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This paper describes algorithms and software 
developed to characterise and detect generic 
intelligent language-like features in an input 
signal, using natural  language learning tech- 
niques: looking for characteristic statistical 
"language-signatures" in test corpora. As 
a first step towards such species-independent 
language-detection, we present a suite of pro- 
grams to analyse digital representations of a 
range of data, and use the results to extrap- 
olate whether or not there are language-like 
structures which distinguish this data from 
other sources, such as music, images, and white 
noise. Outside our own immediate NLP sphere, 
generic communication techniques are of par- 
ticular interest in the astronautical community, 
where two sessions are dedicated to SETI at 
their annual International conference with top- 
ics ranging from detecting ET technology to the 
ethics and logistics of message construction (E1- 
liott and Atwell, 1999; Ollongren, 2000; Vakoch, 
2000). 

1 I n t r o d u c t i o n  

A useful thought experiment is to imagine 
eavesdropping on a signal from outer space. 
How can you decide that  it is a message be- 
tween intelligent life forms? We need a 'lan- 
guage detector': or, to put  it more accu- 
rately, something that  separates language from 
non-language. But what is special about the 
language signal that  separates it from non- 
language? Is it, indeed, separable? 

The problem goal is to separate language 
from non-language without dialogue, and learn 
something about the structure of language in 
the passing. The language may not be human 

(animals, aliens, computers...), the perceptual 
space can be unknown, and we cannot assume 
human language structure but must begin some- 
where. We need to approach the language signal 
from a naive viewpoint, in effect, increasing our 
ignorance and assuming as little as possible. 

Given this standpoint,  an informal descrip- 
tion of 'language' might include that  it: 

• has structure at several interrelated levels 
• is not random 
• has grammar 
• has letters/characters, words, phrases and 

sentences 
• has parts of speech 
• is recursive 
• has a theme with variations 
• is aperiodic but  evolving 
• is generative 
• has transformation rules 
• is designed for communication 
• has Zipfian type-token distributions at sev- 

eral levels 

Language as a 'signal' 

• has some signalling elements (a 'script') 
• has a hierarchy of signalling elements? 

('Words', 'phrases' etc.) 
• is serial? 
• is correlated across a distance of several sig- 

nalling elements applying at various levels 
in the hierarchy 

• is usually not truly periodic 
• is quasi-stationary? 
• is non-ergodic? 

We assume that  a language-like signal will be 
encoded symbolically, i.e. with some kind of 
character-stream. Our language-detection al- 
gorithm for symbolic input  uses a number of 
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statistical clues such as entropy, "chunking" to 
find character bit-length and boundaries, and 
matching against a Zipfian type-token distribu- 
tion for "letters" and "words". 

2 I d e n t i f y i n g  S t r u c t u r e  a n d  t h e  
' C h a r a c t e r  S e t '  

The initial task, given an incoming bit-stream, 
is to identify if a language-like structure ex- 
ists and if detected what are the unique pat- 
terns/symbols,  which constitute its 'character 
set'. A visualisation of the alternative possible 
byte-lengths is gleaned by plotting the entropy 
calculated for a range of possible byte-lengths 
(fig 1). 

In 'real' decoding of unknown scripts it is ac- 
cepted that  identifying the correct set of dis- 
crete symbols is no mean feat (Chadwick, 1967). 
To make life simple for ourselves we assume 
a digital signal with a fixed number of bits 
per character. Very different techniques are re- 
quired to deal with audio or analogue equivalent 
waveforms (Elliott and Atwell, 2000; Elliott and 
Atwell, 1999). We have reason to believe that  
the following method can be modified to relax 
this constraint, but  this needs to be tested fur- 
ther. The task then reduces to trying to iden- 
tify the number of bits per character. Given the 
probability of a bit is Pi; the message entropy 
of a string of length N will be given by the first 
order measure: 

