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Abstract

Creating annotated frame lexicons such
as PropBank and FrameNet is expen-
sive and labor intensive. We present
a method to induce an embedded frame
lexicon in an minimally supervised fash-
ion using nothing more than unlabeled
predicate-argument word pairs. We hy-
pothesize that aggregating such pair se-
lectional preferences across training leads
us to a global understanding that captures
predicate-argument frame structure. Our
approach revolves around a novel inte-
gration between a predictive embedding
model and an Indian Buffet Process pos-
terior regularizer. We show, through our
experimental evaluation, that we outper-
form baselines on two tasks and can learn
an embedded frame lexicon that is able to
capture some interesting generalities in re-
lation to hand-crafted semantic frames.

1 Introduction

Semantic lexicons such as PropBank (Palmer
et al., 2005) and FrameNet (Baker et al., 1998)
contain information about predicate-argument
frame structure. These frames capture knowledge
about the affinity of predicates for certain types
of arguments, their number and their semantic na-
ture, regardless of syntactic realization.

For example, PropBank specifies frames in the
following manner:

• eat→ [agent]0, [patient]1

• give→ [agent]0, [theme]1, [recipient]2

These frames provide semantic information such
as the fact that “eat” is transitive, while “give” is

ditransitive, or that the beneficiary of one action is
a “patient”, while the other is a “recipient”.

This structural knowledge is crucial for a num-
ber of NLP applications. Information about
frames has been successfully used to drive and
improve diverse tasks such as information extrac-
tion (Surdeanu et al., 2003), semantic parsing (Das
et al., 2010) and question answering (Shen and La-
pata, 2007), among others.

However, building these frame lexicons is very
expensive and time consuming. Thus, it remains
difficult to port applications from resource-rich
languages or domains to data impoverished ones.
The NLP community has tackled this issue along
two different lines of unsupervised work.

At the local token level, researchers have at-
tempted to model frame structure by the selec-
tional preference of predicates for certain argu-
ments (Resnik, 1997; Séaghdha, 2010). For exam-
ple, on this problem a good model might assign a
high probability to the word “pasta” occurring as
an argument of the word “eat”.

Contrastingly, at the global type level, work has
focussed on inducing frames by clustering pred-
icates and arguments in a joint framework (Lang
and Lapata, 2011a; Titov and Klementiev, 2012b).
In this case, one is interested in associating pred-
icates such as “eat”, “consume”, “devour”, with
a joint clustering of arguments such as “pasta”,
“chicken”, “burger”.

While these methods have been useful for sev-
eral problems, they also have shortcomings. Se-
lectional preference modelling only captures local
predicate-argument affinities, but does not aggre-
gate these associations to arrive at a structural un-
derstanding of frames.

Meanwhile, frame induction performs cluster-
ing at a global level. But most approaches tend
to be algorithmic methods (or some extension
thereof) that focus on semantic role labelling.
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Their lack of portable features or model parame-
ters unfortunately means they cannot be used to
solve other applications or problems that require
lexicon-level information – such as information
extraction or machine translation. Another limi-
tation is that they always depend on high-level lin-
guistic annotation, such as syntactic dependencies,
which may not exist in resource-poor settings.

Thus, in this paper we propose to combine the
two approaches to induce a frame semantic lexi-
con in a minimally supervised fashion with noth-
ing more than unlabeled predicate-argument word
pairs. Additionally, we will learn an embedded
lexicon that jointly produces embeddings for pred-
icates, arguments and an automatically induced
collection of latent slots. The embeddings provide
flexibility for usage in downstream applications,
where predicate-argument affinities can be com-
puted at will.

To jointly capture the local and global streams
of knowledge we propose a novel integration be-
tween a predictive embedding model and the pos-
terior of an Indian Buffet Process. The embed-
ding model maximizes the predictive accuracy of
predicate-argument selectional preference at the
local token level, while the posterior of the In-
dian Buffet process induces an optimal set of la-
tent slots at the global type level that capture the
regularities in the learned predicate embeddings.

We evaluate our approach and show that our
models are able to outperform baselines on both
the local and global level of frame knowledge. At
the local level we score higher than a standard
predictive embedding model on selectional pref-
erence, while at the global level we outperform a
syntactic baseline on lexicon overlap with Prop-
Bank. Finally, our analysis on the induced latent
slots yields insight into some interesting general-
ities that we are able to capture from unlabeled
predicate-argument pairs.

