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A b s t r a c t  

Language models for speech recognition typ- 
ically use a probability model of the form 
Pr(an[al,a2,... ,an-i). Stochastic grammars, 
on the other hand, are typically used to as- 
sign structure to utterances, A language model 
of the above form is constructed from such 
grammars by computing the prefix probabil- 
ity ~we~* Pr(a l . - .ar tw) ,  where w represents 
all possible terminations of the prefix al . . .an.  
The main result in this paper is an algorithm 
to compute such prefix probabilities given a 
stochastic Tree Adjoining Grammar (TAG). 
The algorithm achieves the required computa- 
tion in O(n 6) time. The probability of sub- 
derivations that do not derive any words in the 
prefix, but contribute structurally to its deriva- 
tion, are precomputed to achieve termination. 
This algorithm enables existing corpus-based es- 
timation techniques for stochastic TAGs to be 
used for language modelling. 

1 I n t r o d u c t i o n  

Given some word sequence al ' . 'an-1,  speech 
recognition language models are used to hy- 
pothesize the next word an, which could be 
any word from the vocabulary F~. This 
is typically done using a probability model 
Pr(an[al,...,an-1). Based on the assumption 
that modelling the hidden structure of nat- 
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ural language would improve performance of 
such language models, some researchers tried to 
use stochastic context-free grammars (CFGs) to 
produce language models (Wright and Wrigley, 
1989; Jelinek and Lafferty, 1991; Stolcke, 1995). 
The probability model used for a stochas- 
tic grammar was ~we~* P r (a l . . - anw) .  How- 
ever, language models that are based on tri- 
gram probability models out-perform stochastic 
CFGs. The common wisdom about this failure 
of CFGs is that trigram models are lexicalized 
models while CFGs are not. 

Tree Adjoining Grammars (TAGs) are impor- 
tant in this respect since they are easily lexical- 
ized while capturing the constituent structure 
of language. More importantly, TAGs allow 
greater linguistic expressiveness. The trees as- 
sociated with words can be used to encode argu- 
ment and adjunct relations in various syntactic 
environments. This paper assumes some famil- 
iarity with the TAG formalism. (Joshi, 1988) 
and (Joshi and Schabes, 1992) are good intro- 
ductions to the formalism and its linguistic rele- 
vance. TAGs have been shown to have relations 
with both phrase-structure grammars and de- 
pendency grammars (Rambow and Joshi, 1995), 
which is relevant because recent work on struc- 
tured language models (Chelba et al., 1997) have 
used dependency grammars to exploit their lex- 
icalization. We use stochastic TAGs as such a 
structured language model in contrast with ear- 
lier work where TAGs have been exploited in 
a class-based n-gram language model (Srinivas, 
1996). 

This paper derives an algorithm to compute 
prefix probabilities ~we~* P r ( a l . . .  anw). The 
algorithm assumes as input a stochastic TAG G 
and a string which is a prefix of some string in 
L(G), the language generated by G. This algo- 
rithm enables existing corpus-based estimation 
techniques (Schabes, 1992) in stochastic TAGs 
to be used for language modelling. 
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2 N o t a t i o n  

A stochastic Tree Adjoining Grammar  (STAG) 
is represented by a tuple (NT,  E,:T, .A, ¢) where 
N T  is a set of nonterminal  symbols, E is a set 
of terminal  symbols, 2: is a set of init ial  trees 
and .A is a set of  a u x i l i a r y  trees. Trees in :TU.A 
are also called e l e m e n t a r y  trees. 

We refer to the root of an elementary tree t as 
Rt. Each auxiliary tree has exactly one distin- 
guished leaf, which is called the foot .  We refer 
to the foot of an auxiliary tree t as Ft. We let 
V denote the set of all nodes in the elementary 
trees. 

For each leaf N in an elementary tree, except 
when it is a foot, we define label(N) to be the 
label of the node, which is either a terminal from 
E or the empty  string e. For each other node 
N, label(N) is an element from NT.  

