-,-1 F,j,-,F,j, - l -,-,-, - J 
[A,hl B,i,X,C,j, X 1-, - , -,-J 
[A,h 1F,j,X,F, j,X1 - ,-, - ,-] 

[A,h 1 B,i,X,C,j,- I D, p,E,q] 
[-, - 1 F, j , - , F, j, - 1 - , -, - , - J 

[A,h 1B,i,X,C,j,X 1-,-, -,-J 
[C,.i 1F,j,X',F,j,X'1-,-,-,-) 

[A,h 1 B,i,X,C,j, -1 D ,p,E,q] 
[C,j 1F,j,X1,F,j,X1 1-, - , - ,-] 

[A,h 1B,i,X,C,j,X 1-, -,-,-J 
[M,m 1N,t,X',A,h,X'1-,-, -,-] 
[M,m 1F, j,X',F,j,X' 1-, -,-,-] 

[A,h 1B,i,X,C,j, X 1-,-·,-, - ) 
[kf,m 1 N,t,X',A,h,- 1 D,p,E,q] 
[-, - 1 F,j, -,F,j, - 1- ,-, -,-] 

EPDA transition 

C~F 

C8 F 

C 1----t C, [F 

C 1----t C, [F 

C 1----t [C, F 

C 1----t [C, F 

C 1----t [ C, X' F 

C 1----t [ C, X ' F 

XC i-----t [ C, F 

XC i-----t [C, F 

Figure 4: Tabulation rules 
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L-LIA transition 

C[oo] H F[ oo) 

C[oo] H F[oo] 

C(oo] f----t C[oo] F[ ] 

C[oo] f----t C(oo] F[ J 

C[oo) f----t C[] F[oo] 

C[ooJ f----t C[ J F[oo] 

C[oo) f----t C[] F(ooX') 

C[oo] 1-----t C[ J F[ooX'] 

C[ooX] f----t C[] F[oo) 

C(ooX) 1-----t C[] F (oo} 
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Rule EPDA transition L-LIA transition 

[- ,-1 F 1,j,-,F,k, - l -,-,-,-J 
[.4,h 1 B,i,X,C,j,X J - , -,-,-] C f--t C, [F' C[ooJ f--t C[oo) F'[) 
[A,h 1B,i,X,G, k,X1 - ,-,-, -J C, [F f--t G C(oo] F [ J f--t G[oo] 

[- , -1 F',j,-,F,k,- I - ,-,-,-] 
[A,h 1 B,i,X,C,j,- I D,p,E,q] C f--t C, [F 1 C[oo] f--t C(ooj F'[ ] 
[A ,h 1 B ,·i,X,G,k, - 1 D,p,E,q] C, [F f--t G C[oo] F [] f--t G[oo) 

[A,h 1 F',j,X, F,k, -1 D,p,E,qj 
[A,h 1B, ·i, X ,C, j,X 1-,-,-,-J C f--t [C, F' C[oo] H C[) F'[oo] 
[A,h 1 B,i,X,G,k,- 1 D ,p,E,qj C, [F f--t G C[ooJ F[) f--t G[oo] 

[-,-1 F',j,-,F,k,-1-,-,-,-] 
[A, h 1B,·i ,X,C,j,-1 D,p,E,q] C f--t [C,F' C[oo] f--t C[ J F'[oo] 
[A, h 1 B,i,X,G,k,-1 D,p,E,q] C, [F f--t G C(oo) F [ J f--t G[oo) 

[C,j 1 F 1,j, X 1,F,k,- ! D,p,E,q] 
[A,h I B,i,X,C,j,X 1- ,- , - ,-J 
[A,h 1 D,p,X,E,q,-1 O,u.,P,v] C f--t [C, X'F1 C[oo] f--t C[) F'[ooX'] 
(A,h 1 B,i,X,G,k,-1 O,·u,P,v] C, [F f--t G C[oo) F[ J f--t G[oo) 

[C,j 1 F 1,j,X1,F,k, - I O,u,P,v] 
[A,h 1 B,i,X,C,j,- I D,p,E,q] 
[-,-10,u,-, P,v, -1-,-,-, - ] C~ [C,X'F' C[oo] f--t C[ J F'[ooX'] 
[A,h 1 B ,i, X ,G, k,-1 D,p,E,q] C, [F f--t G C[oo] F[) f--t G[oo) 

[M,m I F',j,X',F,k,-1 D ,p,E,q] 
[A ,h 1B, i,X,C,j,X1-,-, -,-] 
[M,m 1N,t,X',A,h,X'1-,-,-,-) XC f--t [C,F' C[ooX] f--t C[ J F'[oo) 

[A,h j B,i,X,G,k, -1 F',j,F,k] C, [F f--t G C[oo) F[ J f--t G[oo) 

[-, - 1 F',j,-,F,k,-1-,-,-,-] 
[A,h 1 B,i,X,C,j,X j -, - , -, -) 
[M,m 1 N,t,X',A,h,-1 D ,p, E,q] XC f--t [C,F' C[ooX] ~ C[) F'loo] 
[A,h 1 B,i,X,G,k, -1 F',j,F, k] C, [F f--t G C[oo) F[ J f--t G[oo] 

Figure 5: Tabulation rules 