2 Related Work

The work in this paper relates to research on
identifying predicate-argument structure in both
local and global contexts. These related areas
of research correspond to the NLP community’s
work respectively on selectional preference mod-
elling and semantic frame induction (which is also
known variously as unsupervised semantic role la-
belling or role induction).

Selectional preference modelling seeks to cap-

ture the semantic preference of predicates for cer-
tain arguments in local contexts. These prefer-
ences are useful for many tasks, including unsu-
pervised semantic role labelling (Gildea and Ju-
rafsky, 2002) among others.

Previous work has sought to acquire these pref-
erences using various means, including ontologi-
cal resources such as WordNet (Resnik, 1997; Cia-
ramita and Johnson, 2000), latent variable mod-
els (Rooth et al., 1999; Séaghdha, 2010; Ritter
et al., 2010) and distributional similarity metrics
(Erk, 2007). Most closely related to our contribu-
tion is the work by Van de Cruys (2014) who use
a predictive neural network to capture predicate-
argument associations.

To the best of our knowledge, our research is
the first to attempt using selectional preference as
a basis for directly inducing semantic frames.

At the global level, frame induction subsumes
selectional preference by attempting to group ar-
guments of predicates into coherent and cohesive
clusters. While work in this area has included
diverse approaches, such as leveraging example-
based representations (Kawahara et al., 2014) and
cross-lingual resources (Fung and Chen, 2004;
Titov and Klementiev, 2012b), most attempts have
focussed on two broad categories. These are latent
variable driven models (Grenager and Manning,
2006; Cheung et al., 2013) and similarity driven
clustering models (Lang and Lapata, 2011a,b),

Our work includes elements of both major cat-
egories, since we use latent slots to represent ar-
guments, but an Indian Buffet process induces
these latent slots in the first place. The work of
Titov and Klementiev (2012a) and Woodsend and
Lapata (2015) are particularly relevant to our re-
search. The former use another non-parametric
Bayesian model (a Chinese Restaurant process)
in their work, while the latter embed predicate-
argument structures before performing clustering.

Crucially, however all these previous efforts in-
duce frames that are not easily portable to applica-
tions other than semantic role labelling (for which
they are devised). Moreover, they rely on syn-
tactic cues to featurize and help cluster argument
instances. To the best of our knowledge, ours
is the first attempt to go from unlabeled bag-of-
arguments to induced frame embeddings without
any reliance on annotated data.
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3 Joint Local and Global Frame Lexicon
Induction

In this section we present our approach to in-
duce a frame lexicon with latent slots. Following
prior work on frame induction (Lang and Lapata,
2011a; Titov and Klementiev, 2012a), the proce-
dural pipeline can be split into two distinct phases:
argument identification and argument clustering.

As with previous work, we focus on the lat-
ter stage, and assume that we have unlabeled
predicate-argument structure pairs – given to us
from gold standard annotation or through heuris-
tic means (Lang and Lapata, 2014).

We begin with preliminary notation. Given a
vocabulary of predicate types P = {p1, ..., pn}
and contextual argument types A = {a1, ..., am}.
Let C = {(p1, a1), ..., (pN , aN )} be a corpus of
predicate-argument word token pairs1. Given this
corpus, we will attempt to learn an optimal set of
model parameters θ that maximizes a regularized
likelihood over the corpus.

The model parameters include V = {vi | ∀pi ∈
P} an n × d embedding matrix for the predicates
and U = {ui | ∀ai ∈ A} anm×d embedding ma-
trix for the arguments. Additionally, assuming K
latent frame slots we define Z = {zik} an n × k
binary matrix that represents the presence or ab-
sence of the slot k for the predicate i, and a latent
K × d weight matrix S = {sk | 1 ≤ k ≤ K} that
associates a weight vector to each latent slot.

The generalized form of the objective we opti-
mize is given by:

θ̂ = arg max
θ

∑
(pi,ai)∈C

log

(∑
k

Pr(ai|pi, zik, sk)
)

+ log prθ(Z|V ) (1)

This objective has two parts: a likelihood term,
and a posterior regularizer. The former will be
responsible for modelling the predictive accuracy
of selectional-preference at a local level, while the
latter will capture global consistencies for an opti-
mal set of latent slots.