At a node N in a tree such that  label(N) • 
N T  an operation called a d j u n c t i o n  can be ap- 
plied, which excises the tree at N and inserts 
an auxiliary tree. 

Function ¢ assigns a probability to each ad- 
junction. The probability of adjunction of t • A 
at node N is denoted by ¢(t, N).  The probabil- 
ity that  at N no adjunction is applied is denoted 
by ¢(nil ,  N).  We assume that  each STAG G 
that  we consider is p r o p e r .  That  is, for each 
N such that  label(N) • NT,  

¢(t, N)  = 1. 
tE.AU{nil} 

For each non-leaAf node N we construct the 
string cdn(N) = N1 . . .  Nm from the (ordered) 
list of children nodes N 1 , . . . , N m  by defining, 
for each d such that  1 < d < m, Nd = label(Nd) 
in case label(Nd) • E U {e}, and N d = Nd oth- 
erwise. In other words, children nodes are re- 
placed by their labels unless the labels are non- 
terminal  symbols. 

To simplify the exposition, we assume an ad- 
ditional node for each auxiliary tree t, which 
we denote by 3_. This is the unique child of the 
actual foot node Ft. Tha t  is, we change the def- 
inition of cdn such that  cdn(Ft) = 2_ for each 
auxiliary tree t. We set 

V ± = { N  e V I label(N) • N T }  U E U {3_}. 

We use symbols a , b , c , . . ,  to range over E, 
symbols v , w , x , . . ,  to range over E*, sym- 
bols N, M , . . .  to range over V ±, and symbols 

~, fl, 7 , . . .  to range over (V±) *. We use t, t ' , . . .  
to denote trees in 2: U ,4 or subtrees thereof. 

We define the predicate dft on elements from 
V ± as dft(N) if and only if (i) N E V and N 
dominates 3_, or (ii) N = 3_. We extend dft 
to strings of the form N 1 . . . N m  E (V±) * by 
defining dft(N1. . .  Nm) if and only if there is a 
d (1 < d < m) such that  dft(Nd). 

For some logical expression p, we define 
5(p) = 1 iff p is true, 5(p) = 0 otherwise. 

3 O v e r v i e w  

The approach we adopt in the next section to 
derive a method for the computat ion of prefix 
probabilities for TAGs is based on transforma- 
tions of equations. Here we informally discuss 
the general ideas underlying equation transfor- 
mations. 

Let w = a la2 . . . an  E ~* be a string and let 
N E V ±. We use the following representation 
which is s tandard in tabular  methods for TAG 
parsing. An i t e m  is a tuple [N, i, j, f l ,  f2] rep- 
resenting the set of all trees t such that  (i) t is a 
subtree rooted at N of some derived elementary 
tree; and (ii) t's root spans from position i to 
position j in w, t's foot node spans from posi- 
tion f l  to position f2 in w. In case N does not 
dominate the foot, we set f l  = f2 = - .  We gen- 
eralize in the obvious way to items It, i, j ,  f l ,  f2], 
where t is an elementary tree, and [a, i, j,  f l ,  f2], 
where cdn (N) = al~ for some N and/3.  

To introduce our approach, let us start  with 
some considerations concerning the TAG pars- 
ing problem. When parsing w with a TAG G, 
one usually composes items in order to con- 
struct new items spanning a larger portion of 
the input string. Assume there are instances of 
auxiliary trees t and t' in G, where the yield of 
t', apart  from its foot, is the empty  string. If 
¢(t, N) > 0 for some node N on the spine of t', 
and we have recognized an item [Rt, i , j ,  f l ,  f2], 
then we may adjoin t at N and hence deduce 
the existence of an item [Rt,,i,j,  f l ,  f2] (see 
Fig. l(a)).  Similarly, if t can be adjoined at 
a node N to the left of the spine of t' and 
f l  = f2, we may deduce the existence of an item 
[Rt, , i, j, j, j] (see Fig. l(b)).  Importantly,  one 
or more other auxiliary trees with empty  yield 
could wrap the tree t' before t adjoins. Adjunc- 
tions in this situation are potentially nontermi- 
hating. 