E = S U M [ P i l n P i ] ; i  = 1, N 

If the signal contains merely a set of random dig- 
its, the expected value of this function will rise 
monotonically as N increases. However, if the 
string contains a set of symbols of fixed length 
representing a character set used for commu- 
nication, it is likely to show some decrease in 
entropy when analysed in blocks of this length, 
because the signal is 'less random' when thus 
blocked. Of course, we need to analyse blocks 
that  begin and end at character boundaries. We 
simply carry out the measurements in sliding 
windows along the data. In figure 1, we see 
what happens when we applied this to samples 
of 8-bit ASCII text. We notice a clear drop, 
as predicted, for a bit length of 8. Modest 
progress though it may be, it is not unreason- 
able to assume that  the first  p iece  o f  ev- 
idence  for the  p r e s e n c e  of  l anguage - l i ke  

s t r u c t u r e ,  w o u l d  be  t h e  i den t i f i c a t i on  of  a 
l ow-en t ropy ,  c h a r a c t e r  se t  w i t h i n  t h e  sig- 
nal .  

The next task, still below the stages normally 
tackled by NLL researchers, is to chunk the in- 
coming character-stream into words. Looking 
at a range of (admittedly human language) text, 
if the text includes a space-like word-separator 
character, this will be the most frequent charac- 
ter. So, a plausible hypothesis would be that  the 
most frequent character is a word-separator1; 
then plot type-token frequency distributions for 
words, and for word-lengths. If the distribu- 
tions are Zipfian, and there are no significant 
'outliers' (very large gaps between 'spaces' sig- 
nifying very long words) then we have evidence 
corroborating our space hypothesis; this also 
corroborates our byte-length hypothesis, since 
the two are interdependent.  

3 I d e n t i f y i n g  ' W o r d s '  

Again, work by crytopaleologists suggests that,  
once the character set has been found, the sep- 
aration into word-like units, is not trivial and 
again we cheat, slightly: we assume that  the 
language possesses something akin to a 'space' 
character. Taking our entropy measurement de- 
scribed above as a way of separating characters, 
we now try to identify which character repre- 
sents 'space'. It is not unreasonable to believe 
that,  in a word-based language, it is likely to be 
one of the most frequently used characters. 

Using a number of texts in a variety of lan- 
guages, we first identified the top three most 
used characters. For each of these we hy- 
pothesised in turn  that  it represented 'space'. 
This then allowed us to segment the signal into 
words-like units ('words' for simplicity). We 
could then compute the frequency distribution 
of words as a function of word length, for each 
of the three candidate 'space' characters (fig 2). 

It can be seen that  one 'separator' candidate 
(unsurprisingly, in fact, the most frequent char- 
acter of all) results in a very varied distribu- 
tion of word lengths. This is an interesting 
distribution, which, on the right hand side of 
the peak, approximately follows the well-known 
'law' according to Zipf (1949), which predicts 
this behaviour on the grounds of minimum ef- 

1Work is currently progressing on techniques for un- 
supervised word separation without spaces. 
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fort in a communication act. Conversely, re- 
sults obtained similar to the 'flatter' distribu- 
tions above, when using the most frequent char- 
acter, is likely to indicate the absence of word 
separators in the signal. 

To ascertain whether the word-length fre- 
quency distribution holds for language in gen- 
eral, multiple samples from 20 different lan- 
guages from Indo-European, Bantu, Semitic, 
Finno-Ugrian and Malayo-Polynesian groups 
were analysed (fig 3). Using statistical measures 
of significance, it was found that  most groups 
fell well within 5- only two individual languages 
were near exceeding these limits - of the pro- 
posed Human language word-length profile (E1- 
liott et al., 2000). 

Z ip f ' s  law is a s t r o n g  i n d i c a t i o n  of  
l anguage - l i ke  b e h a v i o u r .  I t  can  be  u s e d  
to  s e g m e n t  t h e  s ignal  p r o v i d e d  a ' space '  
c h a r a c t e r  exis ts .  However, we should not 
assume Zipf to be an infallible language detec- 
tor. Natural phenomena such as molecular dis- 
tribution in yeast DNA possess characteristics 
of power laws (Jenson, 1998). Nevertheless, it 
is worth noting, that  such non-language posses- 
sors of power law characteristics generally dis- 
play distribution ranges far greater than lan- 
guage with long repeats far from each other 
(Baldi and Brunak, 1998); characteristics de- 
tectable at this level or at least higher order 
entropic evaluation. 