We detail the parametrization of each of these
components separately in what follows.

1In this work, we assume argument chunks are broken
down into individual words, – to increase training data size
– but the model remains agnostic to this decision.

Figure 1: The generative story depicting the re-
alization of an argument from a predicate. Ar-
gument words are generated from latent argument
slots. Observed variables are shaded in grey, while
latent variables are in white.

3.1 Local Predicate-Argument Likelihood
The likelihood term of our model is based on
the popular Skip-gram model from Mikolov et al.
(2013) but suitably extended to incorporate the
latent frame slots and their associated weights.
Specifically, we define the probability for a single
predicate-argument pair (pi, ai) as:

Pr(ai|pi) =
∑
k

Pr(ai|pi, zik, sk) =

∑
k

zik
exp((vi � sk) · ui)∑
ai′

exp((vi � sk) · ui′) (2)

where � represents the element-wise multiplica-
tion operator. Intuitively, in the likelihood term
we weight a general predicate embedding to a slot-
specific representations, which then predicts a spe-
cific argument. This is graphically represented in
Figure 1.

3.2 Global Latent Slot Regularization
The posterior regularization term in equation 1
seeks to balance the likelihood term by yielding
an optimal set of latent slots, given the embedding
matrix of predicates.

We choose the posterior of an Indian Buffet pro-
cess (IBP) (Griffiths and Ghahramani, 2005) in
this step to induce an optimal latent binary ma-
trix Z. The IBP itself places a prior on equiva-
lence classes of infinite dimensional sparse binary
matrices, and is the infinite limit (K → ∞) of a
beta-Bernoulli model.

πk ∼ Beta(α/K, 1)
zik ∼ Bernoulli(πk)

(3)

Given a suitable likelihood function and some
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data, inference in an IBP computes a posterior that
yields an optimal finite binary matrix with respect
to regularities in the data.

Setting the data, in our case, to be the embed-
ding matrix of predicates V , this gives us precisely
what we are seeking. It allows us to find regulari-
ties in the embeddings, while factorizing them ac-
cording to these consistencies. The model also au-
tomatically optimizes the number of and relation-
ship between latent slots, rather than setting these
a priori.

Other desiderata are encoded as well, including
the fact that the the matrix Z remains sparse, while
the frequency of slots follows a power-law distri-
bution proportional to Poisson(α). In practise, this
captures the power-law distribution of relational
slots in real-world semantic lexicons such as Prop-
Bank (Palmer et al., 2005). All of these properties
stem directly from the choice of prior, and are a
natural consequence of using an IBP.

In this paper, we use a linear-Gaussian model as
the likelihood function. This is a popular model
that has been applied to several problems, and for
which different approximate inference strategies
have been developed (Doshi-Velez et al., 2009;
Doshi-Velez and Ghahramani, 2009). According
to his model, the predicate embeddings are dis-
tributed as:

vi ∼ Gaussian(ziW,σ2
V I) (4)

where W is a K × d matrix of weights and σV is
a hyperparameter.

For a detailed derivation of the posterior of
an IBP prior with a linear-Gaussian likelihood,
we point the reader to Griffiths and Ghahramani
(2011), who provide a meticulous summary.

3.3 Optimization

Since our objective in equation 1 contains two dis-
tinct components, we can optimize using alter-
nating maximization. Although guaranteed con-
vergence for this technique only exist for con-
vex functions, it has proven successful even for
non-convex problems (Jain et al., 2013; Netrapalli
et al., 2013).

We thus alternate between keeping Z fixed and
optimizing the parameters V,U, S in the likeli-
hood component of section 3.1, and keeping V
fixed and optimizing the parameters Z in the pos-
terior regularization component of section 3.2.

In practise, the likelihood component is opti-
mized using negative sampling with EM for the
latent slots. In particular we use hard EM, to se-
lect a single slot before taking gradient steps with
respect to the model parameters. This was shown
to work well for Skip-gram style models with la-
tent variables by Jauhar et al. (2015).

In the E-Step we find the best latent slot for a
particular predicate-argument pair:

k̂ = arg max
k

Pr(ai|pi, zik, sk) (5)

We follow this by making stochastic gradient
updates to the model parameters U, V, S in the M-
Step using the negative sampling objective:

log zik̂σ
(
(vi � sk̂) · ui

)
+∑

l

Eai′∼Prn(a)

[
log zik̂σ

(
(vi � sk̂) · ui′

)]
(6)

where σ(·) is the sigmoid function, Prn(a) is a
unigram noise distribution over argument types
and l is the negative sampling parameter.