One may argue that  situations where auxil- 
iary trees have empty yield do not occur in prac- 
tice, and are even by definition excluded in the 
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(a) R t, 

t t ~ 

(b) R,, 

Figure 1: Wrapping in auxiliary trees with 
empty yield 

case of lexicalized TAGs. However, in the com- 
putation of the prefix probability we must take 
into account trees with non-empty yield which 
behave like trees with empty yield because their 
lexical nodes fall to the right of the right bound- 
ary of the prefix string. For example, the two 
cases previously considered in Fig. 1 now gen- 
eralize to those in Fig. 2. 

Rt* Rtl 

e ~ s p i n e  

i f ~ f 2  n i flff/~2 n 
E 

C 

Figure 2: Wrapping of auxiliary trees when 
computing the prefix probability 

To derive a method for the computation of 
prefix probabilities, we give some simple recur- 
sive equations. Each equation decomposes an 
item into other items in all possible ways, in 
the sense that it expresses the probability of 
that item as a function of the probabilities of 
items associated with equal or smaller portions 
of the input. 

In specifying the equations, we exploit tech- 
niques used in the parsing of incomplete in- 
put (Lang, 1988). This allows us to compute 
the prefix probability as a by-product of com- 
puting the inside probability. 

In order to avoid the problem of nontermi- 
nation outlined above, we transform our equa- 
tions to remove infinite recursion, while preserv- 
ing the correctness of the probability computa- 
tion. The transformation of the equations is 
explained as follows. For an item I, the span  
of I, written a(I) ,  is the 4-tuple representing 
the 4 input positions in I. We will define an 
equivalence relation on spans that relates to the 
portion of the input that is covered. The trans- 
formations that we apply to our equations pro- 
duce two new sets of equations. The first set 
of equations are concerned with all possible de- 
compositions of a given item I into set of items 
of which one has a span equivalent to that of I 
and the others have an empty span. Equations 
in this set represent endless recursion. The sys- 
tem of all such equations can be solved indepen- 
dently of the actual input w. This is done once 
for a given grammar. 

The second set of equations have the property 
that, when evaluated, recursion always termi- 
nates. The evaluation of these equations com- 
putes the probability of the input string modulo 
the computation of some parts of the derivation 
that do not contribute to the input itself. Com- 
bination of the second set of equations with the 
solutions obtained from the first set allows the 
effective computation of the prefix probability. 

4 C o m p u t i n g  P r e f i x  P r o b a b i l i t i e s  

This section develops an algorithm for the com- 
putation of prefix probabilities for stochastic 
TAGs. 

4.1 Genera l  e q u a t i o n s  
The prefix probability is given by: 

P r ( a l . . . a n w )  = ~ P([t ,O,n,-,-]) ,  
wEE* fEZ 

where P is a function over items recursively de- 
fined as follows: 

P([ t , i , j ,  f l , f2])  = P([Rt,  i , j ,  f l , f2]);  (1) 
P ( [ t ~ N , i , j , - , - ] )  = (2) 

P ( [ a , i , k , - , - ] )  . P ( [ N , k , j , - , - ] ) ,  
k(i < k < j) 

if a ¢ e A -~dft(aN); 

P([t~N, i, j, f l ,  f2]) = (3) 

Z P ( [ a , i , k , - , - ] ) - P ( [ N , k , j ,  f l , f2]) ,  
k(i < k < fl) 

if ~ ¢ ¢ A dft(g);  
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P([aN, i, j, f l ,  f2]) = (4) 

P([a, i, k, f l ,  f2]).  P([N, k, j, - ,  - ] ) ,  
k(f2 <_ k <_ j )  

i f  # c ^ 

P([N, i, j, f l , /2]) = (5) 
¢(nil ,  N).  P([cdn(N), i,j, fl,  f2]) + 

P([cdn(N), f~, f~, f~, f2]) . 
f~,f~(i S f~ S fl A f2 ~_ flo S J) 