4 I d e n t i f y i n g  ' P h r a s e - l i k e '  c h u n k s  

Having detected a signal which satisfies cri- 
teria indicating language-like structures at a 
physical level (Elliott and Atwell, 2000; Elliott 
and Atwell, 1999), second stage analysis is re- 
quired to begin the process of identifying inter- 
nal grammatical components, which constitute 
the basic building blocks of the symbol system. 
With the use of embedded clauses and phrases, 
humans are able to represent an expression or 
description, however complex, as a single com- 
ponent of another description. This allows us to 
build up complex structures far beyond our oth- 
erwise restrictive cognitive capabilities (Minsky, 
1984). Without  committ ing ourselves to a for- 
mal phrase structure approach, (in the Chom- 
skian sense) or even to a less formal 'chunk- 
ing' of language (Sparkle Project, 2000), it is 
this universal hierarchical structure, evident in 

all human languages and believed necessary for 
any advanced communicator, that constitutes 
the next phase in our signal analysis (Elliott and 
Atwell, 2000). It is from these 'discovered' ba- 
sic syntactic units that analysis of behavioural 
trends and inter-relationships amongst termi- 
nals and non-terminals alike can begin to unlock 
the encoded internal grammatical structure and 
indicate candidate parts of speech. To do this, 
we make use of a particular feature common to 
many known languages, the 'function' words, 
which occur in corpora with approximately the 
same statistics. These tend to act as bound- 
aries to fairly self-contained semantic/syntactic 
'chunks.' They can be identified in corpora by 
their usually high frequency of occurrence and 
cross-corpora invariance, as opposed to 'con- 
tent' words which are usually less frequent and 
much more context dependent. 

Now suppose the function words arrived in a 
text independent of the other words, then they 
would have a Poisson distribution, with some 
long tails (distance between successive function 
words.) But this is NOT what happens. In- 
stead, there is empirical evidence that function 
word separation is constrained to within short 
limits, with very few more than nine words 
apart (see fig 4). We conjecture that this is 
highly suggestive of chunking. 

5 C l u s t e r i n g  i n t o  
s y n t a c t i c o - s e m a n t i c  c l a s s e s  

Unlike traditional natural  language process- 
ing, a solution cannot be assisted using vast 
amounts of training data with well-documented 
'legal' syntax and semantic interpretation or 
known statistical behaviour of speech cate- 
gories. Therefore, at this stage we are endeav- 
ouring to extract the syntactic elements with- 
out a 'Rossetta' stone and by making as few as- 
sumptions as possible. Given this, a generic sys- 
tem is required to facilitate the analysis of be- 
havioural trends amongst selected pairs of ter- 
minals and non-terminals alike, regardless of the 
target language. 

Therefore, an intermediate research goal is to 
apply Natural Language Learning techniques to 
the identification of "higher-level" lexical and 
grammatical patterns and structure in a lin- 
guistic signal. We have begun the development 
of tools to visualise the correlation profiles be- 
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tween pairs of words or parts of speech, as a pre- 
cursor to deducing general principles for ' typing' 
and clustering into syntactico-semantic lexical 
classes. Linguists have long known that  collo- 
cation and combinational patterns are charac- 
teristic features of natural languages, which set 
them apart (Sinclair, 1991). Speech and lan- 
guage technology researchers have used word- 
bigram and n-gram models in speech recogni- 
tion, and variants of PoS-bigram models for 
Part-of-Speech tagging. In general, these mod- 
els focus on immediate neighbouring words, but 
pairs of words may have bonds despite sepa- 
ration by intervening words; this is more rele- 
vant in semantic analysis, eg Wilson and Rayson 
(1993), Demetriou (1997). We sought to in- 
vestigate possible bonding between type tokens 
(i.e., pairs of words or between parts of speech 
tags) at a range of separations, by mapping the 
correlation profile between a pair of words or 
tags. This can be computed for given word-pair 
type (wl,w2) by recording each word-pair token 
(wl,w2,d) in a corpus, where d is the distance or 
number of intervening words. The distribution 
of these word-pair tokens can be visualised by 
plotting d (distance between wl and w2) against 
frequency (how many (wl,w2,d) tokens found at 
this distance). Distance can be negative, mean- 
ing that  w2 occurred be/ore wl and for any size 
window (i.e., 2 to n). In other words, we postu- 
late that  it might be possible to deduce part-of- 
speech membership and, indeed, identify a set 
of part-of-speech classes, using the joint proba- 
bility of words themselves. But is this possible? 
One test would be to take an already tagged 
corpus and see if the parts-of-speech did indeed 
fall into separable clusters. 