As for optimizing the posterior regularization
component, an approximate inference technique
such as Gibbs sampling must be used. In Gibbs
sampling we iteratively sample individual zik
terms from the posterior:

Pr(zik|X,Z−ik) ∝ Pr(X|Z) ·Pr(zik|Z−ik)
(7)

where Z−ik is the Markov blanket of zik in Z. The
prior and likelihood terms are respectively those of
equations 3 and 4. Doshi-Velez and Ghahramani
(2009) present an accelerated version of Gibbs
sampling for this model, that computes the like-
lihood and prior terms efficiently. We use this ap-
proach in our work since it has the benefits of mix-
ing like a collapsed sampler, while maintaining the
running time of an uncollapsed sampler.

In conclusion, the optimization steps iteratively
refine the parameters V,U, S to be better predic-
tors of the corpus, while Z is updated to best fac-
torize the regularities in the predicate embeddings
V , thereby capturing better relational slots.

3.4 Relational Variant

In addition to the standard model introduced
above, we also experiment with an extension
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where the input corpus consists of predicate-
argument-relation triples instead of just predicate-
argument pairs. These relations are observed rela-
tions, and should not be confused with the latent
slots of the model.

To accommodate this change we modify the ar-
gument embedding matrix U to be of dimensions
m× d

2 and introduce a new q× d
2 embedding matrix

R = {ri | 1 ≤ i ≤ q} for the q observed relation
types.

Then, wherever the original model calls for
an argument vector ui (which had dimensional-
ity d) we instead replace it with a concatenated
argument-relation vector [ui; rj ] (which now also
has dimensionality d). During training, we must
make gradient updates to R in addition to all the
other model parameters as usual.

While this relation indicator can be used to cap-
ture arbitrary relational information, in this paper
we set it to a combination of the directionality of
the argument with respect to the predicate (L or
R), and the preposition immediately preceding the
argument phrase (or None if there isn’t one). Thus,
for example, we have relational indicators such as
“L-on”, “R-before”, “L-because”, “R-None”, etc.
We obtain a total of 146 such relations.

Note, that in keeping with the goals of this
work, these relation indicators still require no an-
notation (prepositions are closed-class words than
can be enumerated).

4 Experiments and Evaluation

In what follows, we detail experimental results
on two quantitative evaluation tasks: at the lo-
cal and global levels of predicate-argument struc-
ture. In particular we evaluate on pseudo disam-
biguation of selectional preference, and seman-
tic frame lexicon overlap. We also qualitatively
inspect the learned latent relations against hand-
annotated roles. We first specify the implementa-
tional details.

4.1 Implementational Details

We begin by pre-training standard skip-gram vec-
tors (Mikolov et al., 2013) on the NY-Times sec-
tion of the Gigaword corpus, which consists of ap-
proximately 1.67 billion word tokens. These vec-
tors are used as initialization for the embedding
matrices V and U , before our iterative optimiza-
tion. While this step is not strictly required, we
found that it leads to generally better results than

random initialization given the relatively small
size of our predicate-argument training corpus.

For training our models, we use a combina-
tion of the training data released for the CoNLL
2008 shared task (Surdeanu et al., 2008) and the
extended PropBank release which covers annota-
tions of the Ontonotes (Hovy et al., 2006) and En-
glish Web Treebank (Bies et al., 2012) corpora.
We reserve the test portion of the CoNLL 2008
shared task data for one of our evaluations.

In this work, we only focus on verbal predicates.
Our training data gives us a vocabulary of 4449
predicates, after pruning verbs that occur fewer
than 5 times.

Then, from the training data we extract all
predicate-argument pairs using gold standard ar-
gument annotations, for the sake of simplicity.
Note that previous unsupervised frame induction
work also uses gold argument mentions (Lang
and Lapata, 2011a; Titov and Klementiev, 2012b).
Our method, however, does not depend on this,
or any other annotation, and we could as easily
use the output from an automated system such as
Abend et al. (2009) instead.

In this manner, we obtain a total of approx-
imately 3.35 million predicate-argument word
pairs on which to train.