¢(t, N ) .  P([t, i , j ,  f[, f~]), 
tEA 

if N • V A dft(N);  

P ( [ g , i , j , - , - ] )  = (6) 
¢(ni l ,  N) . P([cdn(N), i , j , - , - ] )  + 

P([cdn(N), f~, f~, - ,  -]) . 

y ~  ¢(t,  N ) .  P([t , i , j , f[ , f~]) ,  
tEA 

if N • V A -,dfl(N); 
P ( [ a , i , j , - , - ] )  = (7) 

+ 1 = j ^ aj  = a) + = j = n);  

P([-l-,i,j, f l , f2]) = (f(i = f l  A j  = f2); (8) 
P([e, i , j ,  - ,  - ] )  = (f(i = j ) .  (9) 

Term P([t, i, j, f l ,  f2]) gives the inside probabil- 
ity of all possible trees derived from elementary 
tree t, having the indicated span over the input.  
This  is decomposed into the contr ibut ion of each 
single node of t in equations (1) th rough (6). 
In equat ions (5) and  (6) the contr ibut ion of a 
node N is de te rmined  by the combinat ion of 
the inside probabilit ies of N ' s  children and by 
all possible adjunet ions at N. In (7) we rec- 
ognize some terminal  symbol if it occurs in the 
prefix, or ignore its contr ibut ion to the span if it 
occurs after the last symbol of the prefix. Cru- 
cially, this step allows us to reduce the compu- 
ta t ion of prefix probabilit ies to the computa t ion  
of inside probabilities.  

4.2 T e r m i n a t i n g  e q u a t i o n s  
In general, the recursive equations (1) to (9) 
are not directly computable .  This  is because 
the value of P([A, i, j, f ,  if]) might  indirectly de- 
pend  on itself, giving rise to nonterminat ion.  
We therefore rewrite the equations. 

We define an equivalence relation over spans, 
tha t  expresses when two items are associated 
with equivalent port ions of the input:  

(i',j ' ,  f~, f~) .~ (i,j, f l ,  f2) if and only if 

( ( i ' , j ' )  = ( i , j ) )A 

= (fl ,  f2)v 
((f~ = f~ = iV f{ = f~ = j V  f{ = f~ = --)A 

( f l  = :2 = i v f l  = f2  = jvf  = :2 = - ) ) )  

We introduce two new functions P~ow and 
P, pm. When  evaluated on some i tem I,  Plow re- 
cursively calls itself as long as some other  i tem 
I' with a given elementary tree as its first com- 
ponent  can be reached, such tha t  a ( I )  ~. a(I'). 
Pto~ returns 0 if the actual  branch of recursion 
cannot  eventually reach such an i tem I ' ,  thus 
removing the contr ibut ion to the prefix proba- 
bility of that  branch. If i tem I ' is reached, then  
P~ow switches to Psptit. Complementa ry  to Plow, 
function P, pm tries to decompose an a rgument  
i tem I into i tems I ~ such tha t  a(I) ~ a(I'). If  
this is not possible th rough the actual  branch 
of recursion, P, pm returns 0. If decomposi t ion  
is indeed possible, then  we start  again wi th  Pto,o 
at i tems produced by the decomposit ion.  The  
effect of this intermixing of funct ion calls is the 
simulation of the original funct ion P ,  with  Pzo~ 
being called only on potent ial ly nonte rmina t ing  
parts  of the computa t ion ,  and P, pm being called 
on parts  that  are guaranteed to terminate .  

