OMAM at SemEval-2017 Task 4: Evaluation of English State-of-the-Art Sentiment Analysis Models for Arabic and a New Topic-based Model

Ramy Baly, Gilbert Badaro, Ali Hamdi, Rawan Moukalled, Rita Aoun, Georges El-Khoury, Ahmad Al Sallab, Hazem Hajj, Nizar Habash, Khaled Shaban, Wassim El-Hajj


Abstract
While sentiment analysis in English has achieved significant progress, it remains a challenging task in Arabic given the rich morphology of the language. It becomes more challenging when applied to Twitter data that comes with additional sources of noise including dialects, misspellings, grammatical mistakes, code switching and the use of non-textual objects to express sentiments. This paper describes the “OMAM” systems that we developed as part of SemEval-2017 task 4. We evaluate English state-of-the-art methods on Arabic tweets for subtask A. As for the remaining subtasks, we introduce a topic-based approach that accounts for topic specificities by predicting topics or domains of upcoming tweets, and then using this information to predict their sentiment. Results indicate that applying the English state-of-the-art method to Arabic has achieved solid results without significant enhancements. Furthermore, the topic-based method ranked 1st in subtasks C and E, and 2nd in subtask D.
Anthology ID:
S17-2099
Volume:
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
Month:
August
Year:
2017
Address:
Vancouver, Canada
Venue:
SemEval
SIGs:
SIGLEX | SIGSEM
Publisher:
Association for Computational Linguistics
Note:
Pages:
603–610
Language:
URL:
https://aclanthology.org/S17-2099
DOI:
10.18653/v1/S17-2099
Bibkey:
Cite (ACL):
Ramy Baly, Gilbert Badaro, Ali Hamdi, Rawan Moukalled, Rita Aoun, Georges El-Khoury, Ahmad Al Sallab, Hazem Hajj, Nizar Habash, Khaled Shaban, and Wassim El-Hajj. 2017. OMAM at SemEval-2017 Task 4: Evaluation of English State-of-the-Art Sentiment Analysis Models for Arabic and a New Topic-based Model. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages 603–610, Vancouver, Canada. Association for Computational Linguistics.
Cite (Informal):
OMAM at SemEval-2017 Task 4: Evaluation of English State-of-the-Art Sentiment Analysis Models for Arabic and a New Topic-based Model (Baly et al., SemEval 2017)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingestion-script-update/S17-2099.pdf