Using this data we train a total of 4 distinct
models: a base model and a relational variant (see
Section 3.4), both of which are trained with two
different IBP hyperparameters of α = 0.35 and
α = 0.7. The hyperparameter controls the avidity
of the model for latent slots (a higher α implies a
greater number of induced slots).

This results in the learned number of slots rang-
ing from 17 to 30, with the conservative model av-
eraging about 4 latent slots per word, while the
permissive model averaging about 6 latent slots
per word.

Since our objective is non-convex we record the
training likelihood at each power iteration (includ-
ing an optimization over both the predictive and
IBP components of our objective), and save the
model with the highest training likelihood.

We set our embedding size to d = 100 and, after
training, obtain latent slot factors ranging in num-
ber from 15 to 30.
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Model α Variant k slots % Acc
Skip-gram - - - 0.77

pa2IBPVec
0.35

Standard 17 0.81
Relational 15 0.84

0.7
Standard 27 0.81

Relational 30 0.81

Table 1: Results on pseudo disambiguation of se-
lectional preference. Numbers are in % accuracy
of distinguishing true arguments from false ones.
Our models all outperform the skip-gram baseline.

4.2 Pseudo Disambiguation of Selection
Preference

The pseudo disambiguation task aims to evaluate
our models’ ability to capture predicate-argument
knowledge at the local level. In this task, systems
are presented with a set of triples: a predicate, a
true argument and a fake argument. The systems
are evaluated on the percentage of true arguments
they are able to select.

For example, given a triple:

resign, post, liquidation

a successful model should rate the pair “resign-
post” higher than “resign-liquidation”.

This task has often been used in the selectional
preference modelling literature as a benchmark
task (Rooth et al., 1999; Van de Cruys, 2014) .

To obtain the triples for this task we use the test
set of the CoNLL 2008 shared task data. In par-
ticular, for every verbal predicate mention in the
data we select a random nominal word from each
of its arguments phrase chunks to obtain a true
predicate-argument word pair. Then, to introduce
distractors, we sample a random nominal from a
unigram noise distribution. In this way we obtain
9859 pseudo disambiguation triples as our test set.

We use our models to score a word pair by tak-
ing the probability of the pair under our model,
using the best latent slot:

max
k

zikσ ((vi � sk) · ui) (8)

where vi and ui are predicate and argument em-
beddings respectively, zik is the binary indicator
of the k’th slot for the i’th predicate, and sk is the
slot specific weight vector. The argument in the
higher scoring pair is selected as the correct one.

In the relational variant, instead of the single ar-
gument vector ui we also take a max over the re-
lation indicators – since the exact indicator is not
observed at test time.

We compare our models against a standard skip-
gram model (Mikolov et al., 2013) trained on the
same data. Word pairs in this model are scored us-
ing the dot product between their associated skip-
gram vectors.

This is a fair comparison since our models as
well as the skip-gram model have access to the
same data – namely predicates and their neigh-
boring argument words. They are trained on their
ability to discriminate true argument words from
randomly sampled noise. The evaluation then,
is whether the additionally learned slot structure
helps in differentiating true arguments from noise.
The results of this evaluation are presented in Ta-
ble 1.

The results show that all our models outperform
the skip-gram baseline. This demonstrates that
the added structural information gained from la-
tent slots in fact help our models to better capture
predicate-argument affinities in local contexts.

The impact of latent slots or additional relation
information does not seem to impact basic perfor-
mance, however. This could be because of the
trade-off that occurs when a more complex model
is learned from the same amount of limited data.

4.3 Frame Lexicon Overlap

Next, we evaluate our models at their ability to
capture global predicate-argument structure. Pre-
vious work on frame induction has focussed on
evaluating instance-based argument overlap with
gold standard annotations in the context of se-
mantic role labelling (SRL). Unfortunately, be-
cause our models operate on individual predicate-
argument words rather than argument spans a fair
comparison becomes problematic.

But unlike previous work, which clusters argu-
ment instances, our approach produces a model as
a result of training. We can thus directly evaluate
this model’s latent slot factors against a gold stan-
dard frame lexicon. Our evaluation framework is,
in many ways based on the metrics used in unsu-
pervised SRL, except applied at the “type” lexicon
level rather than the corpus-based “token” cluster
level.