Consider some derivation tree spanning some 
port ion of the input  string, and the associated 
derivation tree 7-. There must  be a unique ele- 
mentary  tree which is represented by a node in 
7- that  is the "lowest" one tha t  entirely spans 
the port ion of the input  of interest. (This node 
might  be the root of T itself.) Then,  for each 
t E .A and for each i , j ,  f l , f 2  such tha t  i < j 
and i < f l  < f2 __< j ,  we must  have: 

P([t ,  i, j, f l ,  f2]) = (10) 

l l • . I l t' E .A, fl,f~((z,3, fl,f~) ,~  (i,j, f1,f2)) 

Similarly, for each t E 27 and for each i, j such 
tha t  i < j ,  we must  have: 

P([t, i , j ,  - ,  -1) = (11) 

[t', L / ] ) .  
t' e {t} u .4 , /~  {-,i,j} 

The  reason why P~o~, keeps a record of indices 
f{ and f~, i.e., the spanning of the foot node 
of the lowest tree (in the above sense) on which 
Plow is called, will become clear later, when we 
introduce equations (29) and (30). 

We define Pzo~:([t,i,j, f l , f2],[t ' , f[ , f~]) and 
P~o=([a,i,j, f l , f2],[t ' , f{ , f~]) for / < j and 

• . ! ! 

(i,j, f l , f2 )  ~ (z,3, f l , f~)  , as follows. 
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Pto~o([t, i, j ,  f l ,  f2], [tt, f{,f~]) = (12) 
Pto~o([Rt, i, j, f l ,  f2],  [tt, f{,f~]) + 
6((t ,  fl, f2) = (it, fl, f2)) " 

P,,m([nt, i, j, fl, f2]); 

Pzo~([aN, i , j ,  - ,  -1, [t, f{, f~]) = (13) 
j , - , - ] ,  

P ( [ N , j , j , - , - ] )  + 
P([a, i, i, - ,  -]) • 

P~o~.([N,i , j ,- ,-],  [t, f~, f~]), 
if a # e A ",dfl(aN); 

P~o~([ag, i , j ,  f t , f2],  [t,f{,f~]) = (14) 
6(fl ----- j)" Pto~([a, i,j,-, -], [t, f{, foil) • 

P([N, j , j ,  fl, f2]) + 
P([a, i, i, - ,  - ] )  • 

Pto~,([g,i,j, f l , f2],  [t,f~,f~]), 
if a # e A rift(N); 

P,o~([aN, i , j ,  fx,f2], [t,f{,f~]) = (15) 
P~o~([a,i,j,f~,f2], [t, f~, f~]) • 

P ( [ N , j , j , - , - ] )  + 

6(i = f2)" P( [a ,  i, i, f l ,  f2]) " 
P~o~([N, i , j , - , - ] ,  [t,f~,f~]), 

if a # e A dft(a);  

P~o~,([N, i, j, f l ,  f2], [t, f{, f~]) : (16) 
¢ ( n i l ,  N )  • 

Pzo~ ([cdn (N), i, j, fl, f2], [t, f{, f~]) + 
P~o,o([cdn(N), i , j ,  f l ,  f2], [t, f l ,  f~]) • 

Et 'eA ¢(t ' ,  g )  . P([t', i , j ,  i,j]) + 
P([cdn(N),  f l ,  f2 ,  f l ,  f2] )  " 

E ¢(t ' ,  N ) .  Pto~ ([t', i , j ,  f l ,  f21, [t, f{, f~]), 
t I E .4 

if N E V A dft (N);  

Pto~ ([N, i, j ,  - ,  - ] ,  [t, f l ,  f~]) = (17) 
¢ ( n i l ,  N )  • 

Pzo~,([cdn(N), i , j , - , -] ,  [t,f{,f~]) + 
P~o~([cdn(N), i , j ,  - , - ] ,  [t, f{, f~]) • 

E t ' e A  ¢(t ' ,  N) . P([t', i, j, i, j]) + 

P([ cdn( g ) ,  f{', f~, - ,  -]) " 
fl',f~'(fl' = S~' = ~vy~' = S~' =~) 

E ¢(t', N)"P~ow ([t', i, j, ill', f2'], [t, f{, f~]), 
t 'EA 

if N E V A -~dft(N); 

Pto~([a, i , j ,  - ,  - ] ,  [t, f{, f~]) = O; (18) 

Pto~,([-L,i,j, f l , f2], [t,f{,f¢.]) = 0; (19) 
i , j ,  - ,  - ] ,  [t, = 0. (20) 

The definition of Pto~ parallels the  one of P 
given in §4.1. In (12), the second te rm in the  
r ight-hand side accounts for the  case in which 
the tree we are visit ing is the  "lowest" one on 
which Pto,. should be called. Note how in the 
above equations Pto~ must  be called also on 
nodes that  do not domina te  the  footnode of the 
e lementary tree they belong to (cf. the definit ion 
of ~) .  Since no call to P,p,t is possible through 
the terms in (18), (19) and (20), we must  set 
the r ight-hand side of these equat ions to 0. 