Using a five thousand-word extract from the 
LOB corpus (Johansson et al., 1986) to test this 
tool, a number of parts-of-speech pairings were 
analysed for their cohesive profiles. The arbi- 
trary figure of five thousand was chosen, as it 
both represents a sample large enough to re- 
flect trends seen in samples much larger (with- 
out loosing any valuable data) and a sample 
size, which we see as at least plausible when 
analysing ancient or extra-terrestrial languages 
where data is at a premium. 

Figure 5 shows the results for the relationship 
between a pair of content and function words, so 
identified by looking at their cross-corpus statis- 

tics. It can be seen that  the function word has a 
high probability of preceding the content word 
but has no instance of directly following it. At 
least metaphorically, the graph can be consid- 
ered to show the 'binding force' between the two 
words varying with their separation. We are 
looking at how this metaphor might be used in 
order to describe language as a molecular struc- 
ture, whose 'inter-molecular forces' can be re- 
lated to part-of-speech interaction and the de- 
velopment of potential semantic categories for 
the unknown language. 

Examining language in such a manner also 
lends itself to summarising ('compressing') the 
behaviour to its more notable features when 
forming profiles. Figure 6 depicts a 3D repre- 
sentation of results obtained from profiling VB- 
tags with six other major syntactic categories; 
figure 7 shows the main syntactic behavioural 
features found for the co-occurrence of some of 
the major syntactic classes ranging over the cho- 
sen window of ten words. 

Such a tool may also be useful in other areas, 
such a lexico-grammatical analysis or tagging 
of corpora. Data-oriented approaches to cor- 
pus annotat ion use statistical n-grams and/or  
constraint-based models; n-grams or constraints 
with wider windows can improve error-rates, 
by examining the topology of the annotation- 
combination space. Such information could be 
used to guide development of Constraint Gram- 
mars. The English Constraint Grammar de- 
scribed in (1995) includes constraint rules up 
to 4 words either side of the current word (see 
Table 16, p352); the peaks and troughs in the 
visualisation tool might be used to find candi- 
date patterns for such long-distance constraints. 

Our research topic NLL4SETI (Natural Lan- 
guage Learning for the Search for Extra- 
Terrestrial Intelligence) is distinctive in that  - 
it is potentially a VERY useful application of 
unsupervised NLL; - it starts from more ba- 
sic assumptions than  most NLL research: we 
do not assume tokenisation into characters and 
words, and have no tagged/parsed training cor- 
pus; - it focuses on utilising statistical distri- 
butional universals of language which are com- 
putable and diagnostic; - this focus has led us 
to develop distributional visualisation tools to 
explore type/ token combination distributions; - 
the goal is NOT learning algorithms which anal- 
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yse/annotate human language in a way which 
human experts would approve of (eg phrase- 
chunking corresponding to a human linguist's 
parsing of English text); but algorithms which 
recognise language-like structuring in a poten- 
tially much wider range of digital data sets. 

6 S u m m a r y  a n d  f u t u r e  
d e v e l o p m e n t s  

To summarise, our achievements to date include 
- a method for splitting a binary digit-stream 
into characters, by using entropy to diagnose 
byte-length; - a method for tokenising unknown 
character-streams into words of language; - 
an approach to chunking words into phrase- 
like sub-sequences, by assuming high-frequency 
function words act as phrase-delimiters; - a vi- 
sualisation tool for exploring word-combination 
patterns, where word-pairs need not be imme- 
diate neighbours but characteristically combine 
despite several intervening words. 

So far, our approaches have involved working 
with languages with which we are most familiar 
and, to a certain extent, making use of linguistic 
'knowns' such as pre-tagged corpora. It is early 
days yet and we make no apology for this initial 
approach. However, we feel that by deliberately 
reducing our dependence on prior knowledge 
('increasing our ignorance of language') and by 
treating language as a 'signal', we might be con- 
tributing a novel approach to natural language 
processing which might ultimately lead to a bet- 
ter, more fundamental understanding of what 
distinguishes language from the rest of the sig- 
nal universe. 
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