In particular, given a gold frame lexicon Ω with
K∗ real argument slots (i.e. the total number of
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Model α Variant
Coarse Fine

PU CO F1 PU CO F1
Syntax - - 0.71 0.87 0.78 0.70 0.91 0.79

pa2IBPVec
0.35

Standard 0.76 0.89 0.82 0.76 0.97 0.85
Relational 0.73 0.90 0.81 0.73 0.97 0.83

0.7
Standard 0.79 0.91 0.85 0.79 0.98 0.87

Relational 0.80 0.92 0.85 0.80 0.98 0.88

Table 2: Results on the lexicon overlap task. Our models outperform the syntactic baseline on all the
metrics.

possible humanly assigned arguments in the lexi-
con), we evaluate our models’ latent slot matrix Z
in terms of its overlap with the gold lexicon.

We define purity as the average proportion of
overlap between predicted latent slots and their
maximally similar gold lexicon slots:

PU =
1
K

∑
k

max
k′

1
n

∑
i

δ(ωik′ , zik) (9)

where δ(·) is an indicator function. Given that the
ω’s and z’s we compare are binary values, this in-
dicator function is effectively an “XNOR” gate.

Similarly we define collocation as the average
proportion of overlap between gold standard slots
and their maximally similar predicted latent slots:

CO =
1
K∗

∑
k′

max
k

1
n

∑
i

δ(ωik′ , zik) (10)

Given, the purity and collocation metrics we
can define the F1 score as the harmonic mean of
the two:

F1 =
2 · CO · PU
CO + PU

(11)

In our experiments we use the frame files pro-
vided with the PropBank corpus (Palmer et al.,
2005) as gold standard. We derive two variants
from the frame files.

The first is a coarse-grained lexicon. In this
case, we extract only the functional arguments of
verbs in our vocabulary as gold standard slots.
These functions correspond to broad semantic ar-
gument types such as “prototypical agent”, “proto-
typical patient”, “instrument”, “benefactive”, etc.
A total of 16 gold slots are produced in this man-
ner, and are mapped to indices. For every verb
the corresponding binary ω vector marks the exis-
tence or not of the different functional arguments
according to the gold frame files.

The second variant is a fine-grained lexicon.
Here, in addition to functional arguments we also
consider the numerical argument with which it is
associated, such as “ARG0”, “ARG1” etc. Note
that a single functional argument may appear with
more than one numerical slot with different verbs
over the entire lexicon. The fine-grained lexicon
yields 72 gold slots.

We compare our models against a baseline in-
spired from the syntactic baseline often used for
evaluating unsupervised SRL models. For unsu-
pervised SRL, syntax has proven to be a difficult
to outperform baseline (Lang and Lapata, 2014).

This baseline is constructed by taking the 21
most frequent syntactic labels in the training data
and associating them each with a slot. All other
syntactic labels are associated with a 22nd generic
slot. Given these slots, we associate a verbal pred-
icate with a specific slot if it takes on the corre-
sponding syntactic argument in the training data.
The results on the lexicon overlap task are pre-
sented in Table 2.

They show that our models consistently outper-
form the syntactic baseline on all metrics in both
the coarse-grained and fine-grained settings. We
conclude that our models are better able to capture
predicate-argument structure at a global level.

Inspecting and comparing the results of our dif-
ferent models seems to indicate that we perform
better when our IBP posterior allows for a greater
number of latent slots. This happens when the hy-
perparameter α = 0.7.

Additionally our models consistently perform
better on the fine-grained lexicon than on the
coarse-grained one. The former itself does not
necessarily represent an easier benchmark, since
there is hardly any difference in the F1 score of
the syntactic baseline on the two lexicons.

Overall it would seem that allowing for a greater
number of latent slots does help capture global
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Predicate
Latent Slot

1 2 3 5 6 8 10 12
provide A0 A1 A2 A2

enter A0 A1 AM-ADV
praise A0 A1 A2
travel A0 A0 AM-PNC AM-TMP

distract A0 A1 A2
overcome AM-TMP A0 A0

Table 3: Examples for several predicates with mappings of latent slots to the majority class of the closest
argument vector in the shared embedded space.

predicate-argument structure better. This makes
sense, if we consider the fact that we are ef-
fectively trying to factorize a dense representa-
tion (the predicate embeddings) with IBP infer-
ence. Thus allowing for a greater number of latent
factors permits the discovery of greater structural
consistency within these embeddings.