The  specification of P.pm([a, i, j, f l , f2])  is 
given below. Again, the  definit ion parallels the  
one of P given in §4.1. 

P, pm([aN, i, j, - ,  - ] )  = (21) 

P ( [ a , i , k , - , - ] )  . P ( [ Y , k , j , - , - ] )  + 
k(i < k < j) 

P, pm([a , i , j , - , - ] )  . P ( [ Y , j , j , - , - ] )  + 
P ( [ a , i , i , - , - ] )  . P ,p , , t ( [Y , i , j , - , - ] ) ,  
if a # e A -,dft(aN); 

P, pm([aY, i, j, f l , f2]) = (22) 

E P ( [ a , i , k , - , - ] ) . P ( [ N , k , j ,  f l , f2]) + 
k ( i < k <  f l A k < 3 )  

~(fl  = J) " P.p,t([a, i , j , - , - ] )  • 
P ( [ g , j , j ,  f l , f2]) + 

P([a ,  i, i, - ,  - ] ) .  P,,m([N, i, j, f l ,  f2]), 
if a # e A dft(N); 

Pspt,t ( [ a N ,  i,  j ,  f l ,  f 2 ] )  = (23) 

E P([a, i ,k ,  f l , f2])" P ( [ N , k , j , - , - ] )  + 
k(i <kA  f2 <k <j)  

P.pm([a, i , j ,  f l ,  f2])" P([N, j , j ,  - ,  - ] )  + 
5(i = f2)" P([ot, i, i, f l ,  f2])" 

P , , m ( [ N , i , j , - , - 1 ) ,  
if a # e A dfl(a); 

Pop,,t([N, i, j, f l ,  f2]) = (24) 
¢(ni l ,  g ) .  P~pm([cdn(N), i , j ,  f l ,  f2]) + 

y~  P([cdn(N) , f~ , f~ , f l ,  f2]) " 
fl,f~ (i < fl < f~ ^ f2 < f; < j ^ 

(fl,f~) • (i,3) ^ (fl, f2) ¢ (fl,f2)) 

¢(t,  N) . P([t, i, j, f~, f~]) + 
tEA 

P..,i, ([cdn (N),  i, j, f l ,  f2])  • 
¢(t,  g )  . P([t, i, j, i, j]),  

t fA  
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if N E V A dft(N);  

P , , , ,  ([N, i, j ,  - ,  - ] )  = (25) 

¢(ni l ,  N ) .  Psplit ([cdn (N), i, j, - ,  - ] )  + 

P([cdn(N), f~, f~, - ,  -]) . 
l I ! I *A l I fl'f2 (i<--fl <_f~ <--3 (f~,f~)~(i,j)A 

"~(fl -~f2 =ivfl = f2 =J)) 

¢ ( t , N ) .  P([t , i , j , f~, f~]) + 
tEA 

Ps,u, ([cdn ( N),  i, j, - ,  - ] )  

¢ ( t , Y ) .  P([t , i , j , i , j]) ,  
tEA 

if N E Y A --rift(N); 
P.put([a,i,j,--,--]) ----- (~(i -t- 1 = j A aj = a); (26) 

P, pm ([_1_, i, j ,  f l ,  f2]) = 0; (27) 
P,,,,,([e, i , j ,  - ,  - ] )  = 0. (28) 

We can now separate those branches of re- 
cursion tha t  te rminate  on the given input  from 
the cases of endless recursion. We assume be- 
low tha t  P,p,,([Rt, i , j ,  f~,f~]) > 0. Even if this 
is not always valid, for the purpose of deriving 
the equat ions below, this assumpt ion  does not 
lead to invalid results. We define a new function 
Po,..., which accounts for probabilities of sub- 
derivations tha t  do not derive any words in the 
prefix, but  contr ibute  s tructural ly to its deriva- 
tion: 

Po,t~.([t,i,j, f l , f2],  [t',f~,f~_]) = (29) 

Pto=([t,i,j, fz,f2], [t',f~,f~]). 
I " * I I P,,,i, ([Rt ,  *, 3, fl, f~]) 

Po~t,,([a,i,j, Yl,:2], [t',:~,:~]) = (30) 

P~o= ([a, i , j ,  f l ,  f2], [t', f~, f~]) 
P,,m (iRe, i, j ,  f{, fgt]) 

We can now eliminate the infinite recur- 
sion tha t  arises in (10) and (11) by rewriting 
P([t ,  i, j ,  f l ,  f2]) in terms of Po.,,,: 

P([t, i , j ,  fy, /2])  = (31) 

Po.,e,([t,i,j, fz,f2], [t',f~,f~]). 
l I i " I t t e  A ,  f l , f 2 ( (  ' J ' f l ' f 2 )  ~" ( i , j ,  f l , f 2 ) )  

P,,m([nt, , i , j ,  f~, f~]); 
P([t, i, j, - ,  - ] )  = (32) 

Po,t ,~([ t , i , j , - , -] ,  [ t ' , f , f ] ) .  
t ' e {t} U.A,f  E {--, i , j} 

P, pzit ([Rt,, i, j ,  f ,  f]) .  

Equat ions  for Po~,, will be derived in the next 
subsection. 

In summary,  te rminat ing  computa t ion  of pre- 
fix probabilities should be based on equa- 
tions (31) and (32), which replace (1), along 
with equations (2) to (9) and all the equat ions 
for P, pm. 

4.3 Off-line Equations 
In this section we derive equations for funct ion 
Po~t,r in t roduced in §4.2 and deal wi th  all re- 
maining cases of equations tha t  cause infinite 
recursion. 

In some cases, function P can be computed  
independent ly  of the actual  input .  For any 
i < n we can consistently define the following 
quantities,  where t E Z U . 4  and a E V ± or 
cdn(N) = aft for some N and fl: 

Ht = P([ t , i , i , f , f ] ) ;  
Ha = P([c~,i,i,f',f']), 

where f = i if t E .A, f = - otherwise, and ff  = 
i if dft(a),  f = - otherwise. Thus,  Ht is the 
probabili ty of all derived trees obta ined from t, 
wi th  no lexical node at their yields. Quanti t ies  
Ht and Ha can be computed  by means of a sys- 
tem of equations which can be directly obta ined 
from equations (1) to (9). Similar quanti t ies  as 
above must  be in t roduced for the case i = n. 
For instance, we can set H~ = P([t, n, n, f ,  f]) ,  
f specified as above, which gives the probabil- 
ity of all derived trees obta ined from t (with no 
restriction at their yields). 

Funct ion Po~e. is also independent  of the 
actual input.  Let us focus here on the case 
f l , f 2  ¢; { i , j , - }  (this enforces (f l ,  f2) = (f~, f~) 
below). For any i, j, f l ,  f2 < n, we can consis- 
tently define the following quantities.  

Lt,t, = Po~te,([t,i,j, f l , f2],  [t',f~,f~]); 
L~,t, = Po.,°.([a,i , j ,  f l , f2] ,  [t',f~,f~]). 

In the case at hand,  Lt,t, is the probabil i ty of all 
derived trees obtained from t such tha t  (i) no 
lexical node is found at their yields; and (ii) at 
some 'unfinished'  node domina t ing  the foot of 
t, the probabili ty of the adjunct ion of t ~ has al- 
ready been accounted for, but  t t itself has not 
been adjoined. 