This finding does have some problematic impli-
cations, however. Increasing the IBP hyperparam-
eter α arbitrarily represents a computational bot-
tleneck since inference scales quadratically with
the number of latent slots K. There is also the
problem of splitting argument slots too finely,
which may result in optimizing purity at the ex-
pense of collocation. A solution to this trade-off
between performance and inference time remains
for future work.

4.4 Qualitative Analysis of Latent Slots

To better understand the nature of the latent slots
induced by our model we conduct an additional
qualitative analysis. The goal of this analysis is
to inspect the kinds of generalities about semantic
roles that our model is able to capture from com-
pletely unannotated data.

Table 3 lists some examples of predicates and
their associated latent slots. The latent slots are
sorted according to their frequency (i.e. column
sum in the binary slot matrix Z). We map each la-
tent slot to the majority semantic role type – from
training data – of the closest argument word to the
predicate vector in the shared embedding space.

The model for which we perform this qualita-
tive analysis is the standard variant with the IBP
hyperparameter set to α = 0.35; this model has
17 latent slots. Note that slots that do not feature
for any of the verbs are omitted for visual com-
pactness.

There are several interesting trends to notice

here. Firstly, the basic argument structure of pred-
icates is often correctly identified, when matched
against gold PropBank frame files. For example,
the core roles of “enter” identify it as a transitive
verb, while “praise”, “provide” and “distract” are
correctly shown as ditransitive verbs. Obviously
the structure isn’t always perfectly identified, as
with the verb “travel” where we are missing both
an “ARG1” and an “ARG2”.

In certain cases a single argument type spans
multiple slots – as with “A2” for “provide” and
“A0” for “travel”. This is not surprising, since
there is no binding factor on the model to produce
one-to-one mappings with hand-crafted semantic
roles. Generally speaking, the slots represent dis-
tributions over hand-crafted roles rather than strict
mappings. In fact, to expect a one-to-one mapping
is unreasonable considering we use no annotations
whatsoever.

Nevertheless, there is still some consistency in
the mappings. The core arguments of verbs – such
as “ARG0” and “ARG1” are typically mapped to
the most frequent latent slots. This can be ex-
plained by the fact that the more frequent argu-
ments tend to be the ones that are core to a predi-
cate’s frame. This is quite a surprising outcome of
the model, considering that it is given no annota-
tion about argument types. Of course, we do not
always get this right as can be seen with the case
of “overcome”, where a non-core argument occurs
in the most frequent slot.

Since this is a data driven approach, we identify
non-core roles as well, if they occur with predi-
cates often enough in the data. For example we
have the general purpose “AM-ADV” argument
of “enter”, and the “ARG-PNC” and “ARG-TMP”
(purpose and time arguments) of the verb “travel”.
In future work we hope to explore methods that
might be able to automatically distinguish core
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slots from non-core ones.
In conclusion, our model show promise in that

it is able to capture some interesting generalities
with respect to predicates and their hand-crafted
roles, without the need for any annotated data.

5 Conclusion and Future Work

We have presented a first attempt at learning
an embedded frame lexicon from data, using no
annotated information. Our approach revolves
around jointly capturing local predicate-argument
affinities with global slot-level consistencies. We
model this approach with a novel integration be-
tween a predictive embedding model and the pos-
terior of an Indian Buffet Process.

We experiment with our model on two quantita-
tive tasks, each designed to evaluate performance
on capturing local and global predicate-argument
structure respectively. On both tasks we demon-
strate that our models are able to outperform base-
lines, thus indicating our ability to jointly model
the local and global level information of predicate-
argument structure.

Additionally, we qualitatively inspect our in-
duced latent slots and show that we are able to
capture some interesting generalities with regards
to hand-crafted semantic role labels.

There are several avenues of future work we are
exploring. Rather than depend on gold argument
mentions in training, we hope to fully automate
the pipeline to leverage much larger amounts of
data. With this greater data size, we also will likely
no longer need to break down argument spans into
individual words. Instead, we plan to models these
spans as chunks using an LSTM.

With this additional modeling power we hope to
evaluate on downstream applications such as se-
mantic role labelling, and semantic parsing.

In a separate line of work we hope to be able
to parallelize the Indian Buffet Process inference,
which remains a bottleneck of our current effort.
Speeding up this process will allow us to explore
more complex (and potentially better) models.
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