It is s traightforward to establish a system of 
equations for the computa t ion  of Lt,t, and La,t,, 
by rewrit ing equations (12) to (20) according 
to (29) and (30). For instance, combining (12) 
and (29) gives (using the above assumpt ions  on 
f l  and f2 ) :  

Lt , t '  = LR t , t '  + (~(t = t ' ) .  
Also, if a ~ e and dft(N),  combining (14) 
and (30) gives (again, using previous assump- 
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tions on f l  and f2; note that  the Ha's are known 
terms here): 

L~N,t' = Ha" LN,t'. 
For any i, f l , f 2  < n and j = n, we also need to 
define: 

L~,t, = Po, , , . ( [ t , i ,n ,  f l , f 2 ] ,  [ t ' , f~, f~]) ;  
L:. t ,  = Po~,. . ( [a, i ,n,  fx , f2 ] ,  [t',/~,/.~]). 

Here L~, t, is the probability of all derived trees 
obtained from t with a node dominating the 
foot node of t, that  is an adjunction site for t' 
and is 'unfinished' in the same sense as above, 
and with lexical nodes only in the portion of 
the tree to the right of that  node. When we 
drop our assumption on f l  and f2, we must 
(pre)compute in addition terms of the form 
Po~t~r([t,i,j,i,i], [t',i,i]) and Po~,~([t,i,j,i,i], 
[t ' , j , j])  for i < j < n, Po,t~,([t,i,n, f l ,n] ,  
[t ' , / i , f~])  for i < 11 < n, Po, , . . ( [ t , i ,n ,n ,n ] ,  
[t', f{, f~]) for i < n, and similar. Again, these 
are independent of the choice of i, j and f l .  Full 
t reatment is omitted due to length restrictions. 

5 C o m p l e x i t y  a n d  c o n c l u d i n g  
r e m a r k s  

We have presented a method for the computa- 
tion of the prefix probability when the underly- 
ing model is a Tree Adjoining Grammar. Func- 
tion P,p,t is the core of the method. Its equa- 
tions can be directly translated into an effective 
algorithm, using standard functional memoiza- 
tion or other tabular techniques. It is easy to 
see that  such an algorithm can be made to run 
in t ime O(n6) ,  where n is the length of the input 
prefix. 

All the quantities introduced in §4.3 (Ht, 
Lt,t,, etc.) are independent of the input and 
should be computed off-line, using the system of 
equations that  can be derived as indicated. For 
quantities Ht we have a non-linear system, since 
equations (2) to (6) contain quadratic terms. 
Solutions can then be approximated to any de- 
gree of precision using standard iterative meth- 
ods, as for instance those exploited in (Stolcke, 
1995). Under the hypothesis that the grammar 
is consistent, that  is Pr(L(G)) = 1, all quanti- 
ties H~ and H~ evaluate to one. For quantities 
Lt,t, and the like, §4.3 provides linear systems 
whose solutions can easily be obtained using 
standard methods. Note also that  quantities 
La,t, are only used in the off-line computation 
of quantities Lt,t,, they do not need to be stored 
for the computat ion of prefix probabilities (com- 
pare equations for Lt,t, with (31) and (32)). 

We can easily develop implementations of our 
method that  can compute prefix probabilities 
incrementally. That  is, after we have computed 
the prefix probability for a prefix al . . .  an, on in- 
put  an+l we can extend the calculation to prefix 
a l""anan+l  without having to recompute all 
intermediate steps that  do not depend on an+l. 
This step takes time O(n5). 

In this paper we have assumed that the pa- 
rameters of the stochastic TAG have been pre- 
viously estimated. In practice, smoothing to 
avoid sparse data problems plays an important  
role. Smoothing can be handled for prefix prob- 
ability computation in the following ways. Dis- 
counting methods for smoothing simply pro- 
duce a modified STAG model which is then 
treated as input to the prefix probability com- 
putation. Smoothing using methods such as 
deleted interpolation which combine class-based 
models with word-based models to avoid sparse 
data problems have to be handled by a cognate 
interpolation of prefix probability models. 
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